
Algebraic partitioning:
Fully compact and (almost) tightly secure cryptography

Dennis Hofheinz∗

May 26, 2015

Abstract

We describe a new technique for conducting “partitioning arguments”. Partitioning argu-
ments are a popular way to prove the security of a cryptographic scheme. For instance, to prove
the security of a signature scheme, a partitioning argument could divide the set of messages into
“signable” messages for which a signature can be simulated during the proof, and “unsignable”
ones for which any signature would allow to solve a computational problem. During the se-
curity proof, we would then hope that an adversary only requests signatures for signable mes-
sages, and later forges a signature for an unsignable one.

In this work, we develop a new class of partitioning arguments from simple assumptions.
Unlike previous partitioning strategies, ours is based upon an algebraic property of the parti-
tioned elements (e.g., the signed messages), and not on their bit structure. This allows to perform
the partitioning efficiently in a “hidden” way, such that already a single “slot” for a partitioning
operation in the scheme can be used to implement many different partitionings sequentially, one
after the other. As a consequence, we can construct complex partitionings out of simple basic
(but algebraic) partitionings in a very space-efficient way.

As a demonstration of our technique, we provide the first signature and public-key encryp-
tion schemes that achieve the following properties simultaneously: they are (almost) tightly
secure under a simple assumption, and they are fully compact (in the sense that parameters,
keys, and signatures, resp. ciphertexts only comprise a constant number of group elements).
Keywords. Partitioning arguments, tight security proofs, digital signatures, public-key encryp-
tion.

1 Introduction

Partitioning arguments. Many security reductions rely on a partitioning argument. Informally,
a partitioning argument divides the parts of a large system into those parts that are under
the control of the simulation, and those parts into which a computational challenge can be
embedded. For instance, a partitioning argument for a signature scheme could divide the set
of message into “signable messages” (for which a signature can be generated by the security
reduction), and “unsignable messages” (for which any signature would solve an underlying
problem). During the security reduction, we hope that an adversary only asks for the signa-
tures of signable messages, but forges a signature for an unsignable one. Partitioning argu-
ments are a popular means for proving the security of signature schemes (e.g., [33, 16, 35, 28]),
identity-based encyption schemes (e.g., [9, 8, 35, 13]), or tightly secure cryptosystems (e.g., [14,
5, 30]).
The complexity of bit-based partitioning. All of the above works (except for [16, 9], which use
a programmable random oracle to implement a partitioning) partition messages or identities
according to their bit representation. For instance, in the signature scheme from [28], messages
∗Karlsruhe Institute of Technology, Dennis.Hofheinz@kit.edu

1

Dennis.Hofheinz@kit.edu

are signable precisely if they do not start with a particular bit prefix. This non-algebraic ap-
proach requires a certain preparation in the scheme itself: already the scheme must establish
certain distinctions of messages based on their bit representation. For instance, the signature
scheme of [35] uses a hash function of the form H(M) = h0

∏
j hj,Mj

, where Mj are the bits of
the signed message M, and h0 and the hj,b are public group elements. This leads to compar-
atively large public parameters or keys, in particular because all potential distinctions (based
on the values of theMj) are already present in the scheme.
Our contribution. In this work, we develop an entirely different partitioning approach: in-
stead of partitioning based on the bit representation, we partition according to a simple al-
gebraic predicate. Namely, we view a message M as above as a Zp-element, and consider
various Legendre symbols Lj =

(fj(M)
p

)
for different affine functions fj. Taken together, suf-

ficiently many Lj uniquely determine M, but the computation of each Lj can be encoded as a
series of Zp-operations.1 Intuitively, this algebraic property allows to “internalize” and hide
the computations of the Lj, e.g., by hiding the fj inside a homomorphic commitment. As a con-
sequence, only one “universal” partitioning (according to a single Lj) needs to be performed
in the scheme itself; in the analysis, several simple partitionings can then be implemented
sequentially, by varying the fj.
Comparison with previous partitioning techniques. Compared to previous, bit-based parti-
tioning approaches, our new strategy has the advantage that it simultaneously leads to com-
pact schemes and to a tight security reduction. Previous partitioning strategies were either
based on more complex partitionings (such as [33, 8, 35, 28]) that lead to a non-tight security
reduction, or on a sequence of simple bit-based partitionings (such as [14, 5, 30]) that lead to
large public parameters or keys. In contrast, we support many simple algebraic partitionings
(and thus a tight security reduction), but we occupy only one “partitioning slot” in the public
parameters. This leads to tightly secure and very compact applications, as we will detail next.
Applications. Specifically, we demonstrate the usefulness of our partitioning technique by
describing the first (almost) tightly secure signature and PKE schemes that are fully compact,
in the sense that parameters, keys, and signatures (resp. ciphertexts) only contain a constant
number of group elements. Our security reduction loses only a factor of O(k), where k is
the security parameter. In particular, our security reduction does not degrade in the number of
users or signatures, resp. ciphertexts. The security of our schemes is based upon the Decisional
Diffie-Hellman (DDH) assumption in both preimage groups of a pairing. (This assumption is
also called “Symmetric External Diffie-Hellman” or SXDH.) Tables 1 and 2 give a more detailed
comparison with existing schemes.

In the following, we give more details on our techniques and results. To do so, we start
with a little background concerning our applications.
Tight security reductions. To argue for the security of a given cryptographic scheme S, we
usually employ a security reduction. That is, we try to argue that every hypothetical adversary
AS on S can be converted into an adversary AP on an allegedly hard computational problem
P. In that sense, the only way to break S is to solve P. Of course, we are most interested in
reductions to well-investigated problems P. Furthermore, there are reasons to consider the
tightness of the reduction: a tight reduction guarantees that AP’s success εP in solving P (in a
reasonable metric) is about the same as AS’s success εS in attacking S.

To explain the impact of a (non-)tight reduction in more detail, consider a public-key en-
cryption (PKE) scheme S that is deployed in a many-user environment. In this setting, an
adversary AS on S may observe, say, nC ciphertexts generated for each of the, say, nU users.
Most known security reductions in this setting are non-tight, in the sense that εP ≤ εS

nU·nC
.

As a consequence, keylength recommendations should also take nU and nC into account; no

1Technically, we will not even need to explicitly compute Lj, but only prove that Lj = 1. This is possible using
a quadratic equation over Zp.

2

“universal” keylength recommendation can be given for such a scheme. This is particularly
problematic in settings that grow significantly beyond initial expectations.
Tightly secure encryption and signature schemes. The construction of tightly secure crypto-
graphic schemes appears to be a nontrivial task. For instance, although already explicitly con-
sidered in 2000 [3], tightly secure PKE schemes have only been constructed very recently [27, 2,
14, 5, 30].2,3 Moreover, the schemes from [27, 2] have rather large ciphertexts, and the schemes
induced by [14, 5] and from [30] require large parameters (but offer small keys and ciphertexts).

The situation for tightly secure signature schemes is somewhat brighter, but results are still
limited. There are efficient signature schemes that are tightly secure under “q-type” [7, 15, 34]
or interactive [20] assumptions, or in the random oracle model [23, 4, 29]. There are also more
recent and somewhat less efficient schemes tightly secure under simple4 assumptions [11, 27,
14, 5, 30] (see also [1, 2]). Some of these latter schemes can even be converted into tightly secure
PKE schemes; however, all of the schemes [11, 27, 2, 14, 5, 30] suffer from asymptotically large
parameters, keys, or signatures (resp. ciphertexts).

Scheme parameters verification key signature reduction loss assumption
BMS03 [11] 0 k + 3 k + 1 O(k) CDH
HJ12 [27] 2 28 8k + 22 O(1) DLIN

CW13 [14] 2d2(2n + 1) d 4d O(k) d-LIN
BKP14 [5] d d2(2n + 1) 2d + 1 O(k) Dd-MDDH

LJYP14 [30] 0 O(d2n) 2d + 1 O(k) d-LIN
This work 14 6 25 O(k) DDH

Table 1: Comparison of different (at least almost) tightly EUF-CMA secure signature schemes from simple4 as-
sumptions in pairing-friendly groups. The parameters, verification key, and signature columns denote space
complexity, measured in group elements. The reduction loss column denotes the (multiplicative) loss of the secu-
rity reduction to the respective assumption. For the schemes from [14, 5], we assume the signature scheme induced
by the presented IBE scheme. Furthermore, n = Θ(k) denotes the bitlength of the signed message (if the signed
message is a bitstring and not a group element or an exponent). We note that [30] mention that their scheme can
be generalized to the d-LIN assumption (including 1-LIN=DDH). However, since they only give explicit complex-
ities for the arising signatures (identical to the ones from [5]), we restrict to their DLIN-based scheme. Finally, we
remark that all of these schemes (except for [11]) imply tightly secure PKE schemes (cf. Table 2).

The scheme of Chen and Wee. Our technical ideas are best presented with our signature
scheme. At a very high level, we follow the strategy of Chen and Wee [14] (see also [5]), where
we interpret their IBE scheme as a signature scheme using Naor’s trick [10]. In their scheme,
signatures are of the form

σ =
(
h0, sigk ·

n∏
i=1

hi,Mi

)
, (1)

where sigk is the secret key, M = (Mi)
n
i=1 ∈ {0, 1}n is the bit representation of the signed

message, and h0, (hi,0, hi,1)ni=1 are group elements chosen from a joint public distribution.5

During their proof of existential unforgeability (EUF-CMA security), Chen and Wee grad-
ually modify signatures generated by the security experiment for an adversaryA. This is done
via a small hybrid argument over the bit indices of messages, and thus yields a security proof

2Actually, [14, 5] construct tightly secure identity-based encryption (IBE) schemes. However, those IBE schemes
can be viewed as tightly secure signature schemes (using Naor’s trick [10]), and then converted into tightly secure
PKE schemes using the transformation from [27]. In fact, the PKE scheme of [30] can be viewed as a (modified and
highly optimized) conversion of the IBE scheme from [14].

3We note that earlier PKE schemes achieve at least a certain form of tight security under “q-type” assump-
tions [21, 22, 26], or in the random oracle model [19, 12, 6].

4With a “simple” assumption, we mean one in which the adversary gets a challenge whose size only depends
on the security parameter, and is then supposed to output a unique solution without further interaction. Examples
of simple assumptions are DLOG, DDH, d-LIN, or RSA, but not, say, Strong Diffie-Hellman [7] or q-ABDHE [21].

5We note that although their scheme can be viewed as a generalization of Waters signatures [35], their analysis
is entirely different. Also, we omit here certain subtleties regarding the used distributions of group elements.

