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Abstract

This paper describes the design, implementation, and experi-
mental evaluation of Popcorn, a media content delivery sys-
tem that comprehensively hides (even from the content dis-
tributor) what is consumed but not necessarily who is do-
ing the consumption. The motivation for Popcorn is both
principled and pragmatic: we want to provide provable pri-
vacy while still respecting the current commercial context.
To instantiate Popcorn, we turn to a powerful primitive from
cryptography: private information retrieval (PIR). However,
the cost and structure of PIR, as it appears in the literature,
present major obstacles to using PIR as the foundation for
an Internet-scale service. Nevertheless, with careful system
design, and by composing a series of novel refinements and
optimizations that leverage the properties of PIR protocols as
well as the properties of media streaming, we have produced
a system that cheaply hides media consumption, scales to the
size of Netflix’s library (8,000 movies) and respects current
controls on media dissemination. The per-request cost in Pop-
corn is less than three times the per-request cost in a baseline
system that does not provide privacy.

1 Introduction and motivation
This paper describes a Netflix-like media delivery system,
Popcorn, that provably hides what is consumed by its users
but not necessarily who is consuming. Popcorn is motivated
by a fundamental tension in the ecosystem of online media
consumption.

In one camp, there are people who are deeply uncom-
fortable about exposing their media diet to anyone or any-
thing; a particular worry is a centralized media server (e.g.,
Netflix), as it is a target for capture, whether by hacking
or subpoena. The discomfort is partly philosophical: privacy
advocates observe that freedom requires the ability to con-
sume privately [67], a right that public libraries, among oth-
ers, have long fought to uphold [55]. But the discomfort is
also practical: an entity with access1 to a person’s consump-
tion profile can infer the person’s sexual orientation, polit-
ical leanings, private cultural affiliations, etc. [58, 59, 69].
And although many people do not share this discomfort—
on the contrary, they want to expose their consumption, to
gain recommendations—there may nonetheless be particular
objects that they want to consume without others knowing.

Another camp observes that media often exists within a

1To be clear, we are not challenging the trustworthiness of commercial
media services. The issue is exposure to other parties, either accidentally, or
through unlawful means.

commercial framework. There are people who create it and
services that distribute it, and these entities need to be com-
pensated in order to sustain the ecosystem.

Our work in this paper responds to this tension by advanc-
ing a new design point in the realm of media consumption.
Specifically, this paper asks the question, Is it possible to
build a system that hides content consumption while respect-
ing current commercial arrangements, and if so, what would
that system cost?

A general solution is unlikely to be applicable to all media
delivery systems, as they differ widely in their use case and
requirements. YouTube’s library, for instance, is large, fre-
quently updated because of the high volume of user-generated
content, and freely distributable. Netflix’s library, by contrast,
is comparatively small, updated infrequently [3], and subject
to strict licensing and content protection requirements. This
paper explicitly targets Netflix-like systems, while aiming to
satisfy the following three requirements: (1) provably and
comprehensively hide content consumption; (2) scale; and
(3) disseminate content in a way that mimics the status quo.
More specifically, we want to:

1. Hide requests, in a way that is comprehensive and prov-
able. Content consumption must be hidden not only from
a network eavesdropper [4, 29] but also from the content
distributor. Our system must be wary of heuristic solu-
tions as they can be exploited [12].

2. Make it affordable, even at scale. Our system should dis-
pense privacy at an attractive price point. In practice, if
the resource costs of guaranteeing private access were to
be translated into currency and borne only by customers,
they should result in no more than a small multiple of
what customers pay to access content today.

3. Respect current controls on content dissemination. Given
our pragmatic motivation, we are not trying to fundamen-
tally reorient digital rights. Thus, our solution must be
compatible with the existing commercial, legal, and pol-
icy regime (copyright, controls on content dissemination,
etc.).

At first blush, systems that provide anonymity (defined in-
formally as concealing the who of content creation or con-
sumption, such as Tor [27]), satisfy the aforementioned re-
quirements. However, these solutions conflict with the re-
quirements of media delivery systems, which demand high
bandwidth, low latency, and reliable streaming. Indeed, un-
der a system that used Tor, a content provider would have to
relinquish its control of resources to Tor nodes. Not only is
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the aggregate bandwidth available on a Tor network unlikely
to be sufficient to accommodate every Netflix user, but using
Tor nodes would force Netflix to rely on their altruism for
reliable performance.

In light of this mismatch, Popcorn instead turns to a large
body of cryptographic protocols known as Private Informa-
tion Retrieval, or PIR (§2.2). These protocols [20, 31, 45, 62,
79] allow clients (content consumers) to request content from
one or more servers (content distributors) without them infer-
ring which items the clients requested.

These protocols are powerful, but applying them requires
overcoming several challenges. First, to respond to a query,
the server must compute over its entire library; otherwise
the server would know what the client was not interested
in, which would partially unmask the request. Another is-
sue surrounds the choice of protocol. For instance, one type
of PIR, called ITPIR [20], involves lightweight operations
but demands multiple non-colluding servers and hence sep-
arate administrative domains; the plaintext content thus dis-
seminates beyond its original distribution channel, conflict-
ing with our requirements. Meanwhile, a different type of
PIR, called CPIR [45], needs only one server, but the over-
head is too high for our purposes. As we discuss in Section 7,
there is a vast body of work that attempts to address some
or both of these issues [7, 10, 16, 21, 23–25, 36, 37, 39–
42, 50, 53, 56, 64, 71, 75, 77, 78], but to the best of our knowl-
edge, no prior implementation is directly applicable to media
delivery systems at the scale that we target.

Popcorn fills this void. It provably and cheaply hides me-
dia consumption, scales to the size of Netflix, and respects
current content controls on media dissemination. To do so,
Popcorn cherry-picks techniques from the PIR literature, tai-
lors them to the specific domain of media consumption, and
composes them with several novel optimizations.

Three techniques are central to Popcorn’s design. First,
Popcorn balances the trade-off between content protection
and overhead by combining both types of PIR. Media ob-
jects, encrypted for content protection, are stored at multi-
ple servers from distinct administrative domains and retrieved
using the lighter-weight ITPIR. The much smaller crypto-
graphic keys needed to decrypt those objects are retrieved
using the heavier-weight CPIR. Second, Popcorn leverages
the large numbers of concurrent users streaming content at
any given time to batch requests and amortize the costs of
PIR. Third, Popcorn mitigates the delay introduced by batch-
ing by exploiting the structure of the underlying PIR protocol
(specifically, much of the query response work can be moved
offline) as well as the nature of media streaming (specifically,
progressive download).

Our experimental evaluation shows that, for a Netflix-sized
movie library of 8,000 movies [3], Popcorn incurs modest re-
source overheads: the per-request cost to operate Popcorn in
a popular cloud computing environment is, in terms of dol-
lars, within a factor of three of a baseline system that does

not provide privacy.
Though promising, Popcorn has several limitations. First,

its overheads grow with the library size; this precludes scaling
to media libraries that have more than a few hundred thou-
sand media files (YouTube, for example, has at least a few
million media files [19]). Second, it requires non-colluding
servers for ITPIR, but we believe that this is not a severe lim-
itation as content distributors already serve data from multiple
CDNs [6]. Third, the current prototype lacks several features
that are present in today’s commercial streaming services: up-
dates to the library, random seeks in a video, adaptive stream-
ing based on available network bandwidth, etc. Section 8 de-
scribes how Popcorn can be extended to support some of
these additional features.

