
1

Low Space Complexity CRT-based Bit-Parallel

GF (2n) Polynomial Basis Multipliers for

Irreducible Trinomials

Jiajun Zhang and Haining Fan

Abstract

By selecting the largest possible value of k ∈ (n/2, 2n/3], we further reduce the AND and XOR gate

complexities of the CRT-based hybrid parallel GF (2n) polynomial basis multipliers for the irreducible

trinomial f = un + uk + 1 over GF (2): they are always less than those of the current fastest parallel

multipliers – quadratic multipliers, i.e., n2 AND gates and n2− 1 XOR gates. Our experimental results

show that among the 539 values of n ∈ [5, 999] such that f is irreducible for some k ∈ [2, n− 2], there

are 317 values of n such that k ∈ (n/2, 2n/3]. For these irreducible trinomials, the AND and XOR

gate complexities of the CRT-based hybrid multipliers are reduced by 15.3% on average. Especially,

for the 124 values of such n, the two kinds of multipliers have the same time complexity, but the space

complexities are reduced by 15.5% on average. As a comparison, the previous CRT-based multipliers

consider the case k ∈ [2, n/2], and the improvement rate is only 8.4% on average.

I. INTRODUCTION

Low complexity multipliers are key modules of GF (2n)-based cryptographic chips. Their

theoretical space and time complexities, namely, the total number of 2-input AND/XOR gates (the

GF (2) multiplication/addition) and their corresponding gate delays (denoted by “TA” and “TX”),

depend on various factors, for example, the method to represent field elements: polynomial,

normal and dual bases; the underlying multiplication algorithms: quadratic and subquadratic

algorithms etc. Pure quadratic and subquadratic multipliers are of great theoretical importance.

They have the lowest time and space complexities respectively, but their disadvantages are

Jiajun Zhang and Haining Fan are with the School of Software and TNLIST, Tsinghua University, Beijing, China.

E-mail: zjjzhaoyun@126.com and fhn@tsinghua.edu.cn

2

also obvious: the largest space and time complexities respectively. On the other hand, hybrid

approaches in [1], [2] and [3] provide a trade-off between the time and space complexities. These

multipliers first perform a few subquadratic iterations to reduce the whole space complexities,

and then one quadratic step on small input operands to achieve lower time complexity. Therefore,

this hybrid approach is often adopted in practical applications.

Recently, two different hybrid multipliers are presented in [4] and [5] (or its preprint in [6]).

The former uses the matrix representation, and adopts the “1-quadratic-and-then-subquadratic”

computational mode. This method reduces the total space complexity for current ASIC imple-

mentations. The latter uses the polynomial representation, and follows the “1-subquadratic-and-

then-quadratic” computational mode first proposed in [7]. Thanks to the property of the ceiling

function “⌈·⌉”, the time complexity of this multiplier matches the fastest bit-parallel multiplier

– the quadratic multiplier – when un + uk + 1 is irreducible for some k ∈ [(n − 1)/3, n/2].

Its highlight is the AND and XOR space complexities: the following bounds of the fastest

bit-parallel multipliers were broken for the first time: # AND gates: n2,

XOR gates: n2 − 1.

In this work, we report a further reduction of the space complexities obtained in [5] for some

irreducible trinomials un + uk +1 where k ∈ (n/2, 2n/3]. Before explaining our motivation, we

recall the multiplier in [5] first.

Let f(u) = un + uk + 1 (n > 2) be an irreducible trinomial of degree n over GF (2). All

elements of the finite field GF (2n) := GF (2)[u]/(f(u)) can be represented using a polynomial

basis {xi|0 ≤ i ≤ n−1}, where x is a root of f . Given two field elements a(x) =
∑n−1

i=0 aix
i and

b(x) =
∑n−1

i=0 bix
i, where ai, bi ∈ GF (2), the classical polynomial basis multiplication algorithm

computes the GF (2n) product c(x) =
∑n−1

i=0 cix
i of a(x) and b(x) using the following two steps.

For the sake of simplicity, we omit “(x)” in polynomial “a(x)” and denote a(x) by a.

(i) Conventional polynomial multiplication:

s = a · b =
2n−2∑
t=0

stx
t,

where

st =
∑
i+j=t

0≤i,j<n

aibj =

t∑

i=0

aibt−i, 0 ≤ t ≤ n− 1,

n−1∑
i=t+1−n

aibt−i, n ≤ t ≤ 2n− 2.
(1)

3

(ii) Reduction modf = xn + xk + 1:

c =
∑n−1

i=0
cix

i = s mod f. (2)

The product c obtained in the second step is the remainder of s divided by f , i.e.,

s = f · q + c.

In order to apply the Chinese Remainder Theorem (CRT) in the second step, multipliers in

[5] adopt the following identity:

s = f · q + c = (f + 1)q + (c+ q). (3)

We note that addition and subtraction are the same in fields of characteristic 2.

This identity converts the seemingly unbreakable step (ii) “modulo the degree-n irreducible

trinomial f” into the following two problems:

(A). Compute the quotient q of s divided by f + 1;

(B). Compute the remainder (c+ q) of s divided by f + 1.

Then the product c of elements a and b can be constructed by c = q + (c+ q).

Because the degree-n polynomial f + 1 = xn + xk is clearly reducible, the CRT can be used

to divide problem (B), i.e., a · b mod (xn+xk), into the following two smaller subproblems [5]:

(B.1). a · b mod xk;

(B.2). a · b mod (xn−k + 1).

Thus the product c of elements a and b is now divided into three problems: (A), (B.1) and

(B.2). In order to understand the advantage of this method, we make a rough estimate of the

AND (or XOR) gate complexities of these three problems. We consider only the quadratic part

and ignore the linear part. From the analysis in [5], these three complexities are CA = n2/2,

C1 = k2/2 and C2 = (n − k)2 respectively. Fig 1 (a) and Fig 1 (b) illustrate them for the two

special cases k = n/3 and k = n/2 respectively. For the case k = n/3, the summation of

CA + C1 + C2 is n2, which is approximately equal to the AND (or XOR) gate complexity of

the fastest quadratic multiplier. In fact, multipliers in [5] are not better than the best quadratic

multipliers for the case 0 < k ≤ n/3. However, for the case k = n/2, this summation is only

7n2/8, which is the best case discussed in [5].

Now we explain our motivation. The CRT divides the size-n problem (B) into two smaller

subproblems (B.1) and (B.2) of sizes k and n − k respectively. According to the balancing

4

Fig. 1. Approximate AND (or XOR) gate Complexity

principle of the algorithm design, it is better to select k, if possible, such that the difference

between sizes of the two subproblems (B.1) and (B.2), i.e., |k− (n− k)| = |2k−n|, is as small

as possible. Multipliers in [5] just follow this principle, and select the largest possible k in the

range of [1, n/2] as the best candidate.

In fact, the time complexities of other quadratic multipliers are often functions of k too. For

a given value of n, it is, therefore, better to select an optimal value of k if it is possible. The

above choice of the value of k, i.e., the largest possible k in the range of [1, n/2], is also the

best candidate in some quadratic multipliers. For example, the XOR gate delays of the shifted

polynomial basis multiplier in [8] and the polynomial basis Montgomery multiplier in [9] are

as follows: ⌈log2(n+ k)⌉ , 2k > n,

⌈log2(2n− k − 1)⌉ , 2k < n.