3

Scheme parameters public key ciphertext reduction loss assumption
HJ12 [27] O(1) O(1) O(k) O(1) DLIN

AKDNO13 [2] O(1) O(1) O(k) O(1) DLIN
CW13 [14] O(d2k) O(d) O(d) O(k) d-LIN
BKP14 [5] O(d) O(d2k) O(d) O(k) Dd-MDDH

LJYP14 [30] O(1) O(d2k) O(d) O(k) d-LIN
LJYP14 [30] 3 24k + 30 69 O(k) DLIN
This work 15 2 60 O(k) DDH

Table 2: Comparison of different (at least almost) tightly IND-CCA secure PKE schemes from simple4 assumptions.
As in Table 1, the parameters, public key, and ciphertext columns denote space complexity, measured in group
elements, and the reduction loss column denotes the (multiplicative) loss of the security reduction to the respective
assumption. For the schemes from [14, 5], we assume the PKE scheme induced by the respective signature scheme
when going through the construction of [27]. We note that [30] only describe a symmetric-pairing version of their
scheme, so their DDH-based scheme is not explicit. However, we expect that their DDH-based scheme has slightly
more compact ciphertexts than ours.

that loses a factor of O(n). Concretely, in the i-th hybrid, generated signatures are of the form
σ = (h0, sigkM1,...,Mi

·
∏n
j=1 hj,Mj

), where sigkM1,...,Mi
= R(M1, . . . ,Mi) for a truly random func-

tion R. Similarly, a forged message-signature pair (M∗, σ∗) from A is only considered valid if
it is consistent with sigkM∗1,...,M∗i (instead of sigk). In other words, in the i-th hybrid, the secret
key used in signatures depends on the first i bits of the signed message.

Thus, the difference between the (i− 1)-th and the i-th hybrid is an additional dependency
of used secret keys on the i-th message bitMi. To progress from hybrid i− 1 to hybrid i, Chen
and Wee first partition the message space in two halves (according to Mi). Then, using an
elaborate argument, they consistently modify the secret keys used for messages from one half,
and thus essentially decouple those keys from the keys used for messages from the other half.
This creates an additional dependency on Mi. After n = |M| such steps, each signature uses
a different secret key (up to multiple signatures of the same message). In particular, A gets
no information about the secret key sigkM∗1,...,M∗n used to verify its own forgery, and existential
unforgeability follows.

We would like to highlight the partitioning character of their analysis: in their proof, Chen
and Wee introduce more and more dependencies of signatures on the corresponding messages,
and each such dependency is based upon a different partitioning of the message space.6 Now
observe that already regular signatures (as in (1)) feature distinctions based on all bits of M.
These distinctions provide the technical tool to introduce dependencies in the security proof.
However, as a consequence, rather complex joint distributions need to be sampled during
signature generation, which results in public parameters of O(n) group elements.
Algebraic partitioning. In a nutshell, our main technical tool is a new way to partition the
message space of a signature scheme. We call this tool “algebraic partitioning.” Concretely,
a signature for a message M ∈ Zp in our scheme consists essentially of an encryption of the
secret key X, along with a consistency proof:

σ = (C = Enc(pk, X), π) . (2)

The corresponding encryption key pk is part of the verification key vk, and the consistency
proof π proves the following statement:

“Either C encrypts the secret key X, or f(M) ∈ Zp is a quadratic residue (or both).”

Here, p is the order of the underlying group, and f : Zp → Zp is an affine function fixed (but
hidden) in the verification key. Implicitly, this provides a single partitioning of messages into

6We note that a similar technique has also been used in the context of pseudorandom functions [24, 31].

4

those for which f(M) is a quadratic residue, and those for which f(M) is not. However, since f
is hidden, many partitionings can be induced (one after the other) by varying f during a proof.

In fact, during the security proof, this partitioning will fulfill the same role as the bit-based
partitioning in the analysis of Chen and Wee. In particular, it will help to introduce additional
dependencies of the signature on the message. More specifically, in the i-th hybrid of the
security proof, C will not encrypt X, but a value XM that depends on the i Legendre symbols(fj(M)

p

)
for randomly chosen (but fixed) affine functions f1, . . . , fi. Each new such dependency

is introduced by first refreshing the affine function f hidden in vk, and then modifying all
values encrypted in signatures whenever possible (i.e., whenever f(M) is a quadratic residue).7

Observe that the single explicit partitioning in regular signatures is used several times (for
different fj) to introduce many dependencies of signatures on messages in the proof. The
remaining strategy can then be implemented as in [14].

Our different strategy to partition the message space results in a very compact scheme.
Namely, since only one explicit partitioning step is performed in the scheme, parameters, keys,
and signatures comprise only a constant number of group elements. Specifically, parameters,
keys, and signatures contain 14, 6, and 25 group elements, respectively. Besides, our scheme
is compatible with Groth-Sahai proofs [25]. Hence, when used in the construction of [27], we
immediately get the first compact (in the above sense) PKE scheme that is tightly IND-CCA
secure under a simple assumption.8

Roadmap. After recalling some basic definitions, we present our signature scheme in Sec-
tion 3. In Appendix A, we give a direct construction of a PKE scheme derived from our signa-
ture scheme. Finally, in Appendix B, we give more details on the exact Groth-Sahai equations
arising from the consistency proofs of signatures and ciphertexts.
Acknowledgements. The author would like to thank Eike Kiltz, Julia Hesse, Willi Geiselmann,
and the anonymous reviewers for helpful feedback.

2 Preliminaries

Notation. Throughout the paper, k ∈ N denotes the security parameter. For n ∈ N, let
[n] := {1, . . . , n}. For a finite set S, we denote with s ← S the process of sampling s uniformly
from S. For a probabilistic algorithm A, we denote with y ← A(x;R) the process of running
A on input x and with randomness R, and assigning y the result. We write y ← A(x) for
y ← A(x;R) with uniformly chosen R, and we write A(x) = y for the event that A(x;R) (for
uniform R) outputs y. If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT). A function f : N→ R is negligible if it vanishes faster than the inverse
of any polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(x)| ≤ 1/kc).
Collision-resistant hashing. A hash function generator is a PPT algorithm H that, on input
1k, outputs (the description of) an efficiently computable function H : {0, 1}∗ → {0, 1}k.

Definition 2.1 (Collision-resistance). We say that a hash function generator H outputs collision-
resistant functions H (or, when the reference toH is clear, that such an H is collision-resistant), if

Advcr
H,A(k) = Pr

[
x 6= x ′ ∧ H(x) = H(x ′)

∣∣∣ H← H(1k), (x, x ′)← A(1k,H)
]

is negligible for every PPT adversary A.
7This neglects a number of details. For instance, in the somewhat simplified scheme above, π always ties the

ciphertexts in signatures for quadratic non-residues f(M) to a single value X. In our actual proof, we will thus
simulate a part of π, such that the encrypted values can be decoupled from the original secret key X.

8Actually, plugging our scheme directly into the construction of [27] yields an asymptotically compact, but not
very efficient scheme. Thus, we provide a more direct and efficient explicit PKE construction with parameters,
public keys, and ciphertexts comprised of 15, 2, and 60 group elements, respectively.

5

Signature schemes. A signature scheme SIG consists of four PPT algorithms SPars, SGen, Sig,
Ver. Parameter generation SPars(1k) outputs public parameters spp that are shared among all
users. Key generation SGen(spp) takes public parameters spp, and outputs a verification key vk
and a signing key sigk. The signature algorithm Sig(spp, sigk,M) takes public parameters spp,
a signing key sigk, and a message M, and outputs a signature σ. Verification Ver(spp, vk,M, σ)
takes public parameters spp, a verification key vk, a message M, and a potential signature σ,
and outputs a verdict b ∈ {0, 1}. For correctness, we require that 1 ← Ver(spp, vk,M, σ) = 1

always and for all M, all (vk, sigk) ← SGen(1k), and all σ ← Sig(spp, sigk,M). For the sake of
readability, we will omit the public parameters spp from invocations of Sig and Ver when the
reference is clear.

Definition 2.2 (Multi-user (one-time) existential unforgeability). Let SIG be a signature scheme
as above, and consider the following experiment for an adversary A:
1. A specifies (in unary) the number nU ∈ N of desired scheme instances.
2. The experiment then samples parameters spp← SPars(1k) as well as nU keypairs (vk(`), sigk(`))←

SGen(spp).
3. A is invoked on input (1k, spp, (vk(`))nU

`=1), and gets access to signing oracles Sig(sigk(`), ·) for all
` ∈ [nU]. Finally, A outputs an index `∗ ∈ [nU] and a potential forgery (M∗, σ∗).

4. A wins iff Ver(vk(`
∗),M∗, σ∗) = 1 andM∗ has not been queried to Sig(sigk(`

∗), ·).
Let Adveuf-mcma

SIG,A (k) denote the probability that A wins in the above experiment. We say that SIG is
existentially unforgeable under chosen-message attacks in the multi-user setting (EUF-mCMA secure)
iff Adveuf-mcma

SIG,A (k) is negligible for every PPT A. Let Advot-euf-mcma
SIG,A (k) be the probability that A wins

in the slightly modified experiment in which only one Sig-query to each scheme instance ` is allowed.
We say that SIG is existentially unforgeable under one-time chosen-message attacks in the multi-user
setting (OT-EUF-mCMA secure) iff Advot-euf-mcma

SIG,A (k) is negligible for every PPT A.

Public-key encryption schemes. A public-key encryption (PKE) scheme PKE consists of four
PPT algorithms (EPars,EGen,Enc,Dec). The parameter generation algorithm EPars(1k) out-
puts public parameters epp. Key generation EGen(epp) outputs a public key pk and a se-
cret key sk. Encryption Enc(epp, pk,M) takes parameters epp, a public key pk, and a mes-
sage M, and outputs a ciphertext C. Decryption Dec(epp, sk, C) takes public parameters epp,
a secret key sk, and a ciphertext C, and outputs a message M. For correctness, we require
Dec(epp, sk, C) = M always and for all M, all epp ← EPars(1k), all (pk, sk) ← EGen(epp), and
all C ← Enc(epp, pk,M). As with signatures, we usually omit the public parameters epp from
invocations of Enc and Dec.

Definition 2.3 (Multi-user, multi-challenge indistinguishability of ciphertexts). For a public-key
encryption scheme PKE and an adversaryA, consider the following security experiment Expind-mcca

PKE,A (k):
1. A specifies (in unary) the number nU ∈ N of desired scheme instances.
2. The experiment samples parameters epp ← EPars(1k), and nU keypairs through (pk(`), sk(`)) ←

EGen(epp), and uniformly chooses a bit b← {0, 1}.
3. A is invoked on input (1k, epp, (pk(`))nU

`=1), and gets access to challenge oracles O(`) and decryption
oracles Dec(sk(`), ·) for all ` ∈ [nU]. Here, challenge oracle O(`), on input two messages M0,M1,
outputs an encryption C← Enc(pk(`),Mb) ofMb.

4. Finally, A outputs a bit b ′, and the experiment outputs 1 iff b = b ′.
A PPT adversary A is valid if every pair (M0,M1) of messages submitted to an O(`) by A satisfies
|M0| = |M1|, and if A never submits any challenge ciphertext (previously received from an O(`)) to the
corresponding decryption oracle Dec(sk(`), ·). Let

Advind-mcca
PKE,A (k) = Pr

[
Expind-mcca

PKE,A (k) = 1
]
− 1/2.

We say that PKE has indistinguishable ciphertexts under chosen-ciphertext attacks in the multi-user,
multi-challenge setting (short: is IND-mCCA secure) iff Advind-mcca

PKE,A (k) is negligible for all valid A.

6

Let Advind-mcpa
PKE,A be defined similarly, except thatA has no access to any Dec oracles. PKE has indistin-

guishable ciphertexts under chosen-plaintext attacks in the multi-user, multi-challenge setting (short:
is IND-mCPA secure) iff Advind-mcpa

PKE,A (k) is negligible for all valid A.

Quadratic residues and Legendre symbols. Let p be a prime. Then, QRp ⊆ Z∗p is the set of
quadratic residues modulo p, i.e., the set of all x ∈ Z∗p for which an r ∈ Z∗p with r2 = x mod p
exists. Given p and an x ∈ QRp, such an r can be computed efficiently. For x ∈ Zp, we

let
(
x
p

)
= x

p−1
2 mod p denote the Legendre of x modulo p. We have

(
x
p

)
∈ {−1, 0, 1}, and in

particular
(
x
p

)
= 1 ⇔ x ∈ QRp, as well as

(
x
p

)
= 0 ⇔ x = 0, and

(
x
p

)
= −1 ⇔ x ∈ Z∗p \ QRp.

Group and pairing generators. A group generator G is a PPT algorithm that, on input 1k,
outputs the description of a group G, along with its (prime) order p, and a generator g of G. A
pairing generator P is a PPT algorithm that, on input 1k, outputs descriptions of:
• three groups G, Ĝ,GT of the same prime order p, along with p, and generators g, ĝ of G, Ĝ,
• a bilinear map e : G× Ĝ→ GT that is non-degenerate in the sense of e(g, ĝ) 6= 1 ∈ GT .

Occasionally, it will also be useful to consider a pairing generator P as a group generator (that
only outputs (G, p, g) or (Ĝ, p, ĝ)).

Assumption 2.4 (Decisional Diffie-Hellman). For a group generator G and an adversary A, let
Advddh

G,A(k) be the following difference:

Pr
[
A(1k,G, p, g, gx, gy, gxy) = 1

]
− Pr

[
A(1k,G, p, g, gx, gy, gz) = 1

]
.

Here, the probability is over (G, p, g) ← G(1k) and uniformly chosen x, y, z ∈ Zp. We say that the
Decisional Diffie-Hellman (DDH) assumption holds with respect to G iff Advddh

G,A is negligible for every
PPT A. When the reference to G is clear, we also say that the DDH assumption holds in G (and write
Advddh

G,A). On occasion, we might also say that the DDH assumption holds in groups G or Ĝ sampled
by a pairing generator, with the obvious meaning.

ElGamal encryption. The ElGamal encryption scheme PKEeg is defined as follows, where we
assume a suitable group generator G.
• EParseg(1

k) runs (G, p, g)← G(1k) and outputs epp = (G, p, g).
• EGeneg(epp) picks a uniform sk← Zp, sets pk = gsk, and outputs (pk, sk).
• Enc(pk,M), forM ∈ G, picks an R← Zp, and outputs C = (gR, pkR ·M).
• Dec(sk, C), for C = (C1, C2) ∈ G2, outputsM = C2/C

sk
1 .

The ElGamal scheme is tightly IND-mCPA secure under the DDH assumption in G. Con-
cretely, for every valid IND-mCPA adversary A, there is a DDH adversary B (of roughly the
same complexity as the IND-mCPA experiment with A) with Advddh

G,B(k) = Advind-mcpa
PKEeg,A (k).

Groth-Sahai proofs. In a setting with a pairing generator, Groth-Sahai proofs [25] provide a
very versatile and efficient way to prove the satisfiability of very general classes of equations
over G and Ĝ. We will not need them in full generality, and the next definition only captures
a number of abstract properties of Groth-Sahai proofs we will use. In particular, we will not
formalize the exact classes of languages amenable to Groth-Sahai proofs. (For the exact lan-
guages used in our application, however, we give more details in Appendix B.1.) Like [18, 17],
we formalize Groth-Sahai proofs as commit-and-prove systems:

Definition 2.5 (GS proofs [25]). The Groth-Sahai proof system for a given pairing generator P con-
sists of the following PPT algorithms, where gpp denotes group parameters sampled by P .
Common reference strings. HGen(gpp) and BGen(gpp) sample hiding, resp. binding common ref-

erence strings (CRSs) CRS.
Commitments. For a (hiding or binding) CRS CRS and a G-, Ĝ-, or Zp-element v, the commitment

algorithm Com(gpp,CRS, v;R) outputs a commitment C, where R denotes the used random coins.

7

Proofs. Let CRS be a CRS, and let X be a system of equations. Each equation may be over G, Ĝ, or
Zp, and involve variables and constants. Let (vi)i be a variable assignment that satisfies X , and let
(Ri)i be a vector of random coins for Com. Then Prove(gpp,CRS,X , (vi, Ri)i) outputs a proof π.

Verification. For a CRS CRS, a system X of equations, a commitment vector (Ci)i to an assignment
of the variables in X , and a proof π, Verify(gpp,CRS,X , (Ci)i, π) outputs a verdict b ∈ {0, 1}.

Simulation. For a hiding CRS generated as CRS ← HGen(gpp;RCRS), a system X of equations,
and a vector (Ri)i of commitment random coins, we have that Sim(gpp, RCRS,X , (Ri)i) outputs a
simulated proof π.

As with signatures and encryption, we usually omit the group parameters gpp on invoca-
tions of Com,Prove,Verify, Sim when the reference is clear.

Theorem 2.6 (Properties of GS proofs [25]). The algorithms from Definition 2.5 satisfy the following
for all choices group parameters gpp← P(1k) (unless noted otherwise):
Homomorphic commitments. For any (hiding or binding) CRS CRS, any two given commitments

Com(CRS, v;R) and Com(CRS, v ′;R ′) to G-elements v, v ′ allow to efficiently compute a commit-
ment Com(CRS, v · v ′;R · R ′) to v · v ′. (Note that the corresponding random coins R · R ′ can be
efficiently computed from R and R ′.) The same holds for two commitments to Ĝ-elements, and two
commitments to Zp-elements (where the homomorphic operation on Zp-elements is addition).

Dual-mode commitments. Consider a commitment C ← Com(CRS, v;R). If CRS is binding, then
C uniquely determines v, and if CRS is hiding, then the distribution of C does not depend on v.

CRS indistinguishability. For every PPT adversary A, there are PPT adversaries A1 and A2 with∣∣∣Pr
[
A(1k,HGen(gpp)) = 1

]
− Pr

[
A(1k,BGen(gpp)) = 1

]∣∣∣
≤
∣∣∣Advddh

G,A1
(k)
∣∣∣+ ∣∣∣Advddh

Ĝ,A2
(k)
∣∣∣ ,

where the probability is over gpp← P(1k), and the random coins of HGen, BGen, and A.
Perfect completeness. For every (hiding or binding) CRS CRS, every system X of equations, every

satisfying assignment (vi)i of X , and every possible vector (Ci)i of commitments generated through
Ci ← Com(CRS, vi;Ri), we always have Verify(CRS,X , (Ci)i,Prove(CRS,X , (vi, Ri)i)) = 1.

Perfect soundness. For every binding CRS CRS, every system X of equations that is not satisfiable,
and every (Ci)i and π, Verify(CRS,X , (Ci)i, π) = 0 always.

Perfect simulation. For every hiding CRS CRS ← HGen(gpp;RCRS), and every system X of equa-
tions that is satisfied by a variable assignment (vi)i, the following two distributions are identical:(

(Ci)i, Prove(CRS,X , (vi, Ri)i)
)

for Ci ← Com(CRS, vi;Ri) and fresh Ri,(
(Ci)i, Sim(RCRS,X , (Ri)i)

)
for Ci ← Com(CRS, 1;Ri) and fresh Ri.

(The probability space consists of the Ri and the coins of Prove and Sim.)

Since simulation is perfect (in the sense above), it also holds for reused commitments (i.e.,
when multiple adaptively chosen statements X that involve the same variables and commit-
ments are proven, see also [17]). Besides, perfect simulation directly implies perfect witness-
indistinguishability (under a hiding CRS): for any two vectors (vi)i and (v ′i)i of satisfying
assignments of a given system X of equations, the corresponding commitments and proofs
((Ci)i, π) and ((C ′i)i, π

′) are identically distributed. Again, this holds even if the same commit-
ments are used in several proofs for adaptively generated statements X .

3 The signature scheme

3.1 Scheme description

Setting and ingredients. We assume the following ingredients:

8

• A pairing generator P that outputs groups G = 〈g〉 and Ĝ = 〈ĝ〉 of prime order p > 2k and
an asymmetric pairing e : G× Ĝ→ GT . We make the DDH assumption in both G and Ĝ.
• The ElGamal encryption scheme (given by algorithms EGeneg,Enceg,Deceg) over G. (That

is, we will use P in place of EParseg to generate the group G for ElGamal.)
• A Groth-Sahai proof system for P (see Definition 2.5), given by algorithms HGen,BGen,

Com,Prove,Verify, Sim.
Public parameters. SPars(1k) samples group parameters

gpp = (G, Ĝ,GT , p, g, ĝ, e)← P(1k)
and sets eppeg = (G, p, g). Then, SPars generates two binding Groth-Sahai CRSs and two
ElGamal keypairs:

CRS1 ← BGen(gpp) (pk0, sk0)← EGeneg(eppeg)

CRS2 ← BGen(gpp) (pk1, sk1)← EGeneg(eppeg).

The public parameters are then defined as

spp = (gpp,CRS1,CRS2, pk0, pk1).

Key generation. SGen(spp) first sets up the exponents

Z = X← Z∗p and α = β = 0,

and commits to them using fresh random coins RZ, Rα, Rβ:

Cα ← Com(CRS1, α;Rα), Cβ ← Com(CRS1, β;Rβ), CZ ← Com(CRS2, Z;RZ).

We will use that α,β define an affine function f : Zp → Zp through f(x) = α · x+ β mod p.
Verification and signing key are given by

vk = (CZ, Cα, Cβ) sigk = (X, RZ, Rα, Rβ).

Signature generation. Sig(sigk,M), forM ∈ Zp, picks fresh random coins R and encrypts

C0 = Enceg(pk0, g
Z0 ;R) C1 = Enceg(pk1, g

Z1 ;R)

for Z0 = Z1 = X ∈ Zp, using the same coins R in both encryptions for efficiency. Then, Sig
generates proofs π1 and π2 for the respective statements(

Z0 = Z1︸ ︷︷ ︸
S1

∨ f(M) ∈ QRp ∪ {0}︸ ︷︷ ︸
S2

)
and Z0 = Z︸ ︷︷ ︸

S3

. (3)

Here, Z0, Z1, Z, f refer to the values encrypted (resp. committed to) inC0, C1, CZ, (Cα, Cβ). Con-
cretely, Sig generates a proof π1 for S1 ∨ S2 under CRS1, using as witness Z0 = Z1 = X and
the encryption coins R. Also, Sig computes a proof π2 for S3 under CRS2, using as witness X
and RZ, R. We stress that π1 and π2 are independently generated, with different (fresh) Groth-
Sahai commitments to the respective witnesses. We describe the exact Groth-Sahai equations
for these proofs in Appendix B.1, and give some intuition on the meaning of the statements
S1-S3 in Section 3.2 below.

The signature is then defined as

σ = (C0, C1, π1, π2).

Verification. Ver(spp, vk,M, σ) outputs 1 if and only if both proofs π1 and π2 in σ are valid
with respect toM,C0, C1, CZ, Cα, Cβ.
Correctness. The completeness of Groth-Sahai proofs implies the correctness of SIG.
Efficiency. SIG has the following efficiency characteristics (cf. Appendix B.1):

9

• The public parameters consist of 8 G- and 6 Ĝ-elements, plus the group parameters gpp.
• Each verification key contains 2 G- and 4 Ĝ-elements.
• Each signing key contains 7 Zp-exponents.
• Each signature contains 11 G- and 14 Ĝ-elements.

3.2 Security proof

More details on the role of π1 and π2 in signatures. Before we proceed to the proof, we give
some intuition on the proofs π1 and π2 published in signatures (and the statements S1-S3):
• π1 proves that either C0 and C1 encrypt the same value or that the signed message satisfies a

special property S2 (or both). In the scheme, all messages are special in this sense (because
f(M) = 0 for all M). However, in the proof, we can adjust f and, e.g., partition the set
of messages into special and non-special ones in a random and roughly balanced way.
Intuitively, this provides a means to make the double encryption (C0, C1) inconsistent (and
subsequently change the encrypted values) in signatures for special messages. At the same
time, any valid adversarial forgery on a non-special message (that does not satisfy S2) must
carry a consistent double encryption (C0, C1).
• In the scheme, π2 ties the plaintext encrypted inC0 to the master secret Z. In the simulation,

we will remove that connection by simulating π2. Specifically, recall that π1 and π2 are
independently generated, using independently generated Groth-Sahai commitments to the
respective witnesses. Thus, in the proof, we can simulate π2 without witness (by choosing
a hiding CRS2 and using Sim), while preserving the soundness of π1 (assuming CRS1 is
binding). This simulation of π2 will be instrumental in changing the message encrypted in
C0 (when the signed message is special in the above sense).

Theorem 3.1 (Security of SIG). Under the DDH assumptions in G and Ĝ, the signature scheme SIG
from Section 3.1 is EUF-mCMA secure. Concretely, for every EUF-mCMA adversary A on SIG, there
exist DDH adversaries B and B ′ (of roughly the same complexity as the EUF-mCMA experiment with
A and SIG) with

Adveuf-mcma
SIG,A (k) ≤ (8n+ 1) ·

∣∣Advddh
G,B(k)

∣∣+ (4n+ 1) ·
∣∣Advddh

Ĝ,B ′(k)
∣∣+ O(n/2k) (4)

for n = 2dlog2(p)e+ k, where p denotes the order of G and Ĝ, and k is the security parameter.

Proof outline. The proof starts with a number of preparations for the core argument. Our
main goal during this phase will be to implement an additional and explicit check of A’s
forgery σ∗ = (C∗0, C

∗
1, π
∗
1, π
∗
2) for Deceg(sk0, C∗0) = gX

∗
. (Note that in the default key setup,

this explicit check is redundant, since valid signatures must fulfill statement S3 from (3).)
In the core argument (from Game 4 to Game 5, detailed in Lemma 3.2), we replace the

value X used in generated signatures and the additional forgery check with a valueH(M) that
depends on the signed message. We start with a constant function H(M) = X (which corre-
sponds to Game 4), and then introduce more and more dependencies ofH(M) on the Legendre
symbols

(fj(M)
p

)
for independently and randomly selected (invertible) affine functions fj.

Each such dependency is introduced as follows. We start by committing to (the coefficients
of) a new random function f∗ in Cα, Cβ. This change allows us to modify the messages Z0, Z1
encrypted in generated signatures for all M with f∗(M) ∈ QRp ∪ {0} (and only for those M),
by proving S2 (and not S1) in signatures. We will also abort if A’s forgery satisfies f∗(M∗) ∈
QRp ∪ {0}, and we will keep enforcing our forgery check on C∗0. Hence, from A’s point of
view, an additional dependency on

(f∗(M)
p

)
is consistently introduced on all signatures. More

importantly, this dependency is also enforced during the additional forgery check.
After sufficiently many such dependencies are introduced (for several different f∗), all sig-

natures are consistently generated with (or checked for) Z0 = Z1 = R(M) for a truly random

10

function R. At this point, A has to predict a truly random function R on a fresh input M∗ in
order to produce a valid forgery. Hence, A’s forgery success must be negligible.

Figs. 1 and 2 (on page 21 and page 22) give a more technical summary of the game transi-
tions of the proof (also taking into account the notation for the multi-user case).

Proof. We proceed in games. Let outi denote the output of Game i.
Game 1 is the original EUF-mCMA game with A and SIG. Of course,

Pr [out1 = 1] = Adveuf-mcma
SIG,A (k). (5)

In the following, we apply a superscript to variables to denote to which SIG instance they
belong. For instance, we denote with X(`) and sk(`)0 , sk(`)1 the respective values from the `-th
used SIG instance. Furthermore, we write X∗ for X(`∗) for the challenge instance `∗ selected by
A for his forgery, and similarly for sk∗0 and sk∗1.

Thus, in Game 2, we implement an additional “forgery check”. Concretely, we only con-
sider a forgery σ∗ = (C∗0, C

∗
1, π
∗
1, π
∗
2) fromA as valid if π∗1 and π∗2 are valid and if Deceg(sk∗0, C∗0) =

gX
∗
. (Otherwise, the game outputs 0.) This change is purely conceptual: indeed, since CRS2 is

binding, we can use the soundness of Groth-Sahai proofs. Thus, any valid proof π∗2 guarantees
that S3 (from (3)) holds, and so Deceg(sk∗0, C∗0) = g

X∗ . We obtain

Pr [out2 = 1] = Pr [out1 = 1] . (6)

In Game 3, we generate both CRS1 and CRS2 as hiding CRSs, using HGen. The CRS indis-
tinguishability of Groth-Sahai proofs yields

Pr [out3 = 1] − Pr [out2 = 1] = Advddh
G,B3(k) + Advddh

Ĝ,B ′3
(k) (7)

for suitable DDH adversaries B3 and B ′3. (Here, we use the re-randomizability of DDH tuples.
This enables a reduction that loses only a factor of 1 instead of 2.)

In Game 4, we simulate all proofs π2 in signatures generated for A, using the Groth-Sahai
simulator Sim (on input the random coins RCRS used to prepare CRS). We also generate the
corresponding commitments CZ in all verification keys as CZ ← Com(CRS2, 1). We stress that
all X(`) are still chosen randomly, and all signatures are generated with encryptions C0, C1 of
X(`). By the simulation property of Groth-Sahai proofs (see Theorem 2.6 and the following
comment concerning the reuse of commitments), these changes do not affect A’s view:

Pr [out4 = 1] = Pr [out3 = 1] . (8)

In Game 5, we change the generation of signatures and the forgery check from Game 2 as
follows. To describe these changes, let R(`) : Zp → Z∗p (for all scheme instances ` ∈ [nU]) be
truly random functions. Our changes in Game 5 are then as follows:
• All signatures generated for A contain encryptions C0, C1 of exponents Z0 = Z1 = R(`)(M)

(encoded as gZ0 , gZ1) instead of Z0 = Z1 = X(`), where M is the signed message. As in
Game 4, the corresponding proof π is generated using witnesses for S1 and S3 from (3).
• Any forgery σ∗ = (C∗0, C

∗
1, π
∗
1, π
∗
2) for a (fresh) message M∗ from A is considered valid only

if π∗1 and π∗2 are valid and Deceg(sk∗0, C∗0) = R∗(M∗) holds. Otherwise, the game outputs 0.
(Again, we use the shorthand notationR∗ = R(`∗) for the challenge instance `∗.)

In particular, the second change implies that

Pr [out5 = 1] ≤ 1/(p− 1) ≤ 1/2k, (9)

sinceR∗(M∗) is information-theoretically hidden from A.
Hence, it remains to relate Game 4 and Game 5:

11

Lemma 3.2. For n = 2dlog2(p)e+ k and suitable DDH adversaries B5 and B ′5, we have∣∣Pr [out5 = 1] − Pr [out4 = 1]
∣∣ ≤ 8n ·

∣∣Advddh
G,B5(k)

∣∣+ 4n · ∣∣Advddh
Ĝ,B ′5

(k)
∣∣+ O(n/2k). (10)

Before we prove Lemma 3.2, we remark that putting together (5-10), we obtain (4), which
is sufficient to show Theorem 3.1.

Proof of Lemma 3.2. We will consider a series of hybrid games between Game 4 and Game 5.
Concretely, Game 4.i (for i ≥ 0) is defined like Game 4, except for the following changes:
• We initially uniformly and independently choose i invertible affine functions fj : Zp → Zp

(for j ∈ [i]). The fj define a “partial fingerprint” function Li : Zp → {−1, 0, 1}i through

Li(M) =

((
f1(M)

p

)
, . . . ,

(
fi(M)

p

))
. (11)

For every scheme instance ` ∈ [nU], letH(`)
i : Zp → Z∗p be the composition of Li with a truly

random functionR(`)
i : {−1, 0, 1}i → Z∗p (so thatH(`)

i (M) = R(`)
i (Li(M))).

• Signatures for A contain encryptions C0, C1 of exponents Z0 = Z1 = H
(`)
i (M).

• Any forgery σ∗ = (C∗0, C
∗
1, π
∗
1, π
∗
2) for a (fresh) message M∗ from A is considered valid only

if π∗1 and π∗2 are valid and Deceg(sk∗0, C∗0) = H
(`)
i (M∗).