Nonetheless, Popcorn is, we believe, the first system to
demonstrate that users’ media consumption can provably be
hidden, even when scaled to the load of a commercial stream-
ing service.

2 Setting and background
To provably hide users’ media consumption, Popcorn relies
on a family of cryptographic protocols known as PIR. In this
section, we describe the setting in which Popcorn is intended
to operate and provide the necessary background on PIR.

2.1 Scenario and threat model

The media delivery ecosystem has three principals: a content
creator, a content distributor, and a content consumer. The
creator (e.g., a movie company), delegates to the distributor
(e.g., an online streaming service like Netflix) the tasks of
disseminating content and charging consumers for it.

We model the content kept by the distributor as a collection
L of n objects, each of ` bits; we call L the library. Since
media objects are typically large (at least a few MBs [5, 35]),
we assume that `� n. Associated with the library L is a one-
to-one mapping between the integers 1 . . . n and the names
of the objects in L. We assume that this mapping is known
to both the distributor and the consumers; a consumer can
therefore select to view a specific object by simply providing
the distributor with the corresponding integer.

Threat model. We assume that both the content distributor
and the network eavesdroppers are trying to identify the ob-
ject that a consumer is retrieving. We assume that the distrib-
utor has full access to the content of the requests, and that the
network eavesdroppers observe all communication between
the distributor and the consumers. We do not consider side-
channel attacks, such as using knowledge of where a con-
sumer pauses playback, or of the content of the consumer’s
concurrent Web activity. Finally, we treat content integrity as
an orthogonal problem; the content distributor may return in-
correct content or no content at all. Such behavior would un-
dermine correctness (defined in Section 2.2) but not privacy.
The literature offers standard solutions to guarantee content
integrity [30, 52, 68].
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Figure 1—The structure of a PIR protocol.

2.2 Private Information Retrieval (PIR)

To achieve its goals, Popcorn leverages and refines the ex-
isting body of work on Private Information Retrieval (PIR),
whose fundamentals we now quickly review. The high-level
goal of PIR protocols is tightly aligned with that of Popcorn:
they too allow a client to use an integer between 1 and n to
retrieve any object from a library L of n `-bit objects kept by
a set of k servers (k ≥ 1) without leaking to the servers any
information about which object was retrieved.

A PIR protocol is structured around three procedures:
Query, Answer, and Decode. To privately retrieve object
Ob = L[b] (see Figure 1), the client invokes Query(b) to
output k query vectors q1, · · · , qk, one for each server, and
forwards qj to server Sj (1 ≤ j ≤ k). Each Sj replies
with aj = Answer(qj, L). Finally, the client computes Ob =
Decode(a1, . . . , ak) by applying the decode algorithm to the
servers’ responses.

Any PIR protocol must meet two properties [20]:
• Correctness. If a client requests the object in library L with

index b, then the protocol indeed provides it with object
L[b].

• Privacy. After the server sees a query vector, its probability
of guessing the client’s requested index is no better than if
the server had not seen the query in the first place. This
property can be generalized to coalitions of t < k servers,
requiring that any t out of k servers jointly do not learn any
information about the index of the requested object.
There is a trivial PIR protocol that meets these properties:

a server transmits the entire library to the client. However,
this protocol has high network costs. Thus, to the above two
properties, a third is added.
• Communication efficiency. The size of a server’s reply

must not be much larger than ` and the size of a client’s
request must be far smaller than ` (though it is acceptable
if there is some overhead above the minimum query size of
log2 n bits).
We discuss below the two types of PIR protocols that meet

these properties.

Query (index b):
for i = 1 to n do

f ← (i == b) ? 1 : 0
ci ← Enc(pk, f )

return q = (pk, c1, . . . , cn)

Answer (query vector q, library L):
// Represent L as a matrix of d-bit integers:
// L ∈ ({0, 1}d)n×(`/d)

for j = 1 to `/d do
rj ←

∏n
i=1 ci

[L]i,j

return a = (r1, . . . , r`/d)

Decode (answer a):
return Dec(sk, r1), . . . , Dec(sk, r`/d)

Figure 2—Query, Answer, Decode algorithms for a computational
PIR (CPIR) protocol based on an additively homomorphic cryp-
tosystem (Gen, Enc, Dec). (pk, sk) is a public/private key pair gen-
erated using Gen. n is the number of objects in the library L, and `
is the length of each object.

2.3 Computational PIR (CPIR) protocols

CPIR protocols require only a single, computationally bound
server (k = 1). They are commonly constructed using addi-
tively homomorphic cryptosystems (they do not require fully
homomorphic encryption [32]). Readers already familiar with
these cryptosystems can skip the next paragraph, which pro-
vides a brief review.

Consider a public key cryptosystem defined by three
algorithms—Gen for key generation, Enc for encryption, and
Dec for decryption. Gen is a randomized algorithm that, given
a desired key length, produces a corresponding public key pk
and private key sk. Enc is also a randomized algorithm. Given
a plaintext message m from a set G and a public key pk, Enc
uses pk to encode m into a ciphertext message mpk in a set G′.
For concreteness, G and G′ can be thought of as large sub-
sets of the integers. Dec is the inverse of Enc; it takes a secret
key sk and a ciphertext message mpk and outputs the corre-
sponding plaintext message m. Generally, such a cryptosys-
tem is considered secure if it is infeasible, without knowledge
of the secret key, to extract any information about the plain-
text message encoded in a ciphertext, even with oracle access
to Enc. Such a cryptosystem is additively homomorphic if
Dec(sk, Enc(pk, m1) ·Enc(pk, m2)) = m1 +m2, where m1, m2
are plaintext messages, + is the binary operation representing
addition of two plaintext messages, · is a binary operation (for
example, addition, multiplication etc.) on the ciphertexts, and
pk is a public key. An example of an additively homomorphic
cryptosystem is the Paillier cryptosystem [63].

The CPIR protocol in Figure 2 uses an additively ho-
momorphic cryptosystem to meet the three properties of
PIR (§2.2) [62].
• Correctness. Dec(sk, rj) = Dec(sk,

∏n
i=1 ci

[L]i,j), which
equals

∑n
i=1 Dec(sk, ci) · [L]i,j after the application of the
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Query (index b):
// Generate the first k − 1 query vectors randomly
for j = 1 to k − 1 do

select qj ∈R {0, 1}n

eb ← an n-bit string with all zeros except at b-th position
qk ← eb ⊕ q1 ⊕ · · · ⊕ qk−1 // ⊕ is bit-wise XOR
return q1, . . . , qk

Answer (query vector q, Library L):
// q is one of the outputs of Query
// L has n objects; each is ` bits
// Represent q as a row vector and L as a logical matrix: L ∈

{0, 1}n·`

return q · L // product over the two-element Galois field
GF(2)

Decode (answers a1, . . . , ak):
// aj is the output of Answer
return a1 ⊕ · · · ⊕ ak

Figure 3—Query, Answer, Decode algorithms for the ITPIR pro-
tocol of [20]. n is the number of objects in library L, and ` is the
length of each object. k is the total number of servers.

additively homomorphic property. But ∀i ∈ {1, . . . , n} \
b, Dec(sk, ci) = 0, by construction of ci. Similarly,
Dec(sk, cb) = 1. Therefore, Dec(sk, rj) = Dec(sk, cb) ·
[L]b,j = [L]b,j

• Privacy. The guarantee that server S does not learn b hinges
on S being computationally bounded. All server S sees is
q = (pk, c1, . . . , cn). If, from it, S could systematically
guess b (that is, guess which ciphertext is cb), then S could
likewise systematically guess which entry is the encryption
of 1 (versus 0)—which would contradict the security prop-
erties of the underlying encryption scheme.

