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Abstract. The Number Field Sieve (NFS) algorithm is the best known method

to compute discrete logarithms (DL) in large characteristic finite fields Fpn ,
with p large and n ≥ 1 small. This algorithm comprises four steps: polynomial

selection, relation collection, linear algebra and finally, individual logarithm
computation. The first step outputs two numbers fields equipped with a map

to Fpn . After the relation collection and linear algebra phases, the (virtual)

logarithm of a subset of elements in each number field is known. The fourth
step computes a preimage in one number field of the target element in Fpn . If

one can write the target preimage as a product of elements of known (virtual)

logarithm, then one can deduce the discrete logarithm of the target.
The traditional approach for the individual logarithm step can be extremely

slow, and it is too slow especially for n greater than 3. Its asymptotic complex-

ity is LQ[1/3, c] with c ≥ 1.44. We present a new preimage computation that
provides a dramatic improvement for individual logarithm computations for

small n, both in practice and in asymptotic running-time: we have LQ[1/3, c]

with c = 1.14 for n = 2, 4, c = 1.26 for n = 3, 6 and c = 1.34 for n = 5. Our
method generalizes to any n; in particular c < 1.44 for the two state-of-the-art

variants of NFS for extension fields.
Keywords: Discrete logarithm, finite field, number field sieve, individual

logarithm.

1. Introduction

1.1. The Number Field Sieve Algorithm for Discrete Logarithms in Fi-
nite Fields. We recall that the NFS algorithm is made of four steps: polynomial
selection, relation collection, linear algebra and finally, individual logarithm com-
putation. This last step is mandatory to break any given instance of a discrete
logarithm problem. The polynomial selection outputs two numbers fields, each
equipped with a map ρf , ρg to Fpn , as shown in the following diagram. Moreover,
the monic polynomial defining the finite field is ϕ = gcd(f, g) mod p, of degree n.

Q[x]

Kf = Q[x]/(f(x)) Q[y]/(g(y)) = Kg

Fpn = Fp[z]/(ϕ(z))

ρf : x 7→ z ρg : y 7→ z
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In the remaining of this paper, we will only use ρ = ρf and K = Kf . After the
relation collection and linear algebra phases, the (virtual) logarithm of a subset of
elements in each number field is known. The individual logarithm step computes
a preimage in one number field of the target element in Fpn . If one can write the
target preimage as a product of elements of known (virtual) logarithm, then one can
deduce the individual logarithm of the target. The key point of individual logarithm
computation is finding a smooth enough decomposition of the target preimage.

The asymptotic running time of NFS algorithm steps are estimated with the
L-function:

LQ[α, c] = exp
((
c+ o(1)

)
(logQ)α(log logQ)1−α

)
with α ∈ [0, 1] and c > 0 .

The α parameter measures the gap between polynomial time (α = 0) and exponen-
tial time (α = 1). When c is implicit, or obvious from the context, we simply write
LQ[α]. When the complexity relates to an algorithm for a prime field Fp, we write
Lp[α, c].

1.2. Previous Work on Individual Logarithm. Many improvements for com-
puting discrete logarithms first concerned prime fields. In 1993, Gordon [9] proposed
the first version of NFS–DL algorithm for prime fields Fp with asymptotic complex-

ity Lp[1/3, 9
1/3]. The previous state-of-the-art for computing discrete logarithms

in prime fields was the Coppersmith, Odlyzko and Schroeppel (COS) algorithm,
in Lp[1/2, 1]. Gordon’s Lp[1/3] algorithm is interesting for very large values of
p, that were not yet targets for discrete logarithm computations in the nineties.
Buhler, H. Lenstra and Pomerance [5] estimated the crossover point between 100
and 150 decimal digits, i.e. between 330 and 500 bits. However, with the Lp[1/3]
algorithm there is a new difficulty: the individual logarithm phase. The COS al-
gorithm computes the logarithms of many “small” elements. Writing a relation
between any given target element and the “small” elements of known logarithms
can be done quite fast. But in the Lp[1/3] algorithm, many fewer logarithms are
known, because the relation collection is shorter, explaining the Lp[1/3] running
time instead of Lp[1/2]. As a drawback, the individual logarithm phase becomes
quite time consuming. Since some non-small elements in the decomposition of the
target have an unknown logarithm, a dedicated sieving and linear algebra phase is
done for each of them. Gordon estimated the running-time of individual logarithm
computation to be Lp[1/3, 3

2/3]. In 1998, Weber [17, §6] compared the NFS–DL
algorithm to the COS algorithm for a 85 decimal digit prime and made the same ob-
servation about individual logarithm cost. In 2003, Joux and Lercier [11] were the
first to dissociate relation collection plus linear algebra on one side and individual
logarithm on the other side. They used the special -q technique to find the loga-
rithm of medium-sized elements in the target decomposition. In 2006, Commeine
and Semaev [7] analyzed the Joux–Lercier method. They obtained an asymptotic
complexity of Lp[1/3, 3

1/3] for computing individual logarithms, independent of the
relation collection and linear algebra phases. In 2013, Barbulescu [2, §4, §7.3] gave a
tight analysis of the individual logarithm computation for prime fields, decomposed
in three steps: smoothness step, descent step and final combination of logarithms.
The smoothness step has an asymptotic complexity of Lp[1/3, 1.23] and the descent
step of Lp[1/3, 1.21]. The final computation has a negligible cost.

