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Abstract

Time-lock puzzles, introduced by May, Rivest, Shamir and Wagner, is a mechanism for
sending messages “to the future”. A sender can quickly generate a puzzle with a solution s
that remains hidden until a moderately large amount of time t has elapsed. The solution s
should be hidden from any adversary that runs in time significantly less than t, including
resourceful parallel adversaries with polynomially many processors.

While the notion of time-lock puzzles has been around for 22 years, there has only been
a single candidate proposed. Fifteen years ago, Rivest, Shamir and Wagner suggested a
beautiful candidate time-lock puzzle based on the assumption that exponentiation modulo
an RSA integer is an “inherently sequential” computation.

We show that various flavors of randomized encodings give rise to time-lock puzzles of
varying strengths, whose security can be shown assuming the existence of non-parallelizing
languages, which are languages that require circuits of depth at least t to decide, in the worst-
case. The existence of such languages is necessary for the existence of time-lock puzzles.
We instantiate the construction with different randomized encodings from the literature,
where increasingly better efficiency is obtained based on increasingly stronger cryptographic
assumptions, ranging from one-way functions to indistinguishability obfuscation. We also
observe that time-lock puzzles imply one-way functions, and thus the reliance on some
cryptographic assumption is necessary.

Finally, generalizing the above, we construct other types of puzzles such as proofs of
work from randomized encodings and a suitable worst-case hardness assumption (that is
necessary for such puzzles to exist).

∗MIT. Email: nirbitan@csail.mit.edu.
†MIT and Weizmann Institute. Email: shafi@theory.csail.mit.edu.
‡Johns Hopkins University. Email: abhishek@cs.jhu.edu.
§Boston University. Email: omer@bu.edu. Supported by the Simons award for graduate students in theoretical

computer science and an NSF Algorithmic foundations grant 1218461.
¶MIT. Email: vinodv@mit.edu.
‖UT Austin. Email: bwaters@cs.utexas.edu.



Contents

1 Introduction 1
1.1 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Main Idea: Construction and Proof . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 On the Necessity of One-way Functions . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 5

3 Time-Lock Puzzles 5
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Succinct Randomized Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4.1 Proof of Theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Weak Time-Lock Puzzles from One-Way Functions . . . . . . . . . . . . . . . . . 9

4 Time-Lock Puzzles with Pre-processing 10
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Reusable Randomized Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Proofs of Work 14
5.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A Time-Lock Puzzles from Message-hiding Encodings 18
A.1 Message-Hiding Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2 Non-Parallelizing Languages with Average-Case Hardness . . . . . . . . . . . . . 19
A.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.4 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.4.1 Proof of Theorem A.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.5 From Message-Hiding Encodings to Randomized Encodings via FHE . . . . . . . 21

B Necessity of One-Way Functions 23
B.1 Reducing Complexity Assumptions:

One-Way Functions from Relaxed Time-Lock Puzzles . . . . . . . . . . . . . . . 24
B.1.1 Constructing Relaxed Time-Lock Puzzles . . . . . . . . . . . . . . . . . . 25
B.1.2 Proof of Theorem B.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



1 Introduction

A central theme in cryptography is the design of schemes that are secure against adversaries
whose running time is bounded by some polynomial. Nevertheless, in some scenarios a more
precise quantification of the adversary’s computational resources may be called for. A useful
notion in such scenarios is that of cryptographic puzzles that require some precise amount of
time or space to solve. Such puzzles are utilized in a wide range of applications including digital-
currency, combating junk mail, and timed-release encryption [DN92, RSW00, JJ99, Nak00].

As a leading example, consider the notion of time-lock puzzles introduced by May [May93]
and Rivest, Shamir, and Wagner [RSW00]. Informally, this is a mechanism for sending messages
to the future. The sender generates a puzzle with a solution s that remains hidden until time t
has elapsed allowing the puzzle to be solved. Concretely, s should be hidden from adversaries
that run in time significantly less than t, including parallel adversaries with polynomially many
processors, or more broadly, polynomial size circuits of depth much less than t.

While the notion of time-lock puzzles has been around for 22 years, there has only been a
single candidate proposed. Fifteen years ago Rivest, Shamir, and Wagner [RSW00] suggested
candidate time-lock puzzles based on the assumption that exponentiation modulo an RSA inte-
ger is an “inherently sequential” computation. Since then there have been no other candidates
meeting the standard notion of time-lock puzzles.1 This is in contrast to other cryptographic
primitives such as one-way functions for which several candidates have been discovered and
studied over the years. Moreover, the hardness of several such candidates can be based on the
worst-case hardness of lattice problems that are currently resilient against quantum algorithms
(unlike factoring-based solutions).