• Communication efficiency. The length of the server’s re-
ply is (`/d)·|c| bits, where `/d is the number of ciphertexts
in the reply and |c| is the size of a ciphertext. (`/d) · |c| is
comparable to `, the size of object Ob, if the message ex-
pansion ratio, |c|/d, of the underlying additively homomor-
phic cryptosystem is small.2 The client’s request contains
n ciphertexts and is thus of size |c| · n. When ` � n and
|c| is a small constant (e.g., 2048 bits in most Paillier cryp-
tosystem implementations), |c| · n is much smaller than `.

2.4 Information-theoretic PIR (ITPIR) protocols

ITPIR protocols require more than one server, i.e., k > 1, and
are therefore also called multi-server PIR protocols. These
protocols assume that servers do not collude and thus require
them to belong to different administrative domains.

Figure 3 shows the Chor-Goldreich-Kushilevitz-
Sudan [20] (CGKS) ITPIR protocol. It meets the three
properties of PIR (§2.2) as follows.
• Correctness. The output of Decode is

⊕k
j=1 aj, which

2The Paillier cryptosystem has a message expansion factor of 2.

equals
⊕k

j=1(qj · L). But GF(2) is a field, so multiplica-
tion distributes over addition, and addition is XOR. Thus,⊕k

j=1(qj · L) = (
⊕k

j=1 qj) · L = eb · L = L[b].
• Privacy. A server in S1, · · · , Sk−1 sees a randomly gener-

ated query vector, and therefore cannot learn any informa-
tion about b (in fact, servers S1, · · · , Sk−1 combined cannot
learn any information about b). Server Sk sees qk, which is
constructed by XORing unit vector eb with the one-time
pad q1 ⊕ · · · ⊕ qk−1. Unless Sk learns the one-time pad
(or equivalently colludes with all other servers), it cannot
learn any information about eb because of the perfect se-
crecy properties of one-time pads.

• Communication efficiency. The length of a server’s reply
is ` bits, which is the size of the objects in L. The size
of a client’s request, which consists of k n-bit-long query
vectors, is much smaller than ` bits when the number of
servers k is small.

3 Challenges of using PIR
Though the PIR protocols described in the previous section
(§2.2) can provably hide the content of requests, they are un-
able to do so at scale, or while respecting current controls on
media distribution, for two reasons:
• Incompatible PIR usage models. Both types of PIR proto-

cols are problematic. ITPIR (§2.4) requires multiple non-
colluding servers, and thus multiple administrative do-
mains, which means library content would have to dissem-
inate beyond its original distribution channel, in apparent
conflict with the requirement of respecting existing con-
trols on dissemination. CPIR protocols (§2.3), in contrast,
need only one server, but require expensive cryptographic
operations.3 This conflicts with the requirement of building
an affordable system.

• Extensive server-side work. In CPIR protocols, the server’s
work to serve an object is linear in the size of the library:
the server must load and process all n objects in the library.
Similarly, in ITPIR protocols, all servers combined must on
average compute over n objects to serve one of them. That
is, in either type of PIR, each query induces O(n) more
work in expectation than in a standard media delivery ser-
vice.

4 Architecture and design
To address the above challenges, and to scale PIR to commer-
cial media systems, Popcorn combines existing techniques
from the PIR literature, and specializes them to media deliv-
ery. The rest of this section describes Popcorn’s architecture
and design.

In Popcorn, each media file is split into segments, and the
library is partitioned into columns, as depicted in Figure 4.
A segment is a variable-sized contiguous piece of a media

3Olumofin et al. [61] found that the fastest known CPIR protocols [8] are
approximately 10-100× slower than ITPIR protocols [20, 36].
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object containing, for example, a few seconds or minutes of
a video. A column is the union of each of the corresponding
segments for the n objects in the library (each is presumed
to have the same decomposition into segments—which may
require padding objects (§8)); therefore, a column’s size is n
times that of any given segment it contains.

Figure 5 depicts the architecture of Popcorn. A primary
content distributor creates an encrypted version of the library,
LEnc, using per-object keys, and replicates LEnc to secondary
content distributors, each in separate administrative domains.
The primary content distributor maintains a key server, and
each secondary content distributor maintains an object server
(Popcorn’s current prototype uses two secondary content dis-
tributors).

The key server serves the per-object keys using CPIR,
and the object servers deliver encrypted objects using IT-
PIR. The distinction between key and object servers maps to
a similar distinction in DRM implementations used by me-
dia services today [1, 2, 49], where clients contact two sep-
arate servers: one serves encrypted video file segments, and
the other serves the corresponding decryption keys. Netflix,
for example, uses three different CDNs to serve files (Lime-
light, Akamai, Level3) but stores decryption keys on its own
servers [6].

Object retrieval protocol. To retrieve an object, a client first
retrieves the object’s decryption key from the key server and
then retrieves the encrypted object from the object servers.
The retrieval of the encrypted object proceeds in two concur-

rently running phases. In the first phase, the client indicates
its desire to download the encrypted object by sending ITPIR
query vectors; in the second phase, in line with progressive
download [6], the client downloads on-demand (i.e., at the
appropriate playback time) pieces of the encrypted object.

A client starts the first phase (and indicates its desire to
download an encrypted object) by concurrently sending a
query vector for every column at each of the object servers.
An object server runs an independent instance of ITPIR for
every column that it maintains; these instances do not share
or contend for resources. On receiving a request, an instance
adds the query vector to its request queue; it periodically ser-
vices this queue by computing and buffering an ITPIR reply
for every request.

The second phase starts after a client has sent the query
vectors; it runs concurrently with the server-side computa-
tion. In this phase, the client reconstructs fixed-sized chunks
of its desired encrypted object (for example, every megabyte
in the object is a chunk). To do so, the client downloads from
the object servers the corresponding ITPIR-encoded chunks
(which are buffered at the server, as described above).

The primary challenge in designing the components of
Popcorn lies in balancing the competing concerns of content
protection, cost, and the real-time nature of media consump-
tion. To this effect, Popcorn relies on three main techniques.
First, as described earlier, Popcorn combines CPIR and IT-
PIR. CPIR is used at the key server to avoid distributing keys
beyond the primary content distributor while ITPIR is used
to serve the large encrypted objects. Second, Popcorn relies
on batching at the object servers to amortize the I/O cost.
By exploiting the sequential consumption pattern of media
streaming, Popcorn mitigates the tension between wanting
large batch sizes to amortize work, and having requests meet
their deadlines. Third, Popcorn exploits the structure of the
ITPIR protocol to push the work of one of the object servers
offline, amortizing cost further.

The rest of this section describes how, taken together, these
techniques allow Popcorn to scale to the demands of a com-
mercial media service.