In 2006, Joux, Lercier, Smart and Vercauteren [12] computed a discrete logarithm
in a cubic extension of a prime field. They used the special-q descent technique
again. They generalized the rational reconstruction of the target to extension fields.
For discrete logarithms in prime fields, the target is an integer modulo p. The ra-
tional reconstruction method outputs two integers of half size compared to p, such
that their quotient is equal to the target element modulo p. Finding a smooth
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decomposition of the target modulo p becomes equivalent to finding a (simulta-
neous) smooth decomposition of two elements, each of half the size. We explain
their method (that we call the JLSV fraction method in the following) for extension
fields in Section 2.3. They used for their record in [12] another polynomial selection
method (that we call the JLSV0 method in the following), whose first polynomial
has very small coefficients, and the second one has coefficients of size O(p). Thanks
to the very small coefficients of the first polynomial, their technique was useful.
Their polynomial selection technique is now superseded by the JLSV1 method [12,
§2.3] for larger value of p and more recently, by the gJL and Conjugation methods
[4]. As noted in [12, §3.2], the technique is useful in some practical cases, for small
n. But for the JLSV1 method and n ≥ 3, this is already too slow. In 2008, Za-
jac [18] implemented the NFS-DL algorithm for computing discrete logarithms in
Fp6 with p of 40 bits (12 decimal digits (dd), i.e. Fp6 of 240 bits or 74 dd). He used
the methods described in [12], with a first polynomial of very small coefficients and
a second one of coefficients in O(p). In this case, individual logarithm was possible
(see the well-documented [18, §8.4.5]). In 2013, Hayasaka, Aoki, Kobayashi and
Takagi [10] computed a discrete logarithm in Fp12 with p = 122663. They also se-
lected the two polynomials with the JLSV0 method. We noted that all these records
used the JLSV0 polynomial selection method, so that one of them has very small
coefficients (e.g. f = x3 +x2−2x−1) whereas the second one has O(p) coefficients.
Despite the JLSV1 method was the state-of-the-art for polynomial selection since
2006, it was never used in practice. JLSV0 was used.

In 2009, Joux, Lercier, Naccache and Thomé [13] proposed an attack of discrete
logarithm problem in a protocol context. The relation collection is speeded-up
with queries to an oracle. They wrote in [13, §B] an extended analysis of individual
logarithm computation. In their case, the individual logarithm phase of the NFS-DL
algorithm has a running-time of LQ[1/3, c] where c = 1.44 in the large characteristic
case, and c = 1.62 in the medium characteristic case. In 2014, Barbulescu and
Pierrot [1] presented a multiple number field sieve variant (MNFS) for extension
fields, based on Coppersmith’s ideas [8]. The individual logarithm is studied in
[1, §A]. They also used a descent technique, for a global estimated running time
in LQ[1/3, (9/2)1/3], with a constant c ≈ 1.65. Recently in 2014, Barbulescu,
Gaudry, Guillevic and Morain [3, 4] announced a 160 and a 180 decimal digit
discrete logarithm record in quadratic fields. They also used a technique derived
from the JLSV fraction method and a special-q descent technique. However their
technique does not scale well for larger n.

1.3. Our Contributions. An integer is said to be B-smooth if all its prime divi-
sors are less than B. An ideal in a number field is said to be B-smooth if it factors
into prime ideals whose norm is bounded by B. For NFS-DL in a prime field Fp,
the norm of the target preimage in the number field is bounded by p. This bound
gives the running time of the individual logarithm step. Finding a smooth decom-
position of the preimage and computing the individual logarithm has complexity
Lp[1/3, 3

1/3] [7] (with 31/3 ' 1.44), which is smaller than the complexity of relation

collection and linear algebra, which is Lp[1/3, (64/9)1/3] (with c = 1.92). For NFS-
DL in Fpn , the norm bound is in fact much higher. Without any improvements
in preimage computation, the individual logarithm step are in LQ[1/3, c], with

c = (9/2)1/3 ' 1.65, 31/3 ' 1.44, 61/3 ' 1.82 respectively,for the three polynomial
selection methods available (JLSV1 [12], generalized Joux–Lercier (gJL) [16, 4],
Conjugation [4]). Applying the JLSV fraction method lowers the norm bound to
O(Q) for the gJL and the Conjugation methods. The individual logarithm in these
case has complexity LQ[1/3, 31/3] as for prime fields (without the improvements of
[2, §4]). However, this method is not suited for number fields generated with the
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JLSV1 method, for n ≥ 3. In practice, we realized that this method which seems
interesting and enough because of the O(Q) bound, is neither enough for gJL and
Conjugation method, for n greater than 3. The preimage norm is much too large,
so finding a smooth factorization is too slow by an order of magnitude. This con-
tradicts the common idea that computing the individual logarithm of an element
of norm bounded by O(Q) is clearly at hand once one was able to do the relation
collection and linear algebra phases.

Firstly we prove a general theorem on the running-time needed to find a smooth
decomposition of the norm preimage. Note that the smoothness bound B =
LQ[2/3, γ] here is not the same as for the relation collection step, where the smooth-
ness bound is B0 = LQ[1/3, β0].

Theorem 1.1 (Running-time of B-smooth decomposition). Let s be an element of
a number field K. Assume that the norm S of s in K is bounded by Qe = LQ[1, e].
Let B = LQ[αB , γ]. Then the optimal bound of running time for finding a B-smooth

decomposition of S is LQ[1/3, (3e)1/3], obtained with αB = 2/3 and γ = (e2/3)1/3.

Secondly we propose a way to lift the target from the finite field to the number
field, such that the norm is strictly smaller than O(Q) for the gJL and Conjugation
methods:

Theorem 1.2. Let s ∈ F∗pn a random element (not in a proper subfield of Fpn).
We want to compute its discrete logarithm modulo `, where ` | Φn(p). Let K be a
number field given by a polynomial selection method.

Then there exists a preimage r̄ in K of an r ∈ F∗pn , such that log ρ(r̄) ≡ log s mod
` and whose norm in K is bounded by O(Qe), where Qe equal

(1) Q1−1/n for the gJL and Conjugation methods;

(2) Q
3
2−

3
2n for the JLSV1 method;

(3) Q1−2/n for the Conjugation method, if the number field has a well-chosen
quadratic subfield satisfying the conditions of Lemma 4.1;

(4) Q
3
2−

5
2n for the JLSV1 method, if the number field has a well-chosen qua-

dratic subfield satisfying the conditions of Lemma 4.1.

Our method reaches the optimal bound of Qϕ(n)/n, with ϕ(n) the Euler totient
function, for n = 2, 3, 4, 5 and the gJL or the Conjugation method. This provides
a dramatic improvement for individual logarithm computation for small n: the
running-time of the first step (the smoothing step) is LQ[1/3, c] with c = 1.14 for
n = 2, 4, c = 1.26 for n = 3, 6 and c = 1.34 for n = 5. It generalizes to any n, so
that c < 1.44 for the two state-of-the-art variants of NFS for extension fields.

1.4. Outline. We recall in Section 2 the three polynomial selection methods in-
volved for NFS-DL in extension fields. We also give a commonly used bound on
the norm of an element in a number field. We also present a generalization of the
JLSV fraction method for the two other polynomial selection methods studied in
this paper. We present our main idea in Sections 3 and 4 to reduce the norm of
the preimage in the number field. We give a complexity analysis of the individual
logarithm phase with our method in Section 5.

