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Plaintext is mixed with AI-generated dis-information which binds the cryptanalyst to an 

irreducible set of mutually exclusive plausible plaintext candidates.  

 

As impractical as Vernam "One Time Pad" cipher has been, it's security strategy: 

equivocation is fundamentally superior to the prevailing strategy: intractability. 

Intractability erodes, equivocation endures. Alas, Vernam was an overkill. Equivocation 

works even if only a few plaintext candidates are left as an irreducible set, which is what 

Equivoe-T offers.  

 

The AI engine builds decoys off the plaintext such that each decoy has a counter-

meaning, or at least an off-meaning per the guarded plaintext,  while claiming at least 

threshold plausibility to “pump” entropy into the irreducible field of plaintext candidates. 

Equivoe-T uses a complete transposition algorithm that guarantees the existence of a key 

that matches any two arbitrarily selected permutations of the n transposed elements. 

Therefore every decoy qualifies as a plaintext. The transposed elements may be words, 

letters, a mix, or otherwise.  n can be selected to add intractability to the built-in 

equivocation since the key space grows fast (|Ktransposition| = n!).  
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1.0 Introduction 

Let's use the phrase 'erosive intractability' to characterize modern cryptography. 

Mathematically, the key being much shorter than the plaintext, the ciphertext necessarily 

commits to the single plausible plaintext that generated it. This statement holds regardless 

of the nature or particulars of the cipher. In other words, given a ciphertext C generated 

by a plaintext P using a Key |K| << |P|, there is only negligible likelihood for another 

plaintext P' ≠ P to find a different key, K' ≠ K, that will encrypt P' to C. It is therefore that 

in the worst case a cryptanalyst will employ the brute force approach, and eventually find 

K. As computers get faster the brute force approach is more effective. As math insight is 

being extracted, then an accelerated brute force may be employed, or a new mathematical 

understanding may point to operational short cuts, or to head on cracking of the 

intractability.  

In other words, by the end of the day, the ciphertext will point unequivocally to its 

generating plaintext. All that we can do is to hope and pray that this erosive intractability 

will last for as long as extracting the plaintext may be harmful to our interests. But as we 

analyzed above, so much depends on encryption today that this commitment of a 

ciphertext to its generating plaintext should be regarded as unacceptable.  

It is important to note that this commitment holds only for high-entropy plaintexts, 

like contextual messages, however most ciphertexts of interest hold contextual messages.  

Since the plaintext that we need to encrypt is given, the only way to escape this lack 

of equivocation is to focus on the key, and redefine it such that larger keys can be 

conveniently used. Let us define a key Ke0 as the smallest key that allows a situation 

where a ciphertext C generated by a plaintext P, would also be the result of encrypting a 

different plaintext P' ≠ P, using K'e0 ≠ Ke0, such that the plausibility of P' will be non-

dismissive. Such a situation will insure durable equivocation. Even a most wise and most 
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diligent cryptanalyst will face this daunting equivocation: was the user sending P, or was 

she sending P'?  

And we shall also try to find a practical way to use even larger keys so that three or 

more plausible plaintexts with greatly deferring implications will confound even the most 

powerful cryptanalyst. In other words, this effort here is focused on means to establish 

equivocation based encryption to escape from the alarming vulnerability of today's 

cryptography -- the weakness of   intractability subject to relentless erosion.  

Equivocation based cryptography is not new at all. In 1917 Gilbert S. Vernam has 

patented his famous "One Time Pad" cipher which exhibits so much equivocation that 

knowledge of the ciphertext only limits the size of the plaintext, not its content: anything 

that can be written with the same number of bits as the Vernam ciphertext will qualify as 

a possible plaintext. Vernam per se was quickly abandoned by cryptographers at the early 

years of the last century because it called for a key as large as the message: |KVernam|=|P|, 

and its practice was overbearing1.   

The present insight is that Vernam is an 'overkill' of equivocation. We may use 

smaller keys, creative keys, to afford us a useful measure of equivocation. When it comes 

to equivocation -- every little bit helps, especially considering the alarming state of zero 

equivocation today.  

1.3  Equivoe-T: Transposition Equivocation -- The Principle 

 

                                                
1 The Soviets geared up to it though, and the NSA cannot read their Vernam messages in which 

the secrets of the atomic bomb were smuggled to Stalin] 
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Let P1 and P2 be plaintexts of non-overlapping meaning, where P1 features n1 words 

U1, U2,.... Un1, and P2 is comprised of n2 words V1, V2, ....Vn2. We may construct a 

combined plaintext P:  

P = P1 %#% P2 = U1, U2,... Un1, %#%, V1, V2, ... Vn2  

P is a concatenation of P1 and P2, separated by the word: '%X%'.  

We use a transposition algorithm, T to transpose P into a ciphertext C based on 

encryption key K:  

Tk(P) = C  

C may be decrypted using the reverse encryption, R = T-1:  

P = P1 %X% P2 = Rk(C)  

We shall refer to P1 as the 'payload', the plaintext which was in need of  security and 

confidentiality, and we shall refer to P2 as the 'decoy' -- the plaintext that is used to 

confuse the cryptanalyst to think of it as the payload. The intended reader of the reverse 

encryption, R, will  be in the know,  and will interpret the plaintext left of the separator as 

the payload. She will dismiss the separator and everything right of it.  

Suppose now that there exists a different key K' and it will  decrypt C such  that the 

result happens to be switching the roles of the payload and the decoy:  

P2 %X% P1 = Rk'(C)  

A cryptanalyst thoroughly exploring all possible keys will identify K and K' as 

possible and plausible keys. Only that one key will lead the cryptanalyst to conclude that 

P1 is the payload, as indeed is the case, while the other key will lead the cryptanalyst to 

conclude that P2 is the payload -- and thereby fall into the trap set forth by the message 

writer. This is equivocation per se.  
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We may extend the above configuration to several decoys: D1, D2,....Dh. Alice will 

encrypt: Payload %X% D1, D2,....Dh, leaving the cryptanalyst with (h+1) possibilities, 

since for any i=1,2,...h there is a likelihood for the encrypted plaintext to be:  

P = Di %X% (some order of the other h-1 decoy plus the payload)  

Provided each option above may be matched with a transposition key which 

transposes it to the given ciphertext.  

There might be several more keys K1, K2, .... Kg, such that each Ki that would 

decrypt C to a combination of words from the payload mixed with a combination of 

words from the decoy, all appearing left of the '%X%' separator, in a way that upon 

reading these words in order, one may identify a plausible payload which the message 

writer could have been encrypting for her reader. There may be a large number of such 

plausible payload candidates: P1, P2, P3,..... Pm, each with its likelihood to be the actual 

payload: p1, p2,...pm. The Shannon entropy computable from these likelihoods will reflect 

the residual entropy confounding the cryptanalyst.  

Our purpose here is to investigate how a message writer could use this Transposition 

Equivocation principle to effect maximum entropy (equivocation) to confound the 

cryptanalyst while doing so with maximum efficiency and minimum of effort and 

inconvenience.  

2.0 Analysis or Equivoe-T Encryption 

For transportation equivocation (Equivoe-T) to work efficiently it is necessary to 

design a transposition algorithm, T, that would be complete, namely: Given a pre-

transposition image, P, and given any transposition thereto, P*, there will be a key, K, to 

be used in conjunction with T such that:  

P* = TK(P) 
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This requirement is necessary to insure that a cryptanalyst will be confounded by the 

payload/decoy disinformation. In particular be confounded by a variety of plausible 

payloads, each of them could have been used to generate the captured ciphertext, C, as C 

is nothing more than a permutation (transposition) of each one of the plausible plaintext 

candidates.  

Using the definitions in the introduction, the number of distinct keys necessary for 

completeness is: N(k) = (n1 + n2 + 1)! where we regard the separation mark '%X%' as a 

single permutation (transposition) entity. Of course the payload/decoy separation mark 

may be arbitrarily chosen. n1 is the number of permutation elements in the payload, and 

n2 is the number of permutation elements in the decoys.  

In this analysis we will not specify the size of the permutation entities: they will be 

regarded as strings of symbols, not necessarily of the same length, or alternatively they 

may be regarded as a single symbol, or even as a bit. For example, the pre-transpositon 

image (PTI) may be written as:  

PTI = Go North! %X% Go South!!  

Counting words we have n1 = 2, and n2 = 2. But viewing the same as a string of 

individual symbols we have: n1 = 10 (counting 'spaces' as symbols), and n2 = 11. We 

shall denote the permutation entities as 'words'.  

To effect this Equivoe-T idea we now need to develop an effective mechanism for 

building a decoy, and devising a convenient, complete transposition algorithm T. Once 

done Alice could send Bob an encrypted payload which Bob will readily decrypt using 

his agreed upon key, while Carla, the cryptanalyst, would face irreducible equivocation -- 

two or more payload candidates, she would not be able to sort out, without additional 

information.  

2.1 Building a Decoy 
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The issue of a decoy cannot be removed from the circumstances in which the 

encryption happens. The lowest bar is 'formal legal deniability', the highest bar is 'subject 

matter confusion'. Above formal legal deniability we have 'consideration legal 

deniability', and below the 'subject matter confusion' we find 'statement/counter-statement 

confusion' and below that 'meaningful entropy' state.  

We shall analyze the above circumstances ahead, but focus here on a range of 

operational alternatives: 'generic decoy' being the lowest, and 'high-intelligence decoy' 

being the highest. In between we shall find 'medium intelligence decoy' and 'low 

intelligence decoy'. The necessary intelligence may be human or artificial.  

The most powerful, and most convenient case is where Alice who authors the 

payload, leaves the decoy building to the computer, remaining unaware of the decoy as 

such, and the same oblivion is the lot of Alice's intended reader, Bob -- who just reads the 

payload, unaware that the at-risk ciphertext carried a decoy.  

In some respect the decoy may be regarded as part of the encryption key, to satisfy 

minimum size key requirement, but such key material is much easier to handle.  

2.1.1 decoy circumstances 

We discuss the following circumstances:  

Ø •   formal legal deniability  
Ø •   consideration legal deniability  
Ø •   statement/counter-statement confusion  
Ø •   subject matter confusion  

Formal legal deniability is the case where the communicating parties argue that there 

is a formal possibility that the decoy was the payload, and hence it cannot be dismissed 

beyond a reasonable doubt. The consideration legal liability is a higher bar: the decoy 

must qualify as a payload on the basis of some reasonable argument, or say there must be 
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a meaningful entropy, or equivocation in the case. The next level is where a statement 

and its counter statement are each sufficiently likely that one cannot be sure which one 

was the payload. The highest level is when the decoy offers plausible alternatives of a 

different subject matter than the payload.  

 

2.1.1.1 Illustration  

A suspected embezzler used Equivoe-T and sends out a ciphertext C, that notifies its 

intended reader P = "I have paid Jack $1,000,000 in cash". Indeed key Ktrue decrypts C 

into:  

P = "I have paid Jack $1,000,000 in cash %X% $50,000 $3000 $10"  

of which the intended reader regards only the part left of the divider '%X%'.  

However, the embezzler prepares key Kdecoy that decrypts C into:  

P' = "I have paid Jack $10 in cash %X% $1,000,000 $50,000 $3000 $10"  

When challenged by the police, the embezzler uses Kdecoy to argue that P' is his 

message. The embezzler enjoys formal legal deniability because the prosecutors cannot 

prove that C represents P and not P'. This argument will not hold under 'consideration 

legal liability' because it is not plausible that one will encrypt an ordinary message 

regarding $10. However, if the embezzler will claim that he sent the same message 

regarding $50,000, then the decoy gains plausibility, and is not easily dismissed.  

A statement/counter-statement case is demonstrated by the following:  

P = "I have paid Jack $1,000,000 in cash %X% I have never paid Jack anything Jack paid me 

$1,000,000 in cash"  
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This would challenge the cryptanalyst with three mutually exclusive possibilities.  

The embezzler could also encrypt the following:  

P = "I paid Jack $1,000,000 in cash %X% I forged a check, I blackmailed my adulterous 

neighbor  

Here the police is facing a subject matter confusion as to what the embezzler is 

talking about.  

The embezzler has a stronger argument if he can show the key that matches his 

claim for the identity of the payload, but this is not a must. The embezzler could say: I 

have lost my key, but based on the nature of Equivoe-T, there must be a key that connects 

the captured ciphertext to the message I claim I sent.  

 

2.1.2 Decoy Building Operational Alternatives 

We analyze the following options:  

Ø •   Generic Decoy  
Ø •   low-intelligence Decoy  
Ø •   Medium-Intelligence Decoy  
Ø •   High Intelligence Decoy  

The source of the intelligence required for an effective decoy may be human, or 

machine. In other words, the payload writer, or someone on his behalf, would construct a 

decoy based on insight into the circumstances that call for encryption, or, alternatively, an 

artificial intelligence program will take on this task, and the message writer may be 

unaware of what the decoy says. 

2.1.2.1 Generic Decoy 
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A generic decoy will be independent of the payload by definition. Three modalities 

are presented:  

Ø •   letters based decoy  
Ø •   words based decoy  
Ø •   sentences based decoy  

For each of these modalities there will be size decision to be made. Obviously, the 

larger the decoy, the greater the chance for the plaintext to harbor more false payload 

candidates, which are of meaningful probability. Alas, the larger the decoy, the more data 

is to be processed (encrypted, and decrypted), and the more cumbersome the 

computation. Also, the less sophisticated the contents of the decoy, the more of it is 

called for.  

The letter based decoy is comprised of adding letters from the payload alphabet such 

that they would combine to words that in turn combine into statements which will appear 

plausible under the prevailing circumstances. For a letter based decoy to be effective, the 

transposition will have to be carried out letter size.  

One strategy for letters based decoy is to add all the letters of the alphabet, 

corresponding to their frequency in the language in which the payload is written. For 

example, for a payload in English the decoy will be comprised of 14% the letter "e" since 

that is its frequency in English.  

Words based decoy: In this modality the decoy will be comprised of words 

common in the payload language. Words of negation, and opposition are useful; same for 

words of qualification, and words implying fiction. A sample list:  

no, false, untrue, never, no-way, it-is, it-is-not, as-if, would-appear, a wild thought, not to 
be accused of, seemingly, unlikely  

It is easy to see how such words could fit into a payload statement and negate it, or 

qualify it into a harmless content.  
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For example: Payload = "I did give George a false alibi" Decoy may be comprised 

of "not", "true", "imagine that" and such like.  

Sentence Based Decoy: Decoy could be constructed from generically 'plausible' 

sentences, each of which would qualify as payload. For example: "I am very embarrassed 

about the whole situation, and it is only you that I can share this with" or "I have been 

having an affair, and I am afraid to get caught".  

Nested Decoys:  Let's consider a body of text included in a folder. The folder is 

comprised of several files, and each file is divided to paragraphs of texts, comprised of 

sentences, words, and finally letters. This body of text can be Equivoe-T processed nest-

wise.  

The Equivoe-T user may construct one or more folders next to the "payload" one 

and use Equivoe-T to confuse the cryptanalyst as to which folder is the one with the 

protected message. The same transposition confusion may be applied to the various files 

in the folder -- some decoy files created. And then on, the paragraphs in each file may be 

complemented with decoy paragraphs, and similarly decoy sentences will be added and 

used in an Equivoe-T confusion in each paragraph. Next -- at words level (adding decoy 

words) in each sentence, and finally some decoy letters for each word.  

Such layered equivocation builds up as very strong intractability.  

2.1.2.2 low-intelligence decoy 

Low intelligence decoy is constructed based on casual reference to the contents of 

the payload. It may be constructed from the generic version with contents-sensitive 

additions. So if the payload talks about "bank robbery", the decoy will talk about 

"cashing a check in the bank", or a "plot for a financial fiction".  
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There are two strategies for low-intelligence decoy (LID): (i) similarity, and (ii) off-

topic. The first strategy calls for decoy statements which are as similar as possible to the 

payload, to make it reasonably hard to determine which is which, and the second strategy 

calls for plausible statement from a totally different topic, to sow confusion as to which is 

the payload topic. A decoy may be comprised of parts from each category.  

2.1.2.3 high-intelligence decoy 

In this mode the decoy is built on the basis of the content of the payload and the 

circumstances that call for its encryption. The more intelligence there is with respect to 

the mindset, and expectation of the cryptanalyst, the more powerful and confusing can 

the decoy be, and over time the intelligence that builds such decoys is getting better and 

more effective.  

2.2 Devising a Convenient, Complete Transposition Algorithm 

Transposition is often explicitly defined through n binary tuples (i,j) for an ordered 

set (list) of n elements (also referred to as members, or transposition entities). This set of 

n binary tuples specifies that the element in position i (1 ≤ i ≤ n) in the pre-transposition 

permutation is to be found in position j (1 ≤ j ≤ n) in the post transposition permutation. 

By the nature of transposition every value k (1 ≤k ≤ n) appears once and only once as a 

first number in the binary tuple, and the same for the second number in the binary tuple.  

Illustration: the transposition of XYZW to WYXZ will be defined via (1,3), (2,2), 

(3,4), (4,1), or alternatively: t13 = X; t22 = Y, t34 =Z, and t41 = Z, namely element tij is 

found in position i in the pre-transposition permutation and in position j in the post 

transposition permutation.  

Such a list of n tuples, or a list of n tij entities will define a key to effect the desired 

transposition, and by its nature serves as a framework for complete key space. Any 
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possible transposition can be so specified. There are exactly n! combinations of such sets 

of n binary tuples.  

Since the idea here is to use straight transposition as a cipher, we can agree to refer 

to the pre-transposition permutation as plaintext, denoted as P, and similarly agree to 

refer to the result of the transposition as the ciphertext C. We shall define P as:  

P = Pn = (t1*, t2*, ......... tn*) 

where Pn is a plaintext containing n transposition elements, and ti* is the element 

positions at spot i in the plaintext, while the asterisk, '*', represents an unspecified 

position of same element in the ciphertext.  

We shall similarly define C as:  

C = Cn = (t*1, t*1, ......... t*n) 

where Cn is a ciphertext containing n transposition elements, and t*i is the element 

positioned in spot i in the ciphertext, while the asterisk, '*' , represents an unspecified 

position of same element in the plaintext.  

We can state:  

(Pn, Cn) = {tij}n,n 

where the right side of this equation represents the n transposition elements each 

identified as to their position in the plaintext, and in the ciphertext.  

Since there are n! permutations, the complete key space will be of size n!:  

|Kc|n = n! 
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where the left side of the equation denotes the size of the key space for a complete 

transposition cipher.  

Since we aim to construct a convenient key for the transposition we may wish to 

explore other means, not the unwieldy list of n binary tuples. In order to achieve that goal 

we may wish to explore transposition algorithms which are not necessarily complete. 

Such an incomplete key, Ki will have a key space that does not cover all possible 

transpositions:  

|Ki|n < n! 

We shall therefore present a procedure that will allow such an incomplete key to 

become complete. We call this procedure 'ghost dressing' for reasons that would become 

clear shortly. We shall then present such an incomplete cipher, upgrade it with 'ghost 

dressing' and render it complete.  

 

2.2.1 The Sieve Method: Incomplete Transposition 

The basic idea of the sieve method for transposition is to remove elements from the 

pre-transposition permutation P and use the removed elements to build a different 

permutation as output. The pattern of removal and the pattern of rebuilding determines 

the output permutation, C. As P loses elements it resembles a 'sieve', and the process 

itself is reminiscent of the sieve of Erasmus, and that is the origin of the name of the 

method.  

As long as any removed element from P finds its position in C, then when the 

process is complete and the P list is emptied out, the rebuilt list, C, is a valid permutation 

of P.  



 16 

In the present stage we shall restrict ourselves to a sieve mechanism where one 

removes the P elements one by one, and in that order one builds up the output list, C.  

 

2.2.1.1 One Element at a Time Sieve  

We restrict ourselves for now to a sieve transposition where one removes one 

element at a time from P, then adds that element to the built-up output permutation, C. 

Such algorithm is comprised of 2n steps (where n is the number of elements in the 

permutations): n elements are removed from P one by one, and n elements are added to 

C, one by one.  

We shall further restrict ourselves in this case to sieve algorithms where the building 

of C is carried out sequentially, namely: the first element removed from P becomes the 

first element in C, the second element removed from P becomes the second element in C, 

and in general the i-th element removed from P becomes the i-th element in C.  

We shall now add another restriction: the removal of elements from P will be 

determined via a cyclical counting process. Namely one would count element in P in a 

cyclical way, to wit: when the counting reaches the end of P (the rightmost element), it 

would hop back to the first element in P (the leftmost element at the time), and the 

counting will continue along P, or what is left of it (assuming that some elements were 

taken out  from the ranks  beforehand).  

Cyclical counting, in general may proceed from left to right, as normally done, or 

from right to left -- the opposite way. If the counting is done in the opposite way, then 

upon reaching the first element in P, or in what is left of it, one would hop back to the last 

element in P, or to what is left of it (the current rightmost element), and keep counting 

backwards (from right to left).  
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Either way the cyclical counting is finite and when the counting is stopped, it points 

to one element or another in P. The pointed-to element will then be removed from P and 

added to C, as the new rightmost element there. P will then lose an element and grow 

smaller. The direction of counting may be altered after every removal of an element in P. 

Or it may be altered in some peculiar pattern. 

At this stage we will add two more restrictions to define a very simple and basic 

sieve permutation algorithm: (i) direction of counting remains from right to left, and the 

counting resumes at the leftmost element after it hits the rightmost element, and (ii) the 

counting will be limited to a fixed count. In other words, a given fixed positive integer, R, 

will be used to count elements in P, from left to right, and will remove an element of P 

after counting R elements in P (the element where the counting stopped is the one to be 

removed), and then on would place the removed element as the next (rightmost) element 

in the  being built list, C. This procedure completely defines how any P will be 

transposed to a corresponding permutation thereto.  The value of R – to be called “the 

remover” is the value that determines the output transposition C.  

Of course, any of the above restrictions may be removed and the family of valid 

sieve transposition algorithms will be larger, but for the basic version we shall abide by 

all the above restrictions. This algorithm will be referred to as the basic sieve algorithm.  

Illustration 1: let P = ABCDEFGH (n=8); let the "remover" R = 11: the resultant 

transposition will be: CGEFBHAD; for R=234 we get: BHECFGDA; and for R=347876 

we have: DHBCAFEG.  

Illustration 2: let P=ABCDEFGHIJKLMNOPQRSTUVWXYZ; for R=100 we get: 

VUZHTNMSGDJACRBEYFOQKIXLWP, and for R=8 we get: 

HPXFOYISCNAMBRGWTLKQVEDUJZ 
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2.2.1.2 The Basic Sieve Algorithm 

We shall first observe that the basic sieve algorithm is an incomplete transposition 

algorithm. We shall then explore some of its properties.  

To effect the basic sieve algorithm for transposition of a plaintext P:  

P = Pn = (t1*, t2*, ......... tn*) 

One should employ a positive integer, R (The "Remover"), to count the elements of 

P by order, beginning with t1*, and returning to the leftmost element after reaching the 

rightmost element of P, or of what is left of it at the time. The element where the counting 

stops, is then removed from P, and added as the next element in a new permutation, the 

ciphertext (the ciphertext starts as an empty list). After n rounds of counting R elements 

per round, all the elements of P have been removed, and P is shrunk to an empty list, and 

in turn, all these elements appear in the ciphertext list exhibiting a new order. And hence 

C is a permutation of P.  

 

Let r1 be the first element removed from Pn: r1 = ti*. This element will be positioned 

to become the first element in the about to be built ciphertext, Cn:  

r1 = ti1 

And in general for the j-th element to be removed, rj, we may write:  

rj = tij 
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Decryption 

In order to decrypt C = {t*1, t*2,....... t*n}, one would execute the sieve algorithm on a 

"plaintext frame", namely:  

P = {t1*, t2*, ..... tn*} 

By so doing ( counting with the remover R that created C from P), the decryption 

agent will first stop her counting at element ti*. Since this is the first element it must be 

the first element in C. In other words:  

ti* = t*1 = ti1 

And then one continues: counts R more element in the "P frame", and stop at some 

element tj*, which, by the construction of C, is element t*2, or say:  

tj* = t*2 = tj2 

And so on; when one applies R for the k-th time and hits on tm*, then one writes:  

tm* = t*k = tmk 

And for k=1,2,...n one notes that successively, the elements of Cn are placed in Pn, 

and the decryption process is complete.  The plaintext frame serves as a placeholder 

where ti* refers to the initially unknown element at position i in the plaintext. It is 

noteworthy that decryption is not symmetrical with encryption in as much as decryption 

is not simply applying the encryption algorithm on the ciphertext.  The counting of R 

elements always takes place over the plaintext. For encryption, known P elements are 

sorted out in a different order on the ciphertext, and for decryption, the initially unknown 

elements in P one by one become known from the information on the ciphertext. 
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2.2.1.2.1 properties of the basic sieve algorithm 

For any pair of plaintext, ciphertext, (Pn,Cn), there are infinite removers: R1, R2,... 

because there are no more than n! permutations.  

Every remover, R of the form R = Q1*n + i, where Q1 is some positive integer, will 

generate element ti1.  Every R of the form R = Q2*(n-1) + j - i, where Q2 is some positive 

integer will generate: tj2, and so on. We regard these equations as the "n sieve equations". 

For a specific permutation, C, let R0 be the lowest value of R to generate it, then there 

will be infinite R values: R1, R2,... generating the same cipher.  satisfying:  

Ri = f(Q1i, Q2i, .... Qni) 

where Qji is an integer for t*j, to match to Ri.  

For two successive R values Ri, Ri+1 we may write, with respect to each tjk:  

Ri+1 - Ri = (Qji+1 - Qji)*(n-k) 

And since the difference between any two Q values is an integer, we may write for 

any value of i=1,2,3,...:  

Ri+1 - Ri = 0 mod n-k .... for k=1,2,...n 

Or, in general, for every m > i:  

Rm - Ri = 0 mod n-k .... for k=1,2,...n 

which leads to one clear solution:  

Rm - Ri = (m-i)*n! 

Or alternatively, we may write:  
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Ri = R0 + i*n! 

Albeit, we may also write:  

Ri+1 - Ri < n! 

because some composite numbers in the series may be replaced by a constituent 

prime factor, since the other primes are already in the multiplied list. This may be readily 

shown as follows:  

For n=1, Ri = R0 + i*1, for n=2 Ri = R0 + i*1*2, for n=3 Ri = R0 + i*1*2*3, but for 

n=4 Ri = R0 + i*1*2*3*2 because the factor 2 is already present in the multiplication list, 

so instead of *4, one may add *2 to achieve a number that divides by 4. And so forth, if 

we write: Ri = R0 + i*B, then we may sequentially construct B values for n=1,2,.... 20 as:  

2 * 3 * 2 * 5 * 1 * 7 * 2 * 3 * 1 * 11 * 1 * 13 * 1 * 1 * 2 * 17 * 1 * 19 * 1 

And so for n=20, B=232792560, which is much smaller than 20! = 2.432902*1018  

Clearly, for R=1 we have C=P "the zero effect".  

 

2.2.2 Ghost Dressing 

Given an n element permutation, regarded as the plaintext, Pn, we shall associate it 

with g copies of an element marked '*' which is not used in denoting any of the n 

elements in Pn. We then mix these g add-on elements into Pn. This creates an ordered set 

comprising (n+g) elements.  

For example: Pn = UVWXYZ will be mixed with 12 add-on elements, all marked as 

asterisk, creating a list comprised of 6+12=18 elements, say:  
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Pg
n = **U***V*W****X*YZ* 

Using some incomplete key, Ki, one would encrypt Pg
n to the ciphertext 

permutation, Cg
n. (The superscript ‘g’ denotes a permutation with the add-on elements). 

For example:  

Cg
n = *****XU**W**V**Z*Y 

At this stage, all the add-on elements marked as asterisk may be 'washed away' 

yielding a permutation of the original Pn. The net result is that the original Pn was 

transposed to the resulting Cn. The add-on 'astrisks' marked permutation elements 

appeared and disappeared without a residual trace. It's a ghost-like phenomenon, and 

hence these add-on asterisk-marked elements will be referred to as 'ghosts', and the 

process of upgrading the original plaintext, Pn to the 'ghost dressed' plaintext Pg
n will be 

referred to as 'ghost dressing'. The reverse processing, namely Pg
n è Pn will be referred 

to as 'ghost washing' or 'ghost scrubbing'. And similarly, the process of removing the 

ghosts from Cg
n to yield Cn will be referred to as ghost washing.  

Should we wish to emphasize that a plaintext, or a ciphertext are 'ghost washed' we 

would indicate:  

Pn = P-g
n, and Cn = C-g

n. 

In the example above Cg
n = XUWVZY. So the net action was to transpose Pn = 

UVWXYZ to Cn = XUWVZY.  

2.2.2.1 properties of ghost-dressing 

The value of g (the count of ghosts), and the configuration in which these g elements 

intermix with the original elements, will be regarded as ghost key: G. We will also write: 

|G|=g. There should not be any confusion marking individual ghosts as: g1, g3,... gg.  
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A ghost-dressed permutation of P would require an encryption key comprised of the 

value of the remover, R, and the information in G.  

Kpermutation encryoption = (G, R) 

To decrypt the corresponding ciphertext, C, one would need to be in possession of 

(G,R). 

2.2.2.2. Using Ghost Dressing to Upgrade Incomplete Keys to 

Complete Keys 

Consider an n elements permutation, Pn, encrypted via an Incomplete-Transposition 

Algorithm (ITA), operating with an incomplete key Ki
n, such that |Ki|n < n!, where n is 

the number of elements in the transposition. Let us further require that:  

|Ki|m < |Ki|n ......for any n > m 

Namely that the key space increases in size when the size of the transposed list is 

growing.  

One could ghost-dress Pn with g ghosts to form a list of size (n+g) elements, Pg
n+g. 

Applying the Incomplete Transposition Algorithm (ITA) on Pn+g one would operate with 

a key space of size |Ki|n+g.  

The number of ghosts used, g, may be set so high that the following becomes true:  

|Ki|n+g. > n! 

And in that case it is possible that the corresponding permutations of the washed-out 

ciphertext, will be n!.  
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We can say then that the there can be an incomplete transposition algorithm that can 

be rendered complete by using the ghost-dressing process.  

And now we would wish to show that a particular incomplete transposition 

algorithm, namely the sieve algorithm, will indeed be rendered into a complete 

transposition algorithm using ghost dressing.  

 

2.2.2.3 Ghost dressing the sieve transposition algorithm 

The sieve transposition algorithm was shown to be incomplete, and to command a 

smaller and smaller fraction of the complete key space as the size n of the permutation 

increases. We have also shown that the ghost-dressing process may be applied to such 

degree as to allow an incomplete transposition  algorithm to become complete. Alas, it is 

not clear yet whether applying ghost-dressing to the sieve transposition algorithm will 

succeed in rendering the sieve algorithm into a complete transposition algorithm.  

We shall first offer some illustration for ghost-dressing the sieve transposition 

algorithm and then offer a proof that the ghost-dressed sieve algorithm is indeed 

complete. Finally, we shall discuss a few properties thereto.  

2.2.2.3.1 illustration (ghost-dressed sieve transposition algorithm) 

Let us examine the plaintext P4 = XYZW. Using the remover, R = 1,2,3,... we 

compute only 12 distinct permutations.  

 C     R  
XYZW   1  
YWZX   2  
ZYWX   3  
WXZY   4  
XZWY   5  
YXWZ   6  
ZWXY   7  
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WYXZ   8  
XWYZ   9  
YZXW   10  
ZXYW   11  
WZYX   12  

 

Per our analysis above we have B4 = 1*2*3*2 = 12, since 12 is divided by 1,2,3 and 

4. The total number of permutation is 4!=24, and hence the sieve transposition algorithm 

over 4 elements transposition covers 50% of the space. And it can be readily checked 

that:  

C(R) = C(R+B) = C(R+12) 

The sieve encryption shows a period of 12.  

We shall now ghost dressed P with a single ghost. Writing: Pg = *XYZY. The ghost-

dressed plaintext has a period of B = 2*3*2*5=60, which is quite larger than the space of 

complete transposition of n=4 elements (which is 4!=24), so it is possible for this ghost-

dressed plaintext to be encrypted into the full range of the original 4 element. When we 

encrypt Pg  with the range of removers R from 1 to 60 we tally: (each ciphertext is 

followed by its generating remover). 

*XYZW 1; XZ*WY 2; Y*WXZ 3; ZYWX* 4; W*YZX 5; *YXWZ 6; XW*YZ 7; 

YXWZ* 8; ZWY*X 9; WXY*Z 10; *ZXYW 11; X*WZY 12; YZW*X 13; Z*YXW 14; 

WYXZ* 15; *WXZY 16; XYW*Z 17; YWZX* 18; ZXYW* 19; WZX*Y 20; *XWYZ 21; 

XZWY* 22; Y*ZWX 23; ZYX*W 24; W*XYZ 25; *YWZX 26; XWZ*Y 27; YXZ*W 28; 

ZWXY* 29; WX*ZY 30; *ZWXY 31; X*ZYW 32; YZXW* 33; Z*XWY 34; WY*XZ 35; 

*WZYX 36; XYZW* 37; YWX*Z 38; ZX*YW 39; WZ*YX 40; *XZWY 41; XZY*W 42; 

Y*XZW 43; ZY*WX 44; W*ZXY 45; *YZXW 46; XWYZ* 47; YX*WZ 48; ZW*XY 49; 

WXZY* 50; *ZYWX 51; X*YWZ 52; YZ*XW 53; Z*WYX 54; WYZ*X 55; *WYXZ 56; 

XY*ZW 57; YW*ZX 58; ZXW*Y 59; WZYX* 60;  
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All in all: 60 distinct permutations. When we ghost-wash these permutations we 

indeed extract all the 24 permutations that cover the entire key space for n=4 permutation 

elements. So in this example, ghost-dressing the plaintext with a single ghost allowed for 

the sieve algorithm, powered by ghost-dressing to function as a complete transposition 

cipher. 

However: considering P=UVWXYZ, the complete permutation key space is 6!=720. 

Alas for Pg = *UVWXYZ, the value of B=1*2*3*2*5*1*7 = 420, which is much smaller 

than the key space of 6!=720,  there is no chance that the combined Sieve algorithm and a 

single ghost will cover the range needed for complete transposition. Indeed, applying the 

sieve transposition algorithm to Pg
6 one generates  only 356 distinct permutations (< 

420).   

Our next step is to increase the number of ghosts. Let's use Pg
6 = **UVWXYZ. The 

respective B value is: 1*2*3*2*5*7*2= 840. Since 840 > 6! we have a theoretical chance 

to achieve that way a complete permutation. Alas, running all 840 keys, then ghost 

washing the resultant ciphertexts one logs only 471 distinct permutations:  

UVWXYZ UVWYXZ UVWYZX UVWZXY UVXWYZ UVXWZY UVXYZW UVYWXZ UVYWZX UVYXWZ 

UVYZWX UVYZXW UVZWXY UVZXWY UVZXYW UWVYZX UWVZXY UWVZYX UWXVYZ UWXYVZ UWXYZV 

UWXZVY UWXZYV UWYVXZ UWYVZX UWYXVZ UWYXZV UWZVXY UWZVYX UWZXVY UWZYVX UWZYXV 

UXVWYZ UXVYWZ UXVYZW UXVZWY UXVZYW UXWYVZ UXWZVY UXYVWZ UXYWVZ UXYWZV UXYZVW 

UXYZWV UXZWVY UXZYVW UXZYWV UYVXZW UYVZWX UYVZXW UYWVXZ UYWXVZ UYWXZV UYWZVX 

UYWZXV UYXVWZ UYXVZW UYXWZV UYZVWX UYZWVX UYZWXV UYZXVW UZVWXY UZVWYX UZVXWY 

UZVXYW UZVYWX UZVYXW UZWVXY UZWVYX UZWXVY UZWXYV UZXVWY UZXVYW UZXWVY UZXWYV 

UZXYVW UZYWVX UZYWXV VUWYXZ VUWYZX VUWZYX VUXWZY VUXYWZ VUXZWY VUXZYW VUYXWZ 

VUYXZW VUYZXW VUZWXY VUZWYX VUZXWY VUZYWX VUZYXW VWUXYZ VWUXZY VWUYXZ VWUZYX 

VWXUYZ VWXUZY VWXYZU VWXZUY VWYUZX VWYXUZ VWYXZU VWYZUX VWYZXU VWZUXY VWZUYX 

VWZXUY VWZYUX VWZYXU VXUWZY VXUYZW VXWUYZ VXWUZY VXWYUZ VXWZUY VXWZYU VXYUWZ 

VXYWUZ VXYWZU VXZUYW VXZWUY VXZYUW VXZYWU VYUWXZ VYUWZX VYUXWZ VYUZWX VYUZXW 

VYWUXZ VYWUZX VYWXUZ VYXUZW VYXWUZ VYXWZU VYXZWU VYZUXW VYZWUX VYZWXU VYZXUW 

VYZXWU VZUXWY VZUXYW VZUYXW VZWUXY VZWUYX VZWXUY VZWYXU VZXUYW VZXWUY VZXWYU 

VZYUWX VZYUXW VZYWUX VZYXUW VZYXWU WUVXYZ WUVXZY WUVYZX WUVZXY WUXYVZ WUXYZV 

WUYVXZ WUYXZV WUYZVX WUYZXV WUZVXY WUZXYV WVUXYZ WVUXZY WVUYXZ WVUYZX WVUZXY 
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WVXUYZ WVXUZY WVXYUZ WVXYZU WVXZUY WVXZYU WVYZUX WVYZXU WVZUXY WVZUYX WVZXYU 

WVZYUX WVZYXU WXUVYZ WXUVZY WXUYZV WXUZVY WXVYUZ WXVYZU WXYUVZ WXYVZU WXYZUV 

WXYZVU WXZUVY WXZUYV WXZYUV WYUVXZ WYUVZX WYUXZV WYUZVX WYVUXZ WYVUZX WYVXUZ 

WYVXZU WYVZUX WYVZXU WYXVUZ WYXZUV WYXZVU WYZUVX WYZUXV WYZVXU WYZXUV WZUVXY 

WZUVYX WZUXYV WZUYVX WZUYXV WZVXUY WZVXYU WZXUVY WZXUYV WZXVYU WZXYUV WZXYVU 

WZYUVX WZYVXU WZYXUV XUVYWZ XUVYZW XUVZWY XUWVZY XUWYVZ XUWYZV XUWZVY XUWZYV 

XUYVZW XUYWVZ XUYZWV XUZVWY XUZVYW XUZWYV XUZYVW XVUWZY XVUYWZ XVUYZW XVUZYW 

XVWUYZ XVWYUZ XVWZUY XVWZYU XVYUZW XVYWUZ XVYWZU XVYZUW XVYZWU XVZUWY XVZUYW 

XVZWYU XWUYVZ XWUYZV XWVUZY XWVYUZ XWVYZU XWVZYU XWYUZV XWYVZU XWYZVU XWZUVY 

XWZUYV XWZVUY XWZVYU XWZYVU XYUVWZ XYUVZW XYUWZV XYUZVW XYUZWV XYVWUZ XYVWZU 

XYVZUW XYVZWU XYWUZV XYWVUZ XYWVZU XYWZUV XYWZVU XYZUVW XYZUWV XYZWUV XZUWVY 

XZUWYV XZUYVW XZVUWY XZVUYW XZVWUY XZVWYU XZVYUW XZVYWU XZWVUY XZWYVU XZYUWV 

XZYVUW XZYVWU XZYWVU YUVWXZ YUVXWZ YUVXZW YUVZWX YUWVXZ YUWXVZ YUWXZV YUWZXV 

YUXVWZ YUXVZW YUXWVZ YUXZVW YUXZWV YUZWVX YUZWXV YUZXVW YVUXZW YVUZWX YVUZXW 

YVWUXZ YVWXUZ YVWXZU YVWZUX YVWZXU YVXUWZ YVXUZW YVXWZU YVZUWX YVZUXW YVZWUX 

YVZXUW YVZXWU YWUVXZ YWUVZX YWUXVZ YWUXZV YWUZVX YWUZXV YWVXUZ YWVZUX YWXUVZ 

YWXVUZ YWXVZU YWXZUV YWZVUX YWZVXU YXUWVZ YXUZVW YXUZWV YXVUWZ YXVUZW YXVWUZ 

YXVWZU YXVZUW YXVZWU YXWUVZ YXWUZV YXWVZU YXWZVU YXZUVW YXZUWV YXZVUW YXZVWU 

YXZWUV YZUVWX YZUVXW YZUWVX YZUWXV YZUXVW YZUXWV YZVUWX YZVWXU YZVXWU YZWUVX 

YZWUXV YZWVUX YZWVXU YZWXUV YZXUVW YZXVUW YZXVWU ZUVWXY ZUVXWY ZUVXYW ZUVYXW 

ZUWVYX ZUWXVY ZUWYVX ZUWYXV ZUXWVY ZUXWYV ZUYVWX ZUYVXW ZUYWVX ZUYXVW ZUYXWV 

ZVUWXY ZVUWYX ZVUXWY ZVUYWX ZVUYXW ZVWUXY ZVWUYX ZVWXUY ZVWXYU ZVXUYW ZVXWUY 

ZVXWYU ZVXYUW ZVXYWU ZVYUXW ZVYWUX ZVYXUW ZVYXWU ZWUVYX ZWUXYV ZWVUXY ZWVUYX 

ZWVXUY ZWVYXU ZWXUYV ZWXVYU ZWXYUV ZWYUVX ZWYUXV ZWYVUX ZWYXUV ZWYXVU ZXUVWY 

ZXUVYW ZXUWVY ZXUWYV ZXUYWV ZXVUWY ZXVUYW ZXVWUY ZXWUYV ZXWVUY ZXWVYU ZXWYUV 

ZXWYVU ZXYUVW ZXYUWV ZXYVUW ZXYVWU ZXYWUV ZXYWVU ZYUVWX ZYUWVX ZYUXWV ZYVUWX 

ZYVUXW ZYVWUX ZYVXWU ZYWVUX ZYWVXU ZYWXVU ZYXUWV ZYXVUW ZYXWUV ZYXWVU  

We may try a different configuration: Pg
6 = UV*WX*YZ, upon repeating the above 

with this configuration we log 506 distinct permutations -- still short of the full space of 

720. Trying Pg
6 = *UVWXYZ*, one yields only 470 distinct permutations, and for Pg

6 = 

UVWXY**Z one yields 492 distinct permutations. For U*VWXY*Z, the number is 

again 506.  
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Climbing up to g=3, the yield is a bit higher, but still not enough. The following 

table shows various configurations of three ghosts, and the number of distinct ghost-

washed ciphertexts they log:  

***UVWXYZ  515  
UV*W*X*YZ  533  
UVW***XYZ  529  
U*VW*XY*Z  542  
*UVW*XYZ*  549  

 

Chasing the 'complete transposition' status, we up the ante and use 4 ghosts in 

various combinations:  

****UVWXYZ   658  
U*V*W*X*YZ   686  
*UVW**XYZ*   663  
*U**VWXY*Z   679  

 

The results, as expected are much higher, much closer to the target of 6!=720, but 

not quite. And that despite the fact that B6+4 = 1*2*3*2*5*1*7*2*3 = 1260, which is 

much larger than 6!. The response is to go even higher, use g=5. Now we have B6+5 = 

1*2*3*2*5*1*7*2*3*1*11 = 13,860, which is overwhelmingly larger than 6!. And 

indeed now the completeness status is achieved for P =*****UVWXYZ, the washed up 

distinct ciphertexts counts exactly 6!=720.  The reason for this phenomenon is that many 

ghost-dressed up permutations collapse to the same permutation at the ghost-washed 

stage. 

 

2.2.2.3.2 Proof of the Sieve Transportation Completeness (STC) Theorem 

Overview: The proof will be based on induction: assuming  the Equivoe-T 

completeness theorem is true for transposing (n-1) elements. We shall then prove its 
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validity for n transposing elements.  For a given pair of Pn and Cn (Pn,Cn), and for a 

particular tij, we shall identify a corresponding  

Cn-1 = t*,1,t*,2....t*,(i-1), t*,(i+1)...... t*,n 

namely Cn-1 will be Cn with element tij removed from it. And a corresponding:  

Pn-1 = t1,*, t2,*, ...... ti-1,*, ti+1,*..... tn,* 

namely Pn-1 will be Pn with element tij removed from it.  

We assume that (Pn-1, Cn-1) satisfies the STC theorem. We shall now choose a 

particular G pattern, namely ghost-dress Pn-1 and Gn-1.   Next we will be looking for a 

single ghost that has a particular position in P n-1 
g, and a particular position in C n-1 

g, such 

that when we replace it with entity tij, we shall turn Pg
n-1 to Pg

n, and turn Cg
n-1 to Cg

n.  

When we subsequently wash clean Pn
g, and Cn

g to Pn=Pn
-g, and Cn=Cn

-g we shall 

have a (Cn,Pn) pair that is matched by a working key K=Kn, derived from Kn-1 that was 

used for (Cn-1, Pn-1). The value of the remover remains the same, the number of ghosts is 

reduced by one: |Gn|=|Gn-1|-1 (since one ghost was replaced by tij), and otherwise the 

ghost configuration (or mix) with the n-1 pre-ghosts elements is the same. Since Kn-1 is a 

good match to (C n-1,P n-1), Kn will also match Cn and Pn because of the way Pn and Cn 

were constructed from P n-1  and C n-1. 

This proof has a peculiarity: as n rises the number of ghosts drops, so if this 

induction is to be used up to a given value of n, then for n=1, the number of ghosts will 

have to be at least n.  

This is the overall structure of the proof. To complete it, it is necessary to show that 

there exists a ghost in Pg
n-1, and in Cg

n-1 such that it could be replaced by tij such that Pg
n, 

and Cg
n will be in the right order.  
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We shall shortly prove the existence of a replaceable ghost, but beforehand a small 

illustration.  

Illustration 

We are looking for an Equivoe-T (ET) key, K4 to match between plaintext 

P4=XYZW, and ciphertext C4 = ZYXW.  

K4 such that C4 = ET (P4, K4) 

Let's divide this task to finding a key K3 to match P3, and C3 derived from the 

respective P4, and C4, by omitting the element X from each. Namely: P3 = YZW, and C3 

= ZYW.  We are looking then, for: 

K3 such that C3 = ET (P3, K3) 

The logic of the above proof says that K3 is available, but if not, then we shall 'step 

down' and look for K3 by omitting an element from P3 and C3, and solving the respective 

P2 and C2 problem (looking for K2).  

K2 such that C2 = ET (P2, K2) 

So we omit element W and define P2 = YZ, and C2 = ZY If K2 is not known either, 

we step another step down to the trivial case of P1 and C1:  

K1 such that C1 = ET (P1, K1) 

We omit Z and end up with P1=Y, C1=Y.  

This task (finding K1) is trivial, and will work with every key. Alas, we remember 

that the key that we use will impact the key that will be used for transposing 2,3,4, and 

more entities, we may use a 'good' remover (not R=1 of course), and a large enough  
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g=|G|n. In the expressions ahead we shall denote the ghosts with small cap letters, and 

hence, we shall build the ghost-dressed P1 to be:  

Pg
1 = abcdeYfghuv 

and choose R=23. Accordingly (applying the basic sieve transposition algorithm):  

Cg
1 = adhfuYbgcev 

Of course when we ghost-wash the plaintext and ciphertext we get P-g
1=Y and C-g

1 = 

Y, so the key (K1) works.  

We are ready now to build back. Let's look for a key K2 that will encrypt P2 = YZ to 

C2 = ZY. According to our proof above, we are looking for a ghost that appears right of 

the element Y in the plaintext and appears left of the element Y in the ciphertext. The 

following ghosts satisfy this requirement: f,h,u. We can choose either one of these to be 

replaced by Z. Let's choose h. We now are looking for a key K2 to convert P2 = 

abcdeYfgZuv to C2 = adZfuYbgcev. Applying R=23, this is exactly what happens:  

(abcdeYfgZuv)R=23 è  (adZfuYbgcev) 

And when P and C are ghost-washed we end up with P2 = YZ and C2 = ZY. The 

ghost pattern above and the remover R=23 define a ghost-sieve key K2 as desired (to 

encrypt YZ to ZY). We should now take the next step: finding K3. To do so, we need to 

find a ghost that is right of Z for the plaintext, and right of Y for the ciphertext. That is 

because we wish to encrypt P3 = YZW to C3=ZYW. Only one ghost qualifies: v. We 

therefore build P3, and C3  by replacing ghost v with element W, as follows:  

P3 = abcdeYfgZuW; C3 = adZfuYbgceW 

And indeed:  

(abcdeYfgZuW)R=23 è  (adZfuYbgceW) 
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Which now qualifies as K3 because P3
-g = YZW, and C3

-g
 = ZYW.  

Onward to K4: Repeating the above procedure we look for ghosts that appear left of 

Y in the plaintext, and left of W in the ciphertext. That is because we wish to encrypt 

P=XYZW to C=ZYXW so we need to fit the X element before the YZW in the P3 

plaintext, and to fit the same element before element W in C. The ghosts: b,c and e 

qualify. We can replace either one of them with X. Let's pick c to be replaced by X:  

P4 = abXdeYfgZuW; C4 = adZfuYbgXeW 

And indeed:  

(abXdeYfgZuW)R=23  è  adZfuYbgXeW 

Namely, we find K4 that matches P=XYZW with C=ZYXW. K4 is defined as 

follows: use a remover R=23 and use 8 ghosts distributed g1 = 2, g2 = 2, g3 = 2, g4 = 1, g5 

= 0. Namely: fit gi ghosts left of ti*, for i=1,2,3,4  

Accordingly we ghost-dress P=XYZW to Pg=**X**Y**Z*W, encrypt with R=23:  

Cg
4 = **Z**Y**X*W =Equivoe-T (**X**Y**Z*W)R=23 

And washing Cg
4 yields: C4 = ZYXW -- the object of this illustration.  

 

The Existence of a Replaceable Ghost 

The premise of the above proof is to replace a ghost in a proper match of Pn-1, and 

Cn-1, with another element (the n-th). In the illustration that followed, such replacements 

were demonstrated. Alas, it is conceivable that such a replaceable ghost will not be found 

in the (n-1)-elements P and C. We shall therefore prove here below that there are 

sufficient steps to be taken in order to insure the existence of such a replaceable ghost. 
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Once proven, the Sieve Transportation Completeness (STC) theorem will be fully 

proven.  

We shall first build a mathematical vocabulary for our proof.  

We shall mark the ghosts in Pg
n as follows: the set of ghosts that are placed left of t1* 

will be designated as G1*. The set of ghosts placed right of t1* and left of t2* will be 

designated as G2*. And in general, the set of ghosts placed right of ti-1* and left of ti* will 

be regarded as Gi*. The set of ghosts that are placed right of tn* will be regarded as Gn+1*.  

Clearly: |G|=Σ Gi* for i=1,2,....n+1 

We shall mark the ghosts in Cn as follows: the set of ghosts that are placed left of t*1, 

will be regarded, or designated as G*1. The set of ghosts placed right t*1 and left of t*2 will 

be designated as G*2. And in general the set of ghosts placed right of t*i-1, and left of t*i 

will be regarded as G*i. The set of ghosts that are placed right of t*n will be regarded as 

G*n+1.  

Clearly: |G|=Σ G*i for i=1,2,....n+1 

Given Pn and Cn for which we search for an Equivoe-T key Kn, we shall pick an 

element tij thereto and remove it from both Pn and Cn. We assume that we can find the 

key Kn-1 to match the so constructed Pn-1, and Cn-1. The process will include the creation 

of the ghost-dressed plaintext and ciphertext: Pg
n-1, Cg

n-1. For these two mutual 

permutations we shall then list the set Gi+1* which is comprised of all the ghosts left of 

ti+1*, and right of ti-1* (we maintain the designation of the elements as assigned in Pn and 

Cn).  

Similarly we shall list the set G*j+1 which is comprised of all the ghosts left of t*j+1, 

and right of t*j-1.  
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If Gi+1* ∩ G*j+1 ≠ 0 then it means that at least one ghost is found in both sets, and 

that ghost can be replaced with tij and allow one to derive Kn from Kn-1. This derivation is 

simple: apply Kn-1 to Pn (using the same remover, R, and the same ghost-dressing except 

for the ghost that was replaced by tij). If no shared ghost is found in Gi+1* and G*j+1, then 

we shall check all other values of i=1,2,...n each with its respective j=1,2,3,....n. If for any 

tij we have:  

Gi+1*  ∩   G*j+1 ≠ 0 

then the method works because it does not matter which of the n elements in Pn and 

Cn is the one to remove, then to re-introduce.  

One may recall that for P1 and C1 where element t11 is transposed to itself t11, one 

can pick any remover R=1,2,...... and any number of ghosts |G|=g=1,2,3,4.... and one may 

further note that the value of the initial R remains the same throughout the induction 

process, while the value of |G| is decremented by one, each round of the induction. It 

figures then that the Pg
n-1 and Cg

n-1 will experience elements zij with a random-like 

matching of i and j. Therefore, for a given ghost g' that is part of Gi*, the chance for not 

being found in G*j is n/n+1, since all the |G| ghosts are divided into n+1 sets. And the 

chance for no ghost among the |G|=g ghosts to be found at the matching set in the 

ciphertext is (n/n+1)g. Since g is a free choice, one may pick it so high to reduce the 

chance for an impasse (not finding a replaceable ghost) to a level sufficiently small that it 

would not happen. Of course, the required g value will be higher for higher values of n. 

This analysis suggests an operational procedure wherein given a Pn and Cn, one 

could first spread some g ghosts around Pn, and check it out with a few or more removers, 

R. If it works, then mission accomplished: a key Kn is found. Otherwise one would 

switch to a related simpler problem: to find a key for a pair of Pn-1, Cn-1 that are 

constructed by eliminating one element from Pn and Cn. This related problem can also be 

tried per se, choosing several removers in turn, and large enough number of ghosts 



 35 

variably intermixed with the elements. If it works, then one climbs from back to the Pn-Cn 

original problem, and solves it as indicated herein.  

If the Pn-1, Cn-1 does not lead to a direct solution, then one switches again to a 

simpler but related problem with a plaintext and a ciphertext of size (n-2) elements. 

Again the smaller plaintext and ciphertext are constructed by removing an element from 

the larger sets of plaintext, ciphertext. And similarly, if necessary, one switches again and 

again to plaintext-ciphertext pairs of fewer and fewer elements. If at some point m < n a 

straight solution is found, then one climbs up from that level, (m), tracing back up the 

former down-switching of problems, until one climbs back to the pair Pn-Cn and resolves 

his or her original problem.  

Such a successful m level can be counted on to show up, because for m=1 any 

remover and any number of ghosts at any configuration will work. And then the climbing 

up begins.  

This procedure is without a guaranteed final length, but it does never encounter a 

'stop' sign, so sooner or later a matching key, Kn will be found, regardless of how large n 

may be. The object of this procedure is to prove that a solution in terms of a matching 

key Kn to any pair Pn and Cn is always achievable.  

This procedure of solving a challenge A with related, but easier, challenge A', and 

repeating that process until a solvable challenge is found, and from then on climbing back 

-- was recognized as a generic problem solving technique. See ref [Samid 2010]. 

3.0 Applicability & Usage 

Equivoe-T may be used for low-entropy messages, medium, and high-entropy 

plaintexts. Of course, the higher the entropy the more powerful the cipher. This is 

different from a typical symmetric cipher where other than a completely randomized 
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plaintext, the cryptanalysis enjoys zero equivocation. Using DES, or AES for example, a 

sufficiently long ciphertext will point only to one grammar and dictionary compatible 

plaintext, and that plaintext is the one encrypted. An Equivoe-T user may encrypt a 

"broken English" payload, combine it with a perfectly written decoy and thereby 

thoroughly confuse the cryptanalyst. Of course, if the payload is highly randomized then 

even small randomized decoy will generate an enormous amount of equivocation.  

We shall discuss below:  

•  Generic Equivoe-T protocol  

•   Non-textual Equivoe-T applications  

•   Speed Considerations  

 

 

3.1 Generic Equivoe-T protocol 

The generic Equivoe-T protocol describes the process from the state where the 

sender identifies a message that is to be securely communicated to the designated 

recipient using unsecure channels, to the state where the intended recipients of the 

message accurately and securely receive it. The concepts involved in the protocol are: 

payload, decoy, ghosts, sieve, the remover, message frame.  

 Encryption  
•  Decoy Setting  
•  Ghost-Dressing  
•  Sieve Processing  
•  Ghost-Washing  
Ciphertext Release  
Decryption  
•  Frame Ghost Dressing  
•  Sieve Processing  
•  Frame Ghost Washing  
•  Plaintext Reconstruction  
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•  Payload Interpretation  

 
 

3.1.1 Encryption 

Encryption takes in the message to be protected, regarded as "the payload", and ends 

up with a plaintext of a larger size since it contains the payload and the decoy. The 

presence of the decoy is essential, or at least the expectation thereto. Parts:  

•  Decoy Setting  

•  Ghost-Dressing  

•  Sieve Processing  

•  Ghost-Washing  

Decoy setting, as discussed, may be carried out automatically or manually. The 

larger the decoy the greater its induced equivocation; the smarter the decoy the greater its 

induced equivocation. The larger the decoy the more data there is to encrypt and decrypt, 

so an optimization is called for. The more critical the confidentiality of the message, the 

more liberal one should be with the decoy. Elsewhere, for pedagogical reasons the 

distinction between the payload and the decoy was made obvious and non-secret: 

“payload -- separator tag – decoy”, with the expectation for a permutation in the form: 

“decoy -- separator tag – payload”. Albeit, this construction may be part of the secret, 

the breakdown of the plaintext (comprised of the payload and the decoy) to its ingredients 

(the payload and the decoy) may be carried out via some subtle data processing, and in 

that case this separation should be part of the key definition, not the method definition. 

The payload and the decoy combine into the plaintext.  

Ghost dressing, or "ghosting" is the process of dressing up the plaintext with g 

ghosts in a pre-agreed pattern. The ghosting pattern, G, is part of the Equivoe-T key. The 
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result is a pre-transposition message of size p+d+g, where p is the size of the payload, d 

the size of the decoy, and g the number of ghosts. p,d, and g are all measured in the 

transposition units. These units are part of the design of the implementation. One could 

transpose bits, or bytes, or words, or phrases, or paragraphs, or files, or folders, etc. There 

are different considerations thereto. The output of this stage is the ghost-dressed 

plaintext.  

The ghost-dressed plaintext is subsequently undergoing sieve processing, where a 

remover, R, part of the Equivoe-T key, operates on the ghost-dressed plaintext Pg and 

generates the corresponding ghost-dressed ciphertext, Cg, which, of course is of the same 

size of: p+d+g  

The ghost-dressed ciphertext is then washed up, and all the ghosts are removed. This 

produced a permutation of the plaintext, of the same size: p+d. The result is the washed 

up ciphertext C = C-g.  

The C-g is now ready for release into an insecure channel on its way to the intended 

recipient. 

 

3.1.2 Ciphertext Release 

Once the encryption is concluded, the ghost-washed ciphertext is released. 

Depending on the implementation, the release can be to another layer of encryption using 

any other effective cipher. In that case this additional encryption will have to be 

decrypted before one could decrypt the transposition. Normally though, the ghost-washed 

ciphertext will be released into an insecure channel where adversaries will capture it, and 

go to work to blast it into its corresponding plaintext. We note that while the remover 

comes with a finite range, however large it may be, the ghost pattern is open ended. The 
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ciphertext does not betray the size of the ghosting that generated it because all remnants 

of the ghosts are washed away before release. 

3.1.3. Decryption 

Decryption proceeds as follows:  

•  Frame Ghost Dressing  

•  Sieve Processing  

•  Frame Ghost Washing  

•  Plaintext Reconstruction  

•  Payload Interpretation  

The intended recipient receiving the ghost-washed ciphertext C-g will need to 

reconstruct the plaintext in a form of an empty frame. That frame will have to be ghost-

dressed to emulate the encryption process.  An “empty frame” means that the plaintext 

will be reconstructed with ‘place holders’.  The first transposition element on the 

plaintext is  t1*.  It can be written as “t1*” without identifying what it is.  Since the 

ciphertext is exactly the size of the plaintext, it is clear how many place holders will be 

needed.  Ghost-dressing the empty frame is done as follows. The ghost-washed ciphertext 

is comprised of n transposition units (where n=p+d: payload plus decoy). (The decoy is 

defined together with any separators featured for the distinction payload-decoy). They are 

identified as t*1, t*2,.....t*n.  

The intended reader will now set n transposition units, as n "blanks": t1*, t2*,.....tn*. 

These n blanks will be ghost-dressed as agreed upon with the message writer: same 

number of ghosts, same pattern of mixing with the "place holders" in the plaintext. The 

result will be a 'frame ghost-dressed plaintext'. It is regarded as a frame because the 

various ti* are not identified.  
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Once the ghost-dressed plaintext frame is generated, it becomes subject to the 

SIEVE process that was used on it for the encryption process. Same remover, and same 

ghost pattern. Again, the SIEVE process operates on the  “place holders” (blanks), the 

unidentified ti* for i=1,2,3,...n. The result of the SIEVE process is the ghost-dressed 

ciphertext frame: the ciphertext comprised of the blanks and the ghosts.  

Next the ghosts are washed away from the ciphertext, yielding n "blanks". These 

blanks are ordered exactly as the order of the ciphertext sent to the intended reader by the 

writer of the message, the plaintext.  

When this is done then each blank ti* sits in a particular location, spot j (j=1,2,3,...n) 

in the ciphertext frame, and hence one could write:  

ti* = t*j = tij 

Say, the element known an identified as t*j on the received ciphertext is now 

associated, fitted, as the element that is found in spot i in the plaintext. All the n elements 

in the received ciphertext are now fitted to their proper order in the plaintext, and the 

plaintext is thereby fully exposed.  

Once the plaintext is fully exposed, it may be divided to the payload and the decoy 

according to the agreed upon rules of separation. Applying these rules, the intended 

recipient throws away the decoy and is left with the payload which the sender intended 

for him or her or it, to read. 

. 

  

3.1.4 message sizing 
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Given a plaintext message of length L (measured in units of choice: bits, bytes, 

words, etc.), one could apply Equivoe-T to the full message, and thereby unleash the full 

power of the transposition cipher. However, for sufficiently large L values the 

corresponding computational load may be prohibitive. It is therefore advisable, perhaps, 

to parcel the message out to n size blocks, and apply Equivoe-T to every block 

separately. One could repeat the same key for each block, or propagate to another key, 

based on some secret propagation formula, or use a pre-agreed random key. The smaller 

the size of the blocks, n, the less powerful the cipher because it carries less equivocation. 

Alas, this equivocation shortcoming can be overcome by supplying a liberal decoy for 

each block. Also the blocks don’t have to be of same size. The Equivoe-T algorithm 

operates on any size block.  One could use letters as permutation elements, and words, 

and whole sentences in one application. The Equivoe-T procedure does not specify 

uniformity of transposition elements.   One could add to the “key” the information that 

describes how to parcel out a message of length L to sequential transposition elements. 

One could even use the power of Equivoe-T to ‘scare’ the cryptanalyst. A suspicion that a 

ciphertext was constructed with Equivoe-T will frustrate the cryptanalyst who will not 

know how extensively Equivoe-T was used. Perhaps L was parceled into two, or, say, 

five, or, ten parts that were transposed, or perhaps to blocks of 100 words each, or may be 

into letter size elements?   Or perhaps Equivoe-T was not used at all, and the scary 

announcement is fake? 

3.1.5 obscurity 

One could readily modify the SIEVE algorithm to induce more confusion and 

intractability for the adversary. For example, the remover could change directions 

alternately for its counting. Or it may switch direction every two or three rounds. It may 

change directions every time it hits an element that was in position i, where i, is, say, a 

prime number or 2x number, or any other procedure. These switches may be specified as 

part of the key.  The mathematical analysis offered for the basic sieve where the counting 



 42 

of the remover R elements proceeded in the same forward direction, is equally valid for a 

procedure where the direction of counting the remaining elements in the plaintext is 

changing once or as many times as desired.   Obscurity can further be enhanced via a 

secret, and perhaps complex parceling out the full message for encryption L to sequential  

transposition cases (a case is data that is being divided to transposition elements on which 

Equivoe-T works).  Then the parceling out of each transposition case to transposition 

elements may be done with great obscurity and non-uniformity. 

 

3.1.6 illustration 

A passionate lover wishes to communicate to his friend the “hot” message "I love 

Lucy". Alas, the lover knows that jealous Nancy tries hard to read his messages, so he 

decided to use Equivoe-T, reasoning that in the worst case scenario, he could offer a 

decoy message that would get him out of trouble. To that end the lover constructs a decoy 

from the words: "Nancy", "Don't", "As if". The payload "I love Lucy" now becomes the 

payload plus the decoy, the plaintext:  

P = I love Lucy %X% Nancy Don't "As if"  

The lover decides to use words as the permutation units so that his ciphertext which 

will properly decrypt to the plaintext, will equally well decrypt to:  

P' = Nancy Love %X% Don't Lucy As if I  

and to:  

P" = I Nancy Love %X% As if Don't Lucy  

and also to:  
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P"' = Lucy I Don't Love %X% Nancy As If  

All of which are plausible plaintext candidates and this unresolved equivocation will 

save the day for this passionate lover.  

The lover decides to use the familiar technique of a codebook, replacing each word 

with a letter code:  

word     code  
- - - - - - - - -  
I         X  
Love      Y  
Lucy      Z  
%X%       S  
Nancy     U  
Don't     V  
As if     W  

 

Accordingly the payload = XYZ, the decoy = UVW, and the separator is S. The 

plaintext is the concatenation of these three: P = XYZSUVW .  The next step is to ghost-

dress the plaintext: 

Ghost Dressing:  

Pg = ***X***Y***Z***S***U***V***W*** 

(24 ghosts added to plaintext comprised of 7 elements).  

Applying remover R=17 one computes:  

Cg = ***Y********V*U*W**S****X*****Z 

and the ghost-washed ciphertext C-g = YVUWSXZ, or in the original terms:  

C-g = Love Don't Nancy As if %X% I Lucy  
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This ciphertext travels to the lover's friend, who now ghost-dresses the plaintext 

framework:  

Pg = ***1***2***3***4***5***6***7*** 

For convenience we replaced the symbol ti* with i. The numbers of the unknown 

permutation elements represent their order in the plaintext. The lover's friend knows that 

n=7 because that is the size of ciphertext. Now, the friend applies the secret remover 

R=17, which is known to her, and establishes Cg:  

Cg = ***2********6*5*7**4****1*****3 

which she then ghost-washes to carve out C-g = 2657413  

Comparing the communicated ciphertext C=YVUWSXZ to the sequence established 

from processing the frame, one gets: t*1 = Y = t2* = t21. Similarly: t*2 = V = t6* = t62. And 

so on, one by one, the friend extracts the right plaintext P = XYZSUVW, which she 

translates to:  

P = I love Lucy %X% Nancy Don't As if  

which she readily interprets by ignoring the separation sign and everything beyond it 

(being the decoy). What is left is indeed the payload: "I Love Lucy". The confidential 

communication was successfully accomplished.  

The passionate lover wishes to be ready, should Nancy confront him with the 

ciphertext she snatched from the air. So he tries different plausible plaintext candidates to 

claim as the real plaintext:  

Candidate 1: payload: "Nancy Love" decoy: Don't Lucy As if I, so the plaintext 

candidate becomes:  

P' = Nancy Love %X% Don't Lucy As if I, 
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or in the coded letters: P' = UYSVZWX.  

Ghost dressing: P'g = U*Y****SV*Z**W*X*, using R=3 he computes the 

ciphertext candidate to be:  

C'g = Y*V**U**W*SX****Z 

which is ghost-washed to: C'-g = YVUWSXZ - exactly the ciphertext that was 

communicated between the lover and his friend. Making the candidate payload a viable 

option.  

Candidate 2: payload: "I Nancy Love" decoy: "As if Don't Lucy" so the plaintext 

becomes:  

P" = I Nancy Love %X% As if Don't Lucy 

or in coded letters: P" = XUYSWVZ. Ghost dressing: P"g = XUY*SWV********Z, 

choosing remover R=19 and generating the respective ciphertext  

C"g = YV*U*W*S*X****Z* 

When it is ghost-washed it becomes C"g = YVUWSXZ -- again the very same 

ciphertext that Nancy captured (and that the lover sent to his friend): Equivocation.  

 

Candidate 3: payload: "Lucy I Don't Love", decoy = "Nancy As if", so the plaintext 

becomes:  

P"' = Lucy I Don't Love %X% Nancy As If 

Or in coded letters: P"' = ZXVYSUW. Ghost dressing:  

P"'g = ********Z***X*V**YSUW 
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Choosing a remover R=757, and generating the respective ciphertext  

C"'g = *Y*V**UW**S*X**Z*****, 

which when it is ghost-washed becomes: C"'-g = YVUWSXZ -- exactly the 

ciphertext which the lover communicated to his friend.  

This illustration demonstrates how an Equivoe-T user, manually devised a decoy 

that allowed him to release a ciphertext that can be decrypted to the true plaintext P (“I 

Love Lucy”), but also to three other messages, “fake” plaintexts: P’, P”, P’”.  When 

challenged, the user will point, say, to P”’ saying “Lucy I Don’t Love” as the message he 

actually sent, and will  readily show how he did it: what remover value he used, and what 

ghost dressing pattern he applied.  There is no way for a cryptanalyst to credibly refute 

this claim.  The procedural and mathematical means to relate the ciphertext to the true 

message are the same as those that relate the ciphertext to any of the fake messages 

(P’,P”, P’”). One may note that the intended reader, holding the right key will know 

which message is the real one, and which is fake. Alternatively, a cryptanalyst, on her 

own, will extract the real message, the three fake ones, and several others, but will be 

unable to sort these candidates out, allowing for a residual equivocation to cloud any 

claim for cryptanalytic success. 

 

3.2 Non-Textual Equivoe-T Applications 

Using Equivoe-T for graphics, pictures, audio and video media will call for the 

decoy to be splinter pieces of same media that will sow maximum confusion for the 

cryptanalyst. For example: voice pitch, and skewed vocalization will create ambiguity 

that can be resolved in more ways than one, so that it is not too clear what the user 

actually said. Same for pictures and forms. 
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3.3 Speed Considerations 

The Equivoe-T sieve is by its nature much faster in hardware and firmware 

implementation versus software. So Equivoe-T should perform well in speed 

competition. Unlike most ciphers Equivoe-T may gauge its computational load and 

optimize it between equivocation or entropy achieved, and performance speed. In a 

formal way one may consider the Equivoe-T key as comprised of: the division of the full 

communicated message to blocks that are individually treated with Equivoe-T, the 

division of each block to any combination of transposition elements (the elements may be 

vastly different from each other), the decoy, the Ghosting data, and the Remover value. 

None of these ingredients is permanently associated with the plaintext or the ciphertext. 

The plaintext and the ciphertext are of exactly the same size, which makes it very 

attractive for formal, structured, database implementations. All the above listed key 

components are the choice of the user. The decoy may be large or small, ghosting may be 

large or small -- the g value and the configuration, and the remover value may also be 

large or small.  In actual practice some of the ingredient categorized above as part of the 

Equivoe-T may in fact become part of the method (and be exposed) for convenience. For 

example, the method may include the size of the block to be individually treated with 

Equivoe-T, and the partition of each block to transposition elements. 

In the extreme case Equivoe-T may be exercised with zero decoy, zero ghosting and 

a rather small remover value. A cryptanalyst may still find equivocation by analyzing the 

ciphertext, and knowing that Equivoe-T was used. Alas, if the cryptanalyst will find a 

plausible plaintext that may relate to the given ciphertext via the "zero" option 

implementation as described above, then the plausibility of this plaintext will soar and 

dwarfs however many other plausible plaintexts may be detected, all with non-zero 

Equivoe-T option.  
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It may be wise to use even the near-zero implementation option, (fastest, simplest) 

since any measure of entropy may be highly useful. A text or a database may be marked 

for grades of required security, and only the high security requirement sections will be 

Equivoe-T processed with a lot of entropy, using a large key (large smart decoy, large 

values for g (ghosts) and R (the remover)). The less sensitive parts will be Equivoe-T 

processed with a smaller key. This might offer a wise compromise between security and 

speed. This implementation will require a proper signal sent to the intended reader, so he 

or she can properly interpret the data stream coming their way.  

Considering the decoy as part of the key is of special interest.  Unlike other parts of 

the key that must be fully communicated between sender and recipient, the decoy may be 

devised by the sender without pre-knowledge of the recipient. The latter will simply 

apply the payload-decoy separation rules, and  ignore the decoy, whatever it is, however 

large or small.  It means then that the message sender may unilaterally decide to increase 

the security of a given message (better decoy) without prior consultation with the 

intended recipient.  The sender might take into consideration speed, and free computing 

power. 

 

4.0 Cryptanalysis 

Given a ciphertext known to have been produced via Equivoe-T, the de-facto key 

space is readily known, provided one knows what were the transposition elements that 

were used, and also what is the block size for each permutation round. As indicated, the 

Equivoe-T cipher may apply to letters, words, phrases, etc (even in a nested way). If 

those transposition elements are known and n is their count, then the key space for 

possible plaintexts is n!. If a proper decoy has been provided then a non-negotiable 

residual equivocation is the end state of the pure cryptanalysis.  
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One would expect though that to extract the plausible plaintexts from the ciphertext 

may be quite intractable. Unlike the Vernam cipher which offers equivocation galore, but 

offers a completely symmetrical easy encryption/decryption, Equivoe-T is operationally 

asymmetrical. The key is comprised of the remover (an integer of known range based on 

the value of n), and the ghosts: count and configuration -- the combined variability is a 

formidable hurdle. It is therefore that while an Equivoe-T cryptanalyst faces residual 

equivocation when all is said and done, she also faces significant intractability to extract 

the various plausible plaintexts, and to insure that she listed them all.  

The reason is that the Equivoe-T key is open-ended. There is no preset limit on G -- 

the ghost count and configuration vis-a-vis the plaintext. And because of that one would 

expect that every (C,P) pair would be matched by an infinity of keys:  

K1, K2,.... etc. 

All of which will encrypt a given P to a given C. And since the computational 

burden of Equivoe-T is proportional to (n+g), the size of the transposed combination, it 

would be easy to allow for a little bit more processing load, and not use the simplest key 

possible. For example: if the text for encryption is comprised of 250 words, it may be that 

g=400 will provide for a complete transposition, yet the message writer will use g=1000. 

This will increase processing time by factor of 5, and by g=2000 by a factor of 9. Unlike 

Vernam where larger keys require more shared information. The Equivoe-T key may be 

made as large as desired and all that is to be shared is the value of g, (the ghost count), 

and their intermix configuration with the plaintext. Such intermixing may be a detailed 

account of how many ghosts in each of the (n+1) ghost zones for the ghost-dressed 

plaintext, or it may be simple, e.g. half of the ghosts in zone G1*, and half in Gn+1*. This 

option implies that even a very diligent and efficient cryptanalyst who will identify the 

series of keys that connect a pair of plausible plaintexts with the captured ciphertext: K1, 

K2, K3,... will not be able to assume that the smallest key K1 was the one used. This 
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equivocation is meaningful for the case where the cipher user will re-use his key for some 

m independent messages. See analysis ahead.  

In Vernam the size of the ciphertext betrays the size of the key. With Equivoe-T the 

size of the ciphertext conveys zero information about the size of the key. While n! (when 

n is the number of transposed elements) is the number of unique keys, the number of 

actual keys, is undetermined. Both the remover, R, and the ghosts, G can be as large as 

desired -- more cryptanalytic equivocation.  

4.1 Re-Use of Equivoe-T Keys 

Consider the following: Given m messages M1, M2, .... Mm, all of them are regarded 

as plaintexts to be encrypted with Equivoe-T, using the same key, KM. Their cryptanalyst, 

examining the respective C1, C2,... will attempt to find KM from the multiplicity of 

ciphertexts.  

Assuming the cryptanalyst is all fast and all powerful, he would end up associating 

with each ciphertext, i=1,2,..m a set of, say, the p most plausible plaintext candidates 

(j=1,2,...p). Each of these plaintexts, will be found by this all powerful cryptanalyst to be 

associated with a series of k=1,2,... keys: Kijk.  

If the cryptanalyst finds for all ciphertexts, a given plaintext candidate that is 

associated with the same key: K**k = K for all i=1,2,...m then this key is the likely true 

key used in all the m cases. However, the more complex the key, the more cryptanalytic 

effort will be needed to flash out the shared key.  

Should the Equivoe-T cipher user, make use of some formula f to generate a 

different key for each of the m messages, then the intractability to extract this message 

will be very high because for every message i=1,2,...m every one of the Ki** may be the 
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key used and there are likely many plausible f functions that connect some entries in 

different messages -- namely another source of built-in equivocation.  

 