Because a polynomial is irreducible iff its reciprocal polynomial is irreducible, the optimal value

of k is just the one that |k − n/2| = |2k − n|/2 is minimal for these two multipliers.

As for the CRT-based multiplier, a more careful observation shows that the function

CA + C1 + C2 = n2/2 + k2/2 + (n− k)2,

namely, the approximate AND (or XOR) gate complexity, reaches its minimal value when k =

2n/3, i.e., Fig 1 (c), not k = n/2. Therefore, we consider multipliers based on irreducible

trinomial f = un + uk + 1 for the case n/2 < k ≤ 2n/3 in this work. Our experimental results

show that among the 539 values of n such that 4 < n < 1000 and un + uk + 1 is irreducible

over GF (2) for some k > 1, the proposed multipliers beat those in [5] for 122 values of n: they

have the same time complexity, but the space complexities are reduced by 8.4% on average.

5

In the following, we first derive explicit formulae of c = ab for the case n/2 < k ≤ 2n/3 and

then compare their complexities.

II. THE EXPRESSION OF c = ab ∈ GF (2n) FOR n/2 < k < 2n/3

In this section, we consider the case n/2 < k < 2n/3. The special case k = 2n/3 will be

discussed later because its expression is different slightly. We first derive the expressions of the

quotient and the remainder of s = a · b divided by (f + 1) = xn + xk, and then present the

expression of c = ab in GF (2n).

A. Compute the quotient q of s = a · b divided by (f + 1) = xn + xk

Since degree(q) ≤ n − 2 in (3), we can define q as q :=
∑n−2

i=0 qix
i. Replacing f in (3) by

f = xn + xk + 1, we have

s = (f + 1)q + (c+ q) = q · xn + q · xk + (c+ q).

It is clear that

qi = si+n, for k − 1 ≤ i ≤ n− 2. (4)

Moreover, we have si+n = qi + qi+n−k for 2k − 1 − n ≤ i ≤ k − 2. The terms qi+n−k for

2k − 1− n ≤ i ≤ k − 2 are the same as the terms qj for k − 1 ≤ j ≤ n− 2, which also appear

in (4). Thus we have

qi = si+n + si+2n−k, where 2k − 1− n ≤ i ≤ k − 2. (5)

Moreover, we have si+n = qi + qi+n−k for 0 ≤ i ≤ 2k − 2 − n. The terms qi+n−k for

0 ≤ i ≤ 2k − 2− n are the same as the terms qj for n − k ≤ j ≤ k − 2, which appear in (5).

Thus we have

qi = si+n + si+2n−k + si+3n−2k, where 0 ≤ i ≤ 2k − 2− n. (6)

Using (4) , (5) and (6), we get the following expression of q:

q =
n−2∑
i=0

qix
i

=
2k−2−n∑

i=0

(si+n + si+2n−k + si+3n−2k)x
i +

k−2∑
i=2k−1−n

(si+n + si+2n−k)x
i +

n−2∑
i=k−1

si+nx
i

=
n−2∑
i=0

si+nx
i +

k−2∑
i=0

si+2n−kx
i +

2k−2−n∑
i=0

si+3n−2kx
i. (7)

6

B. Compute the remainder (c+ q) = ⟨a · b⟩f+1

Because k < 2n/3, i.e., 3k < 2n, we have the Bezout identity

xk · x2n−3k + (xn−k + 1) · (xn−k + 1) = 1.

So we know that x2n−3k is the multiplicative inverse of xk mod (xn−k + 1) and (xn−k + 1) is

the multiplicative inverse of (xn−k +1) mod xk. Therefore, the remainder (c+ q) = ⟨a · b⟩xn+xk

can be computed using the CRT as follows:

⟨a · b⟩xn+xk =
⟨
⟨a · b⟩xk · (xn−k + 1) · (xn−k + 1) + ⟨a · b⟩xn−k+1 · x

k · x2n−3k
⟩
xn+xk . (8)

Thus, we need to compute the terms ⟨a · b⟩xk and ⟨a · b⟩xn−k+1 in (8) first. The expression of

⟨a · b⟩xk can be derived from the expression of a · b given in (1). It is clear that

⟨a · b⟩xk =
k−1∑
i=0

six
i. (9)

In order to compute the term ⟨a · b⟩xn−k+1 =
⟨
⟨a⟩xn−k+1 · ⟨b⟩xn−k+1

⟩
xn−k+1

in (8), we first

compute ⟨a⟩xn−k+1. Since it is the input of the operation
⟨
⟨a⟩xn−k+1 · ⟨b⟩xn−k+1

⟩
xn−k+1

, we define

7

it as
∑n−k−1

i=0 gix
i. Because n/2 < k < 2n/3, i.e., 2k − n− 1 < n− k − 1, we have

n−k−1∑
i=0

gix
i := ⟨a⟩xn−k+1

=

⟨
n−k−1∑
i=0

aix
i +

n−1∑
i=n−k

aix
i

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

⟨
k−1∑
j=0

aj+n−kx
j+n−k

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

⟨
k−1∑
i=0

ai+n−kx
i

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

⟨
n−k−1∑
i=0

ai+n−kx
i +

k−1∑
i=n−k

ai+n−kx
i

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

n−k−1∑
i=0

ai+n−kx
i +

⟨
2k−n−1∑

j=0

aj+2n−2kx
j+n−k

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

n−k−1∑
i=0

ai+n−kx
i +

2k−n−1∑
i=0

ai+2n−2kx
i

=
2k−n−1∑

i=0

(ai + ai+n−k + ai+2n−2k)x
i +

n−k−1∑
i=2k−n

(ai + ai+n−k)x
i. (10)

Similarly, we can obtain the expression of
∑n−k−1

i=0 hix
i := ⟨b⟩xn−k+1.

Now the term ⟨a · b⟩xn−k+1 in (8) can be calculated using the schoolbook polynomial multi-

plication algorithm in (1).

⟨a · b⟩xn−k+1 =
⟨
⟨a⟩xn−k+1 · ⟨b⟩xn−k+1

⟩
xn−k+1

=

⟨(
n−k−1∑
i=0

gix
i

)(
n−k−1∑
i=0

hix
i

)⟩
xn−k+1

=

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

n−k−2∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi. (11)

Based on the above equations (8), (9) and (11), we can obtain the following expression of the

8

remainder (c+ q) = ⟨a · b⟩f+1.