2. Preliminaries

We recall the three polynomial selection methods we will study along this paper
in Section 2.1. We give a common simple upper bound on the norm of an element
in an number field in Section 2.2. We will need this formula to estimate a bound
on the norm target and the corresponding asymptotic running-time of individual
logarithm computation.
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We recall now an important property of the LLL algorithm [15]. Given a lattice
of Zn defined by an n × n matrix L, the LLL algorithm outputs a short vector of
the lattice, whose coefficients are bounded by

C det(L)1/n ,

where C is the LLL constant. In the remaining of this paper, we will denote by C
this LLL constant.

2.1. Polynomial Selection Methods. Three polynomial selection methods are
competitive for the initialization step of the NFS algorithm:

(1) the Joux–Lercier–Smart–Vercauteren (JLSV1) method [12, §2.3];
(2) the generalized Joux–Lercier (gJL) method [16, 4, §2, §3.2];
(3) the Conjugation method [4, §3.3].

The gJL method has the best asymptotic running-time in the large characteristic
case, while the Conjugation method holds the best one in the medium characteristic
case. However for a record computation in Fp2 , the Conjugation method was used
[4]. Since the use in practice of each method is not fixed, we study and compare
the three methods for the individual logarithm step of NFS. We recall now the
construction and properties of these three methods.

2.1.1. Joux–Lercier–Smart–Vercauteren (JLSV1) Method. This method was intro-
duced in 2006. We describe it in Algorithm 1. The two polynomials f, g have degree
n and coefficient size O(p1/2). We set ϕ = gcd(f, g) mod p monic of degree n. We
will use ϕ to represent the finite field extension Fpn = Fp[x]/(ϕ(x)).

Algorithm 1: Polynomial selection with the JLSV1 method [12, §2.3]

Input: p prime and n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p)

in Fp[x] irreducible of degree n
1 Select f1(x), f0(x), two polynomials with small integer coefficients,

deg f1 < deg f0 = n

2 repeat
3 choose y ≥ d√pe
4 until f = f0 + yf1 is irreducible in Fp[x]

5 (u, v)← a rational reconstruction of y modulo p

6 g ← vf0 + uf1

7 return (f, g, ϕ = f mod p)

2.1.2. Generalized Joux–Lercier (gJL) Method. This method was presented in Bar-
bulescu’s PhD thesis [2, §8.3] and published in [4]. An earlier publication by
Matyukhin in Russian [16, §2] presents the same method. This is a generaliza-
tion of the Joux–Lercier method [11] for prime fields. We sketch this method in
Algorithm 2. The coefficients of g have size O(Q1/(d+1)) and those of f have size
O(log p), with deg g = d ≥ n and deg f = d+ 1.

2.1.3. Conjugation Method. This method was published in [4] and used for the
discrete logarithm record in Fp2 , with f = x4 + 1. The coefficient size of f is in

O(log p) and the coefficient size of g is in O(p1/2). It provides the best asymptotic
complexity of NFS algorithm in the medium-characteristic case. We describe it in
Algorithm 3.
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Algorithm 2: Polynomial selection with the generalized Joux–Lercier method
(gJL) ([4, §3.2] and [16, §2])

Input: p prime, n integer and d ≥ n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p)

in Fp[x] irreducible of degree n
1 Choose a polynomial f(x) of degree d+ 1 with small integer coefficients which

has a monic irreducible factor ϕ(x) = ϕ0 + ϕ1x+ · · ·+ xn of degree n modulo
p

2 Reduce the following matrix using LLL

M =



p
. . .

p
ϕ0 ϕ1 · · · 1

. . .
. . .

. . .

ϕ0 ϕ1 · · · 1



 degϕ = n d+ 1− n

to get

LLL(M) =


g0 g1 · · · gd

∗

 .

return (f, g = g0 + g1x+ · · ·+ gdx
d, ϕ)

Algorithm 3: Polynomial selection with the Conjugation method [4, §3.3]

Input: p prime and n integer
Output: f, g, ϕ with f, g ∈ Z[x] irreducible and ϕ = gcd(f mod p, g mod p)

in Fp[x] irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n

3 Select Py(Y ) a quadratic, monic, irreducible polynomial over Z with small

coefficients

4 until Py(Y ) has a root y in Fp and ϕ(x) = g0(x) + yg1(x) is irreducible in

Fp[x]

5 f ← ResY (Py(Y ), g0(x) + Y g1(x))

6 (u, v)← a rational reconstruction of y

7 g ← vg0 + ug1

8 return (f, g, ϕ)

2.1.4. Comparison. We summarize in Table 1 the polynomial selection properties
of these three methods.

2.2. Norm Upper Bound in a Number Field. In Section 3 we will compute
the norm of an element s in a number field Kf . We will need an upper bound of
this norm. Let f be an irreducible polynomial over Q and let Kf = Q[x]/(f(x)) a

number field. Write s ∈ Kf as a polynomial in x: s =
∑deg f−1
i=0 six

i. The norm is
6



Table 1. Properties: degree and coefficient size of the three poly-
nomial selection methods for NFS-DL in Fpn . The coefficient sizes
are in O(X). To lighten the notations, we simply write the X term.

method deg f deg g ||f ||∞ ||g||∞
JLSV1 n n Q1/2n Q1/2n

gJL d+ 1 > n d ≥ n O(log p) Q1/(d+1)

Conjugation 2n n O(log p) Q1/2n

defined by a resultant computation:

(1) NKf/Q(s) = Res(f, s) .

We use Kalkbrener’s bound [14, Corollary 2] for an upper bound:

(2) |Res(f, s)| ≤ κ(deg f, deg s)||f ||deg s
∞ ||s||deg f

∞ ,

where κ(n,m) =
(
n+m
n

)(
n+m−1

n

)
and ||f ||∞ = max0≤i≤deg f |fi| the absolute value

of the greatest coefficient. An upper bound for κ(n,m) is (n+m)!. We will use the
following bound in Section 3:

(3) NKf/Q(s) ≤ (deg f + deg s)!||f ||deg s
∞ ||s||deg f

∞ .

2.3. Joux–Lercier–Smart–Vercauteren Fraction Method.

Notation 2.1. Row and column indices. In the following, we will define matrices of
size d×d, with d ≥ n. For ease of notation, we will index the rows and columns from
0 to d− 1 instead of 1 to d, so that the (i+ 1)-th row at index i, Li = [Lij ]0≤j≤d−1,

can be written in polynomial form
∑d−1
j=0 Lijx

j , and the column index j coincides

with the degree j of xj .

Computing a preimage of small norm in the number field is a major point for
efficient individual logarithm. In 2006 was proposed in [12] a method to generalize
to non-prime fields the rational reconstruction method used for prime fields. For
discrete logarithms in prime fields, the target is an integer modulo p. The rational
reconstruction method outputs two integers of half size compared to p and such
that their quotient is equal to the target element modulo p. Finding a smooth
decomposition of the target modulo p becomes equivalent to finding at the same
time a smooth decomposition of two elements of half size each. This is actually
much faster, see [2, §4].

A generalization to extension fields is to write the target preimage as a quotient
of two number field elements, each with norm of half size of the original preimage.
For explaining that, we introduce some notation. We denote by s the target in
the finite field Fpn of degree n and by s̄ a preimage (or lift) in the number field
K defined by a polynomial f . Here is a first very simple preimage choice. Let

s =
∑deg s
i=0 six

i ∈ Fpn , with deg s < n and the finite field extension defined with
the polynomial ϕ as Fpn = Fp[x]/(ϕ(x)). We lift the coefficients si ∈ Fp to s̄i ∈ Z
then we set a preimage of s in the number field K to be

s̄ =

deg s∑
i=0

s̄iX
i ,

with X such that K = Q[X]/(f(X)). (We can also write s̄ =
∑deg s
i=0 s̄iα

i, with α a
root of f in the number field: K = Q[α]).
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Now LLL is used to obtain a quotient whose numerator and denominator have
smaller coefficients. We present here the lattice used with the JLSV1 polynomial
selection method. The number field K is of degree n. We define a lattice of
dimension 2n. For the corresponding matrix, each column corresponds to a power
of X; the first n columns to positive powers 1, X,X2, . . . , Xn−1, the last n to
negative powers 1−1, X−1, X−2, . . . , X−(n−1).

The matrix is

0 ... n−1 n ... 2n−1

L =



p
. . .

p
s̄0 . . . s̄n−1 1
...

...
. . .

s̄xn−1 mod ϕ 1



0

...
n−1

n

...
2n−1

2n×2n

The first n coefficients of the output vector, u0, u1, . . . , un−1 give a numerator u

and the last n coefficients give a denominator v, so that s̄ = au(X)
v(X) with a a scalar

in Q. The coefficients ui, vi are bounded by

||u||∞, ||v||∞ ≤ Cp1/2

since the matrix determinant is detL = pn and the matrix is of size 2n × 2n.
However the product of the norms of each u, v in the number field K will be much
larger than the norm of the single element s̄ because of the large coefficients of f
in the norm formula. We use formula (3) to estimate this bound:

NK/Q(u) ≤ ||u||deg f
∞ ||f ||deg u

∞ = O(p
n
2 p

n−1
2 ) = O(pn−

1
2 ) = O(Q1− 1

2n )

and the same for NK/Q(v), hence the product of the two norms is bounded by

O(Q2− 1
n ). The norm of s̄ is bounded by NK/Q(s̄) ≤ pnp

n−1
2 = Q

3
2−

1
2n which is

much smaller whenever n ≥ 3. Finding a smooth decomposition of u and v at the
same time will be much slower than finding one for s̄ directly, for large p and n ≥ 3.
This is mainly because of the large coefficients of f (in O(p1/2)).

2.3.1. Application to gJL and Conjugation Method. The method of [12] to improve
the smoothness of the target norm in the number field Kf has an advantage for
the gJL and Conjugation methods. First we note that the number field degree is
larger than n: this is d+ 1 ≥ n+ 1 for the gJL method and 2n for the Conjugation
method. For ease of notation, we denote by df the degree of f . We define a lattice
of dimension 2df . Hence there is more place to reduce the coefficient size of the
target s̄.

We put p on the diagonal of the first n − 1 rows, then xiϕ(x) coefficients from
row n to df − 1, where 0 6 i < df − 1 (ϕ is of degree n and has n+ 1 coefficients).
The rows from indexdf to 2df are filled with Xis̄ mod f (these elements have df
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coefficients). We obtain a triangular matrix L.

L =



p
. . .

p
ϕ0 · · · ϕn−1 1

. . .
. . .

. . .

ϕ0 · · · ϕn−1 1
s̄0 . . . s̄n−1 1
... Xis̄ mod f

. . .
...

. . .

Xdf−1s̄ mod f 1



0

...
n−1

n

...
df−1

df

...

...
2df

2df×2df

Since the determinant is detL = pn and the matrix of dimension 2df ×2df , the co-

efficients obtained with LLL will be bounded by Cp
n

2df . The norm of the numerator
or the denominator (with s̄ = u(X)/v(X) ∈ Kf ) is bounded by

NKf/Q(u) ≤ ||u||deg f
∞ ||f ||deg u

∞ = O(pn/2) = O(Q1/2) .

The product of the two norms will be bounded by O(Q) hence we will have the same
asymptotic running time as for prime fields, for finding a smooth decomposition of
the target in a number field obtained with the gJL or Conjugation method. We
will show in Section 3 that we can do even better.

3. Computing a Preimage in the Number Field

Our main idea is to compute a preimage in the number field with smaller degree
(less than deg s) and/or of coefficients of reduced size, by using the subfield structure
of Fpn . Note that we at least have one non-trivial subfield: Fp.

Lemma 3.1. Let s ∈ F∗pn =
∑deg s
i=0 six

i, with deg s < n. Let ` be a non-trivial
divisor of Φn(p). Let s′ = u · s with u in a proper subfield of Fpn . Then

(4) log s′ ≡ log s mod ` .

Proof. We start with log s′ = log s + log u and since u is in a proper subfield, we
have u(pn−1)/Φn(p) = 1, then u(pn−1)/` = 1. Hence the logarithm of u modulo ` is
zero, and log s′ ≡ log s mod `. � �

Example 3.2 (Monic preimage). Let s′ be equal to s divided by its leading term,
s′ = 1

sdeg s
s ∈ Fpn . We have log s′ ≡ log s mod `.

We assume in the following that the target s is monic since dividing by its leading
term does not change its logarithm modulo `.

3.1. Preimage Computation in the JLSV1 Case. Let s =
∑n−1
i=0 six

i ∈ Fpn
with sn−1 = 1. We define a lattice of dimension n by the n× n matrix

L =


p

. . .

p
s̄0 . . . s̄n−2 1


0

...
n−2

n−1

n×n

 n− 1 rows

}row n− 1 with s̄ coeffs
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with p on the diagonal for the first n−1 rows (from 0 to n−2), and the coefficients
of the monic element s̄ on row n− 1. Applying the LLL algorithm to M , we obtain
a reduced element r̄ =

∑n−1
i=0 r̄iX

i ∈ Kf such that

r̄ =

n−1∑
i=0

aiLi

with Li the vector defined by the i-th row of the matrix and ai a scalar in Z. We
map this equality in Fpn with ρ. All the terms cancel out modulo p except the line
with s̄:

ρ(r̄) ≡ ρ(an−1) · ρ(s̄) = u · s mod (p, ϕ)

with u = ρ(an−1) ∈ Fp. Hence, by Lemma 3.1,

(5) log ρ(r̄) ≡ log s mod ` .

Moreover,

||r̄||∞ ≤ Cp(n−1)/n .

It is straightforward, using Inequality (3), to deduce that

NKf/Q(r̄) = O
(
p

3
2 (n−1)

)
= O

(
Q

3
2−

3
2n

)
.

We note that this first simple improvement applied to the JLSV1 construction is
already better than doing nothing: in that case, NKf/Q(s) = O(Q

3
2−

1
2n ). The norm

of r̄ is smaller by a factor of size Q
1
n . For n = 2 we have NKf/Q(r̄) = O(Q

3
4 ) and

for n = 3, the bound is NKf/Q(r̄) = O(Q). We would like to obtain such a bound,
smaller than O(Q), for larger n.

3.2. Preimage Computation in the gJL and Conjugation Cases. Let s =∑n−1
i=0 six

i ∈ Fpn with sn−1 = 1. In order to present a generic method for both the
gJL and the Conjugation methods, we denote by df the degree of f . In the gJL
case we have df = d + 1 ≥ n + 1, while in the Conjugation case, df = 2n. We
define the df × df matrix with p on the diagonal for the first n − 1 rows, and the
coefficients of the monic element s̄ on row n − 1. The rows n to df are filled with
the coefficients of the monic polynomial xjϕ, with 0 ≤ j ≤ df − n.

L =



p
. . .

p
s̄0 . . . s̄n−2 1
ϕ0 ϕ1 · · · ϕn−1 1

. . .
. . .

. . .
. . .

ϕ0 ϕ1 · · · ϕn−1 1



0

...
n−2

n−1

n

...
df−1

df×df

 n− 1 rows

}row n− 1 with s̄ coeffs df − n rows with ϕ coeffs

Applying the LLL algorithm to L, we obtain a reduced element r̄ =
∑df−1
i=0 r̄iX

i ∈
Kf such that r̄ =

∑df−1
i=0 aiLi where Li is the i-th row vector of L and ai is a scalar

in Z. We map this equality into Fpn with ρ. All the terms cancel out modulo (p, ϕ)
except the one with s̄ coefficients:

ρ(r̄) ≡ ρ(an−1) · ρ(s̄) = u · s mod (p, ϕ)

with u = ρ(an−1) ∈ Fp. Hence, by Lemma 3.1,

(6) log ρ(r̄) ≡ log s mod ` .

Moreover,

||r̄||∞ ≤ Cp(n−1)/df .
10



It is straightforward, using Inequality (3), to deduce that

NKf/Q(r̄) = O
(
pn−1

)
= O

(
Q1−1/n

)
.

Here we obtain a bound that is always strictly smaller than Q for any n. In the
next section we show how to improve this bound to O

(
Q1−2/n

)
when n is even and

the number field defined by ϕ has a well-suited quadratic subfield.

4. Preimages of Smaller Norm with Quadratic Subfields

Reducing the degree of s can reduce the norm size in the number field for the
JLSV1 polynomial construction. We present a way to do this when n is even and the
finite field Fpn can be expressed as a degree-n/2 extension of a quadratic extension
defined by a polynomial of a certain form. We will use this to reduce the degree
for the number fields in the JLSV1 method and to reduce the coefficient size of the
preimage in all three cases.

4.1. Smaller Preimage Degree. In this section, we prove that when n is even
and Fpn = Fp[x]/(ϕ(x)) has a quadratic base field Fp2 of a certain form, from a
random element s ∈ Fpn with sn−1 6= 0, we can compute an element r ∈ Fpn with
rn−1 = 0, and s = u · r with u ∈ Fp2 . Then, using Lemma 3.1, we will conclude
that log r ≡ log s mod `.

Lemma 4.1. Let ϕ(X) be a monic irreducible polynomial of Fp[X] of even degree n
with a quadratic subfield defined by the polynomial Py = Y 2 + y1Y + y0. Moreover,
assume that ϕ splits over Fp2 = Fp[Y ]/(Py(Y )) as

ϕ(X) = (Pz(X)− Y )(Pz(X)− Y p)
or ϕ(X) = (Pz(X)− Y X)(Pz(X)− Y pX)

with Pz monic, of degree n/2 and coefficients in Fp. Let s ∈ Fp[X]/(ϕ(X)) a

random element, s =
∑n−1
i=0 siX

i.
Then there exists an r ∈ Fpn monic and of degree n− 2 in X, and u ∈ Fp2 , such

that s = u · r in Fpn .

We first give an example for s ∈ Fp4 then present a constructive proof.

Example 4.2. Let Py = Y 2 + y1Y + y0 be a monic irreducible polynomial over
Fp and set Fp2 = Fp[Y ]/(Py(Y )). Assume that Z2 − Y Z + 1 is irreducible over Fp2
and set Fp4 = Fp2 [Z]/(Z2 − Y Z + 1). Let ϕ = X4 + y1X

3 + (y0 + 2)X2 + y1X + 1
be a monic reciprocal polynomial. By construction, ϕ factors over Fp2 into (X2 −
Y X + 1)(X2 − Y pX + 1) and Fp[X]/(ϕ(X)) defines a quartic extension Fp4 of Fp.
We have these two representations for Fp4 :

Fp4 = Fp2 [Z]/(Z2 − Y Z + 1)
|

Fp2 = Fp[Y ]/(Y 2 + y1Y + y0)
|
Fp

and

Fp4 = Fp[X]/(X4 + y1X
3 + (y0 + 2)X2 + y1X + 1)

|
Fp

11



of Lemma 4.1. Two possible extension field towers are:

Fpn = Fp2 [Z]/(Pz(Z)− Y )
|
Fp2 = Fp[Y ]/(Py(Y ))
|
Fp

and

Fpn = Fp2 [Z]/(Pz(Z)− Y Z)
|
Fp2 = Fp[Y ]/(Py(Y ))
|
Fp

We write s in the following representation to emphasize the subfield structure:

s =

n/2−1∑
i=0

(ai0 + ai1Y )Zi with aij ∈ Fp .

(1) If ϕ = Pz(Z) − Y then we can divide s by uLT = an/2,0 + an/2,1Y ∈ Fp2
(the leading term in Z, i.e. the coefficient of Zn/2) to make s monic in Z
up to a subfield cofactor uLT :

s

uLT
=

n/2−2∑
i=0

(bi0 + bi1Y )Zi + Zn/2−1 ,

with the coefficients bij in the base field Fp, bi0 + bi1Y = (ai0 + ai1Y )/uLT .
Since Pz(Z) = Y and Z = X in Fpn by construction, we replace Y by
Pz(Z) and Z by X to get an expression for s in X:

s

uLT
=

n/2−2∑
i=0

(bi0 + bi1Pz(X))Xi +Xn/2−1 = r(X) .

The degree in X of r is deg r = degPz(X)Xn/2−2 = n − 2 instead of
deg s = n− 1. We set u = 1/uLT . By construction, u ∈ Fp2 . We conclude
that s = ur ∈ Fpn , with deg r = n− 2 and u ∈ Fp2 .

(2) If ϕ = Pz(Z)− Y Z then we can divide s by uCT = a00 + a01Y ∈ Fp2 (the
constant term in Z) to make the constant coefficient of s to be 1:

s

uCT
= 1 +

n/2−1∑
i=1

(bi0 + bi1Y )Xi

with bij ∈ Fp. Since Pz(Z) = Y Z and Z = X in Fpn by construction, we
replace Y Z by Pz(Z) and Z by X to get

s

uCT
= 1 +

n/2−1∑
i=1

(bi0X
i + bi1Pz(X)Xi−1) = r(X) .

The degree in X of r is deg r = degPz(X)Xn/2−1−1 = n− 2 instead of
deg s = n− 1. We set u = 1/uCT . By construction, u ∈ Fp2 . We conclude
that s = ur ∈ Fpn , with deg r = n− 2 and u ∈ Fp2 .

� �

Now we apply the technique described in Section 3.1 to reduce the coefficient size
of r in the JLSV1 construction. We have rn−1 = 0 and we assume that rn−2 = 1.
We define the lattice by the (n− 1)× (n− 1) matrix

L =


p

. . .

p
r̄0 . . . r̄n−3 1


0

...
n−3

n−2

n−1×n−1

 n− 2 rows

}row n− 2 with r̄ coeffs

12



After reducing the lattice with LLL, we obtain an element rr whose coefficients

are bounded by Cp
n−2
n−1 . The norm of rr in the number field Kf constructed with

the JLSV1 method is

NKf/Q(rr) = O(p
3
2n−2− 1

n−1 ) = O(Q
3
2−

2
n−

1
n(n−1) ) .

This is better than the previous O
(
Q

3
2−

3
2n

)
case: the norm is smaller by a factor of

size O
(
Q

1
2n+ 1

n(n−1)
)
. For n = 4, we obtain NKf/Q(rr) = O

(
Q

11
12

)
, which is strictly

less than O(Q).
We can do even better by re-using the element r̄ of degree n − 2 and the given

one s of degree n− 1, and combining them.

4.2. Smaller Preimage Norm. First, suppose that the target element s =
∑n−1
i=0 six

i

satisfies sn−1 = 0 and sn−2 = 1. After what we have seen above, it is tempting to
simply define the n-dimensional lattice

L =


p

. . .

p
s̄0 . . . s̄n−3 1

s̄0 . . . s̄n−3 1


0

...
n−3

n−2

n−1

n−1×n−1

 n− 2 rows

} row n− 2 with s̄ coeffs
} row n− 1 with xs̄ coeffs

After LLL reduction, we obtain an element r̄ =
∑n−1
i=0 aiLi. We map this equality

to Fpn and get

ρ(r̄) = (an−2 + an−1x)s .

But there is no reason for (an−2 + an−1x) to be in a proper subfield of Fpn so we
cannot apply Lemma 3.1 to this equation.

Note that we still can define the lattice

L =


p

. . .

p
s̄0 . . . s̄n−3 1
0 . . . . . . 0 p


0

...
n−3

n−2

n−1

n−1×n−1

 n− 2 rows

} row n− 2 with s̄ coeffs
} row n− 1 with p

but this is a straightforward generalization of Section 3.1 for s of any degree and
the norm bound is the same.

The observation we made is that we can define a lattice whose vectors, once
mapped to Fpn , are either 0 (so vectors are sums of multiples of p and ϕ) or are
multiples of the initial target s, satisfying Lemma 3.1. The above r of degree n− 2
is a good candidate. The initial s also. If there is no initial s of degree n− 1, then
simply take at random any u in a proper subfield of Fpn which is not Fp itself and
set s = u · r. Then s will have sn−1 6= 0. Then define the lattice

L =


p

. . .

p
r̄0 . . . r̄n−3 1
s̄0 . . . s̄n−3 s̄n−2 1


0

...
n−3

n−2

n−1

n×n

 n− 2 rows

} row n− 2 with r̄ coeffs
} row n− 1 with s̄ coeffs

and use it in place of the lattices of Section 3.1 or 3.2. We summarize the coefficient
and norm bounds in Table 2. For ease of reading, we omit the O(·) notation.

4.3. Examples for Small n and p of 180 Decimal Digits (dd).
13



Table 2. Norm bound of the reduced element rr in the number
field K when ϕ satisfies the conditions of Lemma 4.1.

method ||rr||∞ NKf/Q(rr)

JLSV1 p
n−2
n Q

3
2−

5
2n

gJL p
n−2
d+1 Q1− 2

n

Conjugation p
n−2
2n Q1− 2

n

4.3.1. Example for n = 2, Conjugation Method. We take the parameters of the
record in [4]: p is a 90 decimal digit (300 bit) prime number, and f, ϕ are computed
with the Conjugation method. We choose a target s from the decimal digits of
exp(1).

p = 314159265358979323846264338327950288419716939937510582097494459230781640628620899877709223

f = x4 + 1
ϕ = x2 + 107781513095823018666989883102244394809412297643895349097410632508049455376698784691699593x+ 1
s = 271828182845904523536028747135319858432320810108854154561922281807332337576949857498874314x

+95888066250767326321142016575753199022772235411526548684808440973949208471194724618090692

We first compute s′ = 1
s0
s then reduce

L =


p 0 0 0
s′0 1 0 0
1 ϕ1 1 0
0 1 ϕ1 1


then LLL(L) produces r̄ of degree 3 and coefficient size O(p1/4). Actually LLL
outputs four short vectors, hence we get four small candidates for r̄, each of norm
NKf/Q(r̄) = O(p) = O(Q1/2) = O(Qϕ(n)/n), i.e. 90 dd. To slightly improve the
smoothness search time, we can compute linear combinations of these four reduced
preimages.

3603397286457205828471x3 + 13679035553643009711078x2 + 5577462470851948956594x+ 856176942703613067714

9219461324482190814893x3 − 4498175796333854926013x2 + 8957750025494673822198x+ 1117888241691130060409

28268390944624183141702x3 + 5699666741226225385259x2 − 17801940403216866332911x+ 5448432247710482696848

3352162792941463140060x3 + 3212585012235692902287x2 − 5570636518084759125513x+ 46926508290544662542327

The norm of the first element is

NKf/Q(r̄) = 21398828029520168611169045280302428434866966657097075761337598070760485340948677800162921

of 90 decimal digits, as expected.

4.3.2. Example for n = 3, gJL Method. We take p of 60 dd (200 bits) so that Fp3
has size 180 dd (600 bits) as above. We took p a prime made of the 60 first decimal
digits of π. We constructed f, ϕ, g with the gJL method described in [4].

p = 314159265358979323846264338327950288419716939937510582723487

f = x4 − x+ 1
ϕ = x3 + 227138144243642333129902287795664772043667053260089299478579x2

+126798022201426805402186761110440110121157863791585328913565x
+86398309157441443539791899517788388184853963071847115552638

g = 2877670889871354566080333172463852249908214391x3 + 6099516524325575060821841620140470618863403881x2

−10123533234834473316053289623165756437267298403x+ 2029073371791914965976041284208208450267120556

s = 271828182845904523536028747135319858432320810108854154561922x2

+281807332337576949857498874314095888066250767326321142016575x
+75319902277223541152654868480858951626493739297259139859875

14



We set s′ = 1
s2
s. The lattice to be reduced is

L =


p 0 0 0
0 p 0 0
s′0 s′1 1 0
ϕ0 ϕ1 ϕ2 1


then LLL(L) computes four short vectors r̄ of degree 3, of coefficient size O(p1/2),
and of norm size NKf/Q(r̄) = O(p2) = O(Q2/3) = O(Qϕ(n)/n).

159774930637505900093909307018x3 + 165819631832105094449987774814x2 + 177828199322419553601266354904x− 159912786936943488400590389195

136583029354520905232412941048x3 − 521269847225531188433352927453x2 + 322722415562853671586868492721x+ 255238068915917937217884608875

118289007598934068726663000266x3 + 499013489972894059858543976363x2 − 105084220861844155797015713666x+ 535978811382585906107397024241

411603890054539500131474313773x3 − 240161030577722451131067159670x2 − 373289346204280810310169575030x− 389720783049275894296185820094

The norm of the first element is

NKf/Q(r̄) = 997840136509677868374734441582077227769466501519927620849763845265357390584602475858356409809239812991892769866071779

of 117 decimal digits (note that 2
3180 = 120 dd).

4.3.3. Example for n = 4, JLSV1 Method.

p = 314159265358979323846264338327950288419980011

` = 49348022005446793094172454999380755676651143247932834802731698819521755649884772819780061

f = ϕ = x4 + x3 + 70898154036220641093162x2 + x+ 1
g = 101916096427067171567872x4 + 101916096427067171567872x3 + 220806328874049898551011x2

+101916096427067171567872x+ 101916096427067171567872

s = 271828182845904523536028747135319858432320810x3 + 108854154561922281807332337576949857498874314x2

+95888066250767326321142016575753199022772235x+ 41152654868480844097394920847127588391952018

We set s′ = 1
s3
s. The subfield simplification for s gives

r = x2 + 134969122397263102979743226915282355400161911x+ 104642440649937756368545765334741049207121011 .

We reduce the lattice defined by

L =


p 0 0 0
0 p 0 0
r0 r1 1 0
s′0 s′1 s′2 1


then LLL(L) produces these four short vectors of degree 3, coefficient size O(p1/2),

and norm NKf/Q(rr) = O(p
7
2 ) = O(Q7/8) (smaller than O(Q)).

5842961997149263751946x3 + 290736827330861011376x2 − 5618779793817086743792x+ 1092494800287557029045

1640842643903161175359x3 + 15552590269131889589575x2 − 4425488394163838271378x− 5734086421794811858814

6450686906504525374853x3 + 13768771242650957399419x2 + 10617583944234090880579x+ 16261617079167797580912

16929135804139878865391x3 + 698185571704810258344x2 + 12799300411012246114079x− 22787282698718065284157

The norm of the first element is

NKf/Q(rr) = 14521439292172711151668611104133579982787299949310242601944218977645007049527\
012365602178307413694530274906757675751698466464799004360546745210214642178285

of 155 decimal digits (with 7
8180 = 157.5).
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5. Asymptotic Complexities

In this section, we prove Theorem 1.1. First, we need a result on smoothness
probability. We recall the definition of B-smoothness already stated in Section 1.3:
An integer S is B-smooth if and only if all its prime divisors are less than or equal to
B. We also recall that the L-notation widely used for sub-exponential asymptotic
complexities:

LQ[α, c] = exp
((
c+ o(1)

)
(logQ)α(log logQ)1−α

)
with α ∈ [0, 1] and c > 0 .

The Canfield–Erdős–Pomerance [6] theorem provides a useful result to measure
smoothness probability:

Theorem 5.1 (B-smoothness probability). For an integer S bounded by LQ[αS , σ]
and a smoothness bound B = LQ[αB , β], the probability that S is B-smooth is

(7) Pr(S is B-smooth) = LQ

[
αS − αB ,−(αS − αB)

σ

β

]
.

We prove now the Theorem 1.1 that states the running-time of individual loga-
rithm when the norm of the target in a number field is bounded by O(Qe).

of Theorem 1.1. From Theorem 5.1, the probability that S bounded by Qe =
LQ[1, e] is B-smooth with B = LQ[αB , γ] is Pr(S is B-smooth) = LQ

[
1−αB ,−(1−

αB) eγ
]
. We assume that a B-smoothness test with ECM takes time LB [1/2, 21/2] =

LQ[αB

2 , (2γαB)1/2]. The running-time for finding a B-smooth decomposition of S
is the ratio of the time per test (ECM cost) to the B-smoothness probability of S:

LQ

[αB
2
, (2γαB)1/2

]
LQ

[
1− αB , (1− αB)

e

γ

]
.

We optimize first the α value, so that α ≤ 1/3 (that is, not exceeding the α of the
two previous steps of the NFS algorithm):

max(αB/2, 1− αB) ≤ 1

3
.

This gives the system {
αB ≤ 2/3
αB ≥ 2/3

So we conclude that

(8) αB =
2

3
.

The running-time for finding a B-smooth decomposition of S is therefore

(9) LQ

[
1/3,

(4

3
γ
)1/2

+
e

3γ

]
.

The minimum of the function ( 4
3γ)1/2+ e

3γ is (3e)1/3, corresponding to γ = (e2/3)1/3,

which yields our optimal running time:

LQ

[
1/3, (3e)1/3

]
.

� �

This result should be compared with the running time of LQ[ 1
3 , (

9
2 )1/3] for the

JLSV1 method (e = 3/2) computed by Barbulescu and Pierrot [1, Appendix A],
and the running time of LQ[ 1

3 , 3
1/3] for prime fields (e = 1) computed by Commeine

and Semaev [7, §4.1].
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Table 3. Running-time to compute a B-smooth decomposition of
S bounded by Qe, for some values of e in [1/3, 3] and B =
LQ[2/3, (e2/3)1/3].

Norm bound Q1/3 Q1/2 Q2/3 Q4/5 Q Q3/2 Q2 Q3

running-time constant
1 ( 3

2 )1/3 21/3 12
5

1/3 31/3 9
2

1/3 61/3 91/3

c in LQ[ 1
3 , c]

constant c = (3e)1/3 1.00 1.14 1.26 1.34 1.44 1.65 1.82 2.08

5.1. Running-Time of Special-q Descent. The second step of the individual
logarithm computation is the special-q descent. This consists in computing the
logarithms of the medium-sized elements in the factorization of the target in the
number field. This step is very technical and we refer to Joux–Lercier–Naccache-
Thomé [13, §B], Commeine and Semaev [7, §4.3], Barbulescu and Pierrot [1, §A],
and Barbulescu [2, §7.3] for an analysis. They claim that this is possible to tune
parameters so that the running time is in LQ[1/3, δ] with δ strictly less than the
constant involved in the running time of finding a B-smooth decomposition of the
target. Since we considerably lowered this constant to c = (3e)1/3, more work is
needed to find whether we still have δ < c. The third and final step of individual
logarithm computation is very fast. It combines all the logarithms computed before,
to get the final discrete logarithm of the target. It seems that now the special-q
descent is clearly the bottleneck of the individual logarithm computation.

6. Conclusion

We give in Table 4 an upper bound for the norm of s in a number field Kf

for three polynomial selection methods: the JLSV1 method, the generalized Joux–
Lercier method and the Conjugation method, and the complexity of finding a B-
smooth decomposition of NKf/Q(s).

Table 4. Properties of polynomials and norm estimate for the

three polynomial selection methods, with s =
∑deg s
i=0 six

i ∈ F∗pn
and assuming that deg s = n− 1.

polynomial select. JLSV1[12, §2.3] gJL[16, 4] Conjugation[4]

deg f n d+ 1 ≥ n+ 1 2n

||f ||∞ O(p1/2) O(log p) O(log p)

NormKf/Q(s) pdeg s/2||s||n∞ ||s||d+1
∞ ||s||2n∞

nothing Q3/2−1/(2n) Q1+1/n Q2

[12] and §2.3 Q2 Q Q

This work, 3.1, 3.2 Q3/2−3/(2n) Q1−1/n Q1−1/n

This work, 4.2 Q3/2−5/(2n) Q1−2/n Q1−2/n

Finally, we give our practical results for small n in Table 5, where there are
the most dramatic improvements. We obtain the optimal norm size of Qϕ(n)/n for
n = 2, 3, 5 with the gJL method and also for n = 4 with the Conjugation method.

Acknowledgements. Many thanks to François Morain, Pierrick Gaudry and Ben
Smith for their helpful comments.
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Table 5.

polynomial select. JLSV1[12, §2.3] gJL[16, 4] Conjugation[4]
n = 2

Norm bound Q3/4, § 3.1 Q1/2, § 3.2

running time, c
(

9
4

)1/3

= 1.31
(

3
2

)1/3

= 1.14

n = 3

Norm bound Q § 3.1 Q2/3, § 3.2
running time, c 31/3 = 1.44 21/3 = 1.26

n = 4

Norm bound Q7/8, § 4.2 Q3/4, § 3.2 Q1/2, § 4.2

running time, c
(

21
8

)1/3

= 1.38
(

9
4

)1/3

= 1.31
(

3
2

)1/3

= 1.14

n = 5

Norm bound Q6/5, § 3.1 Q4/5, § 3.2

running time, c
(

18
5

)1/3

= 1.53
(

12
5

)1/3

= 1.34

n = 6

Norm bound Q13/12, § 4.2 Q5/6, § 3.2 Q2/3, § 4.2

running time, c
(

13
4

)1/3

= 1.48
(

5
2

)1/3

= 1.36 21/3 = 1.26
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