We identify two main challenges in designing time-lock puzzles based on natural crypto-
graphic assumptions.

• Complexity-theoretic bounds on parallelism. Whereas typical cryptographic assumptions
address all adversaries of any polynomial size,2 very crudely, the time-lock puzzle notion
requires differentiating between polynomial size adversaries which are of different polyno-
mial depth (i.e. different parallel running time). Thus, the existence of time-lock puzzles
must imply for example that NC ( P, whereas cryptographic primitives such as one-way
functions, fully-homomorphic encryption, or even indistinguishability obfuscation may
hold even if P = NC.

• Inherent sequentiality vs. fast generation. While there are several candidates for problems
that are “inherently sequential to solve” (even on the average-case), the notion of time-lock
puzzles further requires that instances for such problems can be generated fast together
with their solution. Finding candidate constructions satisfying both of these requirements
has proved to be rather elusive.

We thus set out to study what is the weakest complexity-theoretic condition that, combined with
well studied cryptographic assumptions suffice for the construction of time-lock puzzles.

1In nonstandard models, other constructions are known. For example, Mahmoody, Moran and Vadhan
[MMV11] constructed weak time-lock puzzles in the random oracle model where the puzzle generator must spend
roughly the same amount of computation to make the puzzle as the solver must use to solve it. The key require-
ment is that the generator should be able to spread its computation in parallel over several machines, yet a solver
must work sequentially.

2We restrict our discussion to a non-uniform adversary model.
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1.1 This work

Time-Lock Puzzles From Non-Parallelizing Languages and Randomized Encodings.
We put forth the notion of non-parallelizing languages: decidable in time t, but hard for cir-
cuits of depth significantly smaller than t. We focus our attention on languages that are non-
parallelizing in the worst case, meaning that every shallow decider fails on some instance. The
assumption that worst case non-parallelizing languages exist can be seen as a natural gener-
alization of the assumption that P 6⊆ NC, and has many known candidates. In particular,
any P-complete problem [GHR95] would be non-parallelizing, assuming that non-parallelizing
languages exist.

It is easy to see that worst-case non-parallelizing languages are necessary for time-lock
puzzles, in this work we ask whether they suffice. Indeed, time-lock puzzles can be seen as
samplable and hard on the average-case non-parallelizing languages: they yield a pair of sam-
plable distributions over yes-instances and no-instances that cannot be distinguished by circuits
that are too shallow. Thus, the question can be seen as an analog of the fundamental problem
of basing one-way functions on NP-hardness. While the latter question concerns the nature
of general polynomial-time computation, the former concerns computations with some precise
depth complexity.

Our main result shows how to construct time-lock puzzles starting from any efficient randomized
encodings scheme, assuming the existence of a worst case non-parallelizing language. Random-
ized encodings [IK00, AIK06] allow one to express a complex computation given by a function
f and input x, by a simpler-to-compute representation f̂(x) whose distribution encodes the
output f(x), but computationally hides any other information. Looking ahead, the efficiency
of generating (or “locking”) the new time-lock puzzles will be tightly related to the complexity
parameters of the randomized encoding used.

A crucial feature of our construction is that security is based on the existence of any non-
parallelizing languages. This is unlike the candidate of Rivest, Shamir and Wagner [RSW00]
who rely on the (average-case) non-parallelizability of a particular computation with respect to
a particular distribution.

Instantiations of New Time Lock Puzzles. We instantiate the construction with different
instantiations of randomized encodings from the literature, where increasingly better efficiency
is obtained based on increasingly stronger cryptographic assumptions, ranging from one-way
functions to indistinguishability obfuscation. We also observe that time-lock puzzles imply
one-way functions, and thus the reliance on some cryptographic assumption is necessary.

At one end of the spectrum, the standard (and strongest) notion of time-lock puzzles requires
that the time to generate a puzzle is essentially independent of the time t required to solve the
puzzle. To obtain such puzzles, we rely on succinct randomized encodings where the complexity
of encoding is essentially independent of the complexity of the encoded computation. Such
succinct randomized encodings are known based on indistinguishability obfuscation [BGL+15,
CHJV15, KLW15].

At the other end of the spectrum, we consider weak time-lock puzzles where only the parallel-
time of generating a puzzle is independent of the time t required to solve the puzzle, whereas the
overall (sequential) time may be proportional t. Such puzzles were constructed by Mahmoody,
Moran, and Vadhan in the random oracle model [MMV11]. We construct weak time-lock puzzles
based on the traditional notion of (non-succinct) randomized encodings (in another language,
Yao’s garbled circuits [Yao86]), which can be based on one-way functions, and where encoding
is indeed highly parallelizable as required.

