
Cryptanalysis of the LSH and SHA-V Hash Functions

Yonglin Hao, Hongbo Yu

Department of Computer Science and Technology, Tsinghua Universtiy, Beijing 100084, China

haoyl14@mails.tsinghua.edu.cn

yuhongbo@mail.tsinghua.edu.cn

Abstract. In this paper, we study the security of two hash function families LSH and SHA-V.

We find that the wide-pipe MD structural LSH hash functions do not apply the traditional feeding

forward operation. This structural weakness enables us to launch free-start collision and pseudo-

preimage attacks on full-round LSH hash functions with negligible complexities.

In order to evaluate the quality of the LSH round functions, we launch 14-round boomerang attacks

on LSH-512 and LSH-256 hash functions with complexities 2308 and 2242 respectively. We verify

the correctness of our boomerang attacks by giving practical 11-round boomerang quartets. These

boomerang results indicate that the round functions of LSH are well designed.

Based on our analysis, we stress that the adoption of the feeding forward operation should be

essential to the LSH hash functions despite of their well designed round functions.

The PMD structural SHA-V parallelizes two SHA-1-like streams and each stream processes inde-

pendent 512-bit message blocks. This structure enable us to utilize the divide-and-conquer strategy

to find preimages and collisions. Our preimage attack can be applied to full-round SHA-V with time

& memory complexities O(280). Our trivial collision attacks also requires O(280) complexities but,

utilizing existing results on SHA-1, we can find a SHA-V collision with a time complexity O(261)

and a negligible memory complexity. These results indicate that there are weaknesses in both the

structure and the round function of SHA-V.

Keywords: Hash Function, Boomerang Attack, LSH, SHA-V, MD Structure, Feeding Forward

1 Introduction

Cryptographic hash functions (simply referred as hash functions) are playing a significant role in the

modern cryptology. An ideal hash function meet three criterions namely: preimage resistance, 2nd preim-

age resistance and collision resistance. In 2005, Wang et al. successfully launched collision attacks on

widely used hash functions MD5 [1] and SHA-1 [2] which forced NIST to proposed the transition from

SHA-1 to SHA-2. However, doubts on the security have been continuously raised that SHA-2 may also

be vulnerable to such attacks due to similar design approach to the attacked hash functions. To cope

with this situation, in the year 2007, NIST launched the SHA-3 competition [3] to develop a new hash

standard. This competition largely stimulated the cryptanalysis technique on hash functions. After years’

analysis, five proposals entered the final round of SHA-3 and the one named Keccak became the new

SHA-3 standard in 2012 [4].

The end of the SHA-3 competition does not end the proposal of new hash function designs. Although it

has been selected as the new SHA-3 standard because of its distinct design and better hardware efficiency,

Keccak shows relatively low software performance compared to other SHA-3 candidates. When much more

and bigger data needs to be hashed in the era of smart devices, implementing cryptographic algorithm

at the hardware level will be the main trend without doubt. However, the hardware implementation will

not be able to have the competitive edge in price to the software one without large quantity production.

Furthermore, the software implementation has many advantages in terms of management, flexibility,

portability, ease of use/upgrade, etc. [5]. Therefore, a hash function with good software performance

would be more marketable when considering the present and the near future. The LSH [6], a new hash

function family proposed by Kim et al. at ICISC 2014, is a design in accordance with such circumstances

and considerations. As a software oriented hash function, LSH has two versions namely LSH-256 and

LSH-512, suitable for 32- and 64-bit word processors respectively. In the original introduction of LSH [6],

the designers have given thorough evaluations to the security of LSH against different attacking models.

But we find their analysis is still insufficient. In this paper, we revisit the secure margins of the LSH

hash functions in two ways. Firstly, we give some trivial attacks based on some structural weaknesses

2 Yonglin Hao, Hongbo Yu

of LSH. Then, we evaluate the strength of the round function by launching boomerang attacks on LSH

hash functions.

Another hash function family we are going to study is SHA-V [7]. Derived from SHA-1, SHA-V can

be regarded two parallelized SHA-1 streams. It updates 320-bit chaining variables and has 7 versions

denoted as SHA-V-(128 + 32k) where k ∈ [0, 6] and (128 + 32k) represents the bitwise output length.

SHA-V has not received too much attention ever since its proposal. But recently at Eurocrypt 2015,

Leurent et al. present a generic preimage attack on the XOR combiner of two independent hash functions

[8] using complicated structures such as multi-collisions [9]. In [8], the authors specifically mentioned that

their method can be applied to directly to SHA-V-160 with complexity Õ(2133.3). We show that SHA-V

is even weaker so that we can break all of its 7 versions.

Related Works. One of the main method used in this paper is the boomerang attack. It was introduced

by Wagner in 1999 [10] as a tool for the cryptanalysis of block ciphers. During the past few years, the idea

of the boomerang attack has been applied to many hash functions and turned out to be quite fruitful.

Biryukov et al. [11] and Lamberger et al. [12] independently applied the boomerang attack to BLAKE-32

and SHA-256. The SHA-256 result was later improved by Biryukov et al. in [13]. Ever after, we saw

the boomerang results on many hash functions such as SIMD-512 [14], HAVAL [15], RIPEMD-128/160

[16], HAS-160 [15], Skein-256/512 [17,18], SM3 [19,20], BLAKE-256/512 [21,22] and BLAKE2 [22]. The

boomerang attack has become a common tool for analyzing various hash functions.

As to the boomerang attack on LSH, the designers claim “we can construct 16-step and 17-step

boomerang distinguishers [53] for LSH- 256 and LSH-512, respectively, by combining short differential

characteristics”[6]. According to the authors, the 16- and 17-round distinguishers requires complexities

2468 and 2772 respectively, which exceeds the generic bounds 2256 for LSH-256 and 2512 for LSH-512.

Furthermore, according to our analysis, the direct concatenation of two short differential characteristics

results in many contradictive conditions which makes the 16- and 17-round characteristics unavailable.

Therefore, it is a left-open question that how many rounds can an available boomerang distinguisher

reach for the LSH hash functions within the generic bounds. We are to answer this question in this paper.

Our Contributions. We find that, as a (wide-pipe) MD structural hash function, LSH has omitted

the traditional feeding forward operation in its compression functions. This structural weakness enables

us to launch free-start collision and pseudo-preimage attacks on full-round LSH hash functions with

negligible complexities. In order to estimate the LSH round functions, we construct available differential

characteristics and launch boomerang attacks on 14-round LSH-512 and LSH-256 hash functions with

complexities 2308 and 2242 respectively. We verify the the correctness of our attacks by giving practical

boomerang quartets for 11-round LSH hash functions. To the best of our knowledge, these are the first

practically verifiable boomerang results on the LSH hash functions.

For SHA-V, we find that the two SHA-1-like streams of SHA-V are processing independent 512-bit

message blocks. Therefore, we launch our preimage attacks on full-round SHA-V-(128 + 32k) for all

versions k ∈ [0, 6]. The time and memory complexities of our attacks are O(280). We also propose

collision attacks on on full-round SHA-V-(128 + 32k) for k ∈ [2, 6] with time & memory complexities

O(280). Utilizing existing SHA-1 results, we can eliminate the memory complexity and lower the time

complexity to O(261). This improved collision attack can then be applied to all SHA-V versions.

Organization of the Paper. In Section 2, we briefly introduce LSH and SHA-V, and provide the

overview of the boomerang attack. We reveal the structural weakness of LSH hash functions by presenting

some trivial attacks on the full-round versions in Section 3. Section 4 describes our Type I and III

boomerang attacks on round-reduced LSH-512 and LSH-256. We present our preimage and collision

attacks on SHA-V in Section 5. Finally, we conclude our paper in Section 6.

2 Preliminary

We briefly introduce LSH and SHA-V hash function families in the first two parts of this section. In

the third part, we introduce the three types of the boomerang attack and review the procedure of the

widely-used differential-based boomerang attack on hash functions.

2.1 Brief Introduction of the LSH Hash Functions

Some notations have to be introduced first:

Cryptanalysis of the LSH and SHA-V Hash Functions 3

← variable assignment;

+ modular 232 or 264 addition (according to the word length);

− modular 232 or 264 subtraction (according to the word length);

⊕ bitwise exclusive or;

≪ n cyclic shift n bits towards the most significant bit;

≫ n cyclic shift n bits towards the least significant bit;

∧ bitwise AND operation for words;

Wt the set of all t-word arrays (t ≥ 1). In this paper, let W denote W1;

LSBn(·) getting the least significant n bits of a bit string.

The hash function family LSH consists of n-bit hash functions based on w-bit word, {LSH-8w-n : w =

32 or 64, 1 ≤ n ≤ 8w}. LSH-8w-n has the wide-pipe MD structure with one-zeros padding. The message

hashing process of LSH-8w-n consists of the following three stages:

Initialization: The given bit string message m is padded and cut into t = d |m|+1
32w e 32-word message

blocks, denoted as M (0), · · · ,M (t−1). The 16-word chaining variable array CV (0) is initialized to the

constant initialization vector IV of LSH-8w-n.

Compression: Updating of chaining variables by iteration of a compression function CF :W16×W32 →
W16 with message blocks {M (i)}t−1i=0, which means computing CV (i) (i ∈ [1, t]) as

CV (i) = CF (CV (i−1),M (i−1)) (1)

and acquiring the final chaining variable CV (t). We will describe CF in detail later in this section.