(c+ q) = ⟨a · b⟩xn+xk

=
⟨
⟨a · b⟩xk · (xn−k + 1) · (xn−k + 1) + ⟨a · b⟩xn−k+1 · x

k · x2n−3k
⟩
xn+xk

=

⟨(
k−1∑
i=0

six
i

)
· (x2n−2k + 1)+[(

n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

n−k−2∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi

]
x2n−2k

⟩
xn+xk

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
x2n−2k−1

+

⟨
k−1∑
i=0

six
i+2n−2k +

n−k−2∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+2n−2k

⟩
xn+xk

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
x2n−2k−1 +

⟨
2k−n−1∑

i=0

six
i+2n−2k +

k−1∑
i=2k−n

six
i+2n−2k

⟩
xn+xk

+

⟨
2k−n−1∑

i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+2n−2k+

n−k−2∑
i=2k−n

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+2n−2k

⟩
xn+xk

9

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
x2n−2k−1 +

2k−n−1∑
i=0

six
i+2n−2k +

2k−n−1∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+2n−2k

+

⟨
k−1∑

i=2k−n

six
i+2n−2k

⟩
xn+xk

+

⟨
n−k−2∑
i=2k−n

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+2n−2k

⟩
xn+xk

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
x2n−2k−1 +

n−1∑
i=2n−2k

si−2n+2kx
i +

n−1∑
i=2n−2k

(
i−2n+2k∑

j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j

)
xi

+
k−1∑

i=2k−n

six
i+n−k +

n−k−2∑
i=2k−n

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+(n−k)

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
x2n−2k−1 +

n−1∑
i=2n−2k

si−2n+2kx
i +

n−1∑
i=2n−2k

(
i−2n+2k∑

j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j

)
xi +

n−1∑
i=k

si−(n−k)x
i +

2n−2k−2∑
i=k

i−(n−k)∑
j=0

gjhi−(n−k)−j +
n−k−1∑

j=i−(n−k)+1

gjhi−j

xi

=
k−1∑
i=0

six
i +

2n−2k−2∑
i=k

i−(n−k)∑
j=0

gjhi−(n−k)−j +
n−k−1∑

j=i−(n−k)+1

gjhi−j + si−(n−k)

 xi +

(
n−k−1∑
j=0

gjhn−k−1−j + sn−k−1

)
x2n−2k−1 +

n−1∑
i=2n−2k

(
si−2n+2k + si−(n−k) +

i−2n+2k∑
j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j

)
xi. (12)

C. The expression of c = ab in GF (2n)

Based on the expressions of q, i.e., (7), and c+ q, i.e., (12), we can obtain the expression of

c = q + (c+ q) in GF (2n).

10

c =
2k−2−n∑

i=0

(si+n + si+2n−k + si+3n−2k)x
i +

k−2∑
i=2k−1−n

(si+n + si+2n−k)x
i +

n−2∑
i=k−1

si+nx
i +

k−1∑
i=0

six
i +

2n−2k−2∑
i=k

i−(n−k)∑
j=0

gjhi−(n−k)−j +
n−k−1∑

j=i−(n−k)+1

gjhi−j + si−(n−k)

 xi +

(
n−k−1∑
j=0

gjhn−k−1−j + sn−k−1

)
x2n−2k−1 +

n−1∑
i=2n−2k

(
si−2n+2k + si−(n−k) +

i−2n+2k∑
j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j

)
xi

=
2k−2−n∑

i=0

{((si)) + si+n + (si+2n−k] + [si+3n−2k)}xi +

{[[s2k−1−n]] + [[[sn+k−1]]] + s2k−1}x2k−1−n +
k−2∑

i=2k−n

{[si + [si+2n−k)] + (si+n]}xi + {[[[sn+k−1]]] + (sk−1)}xk−1

+
2n−2k−2∑

i=k

i−(n−k)∑

j=0

gjhi−(n−k)−j +
n−k−1∑

j=i−(n−k)+1

gjhi−j + [si−(n−k) + si+n]

xi

+

{
n−k−1∑
j=0

gjhn−k−1−j + [sn−k−1 + s3n−2k−1]

}
x2n−2k−1

+
n−2∑

i=2n−2k

{
[si+n + si−(n−k)] + ((si−2n+2k)) +

i−2n+2k∑
j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j

}
xi

+

{
[[s2k−n−1]] + (sk−1) +

2k−n−1∑
j=0

gjh2k−n−1−j +
n−k−1∑
j=2k−n

gjhk−1−j

}
xn−1. (13)

Here, we use different combinations of “(”, “)”, “[” and “]” to represent the terms that can

be reused.

III. TWO TYPES OF THE CRT-BASED MULTIPLIERS

In this section, we analyze the complexities of the Type-A and Type-B multipliers presented in

[5]. Type-A multipliers achieve the minimal number of the XOR gates, but their time complexities

are not optimal for some irreducible trinomials. Type-B multipliers overcome this disadvantage

11

at the cost of some more XOR gates. For a detailed description of these two types of multipliers,

please refer to [5].

A. Complexities of Type-A multipliers

We need to determine the complexities of all coefficients ci’s (0 ≤ i ≤ n − 1) in equation

(13). This equation includes only terms si, hi and gi.

The expressions of si (0 ≤ i ≤ 2n − 2) are given in (1). For 0 ≤ i ≤ n − 1, the term

si =
∑i

j=0 ajbi−j is the summation of i+ 1 product terms ajbi−j . For n ≤ i ≤ 2n− 2, the term

si =
∑n−1

j=i+1−n ajbi−j is the summation of 2n− 1− i product terms ajbi−j .

The expressions of gi (0 ≤ i ≤ n− k − 1) are given in (10). The expression of hi is similar

to that of gi and they have the same complexity. Clearly, the complexities to compute all gi and

hi for 0 ≤ i ≤ n− k − 1 are 2((2k − n)2 + (2n− 3k)) = 2k XOR gates and 2 TX gate delays

due to the parallelism.

TABLE I

THE NUMBER OF THE PRODUCT TERMS IN THE COEFFICIENT ci OF xi .

xi The number of the product terms

0 ≤ i ≤ 2k − 2− n (i+ 1) + (2n− 1− (n+ i)) + (2n− 1− (i+ 2n− k)) + (2n− 1− (i+ 3n− 2k)) = 3k − 2− 2i

i = 2k − 1− n (2k − 1− n+ 1) + (2n− 1− (n+ k − 1)) + (2n− 1− (n+ 2k − 1− n)) = 2n− k

2k − n ≤ i ≤ n− k − 1 [(i+ 1) + (2n− 1− (i+ 2n− k))] + (2n− 1− (n+ i)) = n+ k − 1− i

n− k ≤ i ≤ k − 2 [(i+ 1) + (2n− 1− (i+ 2n− k))] + (2n− 1− (n+ i)) = n+ k − 1− i

i = k − 1 k + (2n− 1− (n+ k − 1)) = n

k ≤ i ≤ 2n− 2k − 2 [(2n− 1− (i+ n)) + (i− n+ k + 1))] + (n− k) = n

i = 2n− 2k − 1 [(n− k + 1) + (2n− 1− (3n− 2k − 1))] + (n− k) = n

2n− 2k ≤ i ≤ n− 2 (n− k) + [(2n− 1− (n+ i)) + (i− n+ k + 1)] + (i− 2n+ 2k + 1) = 2k + 1− n+ i

i = n− 1 (n− k) + k + (2k − 1− n+ 1) = 2k

For the simplicity of description, we also call gihj in (13) a product term. Therefore, the

number of the AND gates used in the proposed multipliers is equal to the of the product terms

excluding the reusable terms. Table I lists the number of the product terms in each coefficient

of xi. The numbers of the reusable product terms are overlined and underlined in the table.

12

Thus, the number of the AND product terms that can be saved is:

ϕAND = (n− k)k + k +
2k−2−n∑

i=0

(i+ 1) +

2k−2−n∑
i=0

(2k − n− 1− i) +
2k−2−n∑

i=0

(k − 1− i)

= 3k2 − 2nk − k + n/2 + n2/2.

Therefore, the total number of the AND gates used in the Type-A multiplier is

∆ = (2n− 3k + 1)n+
2k−2−n∑

i=0

(3k − 2− 2i) +

k−2∑
i=2k−1−n

(n+ k − 1− i) +
n−2∑

i=2n−2k

(2k + 1 + i− n) + 2k

−3k2 − 2nk − k + n/2 + n2/2

= (3n2 + 3k2 − 4kn− n+ k)/2

= n2 +
(n− k)(n− 1− 3k)

2
, (14)

which coincides with the value of δ obtained in [5].

The number of the XOR gates that can be saved in the Type-A multiplier is:

ϕXOR A = (n− k − 1)(k − 1) + (k − 1) + (k − 2) +
2k−2−n∑

i=0

(i) +

2k−2−n∑
i=0

(2k − n− 2− i) +
2k−2−n∑

i=0

(k − 2− i)

= 3k2 − 2nk − 6k + 5n/2 + n2/2 + 1.

Therefore, the total number of the XOR gates is the summation of 2k (computing gi and hi)

and the number of “+” in equation (13) excluding the reusable terms:

2k + [(∆ + ϕAND)− n]− ϕXOR A = ∆+ 7k − 3n− 1.

We now derive the time complexity of the type-A multiplier using Table I, which is the

maximum AND and XOR gate delays of the coefficient ci for 0 ≤ i ≤ n− 1.

For 0 ≤ i ≤ 2k − n− 2, the maximum gate delay is from the coefficient

c0 = s0 + sn + s2n−k + s3n−2k,

13

which includes 1 + (n− 1) + [k − 1] + [2k − 1− n] = 3k − 2 product terms aibj . Because the

terms s2n−k and s3n−2k, which are the summations of [k − 1] and [2k − 1− n] product terms

aibj respectively, will be reused, and k − 1 is lager than 2k − 1 − n, we compute s2n−k first.

In order to obtain the explicit gate delay formula of c0, we assume that 2v−1 < k − 1 ≤ 2v

for some positive integer v. These k − 1 product terms can be XORed using a single binary

XOR subtree of height v. Therefore, the total gate delay to compute the subtree of s2n−k is

1TA + vTX . During the period to compute s2n−k, the [2k − 1− n] product terms in s3n−2k can

be XORed simultaneously.

The left (n − 1) + 1 + 1 = n + 1 product terms aibj can then be processed as follows. Let

n+ 1 = y · 2v + z by the division algorithm, where 0 ≤ z < 2v. We split these (n+ 1) product

terms into
⌈
n+1
2v

⌉
groups, where the last group may have z product terms if z > 0 and the other

groups have 2v product terms each. During the period to compute s2n−k, i.e., 1TA + vTX , the

product terms in these
⌈
n+1
2v

⌉
groups can be XORed in parallel using

⌈
n+1
2v

⌉
binary XOR subtrees

of the same height v. Finally, these
⌈
n+1
2v

⌉
summations and the result of s2n−k are XORed using

a binary XOR tree at the cost of
⌈
log2(

⌈
n+1
2v

⌉
+ 1)

⌉
XOR gate delays. Therefore, the total XOR

gate delay to compute the coefficient c0 is

v +

⌈
log2(

⌈
n+ 1

2v

⌉
+ 1)

⌉
= ⌈log2(n+ 1 + 2v)⌉ , (15)

where 2v−1 < k − 1 ≤ 2v, by the following lemma 1 [5].

Lemma 1: Let v and i be positive integers. If i ≥ 2v then v +
⌈
log2

⌈
i
2v

⌉⌉
= ⌈log2 i⌉.

For i = 2k − n− 1, the coefficient

c2k−n−1 = s2k−n−1 + sn+k−1 + s2k−1

includes [2k − n] + [n− k] + [2n− 2k] = 2n− k product terms aibj . Because the terms s2k−n−1

and sn+k−1, which are the summation of [2k − n] and [n− k] product terms aibj respectively,

will be reused, and n − k is lager than 2k − n, we compute the sn+k−1 first. We assume that

2v−1 < n − k ≤ 2v for some positive integer v. So these n − k product terms can be XORed

using a single binary XOR subtree of height v. Therefore, the total gate delay to compute the

subtree of sn+k−1 is 1TA + vTX . Besides, during the period to compute sn+k−1, the [2k − n]

product terms in s2k−n−1 can be XORed simultaneously. The left 2n − 2k + 1 product terms

aibj can then be processed as follows. Let 2n− 2k + 1 = y · 2v + z by the division algorithm,

where 0 ≤ z < 2v. We split these 2n− 2k + 1 product terms into
⌈
2n−2k+1

2v

⌉
groups, where the

14

last group may have z product terms if z > 0 and the other groups have 2v product terms each.

During the period to compute sn+k−1, i.e., 1TA + vTX , the product terms in these
⌈
2n−2k+1

2v

⌉
groups can be XORed in parallel using

⌈
2n−2k+1

2v

⌉
binary XOR subtrees of the same height v.

Finally, these
⌈
2n−2k+1

2v

⌉
summations and the result of sn+k−1 are XORed using a binary XOR

tree at the cost of
⌈
log2(

⌈
2n−2k+1

2v

⌉
+ 1)

⌉
XOR gate delays. Therefore, the total XOR gate delay

to compute the coefficient c2k−n−1 is

v +

⌈
log2(

⌈
2n− 2k + 1

2v

⌉
+ 1)

⌉
= ⌈log2(2n− 2k + 1 + 2v)⌉ , (16)

where 2v−1 < n− k ≤ 2v, by lemma 1.

For 2k − n ≤ i ≤ k − 2, the maximum gate delay is from the coefficient

c2k−n = [s2k−n + sn+k] + s2k

which includes [(2k − n+ 1) + (n− k − 1)]+ [2n− 2k− 1] = [k] + [2n− 2k− 1] = 2n− k− 1

product terms aibj . Because the terms [s2k−n + sn+k] and s2k, which are the summation of [k]

and 2n− 2k − 1 product terms aibj respectively, will be reused, and 2n− 2k − 1 is larger than

[k] , we compute the terms of s2k first. We assume that 2v−1 < 2n − 2k − 1 ≤ 2v for some

positive integer v. So these 2n−2k−1 product terms can be XORed using a single binary XOR

subtree of height v. Therefore, the total gate delay to compute the subtree of s2k is 1TA + vTX .

Besides, during the period to compute s2k, the [k] product terms in [s2k−n+sn+k] can be XORed

simultaneously. Therefore, the total XOR gate delay to compute the coefficient c2k−n is

v + 1 =
⌈
log2(2

v+1)
⌉
≤ ⌈log2(4n− 4k − 2 + 2v)⌉ (17)

by lemma 1 and 2v−1 < 2n− 2k − 1 ≤ 2v.

For ck−1, the coefficient

ck−1 = sn+k−1 + sk−1

which includes [n− k] + [k] = n product terms aibj . We can get the delay of ck−1 using the

same way we compute the ci of 2k − n ≤ i ≤ k − 2. Therefore, the total XOR gate delay to

compute the coefficient ck−1 is

v + 1 =
⌈
log2(2

v+1)
⌉
≤ ⌈log2(2k + 2v)⌉ (18)

by lemma 1 and 2v−1 < k ≤ 2v.

15

For k ≤ i ≤ 2n− 2k − 2, the coefficient is

ci =

i−(n−k)∑
j=0

gjhi−(n−k)−j +
n−k−1∑

j=i−(n−k)+1

gjhi−j + [si−(n−k) + si+n].

Each coefficient ci includes a reusable term [si−(n−k) + si+n] and n − k product terms gihj .

The reusable term, which is also part of the terms in ci for 2k − n ≤ i ≤ k − 2, includes

(k− n+ 1+ i) + (n− 1− i) = k product terms aibj . Therefore, these coefficients ci’s have the

same distribution pattern of the product terms aibj and gihj , and their gate delays are equal. In

order to compute ci, the terms gi and hi should be generated first according to equation (10),

and then they are ANDed in the schoolbook multiplication (11). The product terms gihj are just

the intermediate result of this multiplication operation, and they can be generated at the cost of

(1TA + 2TX) gate delays. Then these coefficients ci’s can be computed similar to the way we

computed c0. The only difference is that all product terms in c0 are of the form aibj , but the

terms gi and hi here should be generated first using 2TX delay. Therefore, the size of the groups

should be halved twice, and the total XOR gate delay to compute these coefficients is

v +

⌈
log2(

⌈
n− k

2v−2

⌉
+ 1)

⌉
= ⌈log2(4n− 4k + 2v)⌉ , (19)

where 2v−1 < k ≤ 2v.

The gate delay of c2n−2k−1 is the same as that of the above case k ≤ i ≤ 2n− 2k − 2.

We now count the gate delay of the coefficient ci for 2n − 2k ≤ i ≤ n − 2. The maximum

gate delay is from the coefficient

cn−2 = [s2n−2 + sk−2] + [s2k−n−2] +
2k−n−2∑

j=0

gjh2k−n−2−j +
n−k−1∑

j=2k−n−1

gjhn−2−j

which includes a reusable term [s2n−2 + sk−2], a reusable term [s2k−n−2] and n − k product

terms gihj . In order to compute ci, the terms gi and hi should be generated first at the cost

of (1TA + 2TX) gate delays according to equation(10). Because the terms [s2n−2 + sk−2] and

[s2k−n−2], which are the summation of [k] and [2k − n− 1] product terms aibj respectively, will

be reused, and [k] is larger than [2k − n− 1], we compute the terms [s2n−2 + sk−2] first. Then

coefficient cn−2 can be computed similar to the way we computed ci for k ≤ i ≤ 2n− 2k − 2.

The total XOR gate delay to compute cn−2 is

v +

⌈
log2(

⌈
n− k + 1

2v−2

⌉
+ 1)

⌉
= ⌈log2(4n− 4k + 4 + 2v)⌉ , (20)

where 2v−1 < k ≤ 2v.

16

The gate delay of the coefficient cn−1 is as same as that of the coefficient cn−2.

Because the values of v are different in (15), (16), (17), (18), (19) and (20), we compare all

gate delays of ci, and find that the maximum delay is from (17) and (20). Therefore, the time

complexity of the Type-A multiplier is

1TA +
⌈
log2(max(4n− 4k + 4 + 2v, 4n− 4k − 2 + 2t))

⌉
TX ,

where 2t−1 < 2n− 2k − 1 ≤ 2t and 2v−1 < k ≤ 2v.

B. Complexities of Type-B multipliers

The method to compute the coefficient c0 presented before (15) is not optimal for some values

of n and k. The Type-B multiplier is designed to overcome this disadvantage at the cost of some

more XOR gates. In order to generalize this idea, we define w(k) as the Hamming weight of

the integer k. We also define

p(k) =
k∑

i=0

w(k).

We first consider the coefficient ck−1 and cn−1 which include the reusable term sk−1. They each

include k product terms aibj , and we arrange them in the way discussed in [5]. Thus we have

w(k) subtrees: the j-th nonzero bit in the binary expansion of k corresponds to the subtree of

height j. After constructing the binary XOR tree of ck−1, we obtain the summation of leaf nodes

in each subtree. These w(k) subtree summations can then be XORed into the binary XOR tree

of cn−1 at the cost of w(k) XOR gates. So the number of XOR gates that can be saved in the

reusable term sk−1 is k − w(k), while this value in the Type-A multiplier is k − 1.

Therefore, the number of the AND gates used in this type of multiplier is equal to that of the

Type-A multiplier, but the number of the XOR gates that can be saved is different. This number

17

is

ϕXOR B = k − w(k) + (n− k − 1)(k − w(k)) +

(n− k − w(n− k)) + (2k − n− w(2k − n)) +
2k−1−n∑

i=1

(i− w(i)) +
2k−2−n∑

0

(k − 1− i− w(k − 1− i)) +

2k−2−n∑
0

(2k − 1− n− i− w(2k − 1− n− i))

= 3k2 − 2nk − k + n/2 + n2/2− w(k)(n− k)− w(2k − n)− w(n− k)

−(p(k − 1)− p(n− k))− 2p(2k − 1− n).

Thus, the total number of the XOR gates of the Type-B multiplier is

2k +∆+ (3k2 − 2nk − k + n/2 + n2/2)− n− ϕXOR B

= ∆+ 2k − n+

w(k)(n− k) + w(2k − n) + w(n− k) + 2p(2k − 1− n) + p(k − 1)− p(n− k).

The time complexity of the Type-B multiplier can be obtained similar to the way we processed

ci in the Type-A multiplier before.

For 0 ≤ i ≤ 2k − 2 − n, the maximum gate delay is from the coefficient c0, which is

1TA+ ⌈log2(3k − 2)⌉TX . For cn−1, the maximum XOR gate delay is 1TA+ ⌈log2(3n− k)⌉TX .

The gate delays of the other coefficients are not greater than those of cn−1 and c0. Because

3n− k > 3k − 2 when n/2 < k < 2n/3,

the time complexity of the Type-B multiplier is equal to 1TA + ⌈log2(3n− k)⌉TX .

IV. TYPE-A AND TYPE-B MULTIPLIERS FOR k = 2n/3

In this case, the expression of ⟨a⟩xn−k+1 is

n−k−1∑
i=0

gix
i := ⟨a⟩xn−k+1

=
n−k−1∑
i=0

aix
i +

n−k−1∑
i=0

ai+n−kx
i +

2k−n−1∑
i=0

ai+2n−2kx
i

=
2k−n−1∑

i=0

(ai + ai+n−k + ai+2n−2k)x
i.

18

The expression of c+ q is

c+ q =
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−1 +

n−1∑
i=2n−2k

si−2n+2kx
i +

n−1∑
i=k

si−(n−k)x
i +

n−2∑
i=2n−2k

(
i−2n+2k∑

j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j

)
xi

=
k−1∑
i=0

six
i +

n−2∑
i=k

(
i−2n+2k∑

j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j + si−2n+2k + si−(n−k)

)
xi +

(
n−k−1∑
j=0

gjhn−k−1−j + s2k−n−1 + sk−1

)
xn−1.

So we can get the result

c = c+ (c+ q)

=
k−1∑
i=0

six
i +

n−2∑
i=2n−2k

(
i−2n+2k∑

j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j + si−2n+2k + si−(n−k)

)
xi +

(
n−k−1∑
j=0

gjhn−k−1−j + s2k−n−1 + sk−1

)
xn−1 +

2k−2−n∑
i=0

(si+n + si+2n−k + si+3n−2k)x
i +

k−2∑
i=2k−1−n

(si+n + si+2n−k)x
i +

n−2∑
i=k−1

si+nx
i

=
2k−2−n∑

i=0

{(si) + si+n + (si+2n−k] + [si+3n−2k)}xi +

{[[s2k−1−n]] + (((sn+k−1))) + s2k−1}x2k−1−n +
k−2∑

i=2k−n

{[si + [si+2n−k)] + (si+n]}xi + {((sk−1)) + (((sn+k−1)))}xk−1 +

n−2∑
i=k

{
i−2n+2k∑

j=0

gjhi−2n+2k−j +
n−k−1∑

j=i−2n+2k+1

gjhi−n+k−j + [si+n + si−(n−k)] + (si−2n+2k)

}
xi +

{
[[s2k−n−1]] + ((sk−1)) +

n−k−1∑
j=0

gjhn−k−1−j

}
xn−1.

19

A. Type-A and Type-B multipliers

The two types of multipliers are similar to those presented in the previous section.

Table II lists the number of the product terms in each coefficient ci of xi. The number of the

AND gates in the Type-A and Type-B multipliers are all equal to the number of the product

terms excluding the reusable terms. In this case, the number of AND gates that can be saved is

equal to that of the case 2/n < k < 2n/3.

ϕAND = 3k2 − 2nk − k + n/2 + n2/2 = n2/2− n/6.

Therefore, the total number of the AND gates is

∆ = n+ 2k +
2k−2−n∑

i=0

(3k − 2− 2i) +

k−2∑
i=2k−1−n

(n+ k − 1− i) +
n−2∑
i=k

(2k + 1 + i− n)− ϕAND

= 4nk + n/2− k − 3k2 − n2/2

= (5n2 − n)/6,

which coincides with the value of ∆ in (14).

The total number of the XOR gates in the Type-A multiplier is the summation of

2(2(2k − n)) = 2k (computing gi and hi) and the number of “+” in equation (II) excluding the

reusable terms. The number of the XOR gates that can be saved in the Type-A multiplier is

equal to that of the case 2/n < k < 2n/3:

ϕXOR A = 3k2 − 2nk − 6k + 5n/2 + n2/2 + 1 = n2/2− 3n/2 + 1.

So the total number of the XOR gates of the Type-A multiplier is

2k + [(∆ + ϕAND)− n]− ϕXOR A = ∆+ 7k − 3n− 1 = (5n2 + 9n)/6− 1.

Similarly, the number of the XOR gates that can be saved in the Type-B multiplier is also the

same as that of the case 2/n < k < 2n/3:

ϕXOR B = 3k2 − 2nk − k + n/2 + n2/2− w(k)(n− k)− w(2k − n)− w(n− k)

−(p(k − 1)− p(n− k))− 2p(2k − 1− n)

= n2/2− n/6− w(k)(n− k)− w(2k − n)− w(n− k)

−(p(k − 1)− p(n− k))− 2p(2k − 1− n). (21)

20

So the total number of the XOR gates of the Type-B multiplier is:

2k +∆+ ϕAND − n− ϕXOR B

= (5n2 + n)/6 +

w(k)(n− k) + w(2k − n) + w(n− k) + 2p(2k − 1− n) +

p(k − 1)− p(n− k). (22)

TABLE II

THE NUMBER OF THE PRODUCT TERMS IN THE COEFFICIENT ci OF xi WHILE k = 2n/3.

xi The number of the product terms

0 ≤ i ≤ 2k − 2− n (i+ 1) + (2n− 1− (n+ i)) + (2n− 1− (i+ 2n− k)) + (2n− 1− (i+ 3n− 2k)) = 3k − 2− 2i

i = 2k − 1− n (2k − 1− n+ 1) + (2n− 1− (n+ k − 1)) + (2n− 1− (n+ 2k − 1− n)) = 2n− k

2k − n ≤ i ≤ k − 2 [(i+ 1) + (2n− 1− (i+ 2n− k))] + (2n− 1− (n+ i)) = n+ k − 1− i

i = k − 1 k + (2n− 1− (n+ k − 1)) = n

k ≤ i ≤ n− 2 (n− k) + [(2n− 1− (n+ i)) + (i− n+ k + 1)] + (i− 2n+ 2k + 1) = 2k + 1− n+ i

i = n− 1 (n− k) + k + (2k − 1− n+ 1) = 2k

Now we discuss the gate delay of the case k = 2n/3.

For 0 ≤ i ≤ 2k − n− 2, the maximum gate delay is from the coefficient

c0 = s0 + sn + s2n−k + s3n−2k,

which includes 1 + (n − 1) + [k − 1] + [2k − 1− n] = 3k − 2 product terms aibj . We can get

the explicit gate delay in the Type-A multiplier using the way we discussed above, and it is

v +

⌈
log2(

⌈
n+ 1

2v

⌉
+ 1)

⌉
= ⌈log2(3k/2 + 1 + 2v)⌉

by lemma 1 and 2v−1 < k − 1 ≤ 2v.

As for the Type-B multiplier, the gate delay is 1TA + ⌈log2(3k − 2)⌉TX .

For i = 2k − n− 1, the coefficient

c2k−n−1 = s2k−n−1 + sn+k−1 + s2k−1

includes [2k − n] + [n− k] + [2n − 2k] = 2n − k = 2k product terms aibj . For the Type-A

multiplier, the gate delay is

v +

⌈
log2(

⌈
2n− 2k + 1

2v

⌉
+ 1)

⌉
= ⌈log2(k + 1 + 2v)⌉

21

by lemma 1 and 2v−1 < n − k ≤ 2v. For the Type-B multiplier, the gate delay is 1TA +

⌈log2(2k)⌉TX .

For ck−1, the coefficient

ck−1 = sn+k−1 + sk−1

includes [n− k] + [k] = n = 3k/2 product terms aibj . For the Type-A multiplier, the total XOR

gate delay to compute the coefficient ck−1 is

v + ⌈log2(1 + 1)⌉ =
⌈
log2(2

v+1)
⌉
≤ ⌈log2(2k + 2v)⌉

by lemma 1 and 2v−1 < k ≤ 2v. For the Type-B multiplier, the total XOR gate delay is

1TA + ⌈log2(3k/2)⌉TX .

For k ≤ i ≤ n− 2 , the maximum gate delay is from the coefficient

cn−2 = [s2n−2 + sk−2] + [s2k−n−2] +
2k−n−2∑

j=0

gjh2k−n−2−j +
n−k−1∑

j=2k−n−1

gjhn−2−j.

It includes a reusable term [s2n−2 + sk−2], a reusable term [s2k−n−2] and n − k product terms

gihj . For the Type-A multiplier, the total XOR gate delay is

v +

⌈
log2(

⌈
n− k + 1

2v−2

⌉
+ 1)

⌉
= ⌈log2(2k + 4 + 2v)⌉ ≤ ⌈log2(4k + 4)⌉

by lemma 1 and 2v−1 < k ≤ 2v. For the Type-B multiplier, the total gate delay is 1TA +⌈
2 + log2(

⌈
3k−n−2

4

⌉
+ (n− k))

⌉
TX = 1TA + ⌈log2(7k/2− 2)⌉ TX .

For cn−1, the gate delay of Type-A multiplier is as same as that of the coefficient cn−2. For

the Type-B multiplier, the total XOR gate delay is 1TA + ⌈log2(7k/2)⌉TX .

In summary, the max gate delays of Type-A and Type-B multipliers are 1TA+⌈log2(2k + 4 + 2v)TX⌉

and 1TA + ⌈log2(7k/2)⌉TX respectively for the case k = 2n/3.

A simple calculation show that the above expressions of space and time complexities for the

case k = 2n/3 are all coincides with those for the case k ∈ (n/2, 2n/3) obtained in the previous

section. Therefore, we combine them together and make a comparison in the next section.

V. COMPARISONS

We list the complexities of the proposed multipliers and other trinomial-based parallel mul-

tipliers in Table III. Because their AND gate delays are all 1TA, we ignore them and list only

XOR gate delays in the last column.

22

TABLE III

COMPLEXITIES OF f(u) = un + uk + 1-BASED PARALLEL MULTIPLIERS

Multipliers # AND Gate # XOR Gate XOR Gate Delay

Quadratic, 2k > n [8] [9] n2 n2 − 1 ⌈log2(n+ k)⌉

Quadratic, 2k < n [8] [9] n2 n2 − 1 ⌈log2(2n− k − 1)⌉

Karatsuba hybrid n even [7] 3n2

4
3n2

4
+ 2.5n+ k − 4 ⌈log2(8n− 8)⌉

Karatsuba hybrid n odd [7] 3n2+2n−1
4

3n2

4
+ 4n+ k − 5.75 ⌈log2(8n− 8)⌉

PB Type-A, k ∈ (1, n/2) [5] ∆ ∆+ 3k − n ⌈log2(max(3n− 3k − 1, 2n− 2k + 2v))⌉

PB Type-B, k ∈ (1, n/2) [5] ∆ ∆+ 2k − n+ k · w(k) ⌈log2(3n− 3k − 1)⌉

PB Type-A, k ∈ (n/2, 2n/3] ∆ ∆+ 7k − 3n− 1
⌈
log2(max(4n− 4k + 4 + 2v, 4n− 4k − 2 + 2t))

⌉
PB Type-B, k ∈ (n/2, 2n/3] ∆ ∆+ 2k − n+ σ ⌈log2(3n− k)⌉

where ∆ = n2 + (n− k)(n− 1− 3k)/2 , 2v−1 < k ≤ 2v , 2t−1 < 2n− 2k − 1 ≤ 2t and

σ = w(k)(n− k) + w(n− k) + w(2k − n) + 2p(2k − 1− n) + p(k − 1)− p(n− k).

The space complexity of the fastest quadratic parallel multipliers for irreducible trinomials

are n2 AND gates and n2 − 1 XOR gates. It is easy to check that the following two inequalities

are always valid for n > 4 and k ∈ (n/2, 2n/3]: # AND gates: ∆ = n2 + (n− k)(n− 1− 3k)/2 < n2,

XOR gates: ∆+ 7k − 3n− 1 < n2 − 1.

Therefore, the space complexity of the proposed multiplier is always less than that of the

fastest quadratic parallel multipliers. As for the time complexity, thanks to the property of the

ceiling function “⌈·⌉”, these multipliers may have the same XOR gate delay, depending on the

values of n and k.

For the purpose of comparison, we examine the 317 values of n such that n ∈ [5, 999] and

un+uk+1 is irreducible over GF (2) for some k ∈ (n/2, 2n/3]. Compared to the current fastest

parallel multipliers – quadratic multipliers, the space complexities are reduced, for all these 317

values of n, by 15.3% on average. Especially, for the 124 values of such n, the two kinds of

multipliers have the same time complexity, but the space complexities are reduced by 15.5% on

average. On the other hand, the CRT-based multipliers in [5] consider the case k ∈ [2, n/2], and

reduce the space complexities by only 8.4% on average.

23

VI. AN EXAMPLE: f = u21 + u14 + 1

From the expression of the quotient q of a · b divided by (f + 1) = x21 + x14, i.e., (7), we

have

q = s40x
19 + s39x

18 + s38x
17 + s37x

16 + s36x
15 + s35x

14 + s34x
13

+(s33 + s40)x
12 + (s32 + s39)x

11 + (s31 + s38)x
10 + (s30 + s37)x

9

+(s29 + s36)x
8 + (s28 + s35)x

7 + (s27 + s34)x
6

+(s26 + s33 + s40)x
5 + (s25 + s32 + s39)x

4 + (s24 + s31 + s38)x
3 + (s23 + s30 + s37)x

2

+(s22 + s29 + s36)x+ (s21 + s28 + s35).

In order to obtain (c + q) = ⟨a · b⟩x14(x7+1) using the CRT, we compute ⟨a⟩x7+1 and ⟨b⟩x7+1

first:

⟨a⟩x7+1 =
6∑

i=0

gix
i

= (a0 + a7 + a14) + (a1 + a8 + a15)x+ (a2 + a9 + a16)x
2 + (a3 + a10 + a17)x

3

+(a4 + a11 + a18)x
4 + (a5 + a12 + a19)x

5 + (a6 + a13 + a20)x
6;

⟨b⟩x7+1 =
6∑

i=0

hix
i

= (b0 + b7 + b14) + (b1 + b8 + b15)x+ (b2 + b9 + b16)x
2 + (b3 + b10 + b17)x

3

+(b4 + b11 + b18)x
4 + (b5 + b12 + b19)x

5 + (b6 + b13 + b20)x
6.

Next, we compute the two intermediate values in the CRT formula, i.e., (9) and (11), using the

schoolbook polynomial multiplication algorithm:

⟨a · b⟩x14 =
13∑
i=0

six
i

24

and

⟨a · b⟩xn−k+1 =
⟨
⟨a⟩x7+1 · ⟨b⟩x7+1

⟩
x7+1

= (g5h1 + g0h6 + g1h5 + g2h4 + g3h3 + g4h2 + g6h0)x
6 +

(g2h3 + g5h0 + g0h5 + g3h2 + g4h1 + g1h4 + g6h6)x
5 +

(g1h3 + g2h2 + g3h1 + g0h4 + g4h0 + g5h6 + g6h5)x
4 +

(g1h2 + g2h1 + g0h3 + g3h0 + g6h4 + g5h5 + g4h6)x
3 +

(g1h1 + g0h2 + g2h0 + g6h3 + g5h4 + g3h6 + g4h5)x
2 +

(g1h0 + g0h1 + g6h2 + g5h3 + g2h6 + g3h5 + g4h4)x+

(g0h0 + g4h3 + g1h6 + g2h5 + g5h2 + g6h1 + g3h4).

Then, from the CRT expression of the remainder (c+ q) = ⟨a · b⟩f+1, i.e., (8), we have

c+ q =
⟨
⟨a · b⟩xk · (xn−k + 1) · (xn−k + 1) + ⟨a · b⟩xn−k+1 · x

k · x2n−3k
⟩
xn+xk

= s0 + s1x
1 + s2x

2 + s3x
3 + s4x

4 + s5x
5 + s6x

6 + s7x
7 + s8x

8 + s9x
9 +

+s10x
10 + s11x

11 + s12x
12 + s13x

13 +

(s0 + s7 + g0h0 + g4h3 + g1h6 + g2h5 + g5h2 + g6h1 + g3h4)x
14 +

(s1 + s8 + g1h0 + g0h1 + g6h2 + g5h3 + g2h6 + g3h5 + g4h4)x
15 +

(s2 + s9 + g1h1 + g0h2 + g2h0 + g6h3 + g5h4 + g3h6 + g4h5)x
16 +

(s3 + s10 + g1h2 + g2h1 + g0h3 + g3h0 + g6h4 + g5h5 + g4h6)x
17 +

(s4 + s11 + g1h3 + g2h2 + g3h1 + g0h4 + g4h0 + g5h6 + g6h5)x
18 +

(s5 + s12 + g2h3 + g5h0 + g0h5 + g3h2 + g4h1 + g1h4 + g6h6)x
19 +

(s6 + s13 + g5h1 + g0h6 + g1h5 + g2h4 + g3h3 + g4h2 + g6h0)x
20.

25

Finally, by (13), the expression of c = ab = q + (c+ q) is

c = ((s0) + s21 + s28 + s35) + ((s1) + s22 + s29 + s36)x+

((s2) + s23 + s30 + s37)x
2 + ((s3) + s24 + s31 + s38)x

3 +

((s4) + s25 + s32 + s39)x
4 + ((s5) + s26 + s33 + s40)x

5 +

{[[s6]] + s27 + (((s34)))}x6 +

+([s7 + s35] + s28)x
7 + ([s8 + s36] + s29)x

8 + ([s9 + s37] + s30)x
9 +

([s10 + s38] + s31)x
10 + ([s11 + s39] + s32)x

11 + ([s12 + s40] + s33)x
12 +

{((s13)) + (((s34)))}x13 +

((s0) + [s7 + s35] + g0h0 + g4h3 + g1h6 + g2h5 + g5h2 + g6h1 + g3h4)x
14 +

((s1) + [s8 + s36] + g1h0 + g0h1 + g6h2 + g5h3 + g2h6 + g3h5 + g4h4)x
15 +

((s2) + [s9 + s37] + g1h1 + g0h2 + g2h0 + g6h3 + g5h4 + g3h6 + g4h5)x
16 +

((s3) + [s10 + s38] + g1h2 + g2h1 + g0h3 + g3h0 + g6h4 + g5h5 + g4h6)x
17 +

((s4) + [s11 + s39] + g1h3 + g2h2 + g3h1 + g0h4 + g4h0 + g5h6 + g6h5)x
18 +

((s5) + [s12 + s40] + g2h3 + g5h0 + g0h5 + g3h2 + g4h1 + g1h4 + g6h6)x
19 +

([[s6]] + ((s13)) + g5h1 + g0h6 + g1h5 + g2h4 + g3h3 + g4h2 + g6h0)x
20.

The following table compares the space and time complexities of the proposed multipliers

and the multipliers in [5]. We note that there are only four degree-21 irreducible trinomials over

GF (2): x21 + x2 + 1, x21 + x7 + 1 and their reciprocal polynomials. The best choice for the

multiplier in [5] is x21 + x7 + 1.

TABLE IV

COMPLEXITIES OF CRT-BASED GF (221) PARALLEL MULTIPLIERS.

Trinomial Multiplier # AND Gate # XOR Gate XOR Gate Delay

x21 + x7 + 1, [5]
Type-A 434 434 6

Type-B 434 448 6

x21 + x14 + 1, proposed
Type-A 364 398 6

Type-B 364 429 6

26

VII. CONCLUSIONS

In this work, we consider the irreducible trinomial un + uk + 1 over GF (2) for some k ∈

(n/2, 2n/3]. By selecting the largest possible value of k ∈ (n/2, 2n/3], we further reduce the

space complexity of the CRT-based hybrid parallel GF (2n) polynomial basis multipliers. Com-

pared to the current fastest parallel multipliers – quadratic multipliers, the AND and XOR gate

complexities of the proposed multipliers are always less than those of the quadratic multipliers.

Thanks to the property of the ceiling function “⌈·⌉”, they have the same time complexity for

some irreducible trinomials.

For the purpose of comparison, we examine the 317 values of n such that n ∈ [5, 999] and

un + uk + 1 is irreducible over GF (2) for some k ∈ (n/2, 2n/3]. The space complexities are

reduced, for all these 317 values of n, by 15.3% on average. Especially, for the 124 values of

such n, the two kinds of multipliers have the same time complexity, but the space complexities

are reduced by 15.5% on average. On the other hand, the CRT-based multipliers in [5] consider

the case k ∈ [2, n/2], and reduce the space complexities by only 8.4% on average.

VIII. ACKNOWLEDGMENT

The work was supported by NSFC under grant No.s 61373141 and 91218302.

REFERENCES

[1] C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich, and J. von zur Gathen, “FPGA designs of parallel high performance

GF (2233) multipliers,” in Proc. Int. Symposium on Circuits and Systems (ISCAS 2003), vol. II, 2003, pp. 268–271.

[2] F. Rodrı́guez-Henrı́quez and Ç. K. Koç, “On fully parallel Karatsuba multipliers for GF (2m),” in Proc. Int. Conf. Computer

Science and Technology (CST 2003). ACTA Press, 2003, pp. 405–410.

[3] J. von zur Gathen and J. Shokrollahi, “Efficient FPGA-based Karatsuba multipliers for polynomials over F2,” in Proc. 12th

Workshop on Selected Areas in Cryptography (SAC 2005). Springer, 2006, pp. 359–369.

[4] M. A. Hasan, N. Méloni, A. H. Namin, and C. Negre, “Block recombination approach for subquadratic space complexity

binary field multiplication based on Toeplitz matrix-vector product,” IEEE Transactions on Computers, vol. 61, no. 2, pp.

151–163, 2012.

[5] H. Fan, “A chinese remainder theorem approach to bit-parallel GF (2n) polynomial basis multipliers for irreducible

trinomials,” IEEE Transactions on Computers, accepted. DOI: 10.1109TC.2015.2428704, 2015.

[6] ——, “A chinese remainder theorem approach to bit-parallel GF (2n) polynomial basis multipliers for irreducible trinomials,”

IACR Cryptology ePrint Archive, Report 2014/972, 2014.

[7] M. Elia, M. Leone, and C. Visentin, “Low complexity bit-parallel multipliers for GF (2m) with generator polynomial

xm + xk + 1,” IEE Electronics Letters, vol. 35, no. 7, pp. 551–552, 1999.

[8] H. Fan and M. A. Hasan, “Fast bit parallel-shifted polynomial basis multipliers in GF (2n),” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 53, no. 12, pp. 2606–2615, 2006.

27

[9] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel Montgomery multiplication and squaring over GF (2m),”

IEEE Transactions on Computers, vol. 58, no. 10, pp. 1332–1345, 2009.