4.1 Composing ITPIR and CPIR

To provide content protection at low cost, Popcorn combines
CPIR and ITPIR: the heavier-weight CPIR, which requires
only one server, is used to serve per-object keys, while the
lighter-weight ITPIR is used to serve the large encrypted ob-
jects. As a result, both keys and objects are served privately
(because PIR is applied to them both), CPIR is not a perfor-
mance bottleneck (because it is used only for small keys),
and current controls on content protection are respected (be-
cause the plaintext content and keys are stored only at the pri-
mary content distributor). The main challenge that Popcorn
still faces is addressing the overhead of ITPIR.
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4.2 Batching

Popcorn uses the CGKS ITPIR scheme described in Sec-
tion 2.4, as that protocol relies on extremely cheap operations
(XORs) and as such, has low computational overhead. Yet,
implemented naively, responding to a query requires reading
from storage n/2 segments on average (corresponding to the
bits set to 1 in the query vector) and then XORing them. This
taxes I/O bandwidth, memory bandwidth, and CPU cycles.

To reduce costs, Popcorn thus chooses to batch queries.
Two observations motivate batching. First, a query vector is
dense: on average, half of its entries are set to 1 (§2.4, Fig-
ure 3); as a consequence, generating a reply to a query re-
quires the server to read a significant number of segments. In
fact, to exploit I/O bandwidth, a natural implementation of
the server’s query reply procedure would be to read the entire
column (in large chunks4)—even though this means loading
into memory the segments whose corresponding entries in the
query vector are 0. This brings us to the second observation:
since the server is reading the entire column anyway, han-
dling further queries generates no additional I/O work. Thus,
the server can amortize the cost of reading a column over a
batch of queries.

Batching not only amortizes I/O overhead but also (1) re-
duces computational overhead and (2) enables efficient par-
allelization of the computational task. Popcorn, like oth-
ers [13, 50], makes the observation that the PIR computation
required for a batch of requests can be expressed as matrix-
multiplication (q · L in Figure 3 can be replaced by Q · L,
where Q is a matrix whose rows are query vectors). There-
fore, once a chunk of a column has been read into memory,
the required processing can be done via block matrix multi-
plication, which not only reduces work by leveraging better
cache locality (one can view this as a form of batching at the
CPU/memory interface), but also parallelizes it by making
use of both multi-core processors and SIMD instructions.

It may then seem attractive to design Popcorn in a way
that maximizes batch sizes, as huge batches can amortize I/O
work dramatically. Unfortunately, the real-time nature of me-
dia delivery is at odds with aggressive batching, and places
stringent constraints on when segments must be ready to be
delivered to a client. Specifically, delay before starting play-
back should be small, and before a client finishes consuming
a segment, the servers must be ready to start providing the
next one (to avoid stutter). These constraints seemingly force
small-size batches, which would negate almost all the benefits
of batching.

4.3 Specializing batching for media delivery

To side-step these constraints, Popcorn looks to prior
media-on-demand broadcast techniques, specifically Pyramid
Broadcasting [76], and specializes PIR batching for media

4In Popcorn, a column is stored as thin vertical slices that are successively
read into memory and processed.
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Figure 6—Batching at an object server in Popcorn. Requests for ini-
tial segments from two clients are serviced in separate batches as the
processing cycle for the initial column is kept small to keep the ini-
tial delay low. Requests for a later segment from the same clients are
batched together because the server can afford a longer processing
cycle for the later column whose segments are not needed immedi-
ately.

delivery. A client’s initial delay (on top of the network de-
lay) is given only by the time it has to wait before it can start
downloading the first segment. This delay is small if the pro-
cessing cycle (and consequently the batch size) for the first
column is small. Other segments, on the other hand, are not
needed until later, and hence the requests for them (which are
sent alongside the request for the first segment) can afford
higher processing times. In effect, as depicted in Figure 6,
this means that the server can afford a longer processing cy-
cle for a later column, allowing requests to accumulate and
batch sizes to grow.

Much of the work in Popcorn then goes to carefully choos-
ing, for each column, the longest possible processing cycle
(and consequently the largest possible batch size), such that
users perceive a low initial delay and that the movie is played
back smoothly (with no stutter). This requires guaranteeing
two properties: (1) that the initial delay will always be smaller
than the maximum tolerable initial delay (d), and (2) that the
worst case delay before which segment i (i > 1) can be down-
loaded will always be smaller than the time to consume seg-
ments 1 to i− 1 [76].

Each of these properties will hold if the ITPIR instance for
the i-th column starts processing a query for segment i within
a time budget of Ti = d+

∑i−1
j=1 tj, where tj is the playing time

of segment j, or put differently, these properties hold if both
the computation and the I/O parts of the processing logic for
the i-th column finish in time Ti. This directly upper-bounds
the segment size for the i-th column, which in turn (because
Ti+1 depends on ti) bounds the length of the processing cycle
(and the batch size) for the subsequent column. We now delve
into what those bounds are.

Denote the target playback rate by µ, and the request rate
by λ. Let pi be the processing throughput (that is, the rate at
which the CPU XORs data) available for column i, r be the
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Server resource Naive impl. of an ITPIR server
(§2.2)

Online’s i-th column (§4.3) Offline server (§4.4)

Storage
Bandwidth λ · T · n · µ α · n · µ+ 2 · λ · ti · µ n · µ+ 2 · λ · T · µ
Space n · ` n · `i + λ · ti · `i + λ · Ti · `i n · `+ m · R · `

CPU

Processing throughput (pi) λ · T · n · µ λ · ti · n · µ λ · T · n · µ

Network
Bandwidth λ · T · µ λ · ti · µ λ · T · µ

n = number of objects in the library (§2.1) µ = object playback rate
` = size of an object (§2.1) `i = size of i-th segment (defined in Figure 4) of an object (equals ti · µ)
ti = playing time of i-th segment of an object (equals `i/µ) (§4.3) T = playing time of an object (equals `/µ) (§4.3)
Ti = the playing time of the first i − 1 segments of an object (i.e.,

∑i−1
j=1 tj) (§4.3) R = number of registered clients

λ = request rate (§4.3) m = number of precomputed replies (§4.4) buffered per client
α = a parameter greater than 1 (§4.3)

Figure 7—Provisioning requirements of Popcorn.

bandwidth available to read the column (we assume that each
column gets the same read bandwidth), and bi be the batch
size, given by bi = λ · Ti (during a processing cycle that lasts
for Ti, λ · Ti requests are accumulated). The bound on ti is
derived by relating load (how much work needs to be done
by the deadline) to capacity (how much work can be done by
the deadline). Specifically, the amount of data processed for a
batch (batch size times the column size, or bi ·ti ·µ·n) is upper-
bounded by the total amount of data that can be processed in
the time budget Ti, and similarly, the amount of data read for
a batch (column size, or ti · µ · n) is upper-bounded by the
total amount of data that can be read in Ti. This results in the
following relations:

(λ · Ti) · ti · µ · n ≤ Ti · pi, (1)
ti · µ · n ≤ Ti · r (2)

From the second inequality, we can derive the bound for ti as
Ti · r

µ·n provided that there is sufficient processing throughput
available (i.e., the first inequality holds). As the column num-
ber increases (i.e., for greater i), the segment sizes increase
(because Ti is an additive sequence). For the same reason,
batch sizes (bi = λ · Ti) also increase with i. The parame-
ter r

µ·n , which we term α, captures the rate at which segment
sizes grow. It must be at least one to ensure that the read band-
width r is not less than µ · n, the minimum rate at which data
must be read due to the n times overhead of PIR.

Provisioning requirements of Popcorn In practice, a sys-
tem administrator for Popcorn would be given a library and a
request rate, and would have to provision the ITPIR instances
of the object servers in Popcorn. For each instance, its col-
umn size (ti), time budget (Ti), and I/O bandwidth and pro-
cessing throughput (r and pi) can be derived by using the rela-
tions described above, once the values for d (maximum initial
delay) and parameter α have been chosen. Figure 7 summa-
rizes these provisioning requirements. To the I/O bandwidth

r, we must add the bandwidth required to buffer and serve
replies (i.e., support the second phase of the object retrieval
protocol), which equals, for the i-th column, 2 · λ · ti · µ (the
sum of the rates at which reply data is generated and served).
Buffering replies also requires additional storage capacity (on
top of the column size), which equals, for the i-th column,
(λ · ti + λ · Ti) · (µ · ti) (the number of replies that are being
read or written times the size of a reply).5

4.4 Moving work offline

One of the main limitations in the aforementioned design is
that, because the time budgets for the first few columns are
small, the batch sizes for these columns are also small and
the per-request I/O is high. To mitigate this effect, Popcorn
observes that much of the work for one of the servers can be
moved offline by exploiting the structure of the ITPIR pro-
tocol. As a result, for one of the two servers, there can be a
single large column—of the size of the library—with a long
processing cycle and a large batch size.

Recall that in the CGKS ITPIR scheme (§2.4), a client gen-
erates k − 1 query vectors q1, . . . , qk−1 uniformly at random,
and then sets qk so that

⊕k
i=1 qi = eb, where eb represents

the unit vector corresponding to the desired index. Only qk

depends on b; the first k−1 vectors are independent of the re-
quested object. For our setting of k = 2, if we arrange for the
client to direct the index-independent query vector to one of
the two servers, then that server can compute the reply offline.

We hence modify the protocol outlined at the start of this
section to distinguish between an online object server and an
offline object server. When a client uses Popcorn for the first
time, it generates a configurable number (m) of random query
vectors which it sends to the offline server. This server pre-
computes (and stores locally) replies for these query vectors.

5In the current prototype of Popcorn, an ITPIR instance uses separate
storage to store the column and the replies, to avoid competition between the
two types of I/O.
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The per-request dollar cost in Popcorn is less than three
times the per-request dollar cost in a system without privacy. §6.3

80% of the per-request cost in Popcorn is the cost of
transferring data over the network. §6.3

Popcorn requires large objects and many concurrent clients
to effectively reduce costs. §6.2

Figure 8—Summary of main evaluation results.

Later, when a client wants to download an object, it down-
loads (pieces of) a pre-computed reply from this server and
piggybacks a new query vector to replenish the set of pre-
computed replies.

The offline server is provisioned such that it has a single
column with a segment size and a processing cycle (time bud-
get) of T . This means that if λ is the request rate, then λ · T is
the batch size. Figure 7 shows the resulting I/O bandwidth,
storage space, and processing throughput requirements for
the offline server’s column.

5 Implementation
We have fully implemented Popcorn. The key server imple-
mentation uses the Trostle-Parrish CPIR protocol [75] and is
borrowed from PIRMAP [53].6 It is written in Java and is
1200 lines. For the object servers and the client-side code, we
borrow the CGKS ITPIR implementation in Percy++ [37],
modify it to support progressive download, and extend it with
Popcorn’s techniques described in Section 4. The resulting
code base has a total of 8, 000 lines of C++, out of which
7,100 lines are for the object servers. The clients and the
object servers communicate using Open Network Comput-
ing (ONC) RPC [74]. The library objects are encrypted using
AES with 128-bit keys.

6 Evaluation
Our evaluation answers the following questions:

1. Can we make Popcorn affordable at scale, and if yes, for
what configurations is it affordable?

2. What is the resulting price of privacy?

Figure 8 summarizes our evaluation results.

Setup. We compare Popcorn to NoPriv—a baseline media
delivery system based on progressive download [6] that does
not provide privacy. For completeness, we also compare Pop-
corn to BaselinePIR—a straightforward progressive down-
load aware implementation of CGKS ITPIR (this is essen-
tially Popcorn without the techniques described in Section 4).
Figure 9 gives details of these baselines.

6Attacks have recently been discovered on this protocol [48]. We plan
to port our implementation to the recently released XPIRe [7] CPIR library,
which is based on lattice hardness assumptions. We expect the change to
produce the same or better performance.

System description
NoPriv Apache webserver (version 2.4.10) that serves 1

MB chunks of library objects. This models an
implementation of today’s media delivery sys-
tems [6].

BaselinePIR Two ITPIR servers, each of which splits up ob-
jects into 1 MB segments (and the library L into
corresponding columns). Each server receives PIR
queries directed to individual columns, and on re-
ceiving a query, spawns a new thread to do the
CGKS ITPIR computation (Figure 3) for that col-
umn.

Popcorn Section 4

Figure 9—Description of evaluated systems

Type vCPUs RAM SSDs Network Cost/hr

c3.4xl 1 16 30 2 × 160 1 $0.314
c3.8xl 2 32 60 2 × 320 10 $0.628
i2.8xl 3 32 244 8 × 800 10 $1.690

Figure 10—Hourly cost of reserved Amazon EC2 instances. In-
stances starting with “c” are compute-optimized, and the instances
starting with “i” are I/O-optimized. RAM and SSD capacities are in
GB and network bandwidth is in Gbps. Amazon charges an addi-
tional $0.05 per GB of data transfered to the Internet (assuming that
the total volume is high).

For the three system variants, we measure resource usage
in terms of CPU time, I/O transfers, amount of storage space
used, and network transfers. We measure CPU time by instru-
menting code with clock(), I/O transfers and amount of stor-
age space using iostat, and network transfers using kernel
network accounting (/proc/net/dev).

In each experiment, we run a system variant in one of the
different configurations based on the following parameters:
number of objects in the library (n), object playback time (T),
and number of concurrent clients (λ·T). We use the following
values for the parameters: 2048, 8192 for n; 1 minute, 10 min-
utes, 60 minutes for T; and 1, 1000, 10,000 for the number of
concurrent clients. These clients arrive according to a Pois-
son process (λ · T arrive in time T); on arrival a client issues
a request for an object (which lasts for time T). The index
of requested objects follows a Zipfian distribution (θ = 0.8).
The aforementioned workload models that of today’s media
delivery services [73]. We set the playback rate µ to 1 Mbps
and the maximum tolerable initial delay to 30 seconds.

Our testbed is Amazon EC2. We choose to use compute
and I/O-optimized instances of EC2 as the system variants
we evaluate are either CPU bound or I/O bound or both. Fig-
ure 10 describes these instances; the next subsections provide
more details on the number of instances used for different ex-
periment configurations.
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Operation Data size (GB) Time (s) Throughput (Gbps)

Read 2 4.8 3.3
Read 8 18.5 3.5

MMul 2048 125.0 131.1
MMul 8192 444.6 147.4

Figure 11—Time taken by basic operations of reading data and com-
puting matrix-matrix product as in ITPIR (§4.2). These microbench-
marks were conducted on an instance of type c3.8xl.

6.1 Using microbenchmarks to provision resources

Much of the work in Popcorn goes towards carefully provi-
sioning the system to ensure smooth playback (§4.3, §4.4). In
this subsection, we describe how one can go about identifying
a satisfactory machine allocation for an experiment configu-
ration.

Provisioning of Popcorn takes place in two steps: (1)
benchmarking the basic operations in Popcorn, such as read-
ing a column (r in §4.3) and processing it (pi in §4.3), and (2)
combining these results with the model presented in Figure 7.
For example, consider provisioning the offline server of Pop-
corn (specifically, offline server minus the drives required to
buffer and serve replies), for a library with n = 8192 objects,
each ` = 450MB in size (i.e., playback time T = 60 min at
playback rate of µ = 1Mbps) and λ · T = 10,000 concurrent
clients. According to Figure 7, this configuration requires a
read bandwidth of n · µ = 8 Gbps to read the column, stor-
age capacity of n · ` = 3.5 TB to store the column, and a
processing throughput of λ · T · n · µ = 80, 000 Gbps. Using
the data from the microbenchmarks (Figure 11), this trans-
lates to using a minimum of three drives to satisfy the read
bandwidth requirement, and using 543 CPUs to match the re-
quired processing throughput. Since the resource requirement
is skewed towards CPU, we choose to instantiate this setup by
allocating 18 type 2 compute-optimized instances (each in-
stance contributes 31 CPUs to processing and reserves 1 CPU
to I/O).

6.2 Overheads of Popcorn

In this subsection, we report the per-request overheads of
Popcorn over the two baselines and describe how they change
for different experimental configurations. This gives us an
idea of configurations for which Popcorn’s overheads may
be affordable. We find that Popcorn is most effective when
object sizes are large and there are many concurrent clients.

Overhead versus number of concurrent requests Fig-
ure 12 shows the per-request server-side CPU time and I/O
transfers for the three system variants for a library with 8192
objects, each 450MB in size (each object has a playback time
of 60 minutes at 1Mbps) as a function of the number of con-
current requests (λ · T).

When there are no concurrent requests (i.e, a very small
request rate), we find that Popcorn’s overheads are the same

as BaselinePIR as there is no opportunity to amortize costs
by batching requests. Indeed, for each request, both systems
read and process the entire library twice, once for each object
server. As the request rate increases, Popcorn’s overheads are
amortized: I/O transfers are amortized because of batching
(§4.3, §4.4) while CPU overhead decreases because of better
cache locality of block matrix multiplication (§4.2). For in-
stance, going from 1 to 10,000 requests, the per-request amor-
tized I/O in Popcorn decreases from approximately 7 TB to 6
GB (1.5 GB of which is for buffering of replies), a reduction
of 1200×. Note that this is less than the maximum possible
reduction of 10,000× as batch sizes for the columns at the on-
line server are smaller than 10,000 (the online server has five
columns, among which the average batch size increases from
63 for the first to 2500 for the fifth (§4.3); the offline server,
on the other hand, has a single column with a batch size of
10,000 (§4.4)); Likewise, going from 1 to 10,000 requests, the
per-request CPU time decreases by a factor of approximately
6; the 365 seconds of processor time is in accordance with the
performance of the matrix-multiplication microbenchmark in
Figure 11. (7 TB of data processed in 365 seconds gives a
throughput of 157 Gbps).

Popcorn’s per-request I/O is higher than NoPriv as our
workload in NoPriv always requests the same object (to give
maximum caching benefit to the baseline), resulting in no
I/O transfers. Popcorn’s per-request CPU time is also much
higher than NoPriv as the Apache webserver in NoPriv di-
rectly serves 1 MB pieces of an object. This requires almost
no server-side processing (constant time lookup). In contrast,
Popcorn must XOR n objects (on average for the two servers
combined) to serve a single request.

Besides the I/O and CPU overhead, Popcorn incurs both
network and storage space overhead. Like BaselinePIR, Pop-
corn incurs a two-fold network overhead over NoPriv: there
are two servers in Popcorn and BaselinePIR from which a re-
ply has to be downloaded (compared to one server in NoPriv).
With respect to storage space overhead, Popcorn needs to
buffer entire replies at each server (note that the extra I/O
transfers are included in Figure 12).

Overhead versus number of objects Figure 13 shows the
per-request server-side CPU time and I/O transfers for Pop-
corn for 2048 and 8192 objects while keeping the number
of concurrent clients and the size of objects fixed to 10000
clients and 450 MB respectively. Note that the depicted I/O
strictly refers to reading the library (in contrast to Figure 12
which includes the I/O transfers associated with buffering
replies).

We expect Popcorn’s overheads to scale linearly (because
the server’s computational and I/O work is proportional to
n). The data that we have is consistent with this hypothesis;
future work is to understand our prototype’s scalability better,
via experiments with object numbers between 2048 and 8192,
and beyond 8192. Network transfers and server-side storage

9



10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

N  B  P
CPU (1 req)

N  B  P
I/O (1 req)

N  B  P
CPU (1K req)

N  B  P
I/O (1K req)

N  B  P
CPU (10K req)

N  B  P
I/O (10K req)

o
v
er

h
ea

d
s

(n
o
rm

al
iz

ed
 t

o
 P

o
p
co

rn
)

0
.0

3
 s

0
.0

3
 s

0
.0

3
 s

2
2
3
8
 s

  
7
.0

 T
B

2
2
3
8
 s

  
7
.0

 T
B

2
2
3
8
 s

  
7
.0

 T
B

2
1
5
7
 s

  
7
.0

 T
B

3
8
6
 s

  
4
3
.8

 G
B

3
6
5
 s

  
6
.0

 G
B

Figure 12—Per-request server-side resource use of NoPriv (N), BaselinePIR (B), and Popcorn (P). The bar heights represent resource use
normalized to Popcorn. The labels indicate the absolute values. Provisioning AWS instances for BaselinePIR for more than a few requests
is financially prohibitive, so we take the per-request overhead for 1 request and assume it remains constant with the number of concurrent
requests.
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Figure 13—Change in per-request resource use of Popcorn with the
number of objects. The I/O transfers are in the unit of MBs and the
CPU time is in seconds. The left bar is for n = 2048 and the right for
n = 8192. The y-axis is log-scaled.

space do not change with the number of objects.

Overhead versus playing time of objects Figure 14 shows
the per-request server-side CPU time and library related I/O
transfers for the online server of Popcorn for the three config-
urations of 1 minute, 10 minute and 60 minute objects while
keeping the number of objects (8192) and the request rate
(10000 per hour) fixed.

As expected, CPU work appears to scale linearly with the
length of the object. With respect to I/O transfers, we quantify
the ratio of data that Popcorn reads per request to the size of
the object: for 1 minute objects the ratio is 93, and decreases
to 34 for 10 minute objects, and 9 for 60 minute objects. Pop-
corn’s design is such that the batches for the first few columns
are small but grow for later columns (§4.3). Therefore, when
objects are small and have only a few segments, Popcorn is
relatively inefficient in terms of I/O transfers.

6.3 Dollar-cost analysis

The previous subsection showed that Popcorn takes a signif-
icant step towards reducing I/O and computation overhead
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Figure 14—Change in per-request resource use of the online server
in Popcorn with the length of objects. The I/O transfers are in the
unit of MBs and the CPU time is in seconds. The bars correspond to
objects with a playing time of 1, 10, and 60 minutes. The y-axis is
log-scaled.

experimental configuration per-request costs ($)

#1 #2 #3 #reqs server network total

NoPriv 0 0 2 10000 0.0 0.02 0.02
BaselinePIR 0 0 2 3 1.127 0.04 1.17
Popcorn 11 35 12 10000 0.005 0.04 0.05

Figure 15—Per-request estimated dollar cost for Popcorn, NoPriv
and BaselinePIR. #1, #2, #3 refers to the type of AWS instance from
Figure 10.

when there are many concurrent requests and large objects
These results provide the foundation for achieving privacy at
low cost, a cost which we now quantify for our target use case
of Netflix.

Method Our cost analysis uses the pricing model of Amazon
EC2 (Figure 10). EC2 does not report per-resource cost (ex-
cept for network transfers), but instead reports instance cost
in dollars per hour. We take the instances used for the con-
figuration of n = 8192 objects, ` = 450MB (T = 60 min-
utes at µ = 1Mbps) and 10000 concurrent requests from the
previous subsections, and estimate a per-request dollar cost.
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Specifically, we multiply, for each used instance, its hourly
cost by the time it was used, and then divide the resulting to-
tal machine cost by the number of requests to get per-request
machine cost. We add network transfer cost to the per-request
machine cost to get the total per-request cost. To ensure that
we do not overestimate the cost of NoPriv, perhaps because
instances are not used optimally in the experiments, we as-
sume a machine cost of 0 for NoPriv. Similarly, the cost
analysis for Popcorn and BaselinePIR is only an estimate as
instances may be underutilized or may not be the optimal
choice for our experiments. But we note that our method does
not underestimate the cost of Popcorn.

NoPriv To give NoPriv maximum benefit, we disregard ma-
chine cost. The per-request cost is then determined by the net-
work transfer cost, which is approximately 2 cents (450MB
per request at 5 cents per GB).

BaselinePIR Given that BaselinePIR is bottlenecked on I/O,
we use the I/O-optimized EC2 instances to provision the
servers. Specifically, we choose 2 type 3 instances (one for
each object server). With this setup, each server can serve
a maximum of 3 concurrent requests (in fact, servers could
serve only 2 requests smoothly; we round up to be optimistic
to BaselinePIR). This setup costs $1.13 per request (2 times
$1.69/hour/instance divided by 3 requests an hour), rising to
$1.17 after adding the network cost.

Popcorn Appropriately provisioning Popcorn requires pro-
visioning both the offline and the online server. For the of-
fline server, we use the machine allocation outlined in §6.1
(18 type 2 instances) plus the additional instances (6 of type
3) required to buffer and serve replies. The online server must
satisfy the provisioning requirements outlined in §4.3, which
allows for flexibility in how one chooses the number and size
of columns. By choosing α = 2, we get five columns for
the online server, and by using the same process as described
in §6.1, we get an EC2 instance allocation consisting of 10
type 1 instances, 17 type 2 instances, and 6 type 3 instances.
To this we add another instance of type 1 for the key server.
The setup described above yields a per request cost of $0.004
which, when combined with the $0.04 per-request network
cost yields a total per-request cost of $0.05.

Summary Figure 15 summarizes the results of our analy-
sis. With our estimates, we find the per-request cost for a no-
privacy baseline to be $0.02, while the per-request cost of
Popcorn is $0.05 (of which 80% is network cost). Providing
privacy in Popcorn thus leads to an estimated 2.5× increase
in dollar cost, in line with the affordability requirement in the
introduction. Moreover, as in NoPriv, network cost is now the
dominating factor.

Limitations Our cost analysis has two main limitations.
First, it assumes that all objects are of the same size. It hence
fails to consider the additional storage space and bandwidth
cost of having to pad objects. Second, our calculations exclu-

sively focus on the server-side cost, and fail to capture the ad-
ditional cost at the client-side, both in terms of the additional
computing to XOR the replies from the ITPIR servers, and
bandwidth overhead of having to communicate with multiple
object servers.

7 Related Work
Improving the performance of PIR. The computational
challenges of PIR have been obvious since its introduction,
and have since been mitigated in several ways.

The first response consists of distributing the work, either
by moving it to the cloud [23, 53] or by distributing it among
clients, in peer-to-peer fashion [64]. Neither approach, unfor-
tunately, meets the demands of our setting. A simple back-of-
the-envelope analysis shows that the $14 needed on Amazon
EC2 to process a 1TB library after cleverly tuning an effi-
cient CPIR protocol to run MapReduce [53] translates, in our
setting, to a 10× to 100× increase in the cost of serving me-
dia content. And while, after partitioning the library among
clients, processing queries in a peer-to-peer fashion helps ad-
dress the load imposed by CPIR on server resources, it in-
creases latency and defeats content protection.

A second line of investigation, motivated by a paper of Sion
and Carbunar [70]—which noted that the cost of CPIR may
be worse than the naive solution of transferring the entire
library—has focused on reducing the computational load of
CPIR [7, 8, 56, 75] not by reducing the number of operations
performed by the server, but by cryptographic protocols that
require less expensive operations. Their performance, how-
ever, is still insufficient for our purposes: while the authors of
the recent XPIRe system [7] report that “. . . it is possible to
privately receive an HD movie from a Netflix-like database
(with 35K movies) with enough throughput to watch it in real
time . . . ”, their claim assumes that the server dedicates a full
processor and a storage medium with 30Gbps of read band-
width to each request—an intensive use of resources that does
not match the economics of commercial streaming services.

Yet another response has been to circumscribe, in exchange
for better performance, the portion of the library for which
the privacy guarantees hold. For libraries that can be thought
of as a matrix, bbPIR [77] allows users to specify a sub-
matrix (called a bounding box) from which bits can be pri-
vately retrieved using CPIR. This can be useful for efficiently
implementing privacy-preserving location-based services: the
larger the bounding box, the higher the privacy, but also the
higher the processing and network costs. Similarly, RAID-
PIR [21] proposes to partition the library and run PIR on the
partition of interest to reduce the computational and network
overhead of PIR. Olumofin and Goldberg [60] put this ap-
proach on sound theoretical grounds by rigorously quantify-
ing the degree of privacy lost under such circumscribing.

Perhaps the most direct way to reduce the overhead of PIR
is to genuinely reduce the work that servers need to perform.
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Lueks and Goldberg [50], building on earlier theoretical work
by Beimel et al. [13] and Ishai et al. [43], show that one can
achieve sub-linear server-side computation by efficiently pro-
cessing batches of requests from multiple clients. As we had
discussed in Section 4.2, Popcorn is inspired by this work and
batches requests at multiple stages of its protocol to reduce
not only computational cost, but, crucially, I/O cost.

Finally, one can improve performance through dedicated
hardware [10, 42, 78], as first proposed by Smith and Saf-
ford [71]: a client connects to a secure coprocessor that
(obliviously with respect to the server) retrieves the requested
object from the library hosted by the server and delivers it to
the client, using schemes similar to ORAM [38] (discussed
below) and/or oblivious permutations [42]. These schemes,
however, are not a good fit for our context, as they require the
secure coprocessor to channel all requests (a likely bottleneck
in applications like ours, with high request rates) and to have
enough memory to store several large media objects, when
the IBM 4764 coprocessor has only 64 MB of storage.

Besides reducing the computational overhead of PIR, a
large body of literature focuses on reducing the communi-
cation overhead of PIR ( [31, 62] survey these prior works).
A work in this sub-area that is related to ours is that of Devet
et al. [24]. This work proposes composing CPIR and ITPIR,
however, the composition takes a different form and serves
the purpose of communication efficiency. Specifically, Devet
et al. [24] compose the two protocols hierarchically; their pro-
tocol uses ITPIR to select a sub-library and multiple rounds
of CPIR to select an object within a sub-library. The work
targets an environment in which n� `, and aims to save net-
work overhead. As noted in Section 2.2, this is the opposite
of our scenario. In particular, we assume media objects are
large, so we are not concerned with PIR’s network overhead.
The techniques used Devet et al. to save network overhead
would induce prohibitive computational cost in our setting.

Improving the robustness of PIR. A separate research di-
rection investigates how to effectively prevent Byzantine
servers [46] running an ITPR protocol from successfully re-
turning an incorrect answer to a client’s query. Research on
this problem, first posed by [14], has pursued the dual goals
of identifying the highest number of faulty servers that can be
tolerated and of reducing the computational burden that fault-
tolerance imposes on clients [25, 36]. Correctness concerns
are orthogonal to our proposed work, which focuses on pro-
tecting client privacy. Nevertheless, while Popcorn will not
mask Byzantine servers, it allows clients to detect when they
have received the wrong object in response to their query.

Protecting library content in PIR. When using untrusted
servers to run ITPIR, the content distributor is faced with the
problem of protecting the library’s content from unauthorized
use and distribution (the issue is explained in Section 3). Gert-
ner et al. [33], who first introduce the problem, propose pro-
tecting the content by storing at auxiliary servers independent

random data that, when XORed, produces the library’s con-
tent. Huang et al. [41] protect library content kept at untrusted
servers by first encrypting it, and then using a threshold sig-
nature scheme [22] for serving keys for the encrypted object:
only if more than a tunable threshold of servers collude can
the library content be disclosed. Library content protection
is also a focus in Popcorn. Indeed, in light of the significant
economic payoff that colluding servers may reap in uncover-
ing the library’s content, Popcorn takes the extreme position
that content protection should be collusion-proof. Section 4.1
discusses how Popcorn achieves its goal through a novel com-
bination of CPIR and ITPIR.

SPIR schemes add an additional facet to content protection
by preventing dishonest clients from learning information
about the content of a database beyond what is contained in
the records they retrieved [34]. While Popcorn does not use a
SPIR scheme to privately download keys from the key server,
we note that it is possible to transform any PIR protocol into
an SPIR protocol using Oblivious Transfer (OT) [26, 57].

Alternatives to PIR for privacy. Obfuscation [12, 28, 66]
defends clients’ privacy by accompanying their requests with
dummy requests that serve as cloaking or cover traffic. Com-
pared to PIR, this approach requires less processing at clients
and servers, but at significantly higher network cost. In our
setting, matching the degree of privacy (the number of ob-
jects among which a request is hidden) offered by PIR would
require issuing a prohibitive number of dummy requests.

Rather than concealing the content being consumed,
anonymity hides the identity of the consumer [27, 47]. We
see anonymity as complementary: unlike PIR that hides con-
sumption, it hides metadata such as login times, download
frequency, etc. However, anonymity based solutions can re-
veal access patterns, which, in combination with other back-
ground information, may not protect a user’s media consump-
tion [58].

Oblivious RAM (ORAM) [38, 51, 54, 72] algorithms also
allow a client to conceal its access patterns. However, they
are not directly applicable to media delivery systems as they
rely on the assumption that the entity that downloads data can
also modify data at the server.

Searchable Symmetric encryption (SSE) and protocols
based on it [17, 18, 44, 65] are yet another alternative to hid-
ing access patterns, however, unlike PIR, these protocols al-
low for a controlled amount of leakage in the form of data-
access and query patterns.

8 Discussion, limitations and future work
We learned four important lessons from Popcorn:

1. Privacy is achievable under current content control and dis-
semination policies.

2. The costs are not necessarily prohibitive, even at scale.

3. We can quantify what these costs are.
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4. Cryptography protocols traditionally viewed as expensive,
can, with careful system design and implementation, be
used in practical systems.

Popcorn is only a proof-of-concept and as such lacks func-
tionality. Here we discuss ways to extend Popcorn to sup-
port the following: (1) updates to the library, (2) variable
size objects, (3) variable object quality and client bandwidth,
(4) more complex pricing models, and (5) targeted ads and
recommendations.

Library updates. Popcorn should permit updating objects
online. The time scale, given our setting of Netflix, is hourly
or daily changes; we are not targeting the case of constant flux
(as in YouTube). To handle updates, Popcorn must address
two technical issues: first, updates invalidate precomputed
replies at offline object servers (§4.4). A potential solution is
to recompute incrementally; the XOR operation makes such
incremental computation possible for insertions and dele-
tions of rows (objects) in the library matrix. Second, correct-
ness (§2.2) is lost if the object servers have different versions,
which could happen during a transition. A potential solution
would be for object servers to associate generation numbers
with each version of the library.

Variable object sizes. Popcorn’s design assumes that all the
objects in the library have the same decomposition into seg-
ments. In reality, media objects have different sizes and play-
back times. A solution is to logically pad objects: each object
is considered to be the length of the largest object in the given
library. This padding is not literal: if the server is aware that
an object has been logically padded, it can very efficiently
handle queries against the padded piece. Unfortunately, this
design forces the client to download as much data as the size
of the largest file.

Variations in quality and bandwidth. Different clients de-
mand different quality, bitrate, and tracks (subtitles, language,
etc.). As a consequence, a modern media file is encoded in
many different ways. Popcorn can handle variation in band-
width and desired quality among clients by having different
libraries for different bitrate encodings, sending query vec-
tors to all of such libraries but downloading the correspond-
ing segment only from one. This increases the cost of server
side computation, but does not affect the network cost, which
as we saw is the dominant factor.

Pricing models. Popcorn’s current prototype can support a
subscription-based pricing model in which the primary con-
tent distributor can charge a flat fee to an accessor of the
key server. More advanced pricing models can be supported
by modifying the way in which keys are served in Popcorn.
Transforming the keyserver’s CPIR protocol to be symmet-
ric [26, 34, 57] would allow Popcorn to support pay-per-view,
while support for different price for different objects could be
added by relying on Priced Oblivious Transfer (POT) proto-
cols [9, 15]. Finally, support for tiered pricing could be added

by adapting Priced Symmetric PIR (PSPIR) protocols [40] to
our setting (where keys are served from a single server).

Targeted ads and recommendation services Commercial
streaming services use knowledge of customers’ media diet
to target advertisements or formulate recommendations, and
these functions contribute to distributors’ revenue. In its cur-
rent form, Popcorn does not support targeted advertisement
or recommendations. This limitation is not fundamental: ex-
isting work [11] shows how one can use PIR itself, in combi-
nation with other techniques, to deliver advertisements obliv-
iously to an ad broker.
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