We also consider an intermediate notion of time-lock puzzles with pre-processing. Here the
puzzle generator performs a one-time expensive preprocessing phase and can subsequently gen-
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erate an unbounded number of puzzles with low additional cost. Concretely, preprocessing
takes total time t but can be parallelized as in weak time-lock puzzles, and then generating
each puzzle is done in time independent of t as in standard time-lock puzzles. Such puzzles
can be obtained from reusable randomized encodings (also known as reusable garbled circuits),
where a function f is encoded in an expensive preprocessing phase, and subsequently any input
x for the function can be encoded in time that is independent of the complexity of f . Reusable
randomized encodings are, in turn, known based on sub-exponential LWE [GKP+13].

Other puzzles. Finally, generalizing the above, we construct other types of puzzles such as
proofs of work [DN92] where the measure of parallel-time is replaced by another complexity
measure. Proofs of work are puzzles that require some precise computational effort to solve and
are non-amortizable. Concretely, it is required that, for any t chosen by the generator, a single
puzzle can be solved in time t, but any polynomial number of puzzles k cannot be solved by a
circuit of size significantly smaller than t · k.

Analogously to the time-lock puzzles construction, we prove the security of the proof-of-
work thus constructed, based on randomized encodings and on a suitable worst-case hardness
assumption that is necessary for such puzzles to exist. That is, the existence of non-amortizing
languages (instead of non-parallelizing languages). A language L decidable in time t is worst-
case non-amortizing if for every k, no circuit of size significantly smaller than t · k can decide
the direct product language Lk. The proof of security follows the same lines as above.

We note that even more generally, one can apply the above approach with different com-
plexity measures, relying on an appropriate worst-case assumption.

1.2 The Main Idea: Construction and Proof

Let f be a function, x an input, and f̂(x) its randomized encoding. By the definition of random-
ized encodings, the encodings of two computations with the same output are indistinguishable,
even if the computations behave differently before producing this output. For instance, one
computation might solve some hard problem, whereas the other one stalls and then outputs
a hard-coded solution to a hard problem. Our construction follows this intuition: a time-lock
puzzle with solution s solvable in time t, consists of a randomized encoding of a “dummy
computation” that outputs s after t dummy steps.

In the security proof, we will show that any adversary A of depth significantly smaller than
t that distinguishes puzzles with different solutions s0 and s1, can be turned into a circuit D
deciding any given non-parallelizing languages L with roughly the same depth as A. The decider
D, given an input x, first computes a randomized encoding of the program MLs0,s1 that decides
(in time t) whether x ∈ L, and outputs s0 or s1 accordingly. By the guarantee of the randomized

encoding, the encoding M̂Ls0,s1 is either indistinguishable from a time-lock puzzle with solution
s0 or from one with solution s1 according to whether x ∈ L. Since A can distinguish between
the two, D can invoke A to successfully decide the language. The depth of the decider D is
the same as the depth of A plus the depth required to compute the randomized encoding. To
reach a contradiction we therefore rely on encodings that can be computed in depth that is
significantly smaller than t.

1.3 Alternative Approaches

A Refined Approach via Message-hiding Encodings. We observe that a different con-
struction of time-lock puzzles can be obtained from a relaxation of randomized encodings called
message-hiding encodings [IW14, KLW15], at the price of assuming stronger non-parallelizing
languages.
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In message-hiding encodings, a secret message m is encoded with respect to some public
predicate P and input x. Decoding m is possible only if P (x) = 1, and otherwise the encoding
computationally hides m. As in succinct randomized encodings, the complexity of encoding the
message is essentially independent of the complexity of P .

The strengthening of non-parallelizing languages requires that, not only do shallow circuits
fail to decide the language L in the worst-case, but they also fail on some samplable instance
distribution X with probability approximately half. While this is already an average-case guar-
antee, it is still seemingly weaker than the average-case hardness that is equivalent to time-lock
puzzles outlined before; there, both yes-instances and no-instances should be efficiently sam-
plable.

In the new construction, the solution s is encoded as the message twice, once with respect
to (PL, x) and then with respect to (1− PL, x), where the predicate PL tests membership in L
and x is sampled from X . See further details in Appendix A. We note that, unlike in our previ-
ous construction from randomized encodings, the construction from message-hiding encodings
explicitly depends on the specific non-parallelizing language together with the corresponding
hard distribution X .

Currently, message-hiding encodings are only known based on the same assumption re-
quired for succinct randomized encodings, namely, indistinguishability obfuscation. However,
the above construction may become appealing if message-hiding encodings can be shown from
qualitatively weaker assumptions. We observe that this “gap” can always be bridged based
on fully-homomorphic encryption. Concretely, fully-homomorphic encryption lets us transform
any message-hiding encoding into a succinct randomized encoding, relying on similar ideas to
those used by Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13] to transform
attribute-based encryption to functional-encryption. See further details in Appendix A.