Finalization: The finalization function FINn return n-bit hash value h from the final chaining variable

CV (t) = (CV
(t)
0 , · · · , CV (t)

15). FINn first compute a 8-word array hash H as

H = (H0, · · · , H7) = (CV
(t)
0 ⊕ CV (t)

8 , · · · , CV (t)
7 ⊕ CV (t)

15) (2)

and then return the n-bit hash value h as

h = LSBn(H0‖ · · · ‖H7).

Specifically, when n = 8w, we have h = H0‖ · · · ‖H7 providing the highest secure margin.

For the simplicity of interpretation, we only consider the two most secure versions with n = 8w, which

are LSH-256-256 and LSH-512-512 for 32- and 64-bit word respectively. Since the final output string h

is only a concatenation of the words in the hash array H, we only consider H as the output without

specific declarations. In the remainder of this paper, we denote LSH-256-256 simply by LSH-256 and

LSH-512-512 by LSH-512.

The compression function of LSH, denoted by CF can be regarded as

CF :W16 ×W32 →W16

whereW refers to the 64-bit words for LSH-512 or 32-bit words for LSH-256. The following four functions

are used in a compression function:

1. ME :W32 →W16(Ns+1) (Message expansion function),

2. MA :W16 ×W16 →W16 (Message addition function),

3. MXr :W16 →W16 (Mix function of the r-th round),

4. WP :W16 →W16 (Word permutation function),

where Ns = 28 for LSH-512 and Ns = 26 for LSH-256, and r ∈ [0, Ns]. The round function of round r,

denoted by Fr :W16 ×W16 →W16, can be defined as

Fr = WP ◦MXr ◦MA.

We detail the four functions as follows.

4 Yonglin Hao, Hongbo Yu

Message Expansion Function. Firstly, the ME function a 32-word message block, denoted as M =

(M0, · · · ,M31) to Ns + 1 16-word word arrays denoted as W 0, · · · ,WNs where

W r = (W r
0 , · · · ,W r

15), r ∈ [0, Ns].

The first two word arrays W 0 and W 1 are initialized by M as

W 0 = (M0, · · · ,M15), W 1 = (M16, · · · ,M31).

For r ∈ [2, Ns], the word array W r is generated by

W r
l ←W r−1

l +W r−2
τ(l) , l ∈ [0, 15].

where τ is the permutation over Z16 defined in Table 1.

Table 1. The definition of permutations τ and δ.

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ(l) 3 2 0 1 7 4 5 6 11 10 8 9 15 12 13 14

δ(l) 6 4 5 7 12 15 14 13 2 0 1 3 8 11 10 9

Message Addition Function. For two 16-word arrays X = (X0, · · · , X15) and Y = (Y0, · · · , Y15),, the

message addition function MA :W16 ×W16 →W16 is defined as follow:

MA(X,Y) := (X0 ⊕ Y0, · · · , X15 ⊕ Y15). (3)

Mix Function. The r-th mix function MXr :W16 →W16 updates the 16-word array T = (T0, · · · , T15)

by mixing every two word pair (Tl, Tl+8) for l ∈ [0, 7]. For r ∈ [0, Ns − 1], the mix function MXr,l

proceeds .

(Tl, Tl+8)←MXr,l(Tl, Tl+8), (4)

where MXr,l is a two-word mix function. Let X and Y be two words. The two-word mix function

MXr,l(X,Y) = (X ′, Y ′) is defined by (5), where αr, βr and γl are defined in Table 2. As to the round

constants SCrl , we refer the readers to [6] for detailed definitions.

aX ← X + Y,

bX ← (X ⊕ SCrl)≪αr ,

aY ← bX + Y,

bY ← Y≪βr

X ′ ← bX + bY

Y ′ ← bY≪γl .

(5)

Table 2. The definition of rotation amounts αr, βr and γl.

r αr βr γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7

LSH-512
even 23 59

0 16 32 48 8 24 40 56odd 7 3

LSH-256
even 29 1

0 8 16 24 24 16 8 0odd 5 17

Word-Permutation Function. Let X = (X0, · · · , X15) be an 16-word array. The word-permutation

function WP :W16 →W16 is defined by

WP (X) := (Xδ(0), · · · , Xδ(15)), (6)

where δ is the permutation over Z16 defined by Table 1.

Cryptanalysis of the LSH and SHA-V Hash Functions 5

Given the 16-word variable CV (i) (i ∈ [0, t− 1]) defined in (1), a 16-word variable T 0 is initialized as

T 0 = (T 0
0 , · · · , T 0

15) = (CV
(i)
0 , · · · , CV (i)

15). (7)

After the assignment of T 0, Fr computes a new 16-word array T r+1 = Fr(T
r,Mr) for r ∈ [0, Ns]. For

the convenience of interpretation, we denote the intermediate value after the r − th MA function as Ur,

MXr as V r, then we have

Fr : T r
MA(·,W r)−−−−−−−→ Ur

MXr−−−→ V r
WP−−−→ T r+1.

The process of CV (i+1) = CF (CV (i),M (i)) (i ∈ [0, t− 1]) can be described as Algorithm 1.

Algorithm 1: The Compression Function CF of LSH

Input: A 16-word chaining variable CV (i) and a 32-word message block M (i) (i ∈ [0, t− 1]).

Output: A 16-word chaining variable CV (i+1)

1: Initialize T 0 ← CV (0) as (7).

2: Compute {W j}Nsj=0 using the word expansion function ME(M (i)).

3: for r = 1, · · · , Ns do

4: Compute T r = Fr(T r−1,W r−1).

5: end for

6: Compute UNs = MA(TNs ,WNs).

7: Assign and chaining variable array CV (i+1) ← UNs and ouput CV (i+1).

2.2 Brief Introduction on SHA-V

SHA-V is a PMD structural hash function family. It processes 1024-bit message blocks and produces a

hash value of 128+32k (k ∈ [0, 6]) bits. The word length of SHA-V is 32 bits. The compression function

of SHA-V consists of two SHA-1-like streams denoted by LCF and RCF . Since we do not use any specific

properties of LCF and RCF , we refer interested readers to [7] for more details. The message hashing

process of SHA-V consists of the following three stages:

Initialization: The given bit string message m is padded and cut into t = d |m|+1
1024 e 32-word message

blocks, denoted as M (0), · · · ,M (t−1). Each message block M (i) is divided into two 512-bit sub-blocks

LM
(i) and RM

(i) (M (i) = LM
(i)‖RM (i) for i ∈ [0, t−1]). Two 5-word chaining variable arrays LCV

(0)

and RCV
(0) are initialized to the constant initialization vectors LIV and RIV of SHA-V.

Compression: The two SHA-1-like compression functions works independently to update chaining vari-

able arrays LCV
(i) and RCV

(i) (i = 1, · · · , t) as

LCV
(i) = LCF (LCV

(i−1), LM
(i−1)) (8)

RCV
(i) = RCF (RCV

(i−1),RM
(i−1)) (9)

and acquiring the final chaining variable arrays LCV
(t) and RCV

(t).

Finalization: For k ∈ [0, 6], the finalization function of SHA-V-(128 + 32k), denoted by FVk, return

(4 + k)-word array H = FVk(LCV
(t),RCV

(t)). Let

LCV
(t) = (LV0, · · · , LV4), RCV

(t) = (RV0, · · · ,RV4),

Then, the output array

H = (H0, · · · , H3+k)

can be computed according to Table 3.

6 Yonglin Hao, Hongbo Yu

Table 3. The Computation Methods of the (4 + k)-Word Output Array H = FVk(LCV
(t),RCV

(t))

k H0 H1 H2 H3 H4 H5 H6 H7 H8 H9
0 LV0 + Y≪2

LV1 + Y≪3
RV0 + Z≪2

RV1 + Z≪3

1 LV0 + RV0 LV0 + RV1 LV0 + RV2 LV0 + RV3

2 LV0 + RV
≪2
4 LV1 + RV

≪3
4 LV2 + RV

≪5
4 RV0 + RV

≪2
4 RV1 + RV

≪3
4 RV2 + RV

≪5
4

3 LV0 + RV
≪2
4 LV1 + RV

≪3
4 LV2 + RV

≪5
4 LV3 + RV

≪7
4 LV4 + RV

≪11
4 RV0 + RV

≪13
4 RV1 + RV

≪17
4

4 LV0 + RV
≪2
4 LV1 + RV

≪3
4 LV2 + RV

≪5
4 LV3 + RV

≪7
4 RV0 + LV

≪2
4 RV1 + LV

≪3
4 RV2 + LV

≪5
4 RV3 + LV

≪7
4

5 LV0 + RV
≪2
4 LV1 + RV

≪3
4 LV2 + RV

≪5
4 LV3 + RV

≪7
4 LV4 + RV

≪11
4 RV0 + RV

≪13
4 RV1 + RV

≪17
4 RV2 + RV

≪19
4 RV3 + RV

≪23
4

6 LV0 LV1 LV2 LV3 LV4 RV0 RV1 RV2 RV3 RV4
X = RV0 ⊕ RV1 ⊕ RV2 ⊕ RV3 ⊕ RV4, Y = LV2 ⊕ LV3 ⊕ LV4, Z = RV2 ⊕ RV3 ⊕ RV4

2.3 Boomerang Attacks on Hash Functions

Resembling LSH, we consider the hash function HF defined as

H = HF (CV,M) = FINn ◦ CF (CV,M) = FINn(U), (10)

where CV is the chaining variable, M is the message block, CF is the compression function and FINn
is the finalization function to produce an n-bit hash value. The goal of the boomerang attack aims at

constructing four CV -M pairs

(0CV, 0M), (1CV, 1M), (2CV, 2M), (3CV, 3M),

whose hash values iH = HF (iCV, iM) (i ∈ [0, 3]) satisfying specific criteria within generic complexity

bounds. According to different criteria, there are three types of boomerang attacks [18], denoted as Type

I, II, III respectively. The hash array H defined in (10) has |H| = n bits so the three types of boomerang

attack can be defined as follows:

– Type I: Finding the quartet (iCV, iM) where i ∈ [0, 3] satisfying 0CV ⊕ 2CV = 1CV ⊕ 3CV = α

and 0H ⊕ 1H = 2H ⊕ 3H = δ for fixed predefined differences α and δ within the generic complexity

bound 2n.

– Type II: Finding the quartet (iCV, iM) where i ∈ [0, 3] satisfying 0H ⊕ 1H = 2H ⊕ 3H within the

generic complexity bound 2n/3 [23]. This property is also called zero-sum or second-order differential

collision.

– Type III: Finding the quartet (iCV, iM) where i ∈ [0, 3] satisfying 0CV ⊕ 2CV = 1CV ⊕ 3CV and

0H ⊕ 1H = 2H ⊕ 3H within the generic complexity bound 2n/2.

As classical methods for boomerang attack, we review the known-related-key boomerang method given

in [13], which we will use in Section 4. The iterative compression function CF in (10) can be regarded

as a block cipher where the chaining variable CV is regarded as plaintext, the message M is regarded

as key and the output of CF , denoted by U , is regarded as ciphertext. CF is decomposed into two

sub-functions as CF = CF1 ◦CF0. In this way, we can start from the middle steps since CV and M can

be chosen randomly [13,17]. Then we have a backward (top) differential characteristic (β, βk) → α with

probability p for CF−10 , and a forward (bottom) differential characteristic (γ, γk)→ δ with probability q

for CF1. Finally, we can launch the known-related-key Type I boomerang attack with these two differential

characteristics as follows:

1. Choose randomly a intermediate state (0X, 0M) and compute (iX, iM), i = 2, 3, 4 by 2X = 0X ⊕ β,

1X = 0X ⊕ γ, 3X = 2X ⊕ γ, and 2M = 0M ⊕ βk, 1M = M ⊕ γk, 3M = 2M ⊕ γk.

2. Compute backward from (iX, iM) and obtain iCV by iCV = CF−10 (iX, iM) (i ∈ [0, 3]).

3. Compute forward from (iX, iM) and obtain Ci by iU = CF1(iX, iM) (i ∈ [0, 3]).

4. Identify the conforming quartet (iCV, iM) for i ∈ [0, 3] by checking whether 0CV ⊕ 2CV = 1CV ⊕
3CV = α and 0U ⊕ 1U = 2U ⊕ 3U = δ.

Type II and Type III boomerang attack only differs in the criteria in step 4.

Obviously, the boomerang attack described above is targeting at CF rather than HF in (10). But for

LSH whose FINn function is linear, attacking CF is equivalent to attacking HF . This will be illustrated

in detail later in Section 4.

Cryptanalysis of the LSH and SHA-V Hash Functions 7

3 The Structural Weakness of the LSH Hash Function

It is noticeable that in the compression functions of traditional MD structural hashes (such as SHA-1,

SHA-2 etc.), there is a feeding forward operation

CF (CV,M) = E(CV,M) + CV (11)

where the input CV is added to the output of a keyed permutation E. But, according to Section 2.1, the

CF of LSH does not have feeding forward operations like (11). As can be seen in Algorithm 1, CV (i+1)

is computed directly from the final state UNs without adding the previous chaining variable CV (i). In

the finalization phase, as can be seen from (2), the hash value is linearly deduced from the final chaining

variable CV (t) without involving previous CV (0), · · · , CV (t−1). In the remainder of this paper, we show

that the absence of feeding forward operation enables us to launch various attacks on full-round LSH

hash functions with negligible complexities and 100% success probability.

3.1 Free-Start Collision Attack on Full LSH

For the hash function HF defined in (10) with output length |H| = n bits, the free-start collision attack

on hash function HF aims at finding two CV -M pairs (0CV, 0M) and (1CV, 1M) satisfying

0H = HF (0CV, 0M) = 1H = HF (1CV, 1M) (12)

within a generic complexity bound 2n/2. Comparing with standard collision attack, the free-start collision

does not have restrictions in the difference ∆in = 0CV ⊕ 1CV but the feeding forward strategy in (11)

will force the adversary to balance both the output differences of CF and the input difference ∆in, which

can in turn increase difficulties.

Without the feeding forward operation, the LSH hash function is vulnerable to free-start collision

attacks. A adversary can construct (0CV, 0M) and (1CV, 1M) satisfying (12) easily by taking the following

steps:

1. Select a random 16-word array U = (U0, · · · , U15);

2. Assign the arrays 0U
Ns ← U and 1U

Ns ← U

3. Assign 0M and 1M with random values only satisfying 0M 6= 1M .

4. Compute {0W r}Nsr=0 = ME(0M) and {1W r}Nsr=0 = ME(1M) ;

5. With iU
Ns and {iW r}Nsr=0, compute backward to iT

0 (i = 0, 1);

6. Assign iCV ← iT
0 for i = 0, 1 and output (0CV, 0M), (1CV, 1M).

The (0CV, 0M) and (1CV, 1M) acquired above make a free-start collision for both CF and HF of LSH

hash functions. Obviously, this attack only requires 2 queries of the LSH function to produce a free-start

collision pair. As an MD structural hash function, the security of LSH relies heavily on the collision

resistance of its compression function CF . Therefore, the existence of such an attack is inappropriate.

3.2 Pseudo-Preimage Attack on Full LSH

Still we have the hash function HF defined in (10) with output length |H| = n bits. In the pseudo-

preimage attack, the adversary can acquire a static output H of HF and he is supposed to find a

pair (CV ,M) satisfying H = HF (CV ,M) within the generic bound 2n. Without the feeding forward

operation (11), we can find a pseudo-preimage (CV ,M) for any H by taking the following steps:

1. For a given 8-word array H, we denote that

H = (H0, · · · , H7),

Select 8 random words U0, · · · , U7 and construct a 16-word array

U
Ns

= (U0, · · · , U7, U0 ⊕H0, · · · , U7 ⊕H7).

2. Assign M with random values and compute {W r}Nsr=0 = ME(M);

3. With U
Ns

and {W r}Nsr=0, compute backward to T
0
;

4. Assign CV ← T
0

and output the pair (CV ,M).

The acquired (CV ,M) is a pseudo-preimage for both CF and HF . This attack only requires 1 query of

LSH hash function, which largely challenges the security of LSH.

8 Yonglin Hao, Hongbo Yu

4 Boomerang Attacks on Round-Reduced LSH Hash Functions

In order to evaluate the strength of the LSH round function, we launch Type I and III boomerang attacks
1 on round-reduced LSH hash functions. We mainly describes the attack on LSH-512 and that of LSH-256

can be deduced accordingly.

Note: Many previous Type I boomerang results, such as [21,22], can only work on the compression

functions (CF of (10)) or the keyed permutations (E of (11)) rather than the whole hash functions (HF

of (10)). But for LSH, it is equivalent to attack CF , E and HF due to the absence of feeding forward

operations and the linearity of the FINn finalization function.

4.1 Construction of Differential Characteristics

The very first step for the boomerang attack is constructing two differential characteristics with high

probability. Since LSH is an ARX hash function family (only use three simple operations namely Modular

Add “+”, Rotation “≫” and XOR“⊕”), we can use the XOR difference and deduce the difference

linearly by considering the only nonlinear operation “+” as similar linear operation “⊕”.

The XOR difference in this paper is represented in two forms as follow:

– Hex form: such as ∆v = 0x8003 indicates that bits v[0, 1, 15] of the word v are active (having

non-zero XOR difference).

– Numeric form: such as ∆v = (15, 1, 0) is equivalent to ∆v = 0x8003 in hex form. Besides, if

∆v = 0x0 in hex form, we denoted by ∆v = φ in numeric form.

The two forms are used for presentation and linear deduction of the differential characteristics. For

example, in the MXr function of LSH, we have

aX = X + Y.

If we have acquired ∆X and ∆Y , we can linearly deduce ∆aX as

∆aX = ∆X ⊕∆Y.

Once we have determined the differences of the r-th chaining variable∆T r (r ∈ [0, Ns] and two consecutive

word arrays ∆W r′ , ∆W r′+1 (r′ ∈ [0, Ns]), we can linearly extend the difference backward and forward.

We construct the two differential characteristics for the boomerang attack, where the top differential

characteristic is from round 0 to 8 and bottom differential difference is from 8 to 14. The differential

characteristics are constructed based on the following observation.

Observation 1 If we have ∆T r = ∆W r 6= φ and ∆W r+1 = φ, we can pass round r, r + 1 for free.

Proof. Since ∆T r = ∆W r 6= φ, we have ∆V r = φ after the first MA operation. Since ∆W r+1 = φ, no

differences will be injected until the MA operation after T r+2. ut

We denote the difference of the top by ∆tT r (r ∈ [0, 8] and that of the bottom by ∆bT r (r ∈ [8, 14]).

Similarly, the difference for the word arrays are denoted as ∆tW r (r ∈ [0, 8]) in the top characteristic and

∆bW r (r ∈ [8, 14]) in the bottom characteristic. The main procedures for our characteristic construction

can be summarized as follows:

Import Difference: We first import simple difference to message block ∆tW 3, ∆tW 4 (∆bW 10, ∆bW 11)

and the intermediate state ∆tT 3 (∆bT 10).

Linear Extension: We linearly extend the difference backward to round 0 (8) and forward to round 8

(14) to acquire the whole top (bottom) differential characteristic.

Construct the Top Differential Characteristic: Based on Observation 1, we import the same 1-bit

differences to both ∆tW 3 and ∆tT 3
0 , and set ∆tW 4 = φ. The differences are set as:

∆tW 3
0 = ∆tT 3

0 = (63)

1 Type II boomerang attacks on full-round LSH hash functions are no harder than constructing two free-start

collisions in Section 3.1.

Cryptanalysis of the LSH and SHA-V Hash Functions 9

and ∆tW 3
i = ∆tT 3

i = φ (r ∈ [1, 15]). According to Observation 1, we can pass round 3 and 4 with

probability 1. Furthermore, the selection of word array differences will keep the effect of message extension

constantly linear so that we do not need to consider the effect of carries in all message expansions (ME).

After determining ∆tW 3, ∆tW 4 and ∆tT 3, we linearly extend the difference backward to ∆tT 0 and

forward to ∆tT 8. We present the top differential characteristic for LSH-512 in Table 4 of Appendix A.

The same strategy can also be carried out on LSH-256 where the differences are set similarly as

∆tW 3
0 = ∆tT 3

0 = (31)

and ∆tW 3
i = ∆tT 3

i = φ (i ∈ [1, 15]). After linear extensions, we present the characteristic for LSH-256 in

Table 5 of Appendix A.

Construct the Bottom Differential Characteristic: The strategy of constructing the bottom dif-

ferential characteristic is similar to that of its top counterpart. We import 1-bit differences at W 10 and

T 10, and no difference at W 11. Following Observation 1, we assign that

∆bW 10
y = ∆bT 11

y = (63) (13)

and ∆bW 10
i = ∆bT 10

i = φ (i ∈ [0, 15]\{y}). The selection of position y in (13) should meet the following

criteria:

1. When linearly extend the difference from ∆bT 10(y) to ∆bT 8(y), make sure that

∆tT 8
i ∧∆bT 8

i (y) = 0x0, i ∈ [0, 15]. (14)

2. When linearly extend the difference from ∆bW 10(y) to ∆bW 7(y), make sure that

∆tW r
i ∧∆bW r

i (y) = 0x0, i ∈ [0, 15] (15)

where r = 7, 8, 9.

3. When linearly extend the difference from ∆bT 10(y) to ∆bT 14(y), there is no contradicting bit condi-

tions.

The restrictions (14) and (15) avoid the contradictions in the intersection part of the two differential

characteristics. The 3rd restriction is to filter some inconsistent characteristics. Similar to SHA-2, the

LSH round functions can cause many two-bit conditions so we use the method introduced by Mendel et

al. in [24] to detect contradictions. The available ys compose a set Y512 defined as

Y512 = {5, 8, 9, 10, 11, 12, 13}.

With the absence of feeding forward operation and linear FINn function of LSH, we can decide the

differences of the final chaining variable U14 and the hash array H of the whole LSH hash functions as

∆bU = (∆bU14
0 , · · · , ∆bU14

15) = (∆bT 14
0 ⊕∆bW 14

0 , · · · , ∆bT 14
15 ⊕∆bW 14

15), (16)

∆bH = (∆bU14
0 ⊕∆bU14

8 , · · · , ∆bU14
7 ⊕∆bU14

15). (17)

Since the operations U14 = MA(T 14,M14) and H = FINn(U14) are linear, we only need to consider the

the procedure from T 0 to T 14.

For LSH-256, we assign that

∆bW 10
y = ∆bT 11

y = (31)

and ∆bW 10
i = ∆bT 10

i = φ (i ∈ [0, 15]\{y}). The available y candidates are limited to the elements in a

set Y256 = {8, 14}.
We set y = 8 ∈ Y512

⋂
Y256 and deduce an available bottom differential characteristic for LSH-512 in

Table 6 and that for LSH-256 in Table 7 of Appendix A.

4.2 Finding the Boomerang Quartet Using Message Modification Technique

We give detailed description to the process of finding Type I boomerang quartets. Due to the similarities

between Type I and Type III boomerang, we only illustrates their differences at the end of this section.

10 Yonglin Hao, Hongbo Yu

According to previous analysis, we only have to consider the quartets (iCV, iM) (i ∈ [0, 3]) conforming

the top and bottom characteristics from T 0 to T 14. Therefore, the goal of our boomerang attack is to find

a quartet, denoted by (0T
0, 1T

0, 2T
0, 3T

0), and the corresponding message blocks (0W
r, 1W

r, 2W
r, 3W

r)

(r = 0, 1) that satisfy

0T
0 ⊕ 2T

0 = 1T
0 ⊕ 3T

0 = ∆tT 0 (18)

and, after 14 rounds, the corresponding quartet (0T
14, 1T

14, 2T
14, 3T

14) satisfies

0T
14 ⊕ 1T

14 = 2T
14 ⊕ 3T

14 = ∆bT 14. (19)

WA and WP are linear operations and do not generate any bit conditions. We only have to consider the

effect of MXj operations that connects the intermediate states U j and V j (j ∈ [0, 13]). Since our top

and bottom characteristics intersect at round 8, we can construct available 0U
8, 0V

7, 0V
6 so that 0T

8,

0W
7, 0W

8 are determined accordingly. Once 0T
8 is settled, we can deduce 1T

8, 2T
8 and 3T

8 since

0T
8 ⊕ 2T

8 = 1T
8 ⊕ 3T

8 = ∆tT 8 (20)

0T
8 ⊕ 1T

8 = 2T
8 ⊕ 3T

8 = ∆bT 8 (21)

1W
r, 2W

r and 3W
r (r = 7, 8) are decided since

0W
r ⊕ 2W

r = 1W
r ⊕ 3W

r = ∆tW r, (22)

0W
r ⊕ 1W

r = 2W
r ⊕ 3W

r = ∆bW r. (23)

The method of finding a Type I quartet is as follows:

Phase 1: Find an available starting point:

1. Construct an intermediate state, denoted by U8 by setting the values of their 16 words randomly.

2. Compute forward to V 8 through MX8. During the process, if one of bit conditions, which are

deduced from the top characteristics, is violated, we can fix it by modifying the words U8
j where

j ∈ λ8 = {1, 3, 5, 9, 11, 13}.
3. Construct an intermediate state, denoted by V 7 by setting the values of their 16 words randomly.

4. Compute backward to U7 through MX−17 and compensate the corresponding bit conditions of

the bottom characteristic by modifying V 7
j where j ∈ λ7 = {0, 1, 2, 4, 6, 8, 9, 10, 12, 14}.

5. Construct an intermediate state, denoted by V 6 by setting the values of their 16 words randomly.

6. Compute backward to U6 through MX−16 and compensate the corresponding bit conditions of

the bottom characteristic by modifying V 6
j where j ∈ λ6 = {0, 2, 6, 8, 10, 14}.

Phase 2: Find boomerang quartet:

7. With the knowledge of V 6 and U7, we deduce W 7 = V 7 ⊕WP (U6).

8. With the knowledge of V 7 and U8, we deduce W 8 = V 8 ⊕WP (U7).

9. After all conditions between round 7 and 8 are satisfied, we assign that 0T
8 ← V 8⊕W 8, 0W

r ←
W r (r = 7, 8). We also assign corresponding values to 1T

8, 2T
8, 3T

8 according to (20) (21) and

to 1W
r, 2W

r, 3W
r according to (22) (23).

10. Having acquired (0T
8, 1T

8, 2T
8, 3T

8) and (0W
r, 1W

r, 2W
r, 3W

r) for r = 7, 8, we compute back-

ward to (0T
0, 1T

0, 2T
0, 3T

0) and forward to (0T
14, 1T

14, 2T
14, 3T

14).

11. If (0T
0, 1T

0, 2T
0, 3T

0) satisfies (18) and (0T
14, 1T

14, 2T
14, 3T

14) satisfies (19), output the quartet

(0T
8
0 , 1T

8
0 , 2T

8
0 , 3T

8
0) and the corresponding (0W

r, 1W
r, 2W

r, 3W
r) for r = 0, 1. Otherwise, do the

following substeps:

(a) Substitute the words V 7
j (j ∈ [0, 15]\λ7) with new random values and recompute U7.

(b) Substitute V 6
j (j ∈ [0, 15]\λ6) and U8

i (i ∈ [0, 15]\λ8) with new random values.

(c) Go to Step 7.

After acquiring the above (iT
0, iW

0, iW
1), we can assign iCV ← iT

0, iM ← iW
0‖iW 1 and the pairs

(iCV, iM) (i ∈ [0, 3]) are boomerang quartets for the whole 14-round LSH hash functions. The hash

arrays iH of HF (iCV, iM) (i ∈ [0, 3]) satisfy the difference in (17).

Complexity analysis for Type I Boomerang. For LSH-512, from ∆tT 6 to ∆tT 8, there are totally

117 bit-conditions and 101 of them can be fixed using message modification technique. In the bottom

characteristic, 6 out of 7 conditions can be fixed in ∆bT 8 → ∆bT 9. Therefore, the Phase 1 will take about

Cryptanalysis of the LSH and SHA-V Hash Functions 11

216+1 = 217 queries to find an available starting point. Since there are 115 conditions in the remaining

top characteristic and 39 in the bottom one, the complexity of Phase 2 is 2(115+39)×2 = 2308. So the

overall complexity of the boomerang attack on LSH-512 is 217 + 2308 = 2308.

For LSH-256, 99 out of 117 conditions in the middle can be fixed with message modification technique so

the complexity for Phase 1 is 218. There are 82 conditions in the top characteristic and 39 in the bottom

one, so the complexity of Phase 2 is 2(82+39)×2 = 2242 which is also the overall complexity.

Type III Boomerang. The only difference between Type I and Type III boomerang attacks on LSH

occurs at step 11 where (18) and (19) are replaced respectively by

0T
0 ⊕ 2T

0 = 1T
0 ⊕ 3T

0

0T
14 ⊕ 1T

14 = 2T
14 ⊕ 3T

14.

According to [18], we evaluate the complexity of a Type III boomerang attack on 14-round LSH-512 hash

function as 217 + 3115+39 = 2244.1, only slightly lower than the generic bound 2256. As to LSH-256, the

complexity of the 14-round attack is 218 + 382+39 = 2191.8, exceeding the generic bound 2128. Therefore,

we can only start from T 1 of LSH-256 and acquire a 13-round Type III boomerang attack on LSH-256

with a complexity of 298.3.

Note: With a linear LSH FINn function, the Type III boomerang would still be effective even if the

feeding forward operations were adopted by LSH.

Practical Verifications. For LSH-512 and LSH-256, we find 11-round (from T 2 to T 13) boomerang

Type I quartets satisfying our characteristics and present them in Table 8 and Table 9.

5 The Weaknesses of the SHA-V Hash Functions

As can be seen from Section 2.2, the two SHA-1-like streams LCF and RCF are processing independent

512-bit message blocks. We can use the divide-and-conquer strategy to find preimages and construct

collisions.

5.1 Preimage Attacks on SHA-V

For a given (128 + 32k)-bit H (k ∈ [0, 6]), we can find a 2048-bit message M satisfying H = SHAV (M)

by taking the following steps:

Phase 1: Construct Lookup Tables:
1. For p ∈ [0, 280], select different 512-bit message blocks pLM

(0), compute the corresponding pLCV
(1) =

LCF (LCV
(0), pLM

(0)) and store the pairs (pLM
(0), pLCV

(1)) in a table LT sorted by p
LCV

(1).
2. For q ∈ [0, 280], select different 512-bit message blocks qLM

(0), compute the corresponding qRCV
(1) =

RCF (RCV
(0), qRM

(0)) and store the pairs (qRM
(0), qRCV

(1)) in a table RT sorted by q
RCV

(1).
Phase 2: Match in the Middle:

3. For the given H, construct two 5-word arrays

LV = (LV0, · · · , LV4) and RV = (RV0, · · · ,RV4)

satisfying H = FVk(LV,RV) (for k < 6, there are multiple solutions and we pick one of them).
4. Construct a random 512-bit message block LM

(1) and compute the 5-word array LC = LCF
−1(LV, LM

(1)).

5. Lookup in the table LT and check whether there is a pair (pLM
(0), pLCV

(1)) ∈ LT satisfying
p
LCV

(1) = LC. If no matching is found, go back to step 4.

6. Construct a random 512-bit message block RM
(1) and compute the 5-word array RC = RCF

−1(RV,RM
(1)).

7. Lookup in the table RT and check whether there is a pair (qRM
(0), qRCV

(1)) ∈ RT satisfying
q
RCV

(1) = RC. If no matching is found, go back to step 6.
Phase 3: Construct the Target M :

8. Assign a 2048-bit message block M ← p
LM

(0)‖qRM (0)‖LM (1)‖RM (1) and output M .

Complexity Analysis: In Phase 1, it takes 280 queries of LCF to construct the lookup table LT and

another 280 queries of RCF to construct the lookup table RT . Both LT and LT contains 280 pairs so the

time and memory complexity of Phase 1 are both O(280). In Phase 2, each matching requires about 280

queries of LCF
−1 (RCF

−1). So the time complexity of Phase 2 is also O(280). The memory complexity of

this phase is negligible. The complexity of Phase 3 is O(1). So the overall time complexity is dominated

by Phase 2’s O(280). The memory complexity is dominated by the size of LT and RT , which is also

O(280).

12 Yonglin Hao, Hongbo Yu

5.2 Collision Attacks on SHA-V

We first find a collision for LCF . Since messages processed by RCF are independent LCF , we can use

identical message blocks in RCF stream. For a given (128 + 32k)-bit H, without utilizing any specific

property of LCF , we can find two 1024-bit messages M and M ′ satisfying SHAV (M) = SHAV (M ′) by

taking the following steps:

Phase 1: Find a Collision for LCF .

1. For p ∈ [0, 280], select different 512-bit message blocks pLM , compute the corresponding p
LCV

(1) =

LCF (LCV
(0), pLM) and store the pairs (pLM, pLCV

(1)) in a table LT ordered by p
LCV

(1).

2. Construct a random 512-bit message block LM
′ and compute the 5-word array LC = LCF (LCV

(0), LM
′).

3. Lookup in the table LT and check whether there is a pair (pLM, pLCV
(1)) ∈ LT satisfying p

LCV
(1) =

LC. If no matching is found, go back to step 2.

Phase 2: Construct the Target M and M ′:

4. Construct a random 512-bit message block RM .

5. Assign two 1024-bit message blocks M ← p
LM‖RM and M ′ ← LM

′‖RM . Output M and M ′.

Complexity Analysis: Similarly, the time complexity is Phase 2’s O(280). The memory complexity is

also O(280) which is the size of LT . Obviously, the M and M ′ acquired above is a collision for all versions

of SHA-V. But the complexities O(280) have exceeded the generic bounds of SHA-V-128 and SHA-V-160.

Therefore, this collision attack can only work on SHA-V-(128 + 32k) for k ∈ [2, 6].

Improved Attacks: According to [7], LCF branch is identical to SHA-1. Therefore, all existing collision

attacks on SHA-1, such as [2,25,26,27,28], can be used to replace the redundant collision finding process

of Phase 1. For example, if we replace Phase 1 with the collision attack of [27], we can find a 1024-bit

LM = 0
LM‖1LM and LM

′ = 0
LM

′‖1LM ′ satisfying LCF (LCV
(0), LM) = LCF (LCV

(0), LM
′) with a time

complexity O(261) and a negligible memory complexity. Then, we generate two random 512-bit blocks
0
RM and 1

RM . The targeted M and M ′ are therefore assigned as

M ← 0
LM‖0RM‖1LM‖1RM

M ′ ← 0
LM

′‖0RM‖1LM ′‖1RM.

In this way, we can lower the time complexity to O(261) and the memory complexity becomes negligible.

This improved attack can then be applied to all versions of SHA-V.

6 Conclusion

The round function of LSH is extremely strong so that our boomerang attacks can only mount to about

50% of the total LSH rounds. But the absence of the feeding forward operations in the LSH compression

functions can cause serious insecurity. It enables the adversary to construct free start collisions and

pseudo-preimages on full LSH with negligible complexities. Based on our analysis, we claim: no matter

how well designed the round functions are, the omission of the feeding forward operation is irrational for

the wide-pipe MD structural LSH. Besides, according to our boomerang results, the linear finalization

phase of the LSH hash functions is also a latent danger. Therefore, we suggest that the designers should

consider better finalizations for both the compression functions and the hash functions of LSH.

As to SHA-V, the XOR combiner of two independent hash functions has proved to be weak in [8].

Processing independent message blocks makes SHA-V even weaker. Since SHA-1 has been proved insecure,

the secure basis of SHA-V does not exist anymore. Therefore, the applications of SHA-V should be avoided

in any circumstances.

References

1. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Advances in Cryptology–EUROCRYPT

2005. Springer (2005) 19–35

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Advances in Cryptology–CRYPTO 2005,

Springer (2005) 17–36

3. Kayser, R.F.: Announcing request for candidate algorithm nominations for a new cryptographic hash algo-

rithm (SHA-3) family. Federal Register 72(212) (2007) 62

Cryptanalysis of the LSH and SHA-V Hash Functions 13

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The keccak reference. Submission to NIST (Round 3) 13

(2011)

5. US Department of Commerce, N.: Guideline for implementing cryptography in the federal government. NIST

SP - 800-21 2nd ed. (1999)

6. Kim, D.C., Hong, D., Lee, J.K., Kim, W.H., Kwon, D.: Lsh: A new fast secure hash function family. In:

Information Security and Cryptology-ICISC 2014. Springer (2014) 286–313

7. HER, Y.S., SAKURAI, K.: Design and analysis of cryptographic hash function for the next generation. In:

International Workshop on Informations & Electrical Engineering. (2002)

8. Leurent, G., Wang, L.: The sum can be weaker than each part. In Oswald, E., Fischlin, M., eds.: Advances

in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Volume 9056 of Lecture

Notes in Computer Science., Springer (2015) 345–367

9. Joux, A.: Multicollisions in iterated hash functions. application to cascaded constructions. Advances in

Cryptology C CRYPTO 2004 (2004) 306–316

10. Wagner, D.: The boomerang attack. In: Fast Software Encryption, Springer (1999) 156–170

11. Biryukov, A., Nikolić, I., Roy, A.: Boomerang attacks on blake-32. In: Fast Software Encryption, Springer

(2011) 218–237

12. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced sha-256. IACR Cryptology ePrint

Archive 2011 (2011) 37

13. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-order differential collisions for reduced sha-256.

In: Advances in Cryptology–ASIACRYPT 2011. Springer (2011) 270–287

14. Mendel, F., Nad, T.: Boomerang distinguisher for the simd-512 compression function. In: Progress in

Cryptology–INDOCRYPT 2011. Springer (2011) 255–269

15. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distinguishers for full has-160

compression function. In: Advances in Information and Computer Security. Springer (2012) 156–169

16. Sasaki, Y., Wang, L.: Distinguishers beyond three rounds of the ripemd-128/-160 compression functions. In:

Applied Cryptography and Network Security, Springer (2012) 275–292

17. Leurent, G., Roy, A.: Boomerang attacks on hash function using auxiliary differentials. In: Topics in

Cryptology–CT-RSA 2012. Springer (2012) 215–230

18. Yu, H., Chen, J., Wang, X.: The boomerang attacks on the round-reduced skein-512. In: Selected Areas in

Cryptography, Springer (2013) 287–303

19. Kircanski, A., Shen, Y., Wang, G., Youssef, A.M.: Boomerang and slide-rotational analysis of the sm3 hash

function. In: Selected Areas in Cryptography, Springer (2013) 304–320

20. Bai, D., Yu, H., Wang, G., Wang, X.: Improved boomerang attacks on sm3. In: Information Security and

Privacy, Springer (2013) 251–266

21. Dongxia, B., Hongbo, Y., Gaoli, W., Xiaoyun, W.: Improved boomerang attacks on round-reduced sm3 and

keyed permutation of blake-256. IET Information Security 9(3) (2014) 167 – 178

22. Hao, Y.: The boomerang attacks on blake and blake2. In: Inscrypt. (2014) 286–310

23. Wagner, D.: A generalized birthday problem. In: Advances in cryptologyCRYPTO 2002. Springer (2002)

288–304

24. Mendel, F., Nad, T., Schläffer, M.: Finding sha-2 characteristics: Searching through a minefield of contradic-

tions. In: Advances in Cryptology–ASIACRYPT 2011. Springer (2011) 288–307

25. X Wang, A C Yao, F.Y.: Cryptanalysis on sha-1 hash function. In proceeding of The Cryptographic hash

workshop. National Institute of Standards and Technology (2005) 430–448

26. Cochran, M.: Notes on the wang et al. 263 sha-1 differential path. IACR (2008)

27. Vincent Rijmen, E.O.: Update on sha-1. Topics in Cryptology C CT-RSA 2005 (2005) 58–71

28. Stevens, M.: New collision attacks on sha-1 based on optimal joint local-collision analysis. Advances in

Cryptology C EUROCRYPT 2013 (2013) 245–261

A The Differential Characteristics for LSH-512 and LSH-256

We present the top and bottom characteristics in numerical form. The column named “Cond” indecates
the number of bit conditions in the corresponding round. The symbol “fxd” indicates the number of
conditions fixed by with message modifications. We only present the differences from T 0 to T 14. The
differences of the chaining variable U14 and the hash arrays H can be linearly deduced according to (16)
and (17).

Table 4: The Top Characteristic for LSH-512.

r ∆tT r & ∆tW r Cond r ∆tT r & ∆tW r Cond

∆tT 0
1 : 52, 47, 31, 28, 24, 8, 5

3
∆tT 3

0 : 63
0Continued on Next Page

14 Yonglin Hao, Hongbo Yu

Following Previous Page

∆tT 0
2 : 63, 60, 57, 55, 52, 37, 34, 9, 6 ∆tW 3

0 : 63

∆tT 0
4 : 63, 40

4
φ

0∆tT 0
5 : 44, 39, 37, 32, 31, 28, 24, 16, 9, 8, 5, 1 φ

∆tT 0
6 : 62, 58, 52, 49, 47, 45, 44, 40, 29, 26, 22, 1

5
φ

00 ∆tT 0
7 : 63, 40 95 ∆tW 5

2 : 63

∆tT 0
9 : 52, 47, 31, 28 ∆tT 6

8 : 9, 6 20

∆tT 0
10 : 60, 57, 55, 52, 37, 34, 32, 29 6 ∆tT 6

14 : 41 (17fxd)

∆tT 0
12 : 63 ∆tW 6

2 : 63

∆tT 0
13 : 44, 39, 37, 32, 31, 28, 24 ∆tT 7

0 : 59, 36, 0

∆tT 0
14 : 52, 49, 47, 45, 44, 40, 29, 26, 24, 22, 21, 17 ∆tT 7

6 : 35, 12

∆tT 0
15 : 63 ∆tT 7

8 : 22, 17 97

∆tW 0
2 : 63 7 ∆tT 7

9 : 32, 29, 27, 24, 4, 1 (84fxd)

∆tT 1
1 : 63 ∆tT 7

12 : 27, 24, 4, 1

∆tT 1
2 : 31, 28, 24 ∆tT 7

14 : 49

∆tT 1
3 : 63 ∆tW 7

1 : 63

∆tT 1
6 : 61, 57, 23, 20, 16, 0 ∆tW 7

2 : 63

1 ∆tT 1
7 : 63, 56 19 ∆tT 8

0 : 59, 56, 52, 45, 42, 22, 19

∆tT 1
10 : 31, 28 ∆tT 8

1 : 37, 31, 30, 27, 14, 8, 7, 4

∆tT 1
14 : 61, 23, 20, 0 ∆tT 8

4 : 45, 42, 38, 35, 22, 19, 15, 12

∆tT 1
15 : 63 ∆tT 8

6 : 62, 35, 28, 21

∆tW 1
1 : 63 8 ∆tT 8

8 : 9, 6 -

∆tW 1
3 : 63 ∆tT 8

9 : 46, 43, 32, 29, 27, 25, 24, 20, 10, 7, 5, 2

∆tT 2
3 : 63 ∆tT 8

10 : 42, 37, 36, 35, 32, 31, 30, 27, 14, 9, 8, 7, 6, 4

∆tT 2
6 : 63, 40 ∆tT 8

12 : 46, 32, 27, 25, 20, 10, 5

2 ∆tT 2
14 : 63 1 ∆tT 8

14 : 41

∆tW 2
3 : 63 ∆tT 8

15 : 58, 55, 53, 51, 50, 48, 46, 43, 30, 27, 25, 23, 20

∆tW 8
2 : 63

Table 5: The Top Characteristic for LSH-256.

r ∆tT r & ∆tW r Cond r ∆tT r & ∆tW r Cond

∆tT 0
1 : 30, 26, 23, 22, 18, 15, 1

3
∆tT 3

0 : 31 0

∆tT 0
2 : 31, 28, 24, 22, 21, 13, 9, 7, 6 ∆tW 3

0 : 31

∆tT 0
4 : 31, 2

4
φ 0

∆tT 0
5 : 30, 14, 9, 1 φ

∆tT 0
6 : 30, 29, 21, 17, 16, 15, 14, 12, 10, 9, 4, 0

5
φ 3

0 ∆tT 0
7 : 31, 2 59 ∆tW 5

2 : 31

∆tT 0
9 : 30, 23, 22, 15 ∆tT 6

8 : 21, 4 20

∆tT 0
10 : 25, 24, 22, 21, 10, 9, 7, 6 6 ∆tT 6

14 : 5 (17fxd)

∆tT 0
12 : 31 ∆tW 6

2 : 31

∆tT 0
13 : 30, 14, 9 ∆tT 7

0 : 6, 3, 2

∆tT 0
14 : 30, 29, 18, 17, 15, 14, 13, 12, 10, 9, 1, 0 ∆tT 7

6 : 14, 11

∆tT 0
15 : 31 ∆tT 7

8 : 29, 28

∆tW 0
2 : 31 7 ∆tT 7

9 : 22, 19, 18, 5, 2, 1 91

∆tT 1
1 : 31 ∆tT 7

12 : 22, 19, 5, 2 (76fxd)

∆tT 1
2 : 30, 15, 10 ∆tT 7

14 : 13

∆tT 1
3 : 31 ∆tW 7

1 : 31

1 ∆tT 1
6 : 26, 23, 21, 18, 9, 6 ∆tW 7

2 : 31

∆tT 1
7 : 31, 26 19 ∆tT 8

0 : 30, 19, 18, 16, 4, 3, 1

∆tT 1
10 : 30, 15 ∆tT 8

1 : 22, 19, 12, 10, 9, 4

∆tT 1
14 : 26, 23, 9, 6 ∆tT 8

4 : 31, 28, 19, 16, 14, 11, 4, 1

∆tT 1
15 : 31 ∆tT 8

6 : 12, 11, 9, 6

∆tW 1
1 : 31 8 ∆tT 8

8 : 21, 4 -

∆tW 1
3 : 31 ∆tT 8

9 : 28, 25, 24, 19, 18, 14, 13, 11, 8, 7, 2, 1

∆tT 2
3 : 31 ∆tT 8

10 : 22, 21, 19, 18, 12, 10, 9, 8, 6, 3

∆tT 2
6 : 31, 2 ∆tT 8

12 : 28, 25, 24, 19, 18, 14, 13

2 ∆tT 2
14 : 31 1 ∆tT 8

14 : 5

∆tW 2
3 : 31 ∆tT 8

15 : 31, 30, 29, 27, 26, 20, 17, 16, 15, 12, 11, 3, 0

∆tW 8
2 : 31

Table 6: The Bottom Characteristic for LSH-512.

r ∆bT r & ∆bW r Cond r ∆bT r & ∆bW r Cond

∆bT 8
1 : 63, 40

12
φ 4

∆bT 8
3 : 63, 40 7 ∆bW 12

10 : 63

8 ∆bT 8
5 : 63, 56, 40, 33 (6fxd) ∆bT 13

8 : 58, 22, 17

∆bT 8
13 : 63, 56 13 ∆bT 13

14 : 49, 26 34

∆bW 8
9 : 63 ∆bW 13

10 : 63

∆bW 8
11 : 63 ∆bT 14

0 : 59, 56, 52, 36, 33, 29

∆bT 9
2 : 63, 56 ∆bT 14

6 : 35, 28, 12, 5

9 ∆bT 9
10 : 63 1 ∆bT 14

8 : 9, 6, 2

∆bT 9
11 : 63 14 ∆bT 14

9 : 61, 32, 29, 27, 25, 24, 20, 4, 1 -

Continued on Next Page

Cryptanalysis of the LSH and SHA-V Hash Functions 15

Following Previous Page

∆bW 9
11 : 63 ∆bT 14

12 : 61, 32, 27, 25, 20, 4

10
∆bT 10

8 : 63 0 ∆bT 14
14 : 41, 34

∆bW 10
8 : 63 ∆bW 14

9 : 63

11
φ 0 ∆bW 14

10 : 63

φ

Table 7: The Bottom Characteristic for LSH-256.

r ∆bT r & ∆bW r Cond r ∆bT r & ∆bW r Cond

∆bT 8
1 : 31, 2

12
φ 4

∆bT 8
3 : 31, 2 ∆bW 12

10 : 31

8 ∆bT 8
5 : 31, 29, 26, 2 7 ∆bT 13

8 : 29, 28, 0

∆bT 8
13 : 31, 26 (6fxd) 13 ∆bT 13

14 : 16, 13 34

∆bW 8
9 : 31 ∆bW 13

10 : 31

∆bW 8
11 : 31 ∆bT 14

0 : 30, 21, 18, 6, 3, 1

∆bT 9
2 : 31, 26 ∆bT 14

6 : 14, 11, 9, 6

9 ∆bT 9
10 : 31 1 ∆bT 14

8 : 21, 16, 4

∆bT 9
11 : 31 14 ∆bT 14

9 : 22, 19, 18, 17, 14, 13, 5, 2, 1 -

∆bW 9
11 : 31 ∆bT 14

12 : 22, 19, 18, 17, 14, 13

10
∆bT 10

8 : 31 0 ∆bT 14
14 : 5, 0

∆bW 10
8 : 31 ∆bW 14

9 : 31

11
φ 0 ∆bW 14

10 : 31

φ

B Practical 11-Round Quartets for LSH-512 and LSH-256

The quartets presented are from T 2 to T 13.

Table 8: Boomerang Quartet for 11=Round LSH-512

∆tT2
0 ∆tT2

3 : 63, ∆tT2
6 : 63, 40, ∆tT2

14 : 63

0xd99b277f3ebb6338 0x4e831f7f7dd6e2e 0x68224d2e0db459ba 0xa3020a6b44a6f1f7

0T
2 0x17181dc3be2384da 0x27da6e1e043a7031 0x14513685c29b312a 0xc295923f1de60c5b

0xf8141d272b3e8f5 0x930f419f7ff7bbd 0xb02dd0fbf989245b 0xc5d0d89608e93d58

0xca33cbad8791f290 0x5fede51cae7a8ee1 0xaccd361f47708329 0x7a91aefeaa56c946

0x7a35ee6527fdb787 0x9d4dd237dc6cceb 0xda4adae0aff0253f 0x2c45e768aad6f43c

1T
2 0x742f2725d5a5bba 0xe6eb4cc792da2a7 0x78d6c675d1dd6523 0x67c6afec8d1eacdd

0xa90665ccb1e96458 0x9c7d530191f1beb2 0x1aea0bbc520dcb12 0x6556dc2f9a6de783

0xa472425aa3a35e50 0x979b79774b50c074 0xc81034a6befaa93d 0xf2fc1e528767be1d

0xd99b277f3ebb6338 0x4e831f7f7dd6e2e 0x68224d2e0db459ba 0x23020a6b44a6f1f7

2T
2 0x17181dc3be2384da 0x27da6e1e043a7031 0x94513785c29b312a 0xc295923f1de60c5b

0xf8141d272b3e8f5 0x930f419f7ff7bbd 0xb02dd0fbf989245b 0xc5d0d89608e93d58

0xca33cbad8791f290 0x5fede51cae7a8ee1 0x2ccd361f47708329 0x7a91aefeaa56c946

0x7a35ee6527fdb787 0x9d4dd237dc6cceb 0xda4adae0aff0253f 0xac45e768aad6f43c

3T
2 0x742f2725d5a5bba 0xe6eb4cc792da2a7 0xf8d6c775d1dd6523 0x67c6afec8d1eacdd

0xa90665ccb1e96458 0x9c7d530191f1beb2 0x1aea0bbc520dcb12 0x6556dc2f9a6de783

0xa472425aa3a35e50 0x979b79774b50c074 0x481034a6befaa93d 0xf2fc1e528767be1d

∆tW2 ∆tW2
3 : 63

0x4be167a06d060782 0x1d74b2e3d560a003 0x58f4e907b0cca556 0x20d1ad09dec4916a

0W
2 0xf215b8df5de4048e 0x2701139e697027a7 0x74aefa306a1d7f79 0x47655056238a3b8b

0xe5746e16789c2f00 0xf1767533875eeb4c 0x9d196098439f65b6 0xee3b3cbf47ae385

0xb55b39daf96ab84e 0xbd418c7a94aa8cfa 0x360f65449b0fdc5d 0xc32e94b958453ceb

0x4be167a06d060782 0x1d74b2e3d560a003 0x58f4e907b0cca556 0x20d1ad09dec4916a

1W
2 0xf215b8df5de4048e 0x2701139e697027a7 0x74aefa306a1d7f79 0x47655056238a3b8b

0xe5746e16789c2f00 0x71767533875eeb4c 0x1d196098439f65b6 0xee3b3cbf47ae385

0xb55b39daf96ab84e 0xbd418c7a94aa8cfa 0x360f65449b0fdc5d 0xc32e94b958453ceb

0x4be167a06d060782 0x1d74b2e3d560a003 0x58f4e907b0cca556 0xa0d1ad09dec4916a

2W
2 0xf215b8df5de4048e 0x2701139e697027a7 0x74aefa306a1d7f79 0x47655056238a3b8b

0xe5746e16789c2f00 0xf1767533875eeb4c 0x9d196098439f65b6 0xee3b3cbf47ae385

0xb55b39daf96ab84e 0xbd418c7a94aa8cfa 0x360f65449b0fdc5d 0xc32e94b958453ceb

0x4be167a06d060782 0x1d74b2e3d560a003 0x58f4e907b0cca556 0xa0d1ad09dec4916a

3W
2 0xf215b8df5de4048e 0x2701139e697027a7 0x74aefa306a1d7f79 0x47655056238a3b8b

0xe5746e16789c2f00 0x71767533875eeb4c 0x1d196098439f65b6 0xee3b3cbf47ae385

0xb55b39daf96ab84e 0xbd418c7a94aa8cfa 0x360f65449b0fdc5d 0xc32e94b958453ceb

∆tW3 ∆tW3
0 : 63

0x18893895e3264d 0xfe2e0404b56aabcd 0x8c48493a1820a213 0x61caf3da1af1b044

0W
3 0xca92045efaaac69e 0xa62b54423297527b 0x4f40ead3b36aece0 0xdb3894d352f891b6

0xcc5750c3ab3a88fb 0x71275d3c93d832c0 0x6e3e000a676075ef 0xbb8cd78aa0c0c3a9

0xa87984d2cfb45bd0 0x25ad76fee66d83e9 0x9c6fe3bf68bb2036 0x34ba020c52133250

0x18893895e3264d 0xfe2e0404b56aabcd 0x8c48493a1820a213 0x61caf3da1af1b044

1W
3 0xca92045efaaac69e 0xa62b54423297527b 0x4f40ead3b36aece0 0xdb3894d352f891b6

0xcc5750c3ab3a88fb 0x71275d3c93d832c0 0xee3e000a676075ef 0xbb8cd78aa0c0c3a9

0xa87984d2cfb45bd0 0x25ad76fee66d83e9 0x9c6fe3bf68bb2036 0x34ba020c52133250

0x8018893895e3264d 0xfe2e0404b56aabcd 0x8c48493a1820a213 0x61caf3da1af1b044

2W
3 0xca92045efaaac69e 0xa62b54423297527b 0x4f40ead3b36aece0 0xdb3894d352f891b6

0xcc5750c3ab3a88fb 0x71275d3c93d832c0 0x6e3e000a676075ef 0xbb8cd78aa0c0c3a9

0xa87984d2cfb45bd0 0x25ad76fee66d83e9 0x9c6fe3bf68bb2036 0x34ba020c52133250

0x8018893895e3264d 0xfe2e0404b56aabcd 0x8c48493a1820a213 0x61caf3da1af1b044

3W
3 0xca92045efaaac69e 0xa62b54423297527b 0x4f40ead3b36aece0 0xdb3894d352f891b6

0xcc5750c3ab3a88fb 0x71275d3c93d832c0 0xee3e000a676075ef 0xbb8cd78aa0c0c3a9

0xa87984d2cfb45bd0 0x25ad76fee66d83e9 0x9c6fe3bf68bb2036 0x34ba020c52133250

Continued on Next Page

16 Yonglin Hao, Hongbo Yu

Following Previous Page

∆bT13
0 ∆bT13

8 : 58, 22, 17, ∆bT13
14 : 49, 26

0x8a8fc4f3e0d5021b 0xc41340867c8ab220 0xd64f491b8729ef89 0xdba3643b2ebb99ef

0T
13 0x514272156518d30a 0x360e71addf8ec86d 0xd1f1ce691e344ca4 0x39d23c603792f313

0x8b794a1b03d0088d 0x2db9a168b66f6feb 0xfb5dbeaad406f8dd

0xf91ca3887a27807 0x9b809c23cdb40f0c 0xac8097ef4bcad1dd 0xb6f82205a0f3d599

0x8a8fc4f3e0d5021b 0xc41340867c8ab220 0xd64f491b8729ef89 0xdba3643b2ebb99ef

1T
13 0x514272156518d30a 0x360e71addf8ec86d 0xd1f1ce691e344ca4 0x39d23c603792f313

0x759b7f1f98c3d518 0x8b794a1b03d0088d 0x2db9a168b66f6feb 0xfb5dbeaad406f8dd

0xf91ca3887a27807 0x9b809c23cdb40f0c 0xac8297ef4fcad1dd 0xb6f82205a0f3d599

0x486712399b031c93 0xe027fa1bd293822a 0x1253b1bd048fe1d0 0xa253edd40903ce19

2T
13 0xe9a141f8480e8994 0xb999eaba1b37c60 0xe70491ad915354be 0x90dea0b0534af7f5

0xa57ddaacac67c7b7 0x1e8f8ce41c5eef82 0xa430a0c76dfd5874 0x98b1e35d40c4a4d6

0x2bfc387b8a249b82 0xe682a22ee1762278 0x879bc860854c7978 0xcfe51005cc37bcc3

0x486712399b031c93 0xe027fa1bd293822a 0x1253b1bd048fe1d0 0xa253edd40903ce19

3T
13 0xe9a141f8480e8994 0xb999eaba1b37c60 0xe70491ad915354be 0x90dea0b0534af7f5

0xa17ddaacac25c7b7 0x1e8f8ce41c5eef82 0xa430a0c76dfd5874 0x98b1e35d40c4a4d6

0x2bfc387b8a249b82 0xe682a22ee1762278 0x8799c860814c7978 0xcfe51005cc37bcc3

Table 9: Boomerang Quartet for 11=Round LSH-256

∆tT2
0 ∆tT2

3 : 31, ∆tT2
6 : 31, 2, ∆tT2

14 : 31

0T
2

0xeab33b0c 0xc51e16f9 0x4be9f458 0x8081c224 0xcab7e3cf 0xc0ab11fc 0xb223bd49 0x51cacb7f

0xf98405a1 0xaca1e3f9 0xff55a176 0xef293d6d 0x8fd140ee 0xbd932550 0x145a46f9 0xf0af205c

1T
2

0x87bca105 0x7612c4e6 0x59dc17e4 0x56fa0106 0xb709ef49 0xd450a842 0x29c16b78 0xe27b8747

0xb062a004 0x8badd182 0x68e709a4 0xcf00c0c6 0x6ccabc61 0xf3f11347 0x550d4bc8 0xe179b345

2T
2

0xeab33b0c 0xc51e16f9 0x4be9f458 0x81c224 0xcab7e3cf 0xc0ab11fc 0x3223bd4d 0x51cacb7f

0xf98405a1 0xaca1e3f9 0xff55a176 0xef293d6d 0x8fd140ee 0xbd932550 0x945a46f9 0xf0af205c

3T
2

0x87bca105 0x7612c4e6 0x59dc17e4 0xd6fa0106 0xb709ef49 0xd450a842 0xa9c16b7c 0xe27b8747

0xb062a004 0x8badd182 0x68e709a4 0xcf00c0c6 0x6ccabc61 0xf3f11347 0xd50d4bc8 0xe179b345

∆tW2 ∆tW2
3 : 31

0W
2

0xf58e43b7 0x8dd33165 0xe12e5fcd 0x74a7381d 0xa3555aad 0x5bf81153 0x4529b45 0x1400151f

0x12662d67 0x53c8591 0x3e79ea10 0xc307ca7d 0x55df6002 0x67c75a52 0x1efde7c2 0x9bc17c2d

1W
2

0xf58e43b7 0x8dd33165 0xe12e5fcd 0x74a7381d 0xa3555aad 0x5bf81153 0x4529b45 0x1400151f

0x12662d67 0x853c8591 0xbe79ea10 0xc307ca7d 0x55df6002 0x67c75a52 0x1efde7c2 0x9bc17c2d

2W
2

0xf58e43b7 0x8dd33165 0xe12e5fcd 0xf4a7381d 0xa3555aad 0x5bf81153 0x4529b45 0x1400151f

0x12662d67 0x53c8591 0x3e79ea10 0xc307ca7d 0x55df6002 0x67c75a52 0x1efde7c2 0x9bc17c2d

3W
2

0xf58e43b7 0x8dd33165 0xe12e5fcd 0xf4a7381d 0xa3555aad 0x5bf81153 0x4529b45 0x1400151f

0x12662d67 0x853c8591 0xbe79ea10 0xc307ca7d 0x55df6002 0x67c75a52 0x1efde7c2 0x9bc17c2d

∆tW3 ∆tW3
0 : 31

0W
3

0xe2a658ff 0x7b058658 0xd2036a64 0x68d4c801 0x65cc0b24 0xff01e0eb 0xcbb99fa5 0x8ed9f2a6

0xedf4a15 0x53641452 0x7e47e019 0x343fc3f6 0x43315557 0x1c316198 0xa8661a6b 0x63cd700a

1W
3

0xe2a658ff 0x7b058658 0xd2036a64 0x68d4c801 0x65cc0b24 0xff01e0eb 0xcbb99fa5 0x8ed9f2a6

0xedf4a15 0x53641452 0xfe47e019 0x343fc3f6 0x43315557 0x1c316198 0xa8661a6b 0x63cd700a

2W
3

0x62a658ff 0x7b058658 0xd2036a64 0x68d4c801 0x65cc0b24 0xff01e0eb 0xcbb99fa5 0x8ed9f2a6

0xedf4a15 0x53641452 0x7e47e019 0x343fc3f6 0x43315557 0x1c316198 0xa8661a6b 0x63cd700a

3W
3

0x62a658ff 0x7b058658 0xd2036a64 0x68d4c801 0x65cc0b24 0xff01e0eb 0xcbb99fa5 0x8ed9f2a6

0xedf4a15 0x53641452 0xfe47e019 0x343fc3f6 0x43315557 0x1c316198 0xa8661a6b 0x63cd700a

∆bT13
0 ∆bT13

8 : 29, 28, 0, ∆bT13
14 : 16, 13

0T
13

0xdecda23d 0x74edce2b 0x1bfeea03 0xdb18a03 0xcaf3ea3d 0xb7ba87ca 0xf8753736 0xa78c911e

0x41db0b33 0xdf99ff5d 0x70685013 0xfd71be34 0x42e77e95 0x46ce6177 0xb7d5d759 0x9dad9ea8

1T
13

0xdecda23d 0x74edce2b 0x1bfeea03 0xdb18a03 0xcaf3ea3d 0xb7ba87ca 0xf8753736 0xa78c911e

0x71db0b32 0xdf99ff5d 0x70685013 0xfd71be34 0x42e77e95 0x46ce6177 0xb7d4f759 0x9dad9ea8

2T
13

0x8e2c6754 0x23b7fca0 0x2cb78e4b 0xb469e132 0x7177152b 0x885463ec 0x1fae931 0xe0381d3c

0x413063a4 0xe366cc8c 0xa6971d8f 0x14ae711 0xd020556d 0xafb55a0e 0x6d8ad9e2 0xa1f9eb7b

3T
13

0x8e2c6754 0x23b7fca0 0x2cb78e4b 0xb469e132 0x7177152b 0x885463ec 0x1fae931 0xe0381d3c

0x713063a5 0xe366cc8c 0xa6971d8f 0x14ae711 0xd020556d 0xafb55a0e 0x6d8bf9e2 0xa1f9eb7b

	Cryptanalysis of the LSH and SHA-V Hash Functions
	Introduction
	Preliminary
	Brief Introduction of the LSH Hash Functions
	Brief Introduction on SHA-V
	Boomerang Attacks on Hash Functions

	The Structural Weakness of the LSH Hash Function
	Free-Start Collision Attack on Full LSH
	Pseudo-Preimage Attack on Full LSH

	Boomerang Attacks on Round-Reduced LSH Hash Functions
	Construction of Differential Characteristics
	Finding the Boomerang Quartet Using Message Modification Technique

	The Weaknesses of the SHA-V Hash Functions
	Preimage Attacks on SHA-V
	Collision Attacks on SHA-V

	Conclusion
	The Differential Characteristics for LSH-512 and LSH-256
	Practical 11-Round Quartets for LSH-512 and LSH-256