Note that every H(`)
0 is a constant function that maps every input M to the same random

value. Hence, Game 4.0 is identical to Game 4:

Pr [out4.0 = 1] = Pr [out4 = 1] . (12)

Conversely, for large enough i and with high probability, the “fingerprint function”Li becomes
injective, so that allH(`)

i become independent truly random functions from Zp to Z∗p:

Lemma 3.3. For n = 2dlog2(p)e + k, the function Ln from (11) is injective, except with probability
1/2k (over the choice of the invertible affine functions fj : Zp → Zp).

We postpone a proof of Lemma 3.3 for now.
Hence, the functions H(`)

n = R(`)
n ◦ Ln used in Game 4.n (for n = 2dlog2(p)e + k) are statis-

tically close to truly random functionsR(`) (as used in Game 5):∣∣Pr [out4.n = 1] − Pr [out5 = 1]
∣∣ ≤ 1/2k. (13)

Thus, we only need to show that there is no detectable difference between Game 4.i and
Game 4.(i+ 1) for any i. We do so using a hybrid argument (i.e., a sequence of games) that
interpolates between Game 4.i and Game 4.(i+ 1). (See Fig. 2 for an overview.)

Concretely, Game 4.i.0 is identical to Game 4.i. Thus,

Pr [out4.i.0 = 1] = Pr [out4.i = 1] . (14)

In Game 4.i.1, we initially choose an invertible affine function f∗ : Zp → Zp uniformly, and
we abort (with output 0) if the message M∗ for which A finally prepares a forgery satisfies
f∗(M∗) ∈ QRp ∪ {0}. We stress that f∗ is not (yet) committed to in any Cα, Cβ, and thus com-
pletely hidden from A. Hence, an abort occurs with probability p+1

2p = 1
2 +

1
2p , independently

of A’s view, so

Pr [out4.i.1 = 1] =

(
1

2
−
1

2p

)
· Pr [out4.i.0 = 1] ≥

1

2
· Pr [out4.i.0 = 1] −

1

2p
. (15)

In Game 4.i.2, we commit to the coefficients f∗0, f
∗
1 of the function f∗ from Game 4.i.1 in

Cα, Cβ for all verification keys (instead of the coefficients α = β = 0). Accordingly, we generate

12

all signatures forA by proving statement S2 (and not S1) from (3) whenever possible (i.e., upon
all signature queries with f∗(M) ∈ QRp ∪ {0}). Since CRS1 is hiding, we can use the witness-
indistinguishability of Groth-Sahai proofs to obtain

Pr [out4.i.2 = 1] = Pr [out4.i.1 = 1] . (16)

To describe our change in Game 4.i.3, recall that in Game 4.i.2, functions H(`)
i is used to

determine both the values Z0 = Z1 = H(`)
i (M) encrypted in C0, C1 upon signature queries,

and to implement the forgery check. In Game 4.i.3, we use three such functionsH(`)
i ,Z

(`)
i ,Q

(`)
i :

Zp → Z∗p. Each of these functions is defined like H(`)
i , for the same fingerprint function Li,

but with different (i.e., independently chosen) random functionsR(`)
i . (In other words, we can

write H(`)
i = F ◦ Li, and Z(`)

i = F ′ ◦ Li, and Q(`)
i = F ′′ ◦ Li for independently random functions

F, F ′, F ′′ : {−1, 0, 1}i → Z∗p. Intuitively, thus, Z(`)
i and Q(`)

i are “decoupled copies” ofH(`)
i .)

Our goal will be to use the functionsH(`)
i ,Z

(`)
i ,Q

(`)
i for messagesM satisfying f∗(M) /∈ QRp,

f∗(M) = 0, and f∗(M) ∈ QRp, respectively. This will be conceptually identical to using a single

function H(`)
i+1 for all messages of a given scheme instance `. At this point, however, we can

only partially implement this strategy, since we can only replace the messages encrypted in C1,
but not those from C0. (Indeed, sk∗0 is still required to implement the additional forgery check
in Game 4.i.3.)

Thus, in Game 4.i.3, for every scheme instance ` ∈ [nU], we use the respective functionH(`)
i

to generate all ciphertextsC0, C1 in signatures (as in Game 4.i.2), with the following exceptions:
• For signature queries with f∗(M) = 0, we encrypt Z1 = Z

(`)
i (M) (instead of Z1 = H

(`)
i (M))

in the ciphertext C1 of the generated signature.
• For signature queries with f∗(M) ∈ QRp, we encrypt Z1 = Q

(`)
i (M) in C1.

Note that for signatures with f∗(M) ∈ QRp ∪ {0}, the random coins used to generate C1 (or C0)

are not used as a witness in the process of constructing π. Furthermore, no secret key sk(`)1 has
to be known to the game. A reduction to the (tight) IND-mCPA security of ElGamal yields

n−1∑
i=0

Pr [out4.i.3 = 1] − Pr [out4.i.2 = 1] = n ·Advddh
G,B4.i.3(k) (17)

for a suitable DDH adversary B4.i.3. (We note that even though the random coins R of C1 are
not known explicitly to B4.i.3, a C0 with reused R can be constructed from sk(`)0 and a given gR.)

Our next step will be to replace the values encrypted in C0 in a similar way. To do so,
however, we need some preparations, since Game 4.i.3 still knows the secret keys sk(`)0 (to
finally implement the forgery check). Fortunately, however, we can alternatively use the sk(`)1
to implement this check. (To see why this yields the same functionality, recall that by our abort
rule from Game 1, we may restrict to forgeries with f∗(M∗) /∈ QRp ∪ {0}. However, by (3), a
valid forgery for such a message must contain C∗0 and C∗1 that encrypt the same message.)

As a first step, in Game 4.i.4, we initially generate a binding CRS CRS1 (using CRS1 ←
BGen(gpp)). The CRS indistinguishability of Groth-Sahai proofs ensures that

n−1∑
i=0

Pr [out4.i.4 = 1] − Pr [out4.i.3 = 1] = n ·
(

Advddh
G,B4.i.4(k) + Advddh

Ĝ,B ′4.i.4
(k)
)

(18)

for suitable DDH adversaries B4.i.4 and B ′4.i.4.
Next, in Game 4.i.5, we implement the forgery check rule from Game 2 using sk∗1 (and not

sk∗0). That is, when A submits a forgery σ∗ = (C∗0, C
∗
1, π
∗
1, π
∗
2), we check if Deceg(sk∗1, C∗1) =

H∗i (M∗) holds (and reject the forgery if not). We may assume that M∗ /∈ QRp ∪ {0} (since

13

otherwise, we trivially abort anyway). But for suchM∗, a valid forgery must fulfill S1 from (3),
since at this point, CRS1 is binding. In other words, we have Deceg(sk∗1, C∗1) = H∗i (M∗) if and
only if Deceg(sk∗0, C∗0) = H∗i (M∗). Hence, the change in Game 4.i.5 is purely conceptual, and
we get:

Pr [out4.i.5 = 1] = Pr [out4.i.4 = 1] . (19)

Since we no longer use sk∗0 (or the random coins from any C1 generated upon a signature
query), we can continue with our strategy. Specifically, in Game 4.i.6, we generate all cipher-
texts C0, C1 in signatures as follows:
• For queries with f∗(M) /∈ QRp, we encrypt Z0 = Z1 = H

(`)
i (M) in C0 and C1.

• For queries with f∗(M) = 0, we encrypt Z0 = Z1 = Z
(`)
i (M) in C0 and C1.

• For queries with f∗(M) ∈ QRp, we encrypt Z0 = Z1 = Q
(`)
i (M) in C0 and C1.

Observe that the only difference to Game 4.i.5 is that the messages Z0 encrypted in ciphertexts
C0 in signatures with f∗(M) ∈ QRp ∪ {0} are changed. For such encryptions, neither secret key
nor random coins are used by the game. Hence, a reduction to the (tight) IND-mCPA security
of ElGamal yields

n−1∑
i=0

Pr [out4.i.6 = 1] − Pr [out4.i.5 = 1] = n ·Advddh
G,B4.i.6(k) (20)

for a suitable DDH adversary B4.i.6. (Again, a reuse of random coins between C0 and C1 is
possible since the secret key sk1 is known to B4.i.6 during the reduction.)

Now in Game 4.i.6, we handle both signature queries and A’s forgery with either H(`)
i ,

Z(`)
i , or Q(`)

i , depending on the Legendre symbol
(
M
p

)
of M. This is equivalent to handling all

messages with a single functionH(`)
i+1 by the definition ofH(`)

i (see also (11)). Hence, we already
“almost” implement the rules of Game 4.(i+ 1), and we only need to clean up things a little.

Namely, in Game 4.i.7, we again implement the forgery check from Game 2 using sk∗0 (and
not sk∗1). With the same reasoning as in Game 5, we get:

Pr [out4.i.7 = 1] = Pr [out4.i.6 = 1] . (21)

Next, in Game 4.i.8, we again set up CRS1 as a hiding CRS (using HGen). Again, CRS
indistinguishability guarantees

n−1∑
i=0

Pr [out4.i.8 = 1] − Pr [out4.i.7 = 1] = n ·
(

Advddh
G,B4.i.8(k) + Advddh

Ĝ,B ′4.i.8
(k)
)

(22)

for suitable DDH adversaries B4.i.8 and B ′4.i.8.
In Game 4.i.9, we again set up the commitments Cα, Cβ in all verification keys as commit-

ments to α = β = 0. Accordingly, we generate all signatures for A by proving statement S1
from (3). (Note that this is possible again since all generated pairs (C0, C1) do encrypt the same
message.) By the witness-indistinguishability of Groth-Sahai proofs,

Pr [out4.i.9 = 1] = Pr [out4.i.8 = 1] . (23)

Finally, in Game 4.i.10, we do not abort anymore. (That is, we take back the abort rule
from Game 1.) To see how this change affects the game’s output, we make a few observations.
First, note that in both Game 4.i.9 and Game 4.i.10, A’s view only depends on the way f∗

partitions the set of messages depending on
(f∗(M)

p

)
, but not on which messagesM are mapped

by f∗ to squares, and which to non-squares. (Indeed, any partitioning of the M is invariant
under multiplying f∗ with an invertible non-square modulo p. However, multiplication with
an invertible non-square inverts the Legendre symbol of f∗(M).)