The above suggests a refined view of our original approach separated into two steps. The
first step translates worst-case hardness to average-case hardness (and also removes the need
to explicitly know the language and hard distribution). The second step translates average-
case hardness with oblivious instance sampling to average-case hardness where instances can
be sampled with a solution. Whereas randomized encodings achieve both effects together, they
can be separated: the second step can be achieved based on message-hiding encodings, and the
first, by adding fully-homomorphic encryption. Fully-homomorphic encryption and randomized
encodings were used in [AIK06, CKV10] to yield a similar worst-case/average-case connection
for functions in deterministic time classes.

A Heuristic Approach Using Obfuscation. We briefly note that there exists a natural
heuristic approach to designing time lock puzzles using obfuscation. The puzzle generator on
input time t and solution s will first create a MAC key k and a signature σ1 on the message
m = 1. Next, it creates an obfuscation of the following program. The program will take as
input a message, signature pair (m,σ) for m ∈ [1, t]. For m < t it first verifies (using k) that
σ is a signature on m, if this check passes the program outputs a signature σ′ on message
m + 1. Finally, if m = t and the signature verifies, the program will output the solution s.
The published puzzle is σ1 together with the obfuscated program. To solve the puzzle, one
simply starts by inputting the initial signature into the obfuscated program and receiving a
new signature. This process is repeated t times until the solution s is received.

Heuristically, it might appear that this is a potential candidate for a time lock puzzle.
Unfortunately, we do not currently see any way to analyze its security.
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1.4 On the Necessity of One-way Functions

We observe that (standard) time-lock puzzles imply the existence of one-way functions. To
convey the idea behind the implication, assume for starters that we are given time-lock puzzles
where it is possible to generate, in fixed polynomial time, puzzles that are solvable only in some
super-polynomial time, e.g. t = λlog λ. Then, we claim that the function that maps the random
coins r of the generator to a puzzle with solution s = 0 solvable in time t is a one-way function.
First, since the puzzle can be computed fast so can the function. Second, any polynomial
inverter for the function can also distinguish in polynomial time λO(1) � t = λlog λ a puzzle
with solution s = 0 from one with solution s = 1.

In standard time-lock puzzles, however, while correctness is guaranteed for any value of t,
security is only guaranteed for t that is polynomial in the security parameter. At high-level,
we can bridge this gap by choosing the time t at random from an appropriate set resulting in
a weak one-way function, and then use standard amplification [Gol01a]. See further details in
Appendix B.

2 Preliminaries

The cryptographic definitions in the paper follow the convention of modeling security against
non-uniform adversaries. An efficient adversary A is modeled as a sequence of circuits A =
{Aλ}λ∈N, such that, for security parameter λ, the circuit Aλ is of polynomial size λO(1) with

λO(1) input and output bits. Accordingly, the hardness assumptions made throughout the
paper address non-uniform circuits. The results can be cast into the uniform setting, with some
adjustments. As usual, all honest algorithms are modeled as uniform machines.

Parallelism. Throughout, we shall also be interested in the parallel complexity of certain
tasks. To unify terminology, we shall also model parallel algorithms as (uniform or non-uniform)
circuits. Here the parallel time of a given algorithm is determined by the depth dep(C) of the
corresponding circuit C and the total running time (which in particular bounds the number of
processors) is determined by the total size of the circuit |C|.

3 Time-Lock Puzzles

In this section, we define time-lock puzzles and construct them based on succinct randomized
encodings. The security of the construction is assuming also the existence of a hard language
that is non-parallelizing in the worst case.

3.1 Definitions

We start by defining the notion of puzzles. Then we define the security requirement for time-lock
puzzles.

Puzzles. A puzzle is associated with a pair of parameters: a security parameter λ determining
the cryptographic security of the puzzle, as well as a difficulty parameter t that determines how
difficult it is to solve the puzzle.

Definition 3.1 (Puzzles). A puzzle is a pair of algorithms (Puzzle.Gen,Puzzle.Sol) satisfying
the following requirements.

• Syntax:

5



– Z ← Puzzle.Gen(t, s) is a probabilistic algorithm that takes as input a difficulty pa-
rameter t and a solution s ∈ {0, 1}λ, where λ is a security parameter, and outputs a
puzzle Z.

– s ← Puzzle.Sol(Z) is a deterministic algorithm that takes as input a puzzle Z and
outputs a solution s.

• Completeness: For every security parameter λ, difficulty parameter t, solution s ∈ {0, 1}λ
and puzzle Z in the support of Puzzle.Gen(t, s), Puzzle.Sol(Z) outputs s.

• Efficiency:

– Z ← Puzzle.Gen(t, s) can be computed in time poly(log t, λ).

– Puzzle.Sol(Z) can be computed in time t · poly(λ).

Time-Lock Puzzles In a time-lock puzzle, we require that the parallel time required to solve
a puzzle is proportional to the time it takes to solve the puzzle honestly, up to some fixed
polynomial loss.

Definition 3.2 (Time-Lock Puzzles). A puzzle (Puzzle.Gen,Puzzle.Sol) is a time-lock puzzle
with gap ε < 1 if there exists a polynomial t(·), such that for every polynomial t(·) ≥ t(·)
and every polysize adversary A = {Aλ}λ∈N of depth dep(Aλ) ≤ tε(λ), there exists a negligible
function µ, such that for every λ ∈ N, and every pair of solutions s0, s1 ∈ {0, 1}λ:

Pr

[
b← Aλ(Z) :

b← {0, 1} ,
Z ← Puzzle.Gen(t(λ), sb)

]
≤ 1

2
+ µ(λ) .

3.2 Succinct Randomized Encodings

The main tool used in the construction is a succinct randomized encoding scheme. A randomized
encoding [IK00] allows to express a complex computation given by a function f and input x, by
a simpler-to-compute representation f̂(x) that encodes the output f(x), but computationally
hides any other information. In succinct randomized encoding the function f is given by a
Turing machine and M and the (sequential) time required to compute M̂(x) is independent of
the complexity of f .

Definition 3.3 (Succinct Randomized Encoding). A succinct randomized encoding scheme RE
consists of two algorithms (RE.Encode,RE.Decode) satisfying the following requirements.

• Syntax:

– M̂(x) ← RE.Encode(M,x, t, 1λ) is a probabilistic algorithm that takes as input a
machine M , input x, time bound t, and a security parameter 1λ. The algorithm
outputs a randomized encoding M̂(x).

– y ← RE.Decode(M̂(x)) is a deterministic algorithm that takes as input a randomized

encoding M̂(x) and computes an output y ∈ {0, 1}λ.

• Functionality: for every input x and machine M such that, on input x, M halts in t steps
and produces a λ-bit output, it holds that y = M(x) with overwhelming probability over
the coins of RE.Encode.
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• Security: there exists a PPT simulator Sim satisfying: for any poly-size distinguisher
D = {Dλ}λ∈N and polynomials m(·), n(·), t(·), there exists a negligible µ(·), such that for

any λ ∈ N, machine M ∈ {0, 1}m(λ), input x ∈ {0, 1}n(λ):∣∣∣∣Pr[Dλ(M̂(x)) = 1 : M̂(x)← RE.Encode(M,x, t(λ), 1λ)]−

Pr[Dλ(Ŝy) = 1 : Ŝy ← Sim(y, 1m(λ), 1n(λ), t(λ), 1λ)]

∣∣∣∣ ≤ µ(λ) ,

where y is the output of M(x) after t(λ) steps.

• Efficiency: For any machine M that on input x produces a λ-bit output in t steps:

– RE.Encode(M,x, t, 1λ) can be computed in (sequential) time polylog(t)·poly(|M |, |x|, λ).

– RE.Decode(M̂(x)) can be computed in (sequential) time t · poly(|M |, |x|, λ).

Succinct randomized encoding were constructed in [BGL+15, CHJV15, KLW15] based on indis-
tinguishability obfuscation. The works of [BGL+15, CHJV15] gave constructions met the above
efficiency property with the exception that the encoding took time (and size) proportional to
the maximum memory used by the computation. This restriction is not present in [KLW15].

Theorem 3.4 ([KLW15]). Assuming one-way functions and indistinguishability obfuscation for
all circuits there exist a succinct randomized encoding scheme.

3.3 Construction

We describe the construction of time-lock puzzles from succinct randomized encodings.

Construction 3.5 (Time-Lock Puzzles). Let RE be a succinct randomized encoding scheme. For
s ∈ {0, 1}λ and t ≤ 2λ, let M t

s be a machine that, on any input x ∈ {0, 1}λ, outputs the string
s after t steps (here we assume that t ≥ λ+ ω(1)). Further assume that M t

s is described by 3λ
bits (which is possible for large enough λ).

The time-lock puzzle is constructed as follows:

• Puzzle.Gen(t, s) samples M̂ t
s(0

λ)← RE.Encode(M t
s, 0

λ, t, 1λ) and outputs Z = M̂ t
s(0

λ).

• Puzzle.Sol(Z) outputs RE.Decode(Z).

3.4 Proof of Security

The security of Construction 3.5 relies on the existence of a language with a specific kind of
worst-case hardness that we refer to as “non-parallelizing” language. A poly-time decidable lan-
guage L is non-parallelizing if parallel algorithms cannot do significantly better (than sequential
algorithms) in deciding it. That is, the circuit depth of any family of circuits deciding the lan-
guage L is as large as the (sequential) time required to decide L up to some fixed polynomial
loss.

Definition 3.6 (Non-Parallelizing Language). A language L ∈ Dtime(t(·)) is non-parallelizing
with gap ε < 1 if for every family of non-uniform polysize circuits B = {Bλ}λ∈N where dep(Bλ) ≤
tε(λ) and every large enough λ, Bλ fails to decide Lλ = L ∩ {0, 1}λ.

The security of Construction 3.5 is stated in the following theorem.

Theorem 3.7. Let ε < 1. Assume that, for every polynomial bounded function t(·), there exists
a non-parallelizing language L ∈ Dtime(t(·)) with gap ε. Then, for any ε < ε, Construction 3.5
is a time-lock puzzle with gap ε.
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3.4.1 Proof of Theorem 3.7

The completeness and efficiency properties of the puzzle follow directly from the completeness
and efficiency properties of the succinct randomized encoding scheme. We proceed to argue
that the puzzle is a secure time-lock puzzle. Let qRE(λ) be the fixed polynomial given by the
efficiency property of the succinct randomized encoding scheme, bounding the time required to
compute a randomized encoding with machine size 3λ, input size λ, and any time bound t ≤ 2λ.
Let t(λ) := (qRE(λ))1/ε.

Assume towards contradiction that there exists a polysize adversary A = {Aλ}λ∈N, and a
polynomially bounded function t(·) ≥ t(·) such that dep(Aλ) < tε(λ) and for some polynomial
p(·) and infinitely many λ ∈ N there exists a pair of solutions s0, s1 ∈ {0, 1}λ such that:

Pr

[
b← Aλ(Z) :

b← {0, 1} ,
Z ← Puzzle.Gen(t(λ), sb)

]
≥ 1

2
+

1

p(λ)
. (1)

Let L ∈ Dtime(t(·)) be a non-parallelizing language with gap ε, which exists by assumption.
We construct a polysize circuit family B = {Bλ}λ∈N of depth dep(Bλ) ≤ tε(λ) that decides
Lλ = L ∩ {0, 1}λ for any λ as above, contradicting the fact that L is non-parallelizing.

We start by constructing a probabilistic polysize adversary B′ such that that dep(B′λ) =
o(tε(λ)) and B′λ decides Lλ with some noticeable advantage. Then, we conclude the proof using
a standard parallel repetition argument.

Fix any λ as above with corresponding s0, s1 ∈ {0, 1}λ. Let ML,ts0,s1 be a machine that, on
input x ∈ {0, 1}λ, outputs s1 if x ∈ L and and s0 if x /∈ L, after exactly t(λ) steps. Such a
machine indeed exists since L ∈ Dtime(t(·)). Further assume that ML,ts0,s1 is described by 3λ bits
(which is possible for large enough λ), and thus has the same description length as M t

sb
.

Given input x ∈ {0, 1}λ, to decide if x ∈ L, the randomized B′λ acts as follows:

• Sample Z := M̂L,ts0,s1(x)← RE.Encode(ML,ts0,s1 , x, t(λ), 1λ).

• Obtain b← Aλ(Z) and output b.

First, note that B′ is of polynomial size and its depth is given by:

dep(B′λ) = qRE(λ) + dep(Aλ) = tε(λ) + tε(λ) ≤ 2tε(λ) = o(tε(λ)) .

We next show that B′ distinguishes instances x ∈ L from instances x /∈ L with noticeable
advantage. For any x ∈ {0, 1}λ, let b ∈ {0, 1} indicate whether x ∈ Lλ we have that sb =
ML,ts0,s1(x) = M t

sb
(0λ). Therefore, by the security of the randomized encoding scheme there

exists a PPT simulator Sim and a negligible function µ(·) such that for any x ∈ {0, 1}λ:

Pr[B′λ(x) = 1] =

Pr
[
A′λ(M̂L,ts0,s1(x)) = 1 : M̂L,ts0,s1(x)← RE.Encode(ML,ts0,s1 , x, t(λ), 1λ)

]
=

Pr
[
A′λ(Ŝsb) = 1 : Ŝsb ← Sim

(
sb, 1

3λ, 1λ, t(λ), 1λ
)]
± µ(λ) ,

and:

Pr [Aλ(Z) = 1 : Z ← Puzzle.Gen(t(λ), sb)] =

Pr
[
A′λ(M̂ t

sb
(0λ)) = 1 : M̂ t

sb
(0λ)← RE.Encode(M t

sb
, 0λ, t(λ), 1λ)

]
=

Pr
[
A′λ(Ŝsb) = 1 : Ŝsb ← Sim

(
sb, 1

3λ, 1λ, t(λ), 1λ
)]
± µ(λ) .
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It follows by our assumption towards contradiction (Equation 1) that for large enough λ
and any x ∈ Lλ, x̄ /∈ Lλ:∣∣Pr[B′λ(x) = 1]− Pr[B′λ(x̄) = 1]

∣∣ ≥ 2

p(λ)
− 2µ(λ) ≥ 1

p(λ)
.

To obtain the required B that deterministically works for any x ∈ {0, 1}λ, we rely on the
standard parallel repetition argument showing that BPP/poly ⊆ P/poly [Gol01b, Theorem
1.3.7]. Note that following this argument, |B| = poly(B′) = poly(λ) and dep(B) = dep(B) +
polylog(λ) = o(tε(λ)) contradicting the fact that L is non-parallelizing.

3.5 Weak Time-Lock Puzzles from One-Way Functions

In this section, we provide a construction of weak time-lock puzzles based on one-way functions.
Weak puzzle are defined similarly to standard puzzles (Definition 3.1) except that we only
require that the puzzle can be generated in fast parallel time even though the sequential time
to generate a puzzle may be as much or even more than the time to solve it. The security
requirement for weak time-lock puzzles is unchanged (see Definition 3.2).

Definition 3.8 (Weak Puzzles). A weak puzzle is defined by a pair of algorithms (Puzzle.Gen,Puzzle.Sol)
satisfying the syntax and completeness requirements as per Definition 3.1, and the following weak
efficiency requirement.

Weak Efficiency:

• Puzzle.Gen(t, s) can be computed by a uniform circuit of size poly(t, λ) and depth poly(log t, λ).

• Puzzle.Sol(Z) can be computed in time t · poly(λ).

Our construction of weak time-lock puzzles is essentially the same as Construction 3.5 of
that of standard time-lock puzzles except that instead of using a succinct randomized encoding,
we use a standard non-succinct randomized encoding that can be obtained from any one-way
function.

Definition 3.9 (Randomized Encoding). A randomized encoding scheme RE consists of two al-
gorithms (RE.Encode,RE.Decode) satisfying the syntax, functionality and security requirements
as per Definition 3.3, and the following efficiency requirement.

Efficiency: For any machine M that on input x produces a λ-bit output in t steps:

• M̂(x)← RE.Encode(M,x, t, 1λ) can be computed by a uniform circuit of depth polylog(t) ·
poly(|M |, |x|, λ) and total size t · poly(|M |, λ).

• RE.Decode(M̂(x)) can be computed in (sequential) time t · poly(|M |, |x|, λ).

Theorem 3.10. Let ε < 1. Assume that, for every polynomial bounded function t(·), there exists
a non-parallelizing language L ∈ Dtime(t(·)) with gap ε. Then, for any ε < ε, Construction 3.5
instantiated with a standard randomized encoding is a weak time-lock puzzle with gap ε.

The proof of Theorem 3.10 follows closely the proof of Theorem 3.7 in Section 3.4 with
the following modifications. The weak efficiency of the puzzle follows from the efficiency prop-
erty of randomized encodings since RE.Encode(Mt,s, 0

λ, t, 1λ) runs in parallel time polylog(t) ·
poly(|Mt,s|, λ) = polylog(t) · poly(λ). In security proof we now think of qRE(λ) as bounding the
depth of the circuit RE.Encode instead of its sequential running time.
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4 Time-Lock Puzzles with Pre-processing

In this section, we consider time-lock puzzles with pre-processing. Generating such puzzles
requires a one-time preprocessing phase that is as expensive as solving the puzzle; however,
subsequent to the pre-processing phase, one can generate any polynomial number of puzzles
inexpensively.

We provide a construction of time-lock puzzles with pre-processing based on reusable ran-
domized encodings. While known constructions of succinct randomized encodings (used in
Section 3) are based on indistinguishability obfuscation, reusable randomized encodings can be
constructed based on sub-exponential LWE [GKP+13]. Unlike succinct randomized encodings,

the time to compute a reusable randomized encoding M̂ of a Turing machine M does depend
on the running time of M . However, the encoded machine M̂ can then be evaluated on many
encoded inputs and therefore the cost of encoding M is amortized over many evaluations.

4.1 Definitions

We start with the definition of puzzles with pre-processing and then define security of time-lock
puzzles with pre-processing.

Puzzles with pre-processing. We first define puzzles with pre-processing whose efficiency
lies in between that of standard (succinct) puzzles and weak puzzles. Concretely, in puzzles
with pre-processing, most of the puzzle is generated ahead of time in a preprocessing phase,
independently of any specific desired solution s. Subsequently, a puzzle with any solution s can
be generated as efficiently as in standard (succinct) puzzles.

Definition 4.1 (Puzzles with Pre-processing). A puzzle with pre-processing is defined by a
triple of algorithms
(Puzzle.Preproc,Puzzle.Gen,Puzzle.Sol) satisfying the following requirements.

• Syntax:

– (P,K) ← Puzzle.Preproc(1t, 1λ) is a probabilistic algorithm that takes as input a
difficulty parameter t and a security parameter λ, and outputs a state P and a short
K ∈ {0, 1}λ.

– Z ← Puzzle.Gen(s,K) is a probabilistic algorithm that takes as input a solution
s ∈ {0, 1}λ and secret key K and outputs a puzzle Z.

– s ← Puzzle.Sol(P,Z) is a deterministic algorithm that takes as input a state P and
puzzle Z and outputs a solution s.

• Completeness: For every security parameter λ, difficulty parameter t, solution s ∈ {0, 1}λ,

state P , key K in the support of Puzzle.Preproc(1t, 1λ), and puzzle Z in the support of
Puzzle.Gen(s,K), Puzzle.Sol(P,Z) outputs s.

• Efficiency:

– (P,K)← Puzzle.Preproc(1t, 1λ) can be computed by a uniform circuit of depth poly(log t, λ)
and total size t · poly(λ).

– Z ← Puzzle.Gen(s,K) can be computed in (sequential) time poly(log t, λ).

– Puzzle.Sol(Z) can be computed in time t · poly(λ).
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Time-Lock Puzzles with Pre-processing. We now define time-lock puzzles with pre-
processing where the adversary is given multiple challenge puzzles. We require that the parallel
time required to solve any of the puzzles is proportional to the time it takes to solve a puzzle
honestly, up to some fixed polynomial loss. To the best of our knowledge, such a notion of
time-lock puzzles was not considered previously.

Definition 4.2 (Time-Lock Puzzles with Pre-processing). A puzzle with pre-processing (Puzzle.Preproc,
Puzzle.Gen,Puzzle.Sol) is a time-lock puzzle with gap ε < 1 if there exists a polynomial t(·),
such that for every polynomial t(·) ≥ t(·) and every polysize adversary A = {Aλ}λ∈N of depth
dep(Aλ) ≤ tε(λ), there exists a negligible function µ, such that for every λ ∈ N, and pairs of
solutions (s1,0, s1,1), . . . , (sk,0, sk,1) ∈ {0, 1}λ+λ for k = poly(λ):

Pr

b← Aλ (P, {Zi}ki=1

)
:
b← {0, 1} ,
(P,K)← Puzzle.Preproc(1t, 1λ),
Zi ← Puzzle.Gen(si,b,K)

 ≤ 1

2
+ µ(λ) .

Remark 4.3 (On the security of time-lock puzzles with pre-processing). It is instructive to com-
pare Definition 4.2 with a weaker definition where the adversary is given only one challenge
puzzle. Indeed, there might exist a construction that satisfies this weaker definition but is
insecure w.r.t. Definition 4.2.

Remark 4.4 (On the efficiency of pre-processing phase). In Definition 4.1, we require that the
pre-processing algorithm must be computable by a uniform circuit of dept poly(log t, λ). One
could consider an alternative, natural definition where this efficiency requirement is removed.
We note that this definition is technically incomparable to weak time-lock puzzles (see Definition
3.8).

4.2 Reusable Randomized Encodings

Here we define reusable randomized encodings whose efficiency lies in between that of standard
randomized encodings and succinct ones. Concretely, in reusable randomized encodings, most
of the expensive encoding phase is done ahead of time in a preprocessing phase, independently
of any specific (M,x). Subsequently, any (M,x) can be encoded as efficiently as in succinct
randomized encodings.

Definition 4.5 (Reusable Randomized Encoding). A reusable randomized encoding scheme RE
consists of a triple of algorithms (RE.Preproc,RE.Encode,RE.Decode) satisfying the following
requirements.

• Syntax:

– (Û ,K) ← RE.Preproc(m,n, t, 1λ) is a probabilistic algorithm that takes as input
bounds m,n, t on machine size, input size, and time, as well as a security parameter
1λ. The algorithm outputs an encoded state Û and a short secret key K ