
Masking vs. Multiparty Computation:
How Large is the Gap for AES?

Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.
2 Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

Abstract. In this paper, we evaluate the performances of state-of-the-
art higher-order masking schemes for the AES. Doing so, we pay a par-
ticular attention to the comparison between specialized solutions intro-
duced exclusively as countermeasures against side-channel analysis, and
a recent proposal by Roche and Prouff exploiting MultiParty Computa-
tion (MPC) techniques. We show that the additional security features
this latter scheme provides (e.g. its glitch-freeness) comes at the cost of
large performance overheads. We then study how exploiting standard op-
timization techniques from the MPC literature can be used to reduce this
gap. In particular, we show that “packed secret sharing” based on a mod-
ified multiplication algorithm can speed up MPC-based masking when
the order of the masking scheme increases. Eventually, we discuss the ran-
domness requirements of masked implementations. For this purpose, we
first show with information theoretic arguments that the security guar-
antees of masking are only preserved if this randomness is uniform, and
analyze the consequences of a deviation from this requirement. We then
conclude the paper by including the cost of randomness generation in our
performance evaluations. These results should help actual designers to
choose a masking scheme based on security and performance constraints.

1 Introduction

Masking is one of the most investigated countermeasures against side-channel
attacks. Its underlying principle is to randomize any sensitive data in a crypto-
graphic implementation, by splitting it into d shares. Intuitively, such a process is
expected to “force” the adversary to combine several leakage samples correspond-
ing to these shares, in order to recover secret information from her measurement
traces. This is an arguably more difficult task than targeting single samples
separately because (1) more “points of interests” (i.e. more dimensions in the
leakage distribution) may have to be identified and exploited concurrently (e.g.
if the shares are processed sequentially), hence increasing the time complexity of
the attacks accordingly; (2) if the masking scheme is carefully implemented (e.g.
avoiding the glitch issue described in [20]), higher-order moments of this leakage
distribution will have to be estimated. It implies an increase of the attacks data
complexity that is exponential in the number of shares (with the measurement
noise variance as basis), as first hinted towards by Chari et al. in the specialized

case of single-bit DPA attacks [3], then experimented by Standaert et al. in more
general contexts [31], and recently shown formally by Prouff and Rivain [25], us-
ing the mutual information put forward in [30] as evaluation metric.

From a theoretical point of view, the problem of masking a cryptographic
implementation has strong connections with the problem of secure MultiParty
Computation (MPC). This observation was already made in 2004 by Ishai et
al. [16], and intuitively corresponds to the fact that both masking and MPC aim
to perform computations on shared data. Their objectives are different though,
as MPC protocols usually fulfill stronger security requirements (they typically
remain secure after the corruption of a number of participants, in an passive or
active manner). By contrast, masking only aims at ensuring the so-called d-th
order security property, i.e. that every d-tuple of intermediate values in the target
implementation is independent of any sensitive variable. Since the performance
overheads of masking and MPC are generally important, a natural problem is
to determine the physical security advantages of MPC over masking, as well as
its cost penalty. From the security point of view, an answer to this question has
been put forward by Roche and Prouff in [27]. Namely, implementing MPC can
lead to glitch-free implementations (in a similar sense as first described in [23]),
and allows fault-tolerance if active adversaries are considered. By contrast, their
performance evaluations were limited to asymptotic complexities so far.

Our contribution. In this paper, we investigate this performance gap between
masking and MPC in the practically relevant case of AES implementations in an
8-bit microcontroller. We considered three different directions for this purpose.

First, we compared a number of existing schemes. Our selection was moti-
vated by the two following criteria: (i) exclude “broken” proposals (i.e. with
low-order weaknesses), such as the multiplicative masking in [14], the higher-
order masking in [28] (broken in [4]), or Goubin and Martinelli’s proposal in [15]
(broken in [5]); (ii) exclude schemes that do not systematically generalize to
higher-orders, such as the affine masking in [11, 33], the threshold implementa-
tions in [22], and several ideas from the “early” DPA literature (see [19] for a sur-
vey)1. This essentially leaves us with Rivain and Prouff’s higher-order Boolean
masking scheme from CHES 2010 [26] (next denoted as RivP), its optimization
by Kim et al. using extension fields for the AES S-box implementation in [17]
(next denoted as KHL), Genelle et al.’s solution based on the switching between
additive and multiplicative masking [13] (next denoted as GPQ), and the MPC-
inspired proposal by Roche and Prouff from CHES 2011 [27] (next denoted as
RocP). We implemented these different schemes up to the 10th security order,
with results illustrating a large gap between the MPC-inspired RocP (for which
we additionally propose a slight optimization) and other masking schemes.

Motivated by the large performance gap, we then investigated a standard
solution used in the MPC literature to improve performances, namely “packed
secret sharing” [10]. In particular, we evaluate the extent to which the techniques

1 We also excluded the recently proposed “inner product” masking scheme from [1],
although it is certainly an interesting scope for further investigation.

proposed by Damg̊ard et al. in [6] can be used to enhance the performances
of shared AES implementations, and how this performance gain depends on
the order d. Intuitively, the idea of packed secret sharing is to “hide” several
secrets (e.g. key bytes) in a high-degree polynomial, which leads to more efficient
computations if operations on these secrets can be performed in parallel. We
show that such a technique is indeed useful for protecting the AES S-boxes, and
exhibit the linear amortized complexity that it allows. Yet, we also show that
this amortized complexity only becomes beneficial for quite large orders.

Eventually, we tackled a usually neglected problem in the literature on mask-
ing, namely the randomness requirements. First, we briefly discuss the impact of
slight defaults in the Random Number Generator (RNG) used to produce fresh
shares. In particular, we provide an information theoretic evaluation of the cases
where (i) the RNG has a small bias, and (ii) a counter was used to generate
equally likely but predictable outputs. This evaluation naturally suggests that
uniform randomness is a strong requirement for the security of masking (and
MPC). Then, we evaluated the performances of our different masking schemes
again, including the cost of (strong-enough) randomness generation.

Overall, these result allow an implementer to decide which state-of-the-art
masking scheme to use and why, in function of his security goals (in terms of
order of the scheme and glitch-freeness), and performance constraints.

Methodology. As clear from the previous introduction, our goal is to compare
the performances of a large number of masked implementations, up to high
security orders. Relying exclusively on optimized assembly language was out of
reach in this context. As a result, we systematically took advantage of C language
descriptions, and paid a particular attention in optimizing them in such a way
that their compilation on an 8-bit device was close enough to the one of published
implementations. In particular, we used the AVR-GCC compiler (with option -
o2) to obtain codes for an Atmel AtMega644p 8-bit microcontroller. And for
each implementation published by independent authors (e.g. in [13, 17, 26]), we
made sure that our performances were comparable up to a factor two in clock
cycles. For this purpose, we relied on the optimization of certain routines (e.g.
for the masking of S-boxes) whenever needed. Furthermore, we systematically
wrote our codes in two fashions: one unrolled version optimized for speed and
one compact version without loop unrolling. As for optimization criteria, we
first focused on the cycle count, and considered the 64Kb of our target device
as a memory constraint to reach. In view of the larger performance differences
that will be put forward between the investigated masking schemes and security
orders, we believe this methodology was sufficient to support our conclusions.

2 Comparison & improvement of existing schemes

2.1 Description of selected schemes

In this first section, we aim to compare AES implementations protected with
various masking schemes. For this purpose, a preliminary observation is that

the AES is composed of operations MixColumns, ShiftRows, AddRoundKey and
SubBytes. Since the Boolean and polynomial masking schemes on which we will
focus are bytewise XOR-linear, the operations MixColumns, AddRoundKey and
ShiftRows can be executed independently on each share. As a result, we now focus
on the description of SubBytes for efficient masking. This operation executes 16
nonlinear S-boxes in parallel, for which several representations exist.

For Boolean masked implementations and for the switching method GPQ
we used the standard representation, combining an inversion in GF (256) and
an affine transform. This is naturally motivated by the fact that the Boolean
masking is GF (2)-linear. In this case, the most difficult operation is the inver-
sion, which is best achieved by exploiting secure multiplications for RivP, as
described in [26], Algorithm 1. KHL is based on similar ideas, but exploits sub-
fields to reduce the cost of field multiplications and the amount of randomness.
By contrast, in the case of GPQ the switch allows moving from a Boolean mask-
ing scheme to a multiplicative-linear one, which makes the inversion easy and
defers most the complexity to the switch operation. Algorithms 1 and 2 in [13]
describe how to perform this change securely. The main challenge of this solu-
tion is to pay attention to the masking of the zero value in the multiplicative
masking. In order to solve this issue, the authors compute the Dirac value of the
secret (which can be done efficiently by computing 8 such values concurrently,
as described in [12], Algorithm 4). Since these techniques are now standard in
the CHES community, we refer to the original papers for the technical details.

For the polynomial masking RocP, we note that no implementation results
have been provided so far2. This solution essentially exploits core ideas from the
MPC literature. In particular, it shares the sensitive values in an implementation
using Shamir’s trick [29], and computes on these shares securely using the results
of Ben-Or, Goldwasser and Widgerson [2]. A brief summary of these techniques
is provided in Appendix A for the unfamiliar reader. In this context, an impor-
tant observation is that the scheme is not GF (2)-linear. As a result, the best
S-box representation is in polynomial form, namely 0x63+ 0x5 x−1 + 0x9 x−2 +
0xf9 x−4 + 0x25 x−8 + 0xf4 x−16 + x−32 + 0xb5 x−64 + 0x8f x−128. Again, the
most difficult part of this S-box is the inversion, which can be implemented using
4 multiplications and some squarings. Roche and Prouff describe a polynomial
multiplication in [27], Algorithm 1. Since the focus of their work was on glitch-
freeness, they proposed to use a (2d+ 1, d)-sharing for all operations, including
linear ones (which allows separating the implementation in several independent
sub-circuits). However, the (2d + 1, d)-sharing is only required to process mul-
tiplications. Hence, for linear part (addition) a (d+ 1, d)-sharing is sufficient to
perform operations. In the following, we suggest a slight modification of this
proposal which essentially extends a (d+ 1, d)-sharing to a (2d+ 1, d)-sharing in
a glitch-free manner (as described in Algorithm 1). This tweak will be denoted as

2 At CHES 2013 Moradi and Mischke provide a hardware implementation of polyno-
mial masking [21].

RocP?. It allows us to perform the linear operations with a lower degree sharing,
and to divide by 2 the cost of these operations in our masked implementations.

Algorithm 1 Expanding of a sharing

Require: A (d+ 1, d)-sharing (xi, yi)
d+1
i=1 .

Ensure: A (2d+ 1, d)-sharing (xi, ti)
2d+1
i=1 .

1: for j from 1 to d+ 1 do
2: tj = yj
3: end for
4: for j from d+ 2 to 2d+ 1 do
5: for i from 1 to d+ 1 do
6: mj

i ∈R GF (256)
7: tmpji = yi ⊗ λj

i

8: tmpji = tmpji ⊕m
j
i

9: end for
10: tj = 0
11: for i from 1 to d+ 1 do
12: tj = tj ⊕ tmpji
13: end for
14: for i from 1 to d+ 1 do
15: tj = tj ⊕mj

i

16: end for
17: end for
18: return (xi, ti)

2d+1
i=1

In this algorithm, we use m ∈R GF (256) to mean that m is uniformly randomly

chosen in GF (256). The coefficients λji =
∏

0≤k≤d

xj ⊕ xk
xi ⊕ xk

(with k 6= i) are the

evaluations in xj of the Lagrangian of the (d + 1, d)-sharing. Since the points

xi’s are chosen before the execution of the masked implementation, these λji
can be precomputed. Interestingly, the different shares are always used one at a
time in Algorithm 1. Hence, just as in RocP, no glitches can leak information on
several shares and the implementation of this algorithm can be based on separate
sub-circuits. Namely, a first class of sub-circuits calculates the masked values and
sends the information at the right time; a second class of sub-circuits combines
the information to obtain new shares. Note finally that our implementation did
not take advantage of the DFT technique proposed in [5] since for the security
degrees we considered, it did not lead to significant performance gains3.

3 For example, to evaluate a polynomial of degree 16 in 16 points, our basic method
requires 256 multiplications and 256 XOR’s. For the same evaluation with the DFT
solution, we have to reduce a 16-degree polynomial by a 16-degree polynomial, which
requires 17 multiplications, 16 XOR’s, and 1 inversion. Then two reductions of a 15-
degree polynomial by an 8-degree polynomial have to be performed, each of them
requiring 72 multiplications, 64 XOR’s and 1 inversion. Eventually, the DFT tech-

2.2 Implementation result

We now compare the performances of the selected schemes, considering both
unrolled and compact implementations. As previously mentioned, the use of un-
rolled codes allows reducing the execution time at the cost of increased code
size. Hence, it is limited to lower security orders in our target devices. Figure 1
contains the execution times of the masked AES implementation in unrolled ver-
sion (up to security order 7, for larger order the code size is lager than the 64KB
program memory of the targeted device). Figure 2 exhibits similar results in the
compact implementation case (up to security order 10). As can be observed, this
programming style has a significant influence on the cycle counts.

2 3 4 5 6 7

2

4

6

8

10
·106

security order

n
u
m

b
er

o
f

cy
cl

es

Fig. 1: Cycle counts for masked AES implementations: unrolled codes. The curves
are for KHL, the curves are for RocP, the curves are for RivP, the curves

are for RocP?, and the curves are for GPQ.

These first figures clearly illustrate the significant performance gap between
“standard” masking schemes and the MPC-based solution RocP. We also ob-
serve that our tweak for RocP leads to interesting gains, in particular in the case
of unrolled codes (indeed, step 4 in Algorithm 1 can be performed with a single
table access in this case). Eventually, the switching method GPQ provides the

nique corresponds to 321 multiplications, 256 XOR’s and 15 inversions in this case.
Since the maximum degree we will consider in our experiments is 12, and DFT-based
evaluations work best with powers of 2, we believe it will not lead to significant im-
provements and focus on other possible optimizations in the next section.

2 4 6 8 10

2

4

6

8

10
·106

security order

n
u
m

b
er

o
f

cy
cl

es

Fig. 2: Cycle counts for masked AES implementations: compact codes. The curves
are for KHL, the curves are for RocP, the curves are for RivP, the curves

are for RocP?, and the curves are for GPQ.

most efficient implementations, which connects with previously published results
and the intuition that the AES is particularly well suited to this solution, since
it alternates XOR-linear parts and multiplications. As for Boolean masking, the
advantage of the subfield representation in KHL is also observed.

3 More efficient MPC with packed secret sharing

The previous section suggests that the polynomial masking scheme RocP suf-
fers from significant performance overheads compared to GPQ or RivP-KHL.
Hence, despite its interesting security features (e.g. in terms of glitch-freeness, or
ability to prevent fault attacks), the gap between the security orders that can be
reached with one or the other type of masking clearly benefits to the simplest so-
lutions. Yet, the proposal by Roche and Prouff was mainly based on early results
in the MPC literature. As a result, this section investigates whether some more
recent optimizations could be exploited to improve the performances of MPC-
based masking. In particular, we evaluate the opportunities to take advantage of
packed secret sharing. The main idea of this technique is to hide several secrets in
a higher-degree polynomial, by using several initial conditions (see Appendix A).
The opening is then performed by evaluating the polynomials in the locations
used by the dealer. In general, such a solution is useful when there is exploitable
parallelism in the algorithm to execute. In the following, we will focus on the
parallelism available in the execution of the SubBytes transform.

3.1 Description of the packed secret sharing techniques

Intuition. The packed secret sharing technique essentially consists in hiding
several secrets in the same polynomial, in order to amortize the cost of comput-
ing a function over several masked secrets in parallel. Let t be the number of
secrets (e.g. corresponding to the number of S-boxes to execute in our AES case),
and d the threshold number (i.e. the security order of the masking scheme). Sup-
pose that a single masked S-box has cost of O(d2) basic field operations (and
assuming that all constants hidden by the O notation are small). A naive way
to execute the t S-Boxes in parallel would require cost of O(td2). By exploiting
the properties of the packed secret sharing, this can be reduced to O(t+ d)2. As
a result, for a fixed d and in a setting where t ' d operations are executed in
parallel, the complexity of the protected evaluation is increased asymptotically
by a linear factor compared to an unprotected evaluation. Notice however that
this improvement in complexity is only achieved for circuits of sufficient size.

We illustrate the relationship between d and t, by paying attention to cases
where we fix one of the two parameters, and plot the (simplified) cost in function
of the other parameter. For fixed d, we have a linear complexity in the number
of secrets for the single secret sharing, while this complexity is quadratic when
packing is used (see Figure 3). Hence, for each security level there exists an
interval of number of secrets where the packing technique brings an advantage.

1 3 5 7 9 11 13 15

number of secrets

co
st

Fig. 3: Cost for fixed d (here d = 4) in function of the number of secrets. For single
and packed secret sharing.

For fixed t, both the single and packed secret sharing have a quadratic com-
plexity in the masking order. Yet, the quadratic complexity is multiplied by a

factor t in the first case. As a result, the packing technique is gaining interest
when the security order is large (see Figure 4).

1 3 5 7 9 11 13 15

security order

co
st

Fig. 4: Cost for fixed t (here t = 4) in function of the masking order. For single
and packed secret sharing.

How to multiply. Using packed sharing prevents to use secure multiplications
based on Ben-Or et al. [2]. Indeed, to reduce the degree of the polynomial their
solution is to erase all the large monomials. This can be done if the secret is
located in 0 (since the elimination of large monomials does not change the secret
in this case). But packed secret sharing needs several locations for the secrets,
which implies that the truncation of polynomials becomes difficult to realize,
as best illustrated with the following example. Let s1 (resp. s2) be a secret

shared by a polynomial P1(X) (resp. P2(X)). sl = Pl(0) =
∑
i

t
(l)
i

∏
j 6=i

xi
xj − xi

, for

l =1 or 2 . Remark that we can write Pl(X) =
∑

0≤i≤d
a
(l)
i Xi. Ben-Or et al. et al.

calculate s1s2 by performing the product Q(X) = P1(X)P2(X). The polynomial
Q(X) has a degree 2d, but since the secret is located in 0, it can be truncated
by securely erasing all monomials larger than d. Note that this secure erasure
process requires to combine different shares. Hence the information exchanged
in this step needs to be masked in order to maintain the security order. Let this
truncated polynomial be denoted as Q|d(X). Then we have Q(0) = Q|d(0). All
other evaluations can be affected by the erasure of the largest monomials.

A natural solution to avoid this problem is to rely on a different multiplication
algorithm. For example, we can use the proposal by Damg̊ard et al. [6], described

in Algorithm 2. In brief, this multiplication masks the result with a random
polynomial, opens the result and finally removes the random polynomial, for a
complexity in O(d2). More precisely, let n = d+ t and Open / Share refer to the

Algorithm 2 Polynomial opening multiplication

Require: A (n, d)-sharing of y and z : (xi, yi)
n
i=1 and (xi, zi)

n
i=1.

Ensure: A (n, d)-sharing of y × z : (xi, ti)
n
i=1 .

1: for i from 1 to n do
2: ri ∈R GF (256)
3: end for
4: Use Alg. 1 on (xi, ri)

n
i=1,(xi, yi)

n
i=1 and (xi, zi)

n
i=1

5: for i from 1 to 2n− 1 do
6: pi = yi ⊗ zi ⊕ ri
7: end for
8: (s1, . . . , st) = Open((x1, p1), . . . , (x2n−1, p2n−1))
9: (t1, . . . , tn) = Share(s1, . . . , st)

10: for i from 1 to n do
11: ti = ti ⊕ ri
12: end for
13: return (xi, yi)

n
i=1

operations that allow recovering several shared secrets and to distribute them
among participants (as explained in Appendix A). The first step in Algorithm 2 is
the same as in Ben-or et al, i.e. we simply calculate Q(X) = P1(X)P2(X). Then
the reduction step is different. The polynomial Q(X) is masked by a random
polynomial R(X), which is done by adding the shares ri’s in step 6. Afterwards,
the polynomial Q + R(X) is evaluated in the positions where the secrets are
located, in order to recover the masked product of the secrets (step 8). Let
{vk}nk=1 be the set of the locations for the different secrets. Remark that to
determine R(vk), one has to estimate n points of R(X), which allows maintaining
the d-th order security. Eventually, the k secrets are shared in a new polynomial
Q′(X) (in step 9), that is of degree n and corresponds to a sharing of Q+R(vk).
Hence, it just remains to remove the random polynomial R to obtain a sharing of
Q(vk) of degree at most n (i.e. a sharing for the products of the secrets), which
is done in step 11 of the algorithm.

Squaring issues. The problem of moving the position of shares between par-
ticipants when squaring (described in Appendix A) also becomes more critical
when exploiting packed secret sharing. That is, we now have to face the fact that
multiple secrets are hidden in several positions, which can also move. Since the
secrets need to be located at the same position to be combined, we cannot use
a stable set of secrets like proposed for sharing in [27]. As a result, we avoid the
squaring problem directly by implementing them with secure multiplications.
One consequence of this choice is that it is also interesting to use a modified

addition chain for the inversion, in order to minimize both the number of mul-
tiplications and squarings. We used the one described in [7] for this purpose,
which requires 11 secure multiplications (including the squarings).

Full AES. We face one more problem when extending the packing towards the
full AES. Namely the operations MixColumns and ShiftRows need to move secrets
that are hidden in the same polynomial. Hence, and in order to benefit both from
the performance gains of packed secret sharing during the execution of the S-
boxes and from the linear parts, we decided to switch to single secret polynomials
after each execution of SubBytes. To switch from t polynomials of degree d+ 1
(with secrets located in position 0) to a single polynomial of degree d+ t (with
secrets located at positions vk), we first move the positions of all the secrets
from 0 to vk (secret per secret). Next, we multiply the resulting polynomial by
another polynomial, that cancels at positions vj 6=k and equals 1 in vk. Eventually,
we add all polynomials together to obtain a single polynomial of degree d+t and
containing t secrets. For the inverse operation (i.e. moving from one polynomial
to t polynomials), we first move each secret from position vk to position 0. Then
we erase all monomials of high degree in order to keep a polynomial of degree
d. Eventually, we refresh the masking by adding a polynomial sharing of zero.
These two operations are detailed in Appendix B, Algorithms 3 and 4.

3.2 Implementation result

We now compare RocP?, with a MPC-inspired masking exploiting Algorithm 2,
for various amounts of secrets hidden per polynomial. In order to evaluate the
extent to which the packed secret sharing is exclusively useful for the execution
of the AES S-boxes or if the switching between single-secret polynomials and
packed secret polynomials is an efficient solution, we provide performance results
both for 16 inversions and for the full AES. Besides, and in order to reflect the
impact of high security orders, we focused on the compact versions of our codes
(the impact of unrolling is very similar to the one in the previous section).

The results in Figure 5 and Figure 6 first exhibit that a change of multi-
plication algorithm is anyway beneficial to performances in our implementation
context. In particular, it is interesting to notice that the different asymptotic
complexities for the multiplication in RocP? (cubic in the security order) and
the one of Algorithm 2 (quadratic in the security order) are nicely reflected in
the plots. The impact of packed secret sharing is also put forward, it can be
seen by the gap for small order between single secret sharing and packed secret
sharing. This is due to the addition chain that has been changed. In particular,
we can observe the (expected) quasi-linear complexity of these schemes. Inter-
estingly, the results for the 16 inversions and for the full AES do not strongly
deviate, hence suggesting that the iterated execution of Algorithms 3 and 4 does
not harm performances to the point where it would become useless. Eventually,
the security orders for which the quasi-linear complexity of packed secret shar-
ing materializes remain quite high (d = 10 for the full AES), hence suggesting

2 4 6 8 10

0.5

1

1.5

2

2.5

·106

security order

n
u
m

b
er

o
f

cy
cl

es

Fig. 5: Cycle counts for MPC-based masking (compact codes): 16 inversions. The curves
are for RocP?, the packed secret sharing curves are represented by , ,

and for respectively 2, 4, 8 and 16 secrets. The curves are for the multipli-
cation of Algorithm 2 with a single secret per polynomial.

that hiding a single secret per polynomial remains the best approach in most
practical settings.

4 Randomness requirements and impact on performances

Before to conclude, we would like to briefly investigate the issue of random num-
ber generation that is usually neglected in the evaluation of masking schemes.
This is an important issue since the amount of randomness required to mask
each non-linear operation within the AES while maintaining a security of order
d is again quadratic in d. For this purpose, we will start by providing some infor-
mation theoretic intuition regarding why strong randomness is indeed needed.
In particular, we will show that this randomness has to be uniform, and that
different deviations from this requirement imply weaknesses appearing for low
and high measurement noise levels, respectively. Then, we will re-evaluate the
performances of the best masking schemes we analyzed in this paper, considering
a realistic performance penalty for the generation of each random byte.

4.1 How good must the randomness be?

In order to answer this question, we first repeated exactly the information the-
oretic analysis described in [30] and applied to the masking countermeasure

2 4 6 8 10 12
0

10

20

30

40

·106

security order

n
u
m

b
er

o
f

cy
cl

es

Fig. 6: Cycle counts for MPC-based masking (compact codes): full AES (b). The curves
are for RocP?, the packed secret sharing curves are represented by , ,

and for respectively 2, 4, 8 and 16 secrets. The curves are for the multipli-
cation of Algorithm 2 with a single secret per polynomial.

in [31]. It leads to the information theoretic curves for the unprotected S-box
and the 1st-order masked one in Figure 7. As detailed in these previous works,
such information theoretic curves provide an evaluation of the worst-case secu-
rity level of a countermeasure (i.e. the security level in front of an adversary
with a perfect knowledge of the leakage distribution). In the case of masking,
the order of the countermeasure is reflected in the slope of the curve (i.e. one
for the unprotected S-box, 2 for the 1st-order masked one). We then considered
two additional scenarios where the randomness was not as perfect as expected.

In the first place, we considered the random number to be predictable, with
an easy relation from pseudo-random value. In particular, we took the simple
case where the 16 S-boxes were masked with a counter, that can take all the
values of the secret. In this context, an observation already made in [32] in the
context of the shuffling countermeasure is that an adversary will be able to target
the 16 masks jointly. That is, since there are only 256 possible start values, she
can evaluate the likelihood of the 256 sequences of 16 mask leakages, and use
them in her template attack. Just as for the case of shuffling, the impact of such
an imperfection of the randomness is that for low noise levels, all the masks will
be recovered with probability one, as illustrated in Figure 7. As a complement,
we also considered the case where the randomness was slightly biased in the same
figure. Interestingly, it is well known that such biases directly create a lower-order
weakness (e.g. like the “zero problem” in multiplicative masking [14]). But in

Fig. 7: Information theoretic evaluation of masking schemes.

fact, depending on the strength of the bias, this first-order weakness may or not
be the best way to attack. That is, as illustrated in the figure, a small first-order
weakness will only dominate at the noise level for which its bias is significant in
front of the second-order information that is anyway available. The lower green
curve excludes 1

32 mask values, the higher 1
16 mask values. The combination of

these observations naturally suggests that both for low and high noise levels,
exploiting biased or predictable randomness is not an option for masking.

4.2 Implementation result

Since strong randomness is anyway required for masking to lead to its expected
security improvements, we finally repeated our performance evaluations assum-
ing a reasonable cost for producing each random byte. Namely, we considered 10
cycles for each of these generations (excluding the memory accesses), which cor-
responds both to the typical quantity that we found for security chips of the same
manufacturer as our target device, and to the execution of two AES rounds for
producing 16 bytes of pseudorandomness. Besides, and in order to optimize the
randomness requirements, we also modified the addition chain for the inversion
in order to minimize this additional criteria, as proposed in [7]. We then com-
pared the schemes of Section 2 again, namely RivP, KHL, GPQ and RocP?,
as well as the MPC-based scheme using the multiplication of Algorithm 2 us-
ing a single secret per polynomial, and the best packed sharing scheme from
the previous section (i.e. the most efficient solution for each security degree),
considering compact codes. As illustrated in Figure 8, the cost of the random
generation shifts the performance curves. But since all algorithms have a cost in
randomness that is quadratic in the order of the masking scheme, this shift does
not contradict the previous observations. One can just observe that the order for
which packed secret sharing becomes a useful alternative is delayed by one. For

the rest, the gap between RivP, KHL, GPQ and MPC-based masking remains
large, but has been significantly reduced thanks to our optimizations.

2 4 6 8 10 12

0

10

20

30

40

50

·106

security order

n
u
m

b
er

o
f

cy
cl

es

Fig. 8: Cycle counts for masked AES implementations with time to generate random.
The curve is for KHL, the curve is for RocP?, the curve is for RivP,
the curve is for GPQ, the curve is for the multiplication of Algorithm 2 with
a single secret per polynomial and the curve is for the best packed secret sharing.

5 Conclusions

The choice of a masking scheme to protect AES implementations is a delicate
tradeoff between security and performances. In this paper, we provided a careful
comparison of different state-of-the-art proposals for this purpose, together with
a cautionary note regaring the importance of relying on strong randomness in this
context. We hope that it will help actual designers in choosing the solution that
best fits their security and performance constraints. Interestingly, and despite the
intuitive connection between these problems, our results show that specialized
masking schemes that only guarantee higher-order side-channel security have
significantly better performances than general MPC-inspired solutions. Yet, the
latter ones provide interesting security features, e.g. the glitch-freeness previously
discussed by Roche and Prouff, or the ability to prevent fault attacks (i.e. to resist
active adversaries). Quite naturally, MPC also benefits from a huge literature,
and more optimization efforts could certainly be considered to further reduce the
gap between these two problems. The use of somewhat homomorphic encryption

taking advantage of a preprocessing phase to reduce asymptotic complexities can
be mentioned as an example [9], in particular since it has been shown to provide
efficient implementations of the AES [8]. Also, the parallelism we exploit in this
work was internal to the AES (i.e. based on its 16 S-boxes). This is natural since
embedded applications usually encrypt only a small amount of plaintexts. But
in other scenarios where many plaintexts have to be encrypted concurrently, it
would be possible to take advantage of this additional (extrernal) parallelism.

Acknowledgements. Work funded in parts by the European Commission through
the ERC project 280141 (acronym CRASH) and the European ISEC action grant
HOME/2010/ISEC/AG/INT-011 B-CCENTRE project. F.-X. Standaert is an
associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

References

1. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede. The-
ory and practice of a leakage resilient masking scheme. In Wang and Sako [34],
pages 758–775.

2. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In Janos Simon, editor, STOC, pages 1–10. ACM, 1988.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 398–
412. Springer, 1999.

4. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel crypt-
analysis of a higher order masking scheme. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 28–44. Springer, 2007.

5. Jean-Sébastien Coron, Emmanuel Prouff, and Thomas Roche. On the use of
shamir’s secret sharing against side-channel analysis. In Stefan Mangard, edi-
tor, CARDIS, volume 7771 of Lecture Notes in Computer Science, pages 77–90.
Springer, 2012.

6. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty
computation and the computational overhead of cryptography. In Henri Gilbert,
editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
445–465. Springer, 2010.

7. Ivan Damg̊ard and Marcel Keller. Secure multiparty AES (full paper). IACR
Cryptology ePrint Archive, 2009:614, 2009.

8. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P.
Smart. Implementing AES via an actively/covertly secure dishonest-majority MPC
protocol. In Ivan Visconti and Roberto De Prisco, editors, SCN, volume 7485 of
Lecture Notes in Computer Science, pages 241–263. Springer, 2012.

9. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, 2012.

10. Matthew K. Franklin and Moti Yung. Communication complexity of secure com-
putation (extended abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson,
and John A. Ellis, editors, STOC, pages 699–710. ACM, 1992.

11. Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography, volume
6544 of Lecture Notes in Computer Science, pages 262–280. Springer, 2010.

12. Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Montgomery’s trick
and fast implementation of masked AES. In Abderrahmane Nitaj and David
Pointcheval, editors, AFRICACRYPT, volume 6737 of Lecture Notes in Computer
Science, pages 153–169. Springer, 2011.

13. Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting higher-
order side channel analysis with additive and multiplicative maskings. In Preneel
and Takagi [24], pages 240–255.

14. Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power anal-
ysis of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, edi-
tors, CHES, volume 2523 of Lecture Notes in Computer Science, pages 198–212.
Springer, 2002.

15. Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s secret sharing
scheme. In Preneel and Takagi [24], pages 79–94.

16. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

17. HeeSeok Kim, Seokhie Hong, and Jongin Lim. A fast and provably secure higher-
order masking of AES S-box. In Preneel and Takagi [24], pages 95–107.

18. Chung Laung Liu. Introduction to combinatorial mathematics, 1968.
19. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -

revealing the secrets of smart cards. Springer, 2007.
20. Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of

masked CMOS gates. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 351–365. Springer, 2005.

21. Amir Moradi and Oliver Mischke. On the simplicity of converting leakages from
multivariate to univariate - (case study of a glitch-resistant masking scheme). In
Guido Bertoni and Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2013.

22. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, ICICS, volume 4307 of Lecture Notes in Computer Science,
pages 529–545. Springer, 2006.

23. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implementa-
tion of nonlinear functions in the presence of glitches. J. Cryptology, 24(2):292–321,
2011.

24. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science.
Springer, 2011.

25. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 142–
159. Springer, 2013.

26. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

27. Thomas Roche and Emmanuel Prouff. Higher-order glitches free implementation
of the AES using secure multi-party computation protocols - extended version. J.
Cryptographic Engineering, 2(2):111–127, 2012.

28. Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science,
pages 208–225. Springer, 2006.

29. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

30. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, EU-
ROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

31. François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is
not enough: Another look on second-order DPA. In Masayuki Abe, editor, ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 112–129.
Springer, 2010.

32. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive study
with cautionary note. In Wang and Sako [34], pages 740–757.

33. Manfred von Willich. A technique with an information-theoretic basis for pro-
tecting secret data from differential power attacks. In Bahram Honary, editor,
IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science, pages 44–62.
Springer, 2001.

34. Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Beijing, China, December 2-6, 2012. Proceedings,
volume 7658 of Lecture Notes in Computer Science. Springer, 2012.

A Shamir’s secret sharing & BGW

The idea of sharing a secret between several persons is a problem proposed by Liu
in 1968 [18]. 11 years after, Shamir described a way to solve it [29]. His solution
essentially exploits the fact that Lagrangian interpolation allows to recover the
polynomial of lowest degree passing through several points. As a result, to share
a secret s the person who knows the secret (usually referred to as the dealer)
chooses a random polynomial P , such that P (0) = s (usually referred to as
the initial condition). Let d be the degree of P . Then the dealer distributes the
evaluations of P at different points (called the shares) to the e participants,
and labels the i-th evaluation in xi 6= 0 with yi. This step is usually called the
sharing. In this paper we will denote this operation by (y1, . . . , ye) = Share(s).
Now if f > d participants want to discover the secret, they use the interpolation
method to find P , and then evaluate P in 0: this step is called the opening. In
this paper we will denote this operation by s = Open(y1, . . . , yf). By contrast
if f ≤ d, then P cannot be recovered since not enough information is available.
In practice, the interpolation can be done using the Lagrangian method. In that

case, the participants build Q(X) =
∑

0≤i≤f
yi
∏
j 6=i

X − xj
xi − xj

. Since this polynomial

has degree at most f and verifies Q(xi) = yi ∀i ∈ {0, . . . , f}, we directly have
that if f > d, then Q = P according to the fundamental theorem of algebra.

The original MPC techniques in [2] essentially aim at computing on secrets
shared according to Shamir’s trick. In this context, it is easy to see that the
addition of two secrets can be done directly, by simply performing the addition on
each pair of shares. By contrast, multiplying two shared secrets is more difficult,
since the multiplication of two polynomials of degree d in a field gives rise to
a polynomial of degree 2d. As a result, and in order for the degrees of the
polynomials to remain low enough so that MPC remains efficient, it is necessary
to reduce this polynomial securely. The solution proposed by Ben-Or, Goldwasser
and Wigderson is to use sharings with t > 2d, perform the multiplications locally,
and then securely delete in all the monomials of degree higher than d [2].

Note that when using polynomial masking (e.g. based on Shamir’s secret
sharing), the square function is also a bit more difficult to implement than in

the Boolean case. Indeed, let s = P (0) =
∑
ti
∏
j 6=i

xj
xj − xi

. To calculate the square

of s, the participants have to compute s2 =
∑
y2i

∏
j 6=i

x2j
x2j − x2i

. But without special

care, this operation moves the position of the shares between participants (while
the execution of linear operations can only be performed if the shares are located
at the same place). In [27], the authors propose to use a set S of location points
that are stable by Frobenius application to avoid this problem. That is, for our
case we select points such that x2 = y and then let the participants exchange
shares (which is possible in the context of masking where all participants are on
the same chip and assumed to be honest - but not in the general MPC case).

B Switch packed secret single secret

We describe how to switch from a single polynomial masking to a packed se-
cret sharing (and vice versa) in Algorithms 3 and 4. Note that step 5 in Al-
gorithm 1 allows to obtain a (n, d)-sharing from a (d + 1, d)-sharing. Ak

i is the
evaluation on xi of the polynomial Ak(X) =

∏
i6=k

X−vi
vk−vi . It easy to check that

this polynomial verifies the condition of annihilation in vi for i 6= k. Eventu-
ally, mk

i =
∏
j 6=i

xj

vk−xj
allows to move the location of a secret from 0 to vk, since

mk
i =

∏
j 6=i

xj

xi−xj
(
∏
j 6=i

vk−xj

xi−xj
)−1. As a result, the reconstruction with

∏
j 6=i

vk−xj

xi−xj
will

give the same secret as the evaluation in zero of the original polynomial. Simi-
larly, dki =

∏
j 6=i

vk−xj

xj
allows to move the location of the secret for vk to zero.

Algorithm 3 Switch from t single-secret polys to 1 packed secret poly

Require: t (d+ 1, d)-sharings of sk : (xi, y
k
i)d+1

i=1 .
Ensure: A (n, d)-sharing of {sk}tk=1 : (xi, ti)

n
i=1.

1: for k from 1 to t do
2: for i from 1 to d do
3: yki = yki ⊗mk

i

4: end for
5: Use a modified Alg. 1 on (xi, y

k
i)d+1

i=1

6: for i from 1 to d do
7: yki = yki ⊗Ak

i

8: end for
9: end for

10: for k from 1 to t do
11: for i from 1 to t+ d do
12: ti = ti ⊕ yki
13: end for
14: end for
15: return (xi, ti)

n
i=1

Algorithm 4 Switch from 1 packed secret poly to t single-secret polys

Require: A (n, d)-sharing of {sk}tk=1 : (xi, ti)
n
i=1.

Ensure: t (d+ 1, d)-sharings of sk : {(xi, yki)d+1
i=1 }

t
k=1.

1: for i from 1 to t do
2: for k from 1 to d+ t do
3: yki = ti ⊗ dki
4: end for
5: for i from 1 to d do
6: ri ∈R GF (256)
7: end for
8: Use Alg. 1 on (xi, ri)

d+1
i=1

9: for i from 1 to d+ t do
10: yki = yki ⊕ ri
11: end for
12: res = Open((x0, y

k
0), . . . , (xt+d, y

k
t+d)

13: (t1, . . . , td+1) = Share(0)
14: for k from 1 to d+ 1 do
15: yki = ri ⊕ res⊕ ti
16: end for
17: end for
18: return {(xi, yki)d+1

i=1 }
t
k=1