14

Thus, the probability for A to successfully forge a signature with
(f∗(M∗)

p

)
= 1 is exactly

the same as that to forge a signature with
(f∗(M∗)

p

)
= −1. Hence, if we cease to abort upon

f∗(M∗) ∈ QRp ∪ {0}, we at least double A’s success probability:

Pr [out4.i.10 = 1] ≥ 2 · Pr [out4.i.9 = 1] . (24)

At the same time, Game 4.i.10 is identical to Game 4.(i+ 1). (As argued, the use of three
functionsH(`)

i ,Z
(`)
i ,Q

(`)
i for each scheme instance ` is equivalent to the use of a single function

H(`)
i+1 in Game 4.(i+ 1). Furthermore, CRS1 is hiding, the Cα, Cβ are set up as commitments to

α = β = 0, and the signatures use proofs of statement S1.) Thus,

Pr [out4.i.10 = 1] = Pr
[
out4.(i+1) = 1

]
. (25)

Collecting all differences of probabilities from (14-25), we obtain

∣∣∣Pr [out4.0 = 1] − Pr [out4.n = 1]
∣∣∣ ≤ ∣∣∣ n−1∑

i=0

Pr [out4.i = 1] − Pr
[
out4.(i+1) = 1

] ∣∣∣
≤ 8n ·

∣∣Advddh
G,B5(k)

∣∣+ 4n · ∣∣Advddh
Ĝ,B ′5

(k)
∣∣+ O(n/2k)

for DDH adversaries B5 and B ′5 that combine all adversaries from the collected differences.
Together with (12) and (13), we obtain (10).

It remains to prove Lemma 3.3:

Proof of Lemma 3.3. For any distinct M0,M1 ∈ Zp and a uniformly chosen invertible affine
function f : Zp → Zp, we have Pr

[(
f(M0)
p

)
=
(
f(M1)
p

)]
≤ 1/2, since f is pairwise indepen-

dent. As all fj from (11) are chosen independently, we get

Pr [Ln(M0) = Ln(M1)] ≤ 1/2n

for any two distinct M0,M1. A union bound over all O(p2) such pairs (M0,M1) shows the
claim.

References

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. “Structure-
Preserving Signatures and Commitments to Group Elements”. In: Proc. CRYPTO 2010. Vol. 6223. Lecture
Notes in Computer Science. Springer, 2010, pp. 209–236.

[2] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. “Tagged One-
Time Signatures: Tight Security and Optimal Tag Size”. In: Proc. Public Key Cryptography 2013. Vol. 7778.
Lecture Notes in Computer Science. Springer, 2013, pp. 312–331.

[3] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-Key Encryption in a Multi-user Setting: Secu-
rity Proofs and Improvements”. In: Proc. EUROCRYPT 2000. Vol. 1807. Lecture Notes in Computer Science.
Springer, 2000, pp. 259–274.

[4] Daniel J. Bernstein. “Proving Tight Security for Rabin-Williams Signatures”. In: Proc. EUROCRYPT 2008.
Vol. 4965. Lecture Notes in Computer Science. Springer, 2008, pp. 70–87.

[5] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. “(Hierarchical) Identity-Based Encryption from Affine Message
Authentication”. In: Proc. CRYPTO (1) 2014. Vol. 8616. Lecture Notes in Computer Science. Springer, 2014,
pp. 408–425.

[6] Alexandra Boldyreva. “Strengthening Security of RSA-OAEP”. in: Proc. CT-RSA 2009. Vol. 5473. Lecture
Notes in Computer Science. Springer, 2009, pp. 399–413.

[7] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity-Based Encryption Without Random
Oracles”. In: Proc. EUROCRYPT 2004. Vol. 3027. Lecture Notes in Computer Science. Springer, 2004,
pp. 223–238.

15

[8] Dan Boneh and Xavier Boyen. “Secure Identity Based Encryption Without Random Oracles”. In: Proc.
CRYPTO 2004. Vol. 3152. Lecture Notes in Computer Science. Springer, 2004, pp. 443–459.

[9] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”. In: Proc. CRYPTO
2001. Vol. 2139. Lecture Notes in Computer Science. Springer, 2001, pp. 213–229.

[10] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”. In: SIAM J.
Comput. 32.3 (2003), pp. 586–615.

[11] Dan Boneh, Ilya Mironov, and Victor Shoup. “A Secure Signature Scheme from Bilinear Maps”. In: Proc.
CT-RSA 2003. Vol. 2612. Lecture Notes in Computer Science. Springer, 2003, pp. 98–110.

[12] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman Problem and Applications”. In: Proc.
EUROCRYPT 2008. Vol. 4965. Lecture Notes in Computer Science. Springer, 2008, pp. 127–145.

[13] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. “Bonsai Trees, or How to Delegate a Lattice
Basis”. In: Proc. EUROCRYPT 2010. Vol. 6110. Lecture Notes in Computer Science. Springer, 2010, pp. 523–
552.

[14] Jie Chen and Hoeteck Wee. “Fully, (Almost) Tightly Secure IBE and Dual System Groups”. In: Proc. CRYPTO
(2) 2013. Vol. 8043. Lecture Notes in Computer Science. Springer, 2013, pp. 435–460.

[15] Benoît Chevallier-Mames and Marc Joye. “A Practical and Tightly Secure Signature Scheme Without Hash
Function”. In: Proc. CT-RSA 2007. Vol. 4377. Lecture Notes in Computer Science. Springer, 2006, pp. 339–
356.

[16] Jean-Sébastien Coron. “On the Exact Security of Full Domain Hash”. In: Proc. CRYPTO 2000. Vol. 1880.
Lecture Notes in Computer Science. Springer, 2000, pp. 229–235.

[17] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In: Proc. Public Key Cryptography 2014.
Vol. 8383. Lecture Notes in Computer Science. Springer, 2014, pp. 630–649.

[18] Georg Fuchsbauer. “Commuting Signatures and Verifiable Encryption”. In: Proc. EUROCRYPT 2011.
Vol. 6632. Lecture Notes in Computer Science. Springer, 2011, pp. 224–245.

[19] David Galindo, Sebastià Martín Molleví, Paz Morillo, and Jorge Luis Villar. “Easy Verifiable Primitives and
Practical Public Key Cryptosystems”. In: Proc. ISC 2003. Vol. 2851. Lecture Notes in Computer Science.
Springer, 2003, pp. 69–83.

[20] Rosario Gennaro, Shai Halevi, and Tal Rabin. “Secure Hash-and-Sign Signatures Without the Random Ora-
cle”. In: Proc. EUROCRYPT 1999. Vol. 1592. Lecture Notes in Computer Science. Springer, 1999, pp. 123–
139.

[21] Craig Gentry. “Practical Identity-Based Encryption Without Random Oracles”. In: Proc. EUROCRYPT 2006.
Vol. 4004. Lecture Notes in Computer Science. Springer, 2006, pp. 445–464.

[22] Craig Gentry and Shai Halevi. “Hierarchical Identity Based Encryption with Polynomially Many Levels”.
In: Proc. TCC 2009. Vol. 5444. Lecture Notes in Computer Science. Springer, 2009, pp. 437–456.

[23] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. “Efficient Signature Schemes with Tight Re-
ductions to the Diffie-Hellman Problems”. In: J. Cryptology 20.4 (2007), pp. 493–514.

[24] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “On the Cryptographic Applications of Random Func-
tions”. In: Proc. CRYPTO 1984. Vol. 196. Lecture Notes in Computer Science. Springer, 1985, pp. 276–288.

[25] Jens Groth and Amit Sahai. “Efficient Noninteractive Proof Systems for Bilinear Groups”. In: SIAM J.
Comput. 41.5 (2012), pp. 1193–1232.

[26] Dennis Hofheinz. “All-But-Many Lossy Trapdoor Functions”. In: Proc. EUROCRYPT 2012. Vol. 7237.
Lecture Notes in Computer Science. Springer, 2012, pp. 209–227.

[27] Dennis Hofheinz and Tibor Jager. “Tightly Secure Signatures and Public-Key Encryption”. In: Proc. CRYPTO
2012. Vol. 7417. Lecture Notes in Computer Science. Springer, 2012, pp. 590–607.

[28] Susan Hohenberger and Brent Waters. “Short and Stateless Signatures from the RSA Assumption”. In: Proc.
CRYPTO 2009. Vol. 5677. Lecture Notes in Computer Science. Springer, 2009, pp. 654–670.

[29] Saqib A. Kakvi and Eike Kiltz. “Optimal Security Proofs for Full Domain Hash, Revisited”. In: Proc. EURO-
CRYPT 2012. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 537–553.

[30] Benoît Libert, Marc Joye, Moti Yung, and Thomas Peters. “Concise Multi-challenge CCA-Secure Encryption
and Signatures with Almost Tight Security”. In: Proc. ASIACRYPT (2) 2014. Vol. 8874. Lecture Notes in
Computer Science. Springer, 2014, pp. 1–21.

[31] Moni Naor and Omer Reingold. “Number-theoretic Constructions of Efficient Pseudo-random Functions”.
In: Proc. FOCS 1997. IEEE Computer Society, 1997, pp. 458–467.

[32] Moni Naor and Moti Yung. “Public-key Cryptosystems Provably Secure against Chosen Ciphertext At-
tacks”. In: Proc. STOC 1990. ACM, 1990, pp. 427–437.

[33] Moni Naor and Moti Yung. “Universal One-Way Hash Functions and their Cryptographic Applications”.
In: Proc. STOC 1989. ACM, 1989, pp. 33–43.

[34] Sven Schäge. “Tight Proofs for Signature Schemes without Random Oracles”. In: Proc. EUROCRYPT 2011.
Vol. 6632. Lecture Notes in Computer Science. Springer, 2011, pp. 189–206.

[35] Brent Waters. “Efficient Identity-Based Encryption Without Random Oracles”. In: Proc. EUROCRYPT 2005.
Vol. 3494. Lecture Notes in Computer Science. Springer, 2005, pp. 114–127.

16

A Compact and (almost) tightly secure public-key encryption

Our signature scheme SIG from Section 3 is “almost” automorphic (in the sense of [1]). Namely,
while its verification can be expressed as a system of equations that is compatible with Groth-
Sahai proofs, its messages are exponents (as opposed to group elements). However, our
scheme can still be used in the generic construction of [27]. This yields an (almost) tightly
secure public-key encryption scheme with compact parameters, keys and ciphertexts. (Here,
“compact” means “comprised of only a constant number of group elements or exponents.”)

But although compact in the above sense, the resulting encryption scheme would be rather
inefficient (in particular since it would use nested Groth-Sahai proofs). Thus, here we describe
an optimized and more compact (almost) tightly secure public-key encryption scheme PKE.
Setting and ingredients. The basis for our PKE construction is the signature scheme SIG from
Section 3, and we assume similar ingredients. In particular, we assume groups G and Ĝ, along
with the ElGamal encryption and Groth-Sahai proofs over G. Additionally, we assume:
• An OT-EUF-mCMA secure signature scheme with message space Zp, given by algorithms

OPars,OGen,OSig,OVer. For concreteness, in all of the following, we assume the one-time
signature scheme TOTS from [27] in G. Its OT-EUF-mCMA security can be tightly reduced
to the discrete logarithm assumption in G (which is implied by the DDH assumption in G).
• A generator H of collision-resistant hash functions H : {0, 1}∗ → {0, 1}k. We will interpret

H-outputs as Zp-elements in the natural way. (Recall that p > 2k.)
All ingredients can be instantiated under the DDH assumptions in G and Ĝ.
Public parameters. EPars(1k) first proceeds like the parameter generation of SIG, and samples
group parameters gpp, a hiding Groth-Sahai CRS, and two ElGamal public keys pk0, pk1. Then,
EPars sets up exponents Z,α, β and ciphertexts

Cα ← Enceg(pk0, g
α;Rα), Cβ ← Enceg(pk0, g

β;Rβ), CZ ← Enceg(pk0, g
Z;RZ).

Note that here, we encrypt (and do not commit to) Z,α, β in order to be able to produce slightly
more compact proofs involving Z,α, β later on. However, we note that conceptually, we could
have as well committed to Z,α, β as with SIG.

Finally, EPars chooses parameters opp← OPars(1k) and a hash function H, and outputs

epp = (gpp,CRS, pk0, pk1, opp,H, Cα, Cβ, CZ).

Key generation. EGen(epp) samples two ElGamal keypairs

(pk ′0, sk ′0)← EGeneg(G, p, g) (pk ′1, sk ′1)← EGeneg(G, p, g),

and outputs a public and a secret key as

pk = (pk ′0, pk ′1) sk = (d, sk ′d)

for a uniformly chosen bit d← {0, 1}.
Encryption. Intuitively, encryption corresponds to a Naor-Yung style double encryption with
consistency proof [32]. The consistency proof itself proceeds as in [27], and essentially proves
that either the double encryption is consistent, or a signature to a fresh value is known. (A
suitable fresh value will be hash of a freshly sampled verification key of the one-time signature
scheme.) Concretely, Enc(pk,M), forM ∈ G, chooses a one-time signature keypair

(ovk, osk)← OGen(opp),

and encrypts the values Z ′0 = Z
′
1 =M ∈ G and Z0 = Z1 = 0 as

C ′0 = Enceg(pk ′0, Z
′
0;R
′) C0 = Enceg(pk0, g

Z0 ;R)

C ′1 = Enceg(pk ′1, Z
′
1;R
′) C1 = Enceg(pk1, g

Z1 ;R).

17

(Note that for efficiency and to simplify proofs involving these values, we reuse the encryption
random coins R ′ and R.) Then, Enc generates a proof π (under CRS) of the statement

Z ′0 = Z
′
1 ∨

((
Z0 = Z1 ∨ f(H(ovk)) ∈ QRp ∪ {0}

)
∧
(
Z0 = Z ∨ Z = 0

))
. (26)

Enc will prove the left branch S1 ′ of the outer ∨ clause, using as witness the encryption ran-
domness R ′. Hence, π essentially proves consistency of C ′0, C

′
1, or the same statement as for a

SIG-signature for H(ovk). (There are some slight differences compared to a SIG-signature: first,
we use only one CRS. Hence, we cannot simulate proofs for substatement Z0 = Z during the
proof. Instead, however, we can set Z = 0 to be able to generate proofs for S3 ′ without knowl-
edge of Z0. Second, because the random coins used for Cα, Cβ, CZ are not known at encryption
time, the proof of quadratic residuosity becomes somewhat less efficient than the one in SIG’s
signing algorithm. We refer to Appendix B.2 for more details on the exact proof equations.)

Finally, Enc signs

σ← OSig(osk,H(C ′0, C
′
1, C0, C1, π))

and outputs the ciphertext
C = (C ′0, C

′
1, C0, C1, π, ovk, σ).

Decryption. Dec(sk, C) checks the validity of σ and π. If both σ and π are valid, Dec outputs
M← Deceg(sk ′d, C ′d); otherwise, Dec outputs ⊥.
Efficiency. PKE has the following efficiency characteristics (cf. Appendix B.2):
• The public parameters consist of 12 G- and 3 Ĝ-elements, plus the group parameters gpp,

and a description of the hash function H.
• Each public key contains 2 G-elements.
• Each secret key contains one Zp-exponent and a bit.
• Each ciphertext contains 27 G- and 30 Ĝ-elements, and 3 Zp-exponents.

Theorem A.1 (Security of PKE). Under the DDH assumptions in G and Ĝ, and assuming that H
is collision-resistant, the PKE scheme PKE described above is IND-mCCA secure. The corresponding
security reductions lose only a multiplicative factor of O(k), where k is the security parameter.

Proof sketch. The proof combines the strategy from [27] with our concrete signature scheme.
This strategy proceeds in games, and modifies an IND-mCCA attack with adversary A as
follows:
• First, the consistency proofs in all ciphertexts are prepared with different witnesses. More

specifically, instead of proving Z ′0 = Z ′1, we prove the right branch of (26). (Note that this
right branch corresponds to the validity of a SIG-signature for message H(ovk).) Thanks to
the witness-indistinguishability of Groth-Sahai proofs, this change is not detectable by A.
• Next, all challenge ciphertexts generated forA are made inconsistent. (This is possible since

the ciphertext consistency proofs are prepared from signature witnesses now.) Concretely,
recall that so far we have encrypted the respective challenge message M∗b (for the secret
bit b chosen by the IND-mCCA experiment) in both C ′0 and C ′1 of all challenge ciphertexts.
Now we encrypt M∗b in C ′d and M∗1−b in C ′1−d, where d is the bit chosen for the respective
PKE instance i. Hence, we change the encrypted message for all ElGamal instances whose
secret key is not used. Since only the secret keys sk ′d (but not the sk ′1−d) are used in the
experiment, this game modification can be justified with the (tight) security of ElGamal.
• We now reject all inconsistent (in the sense Deceg(sk ′0, C ′0) 6= Deceg(sk ′1, C ′1)) decryption

queries from A. At this point in the proof, we know both sk ′0 and sk ′1 for all PKE-instances,
and can thus recognize the first inconsistent (in the above sense) decryption query with a
valid consistency proof. Note that any such query implies a valid SIG-signature for a mes-
sage H(ovk). The security of the one-time signature scheme guarantees that this message is
fresh, so that A has essentially forged a SIG-signature. Any such forgery can be excluded
with the same strategy as in the proof of Theorem 3.1 (with the differences described above).

18

At this point, A gets no information about the IND-mCCA secret b anymore. Namely, each
challenge ciphertext contains ElGamal encryptions of bothM∗0 andM∗1, in an order determined
by d⊕b, where d denotes which ElGamal secret key sk ′d the experiment uses to decrypt for this
instance. Now since inconsistent ciphertexts are rejected, the game’s answer toA’s decryption
queries does not depend on the any of the bits d. Moreover, unless (any) d is known, also b
is hidden. Hence, A’s view is now completely independent of b, and thus A’s IND-mCCA
success is zero.

B Details on the exact Groth-Sahai equations in our schemes

B.1 The exact Groth-Sahai equations for the proofs in signatures

We now give details on the proofs π1 and π2 in signatures from SIG. Recall that π1 and π2 shall
prove the respective statements(

Z0 = Z1︸ ︷︷ ︸
S1

∨ f(M) ∈ QRp ∪ {0}︸ ︷︷ ︸
S2

)
and Z0 = Z︸ ︷︷ ︸

S3

. (27)

The statements S1-S3. We now discuss the three individual statements S1-S3 from (27) in
more detail. To this end, let us write the ElGamal ciphertexts C0, C1 from a signature as

C0 = (A,B0) = (gR, pkR0 · g
Z0) C1 = (A,B1) = (gR, pkR1 · g

Z1).

(Of course, the reused value A = gR will only appear once in a signature.)
S1. The statement Z0 = Z1 holds if and only if (g, pk1/pk0, A, B1/B0) is a Diffie-Hellman tuple.

Thus, S1 is equivalent to the equations A = gR and B1/B0 = (pk1/pk0)
R, with witness R.

S2. The statement f(M) ∈ QRp ∪ {0} is equivalent to the existence of an exponentW ∈ Zp with
f(M) =W2 mod p. (Recall that a commitment to f(M) can be homomorphically computed
fromM and the commitments Cα, Cβ.) Hence, a witness to S2 is given by (α,β,W).

S3. We can express Z0 = Z as an equation B0 = pkR0 · g
Z with witness (R, Z).

All involved commitment random coins are additionally required to construct a valid proof.
Besides, so far we have neglected that in a setting with an asymmetric pairing, not all combi-
nations of, e.g., Zp-products can be directly expressed. (For instance, a square W2 needs to be
rephrased as W · Ŵ, with an additional proof that W = Ŵ.) Hence, in the rest of this section,
we will decorate variables that correspond to a Ĝ-commitment with a hat (e.g., Ŵ).
The equations for π1. Equations for the disjunction S1 ∨ S2 can be derived using standard
techniques. However, if we optimize a little, we obtain the following equations for S1∨ S2:

AÛ = gV̂ (B1/B0)
Û = (pk1/pk0)

V̂ f̂(M) =W · Ŵ W = Ŵ + Û.

(For instance, if we want to prove S2, we can set Û = V̂ = 0 and W = Ŵ such that f(M) =

W2.) The involved variables from the verification key are α̂ and β̂ (used to homomorphically
construct f̂(M)). The variables whose commitments are placed in the signature are Û, V̂,W, Ŵ.
All of these variables are committed to using CRS1.
The equations for π2. Similarly, we obtain the following equations for S3:

A = gŜ B0 = pkŜ0 · g
Z.

The variables are Z (committed to in vk) and Ŝ (from σ), both committed to using CRS2.
Remarks and efficiency summary. We emphasize that hence, the proofs π1 and π2 are in-
dependent (and in particular do not share commitments). Furthermore, thanks to the com-
posability of Groth-Sahai proofs, the commitments Cα, Cβ, CZ to α,β, Z that are placed in the

19

verification key can be directly (re-)used in proofs. Each commitment occupies 2 group el-
ements. In total, the equations above comprise 4 linear equations over G, and 2 quadratic
equations over Zp. Thus, π1 contains 4 · 2 + 2 · 1 + 2 · 4 = 18 group elements (12 of them from
Ĝ), and π2 contains 1 · 2+ 2 · 1 = 4 group elements (2 of them from Ĝ).

B.2 The exact Groth-Sahai equations for the proofs in ciphertexts

We now detail the proof π in ciphertexts from PKE. Recall that π shall prove the statement

Z ′0 = Z
′
1︸ ︷︷ ︸

S1 ′

∨
((
Z0 = Z1︸ ︷︷ ︸

S2 ′

∨ f(H(ovk)) ∈ QRp ∪ {0}︸ ︷︷ ︸
S3 ′

)
∧
(
Z0 = Z︸ ︷︷ ︸
S4 ′

∨ Z = 0︸ ︷︷ ︸
S5 ′

))
. (28)

The variables in (28) refer to the messages encrypted in PKEeg-ciphertexts from the public
parameters and the PKE-ciphertext at hand. We make these PKEeg-ciphertexts explicit as

C0 = Enceg(pk0, g
Z0 ;R) = (A,B0) C ′0 = Enceg(pk ′0, g

Z ′0 ;R ′) = (A ′, B ′0)

C1 = Enceg(pk1, g
Z1 ;R) = (A,B1) C ′1 = Enceg(pk ′1, g

Z ′1 ;R ′) = (A ′, B ′1)

CZ = Enceg(pk0, g
Z;RZ) = (AZ, BZ).

Besides, a PKEeg-ciphertext Cf = Enceg(pk0, g
f(H(ovk));Rf) = (Af, Bf) that determines the vari-

able f(H(ovk)) can be homomorphically computed from the ciphertexts Cα, Cβ, and H(ovk).
The statements S1 ′-S5 ′. Let us take a closer look at the individual statements S1 ′-S5 ′:
S1 ′, S2 ′. These statements can be formalized like statement S1 for SIG. For instance, S1 ′ holds

if and only if (g, pk ′1/pk ′0, A
′, B ′1/B

′
0) is a Diffie-Hellman tuple; a suitable witness is R ′.

S4 ′, S5 ′. Similarly, S4 ′ holds precisely if (g, pk0, A/AZ, B0/BZ) is a Diffie-Hellman tuple; a wit-
ness is R− RZ. (Statement S5 ′ can be formalized analogously, with a witness RZ.)

S3 ′. As with SIG, S3 ′ holds if and only if there is a W ∈ Zp with f(H(ovk)) = W2 mod p. A
suitable witness consists ofW, and the encryption randomness Rf of Cf.

A reformulation. The composed statement from (28) is equivalent to(
S1 ′ ∨ S2 ′ ∨ S3 ′

)
∧

(
S1 ′ ∨ S4 ′ ∨ S5 ′

)
.

By the above, the first sub-statement S1 ′ ∨ S2 ′ ∨ S3 ′ is implied by the equations

AÛ = gV̂ A ′Û
′
= gV̂

′
AÛf

f = gV̂f

(B1/B0)
Û = (pk1/pk0)

V̂ (B ′1/B
′
0)
Û ′ = (pk ′1/pk ′0)

V̂ ′ BÛf

0 = pkV̂f0 · g
F̂

F̂ =W · Ŵ W = Ŵ Û+ Û ′ + Ûf = 1

(29)

for new variables Û, V̂, Û ′, V̂ ′, Ûf, V̂f, F̂,W, Ŵ. (We adopt the notation from Appendix B.1 to
decorate variables in Ĝ with a hat.) Roughly, the last equation guarantees that one of Û, Û ′, Ûf
is nonzero, and in fact that Ûf = 1 once Û = Û ′ = 0. Furthermore, we have Û ′ 6= 0 ⇒ S1 ′,
and Û 6= 0 ⇒ S2 ′, and Ûf 6= 0 ⇒ S3 ′. Finally, a witness for (29) can be produced from either a
witness for S1 ′, or for S2 ′, or for S3 ′. (For instance, we can set Û ′ = V̂ ′ = 0whenever a witness
for S1 ′ is not available.)

Similarly, sub-statement S1 ′ ∨ S4 ′ ∨ S5 ′ yields additional equations

(A/AZ)
Û0 = gV̂0 AÛZ

Z = gV̂Z Û ′ + Û0 + ÛZ = 1

(B0/BZ)
Û0 = pkV̂00 BÛZ

Z = pkV̂Z0

for new variables Û0, V̂0, ÛZ, V̂Z.
Summary. Summing up, π contains commitments to 13 variables (12 of them from Ĝ), and
proves 10 G-linear, 2 Zp-linear, and 3 quadratic equations over Zp. This yields a proof of
13 · 2+ 10 · 1+ 3 · 4 = 48 group elements (30 of them from Ĝ) and 2 · 1 = 2 exponents from Zp.

20

CRS2 Z π2 Z0 = Z1 forgery check remark
1 binding X(`) proof of S3 X(`) — EUF-mCMA
2 binding X(`) proof of S3 X(`) Deceg(sk∗0, C0) = X

∗ GS soundness

3 hiding X(`) proof of S3 X(`) Deceg(sk∗0, C0) = X
∗ GS CRS indist.

4 hiding 1 Sim-output X(`) Deceg(sk∗0, C0) = X
∗ GS simulation

5 hiding 1 Sim-output R(`)(M) Deceg(sk∗0, C0) = R(`)(M∗) see Fig. 2

Figure 1: Outline of the main proof, see Theorem 3.1. Boxes denote changes compared to the previous game. The
first column denotes the game number, CRS2 denotes the setup of the Groth-Sahai common reference string CRS2,
and Z denotes the value committed to in CZ in verification keys. Column π2 describes how proofs are prepared
in signatures. Z0, Z are the messages encrypted in C0, C1 in signatures generated for A. forgery check describes
an additional check required for a forgery to pass as valid (beyond being valid in the sense of Ver). The core of the
proof is the transition from Game 4 to Game 5 (with the previous transitions preparing the ground), see also Fig. 2.

21

if
(f∗ (M

)
p

) =
1

if
(f∗ (M

)
p

) =
−
1

#
C

R
S 1

f
π
1

Z
0

Z
1

π
1

Z
0
=
Z
1

fo
rg

er
y

ch
ec

k
ab

or
tc

on
di

ti
on

re
m

ar
k

4
.i
.0

hi
di

ng
0

S
1

H
(`
)

i
(M

)
H

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

—
sa

m
e

as
4
.i

4
.i
.1

hi
di

ng
0

S
1

H
(`
)

i
(M

)
H

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

lo
se

s
fa

ct
or
≈
2

4
.i
.2

hi
di

ng
f∗

S
1

H
(`
)

i
(M

)
H

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

G
S

w
it

ne
ss

-i
nd

.

4
.i
.3

hi
di

ng
f∗

S
2

H
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

El
G

am
al

4
.i
.4

bi
nd

in
g

f∗
S
2

H
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

G
S

C
R

S
in

di
st

.

4
.i
.5

bi
nd

in
g

f∗
S
2

H
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(

sk
∗ 1
,C
∗ 1
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

G
S

so
un

dn
es

s

4
.i
.6

bi
nd

in
g

f∗
S
2

Q
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 1
,C
∗ 1
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

El
G

am
al

4
.i
.7

bi
nd

in
g

f∗
S
2

Q
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(

sk
∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

G
S

so
un

dn
es

s

4
.i
.8

hi
di

ng
f∗

S
2

Q
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

G
S

C
R

S
in

di
st

.

4
.i
.9

hi
di

ng
0

S
1

Q
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

f∗
(M
∗
)
∈

Q
R

p
∪
{0
}

G
S

w
it

ne
ss

-i
nd

.
4
.i
.1
0

hi
di

ng
0

S
1

Q
(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1

H
(`
)

i
(M

)
D

ec
eg
(s

k∗ 0
,C
∗ 0
)
=
H

(`
)

i
(M
∗
)

—
ga

in
s

fa
ct

or
≈
2

sa
m

e
as
4
.(
i
+
1
)

Fi
gu

re
2:

Tr
an

si
ti

on
s

be
tw

ee
n

tw
o

hy
br

id
s

G
am

e
4
.i

an
d

G
am

e
4
.(
i
+
1
)

th
at

in
tu

rn
in

te
rp

ol
at

e
be

tw
ee

n
G

am
e
4

an
d

G
am

e
5

of
th

e
m

ai
n

pr
oo

f.
A

ga
in

,
bo

xe
s

de
no

te
ch

an
ge

s
co

m
pa

re
d

to
th

e
pr

ev
io

us
ga

m
e.

T
he

no
ta

ti
on

fo
llo

w
s

Fi
g.

1:
#

de
no

te
s

th
e

ga
m

e
nu

m
be

r,
an

d
C

R
S 1

an
d
f

de
no

te
th

e
se

tu
p

of
th

es
e

va
lu

es
in

th
e

pu
bl

ic
pa

ra
m

et
er

s.
Th

e
co

lu
m

n
π
1

de
sc

ri
be

s
w

hi
ch

su
b-

st
at

em
en

t(
i.e

.,
S
1

or
S
2
)t

he
pr

oo
fπ

1
ac

tu
al

ly
pr

ov
es

,a
nd

th
e

co
lu

m
ns
Z
0
,Z

1
de

sc
ri

be
ho

w
th

e
ga

m
e

pr
ep

ar
es

si
gn

at
ur

es
fo

r
A

.
In

th
is

,w
e

di
st

in
gu

is
h

th
e

ca
se

s
w

he
re

th
e

Le
ge

nd
re

sy
m

bo
l(f∗ (M

)
p

) of
th

e
m

es
sa

ge
to

be
si

gn
ed

is
1

an
d
−
1
,r

es
pe

ct
iv

el
y.

(W
e

ne
gl

ec
tt

he
un

lik
el

y
ca

se
(f∗ (M

)
p

) =
0

in
th

is
ov

er
vi

ew
.)

A
ls

o,
as

in
Fi

g.
1,

fo
rg

er
y

ch
ec

k
de

sc
ri

be
s

an
ad

di
ti

on
al

ch
ec

k
re

qu
ir

ed
fo

r
a

fo
rg

er
y

to
pa

ss
as

va
lid

.F
in

al
ly

,t
he

fu
nc

ti
on

s
H

(`
)

i
ar

e
de

fin
ed

at
th

e
be

gi
nn

in
g

of
th

e
pr

oo
fo

fL
em

m
a

3.
2.

(I
nt

ui
ti

ve
ly

,
H

(`
)

i
is

a
ra

nd
om

fu
nc

ti
on

th
at

ho
w

ev
er

do
es

no
t

de
pe

nd
on

it
s

fu
ll

in
pu

t
M

,b
ut

on
ly

on
i

va
lu

es
(f j(M

)

p

) fo
r

ra
nd

om
ly

ch
os

en
f j

.)
W

e
re

fe
r

to
Le

m
m

a
3.

2
fo

r
a

de
ta

ile
d

pr
oo

f
an

d
a

ju
st

ifi
ca

ti
on

fo
r

ea
ch

ga
m

e
tr

an
si

ti
on

.

22

	Introduction
	Preliminaries
	The signature scheme
	Scheme description
	Security proof

	Compact and (almost) tightly secure public-key encryption
	Details on the exact Groth-Sahai equations in our schemes
	The exact Groth-Sahai equations for the proofs in signatures
	The exact Groth-Sahai equations for the proofs in ciphertexts

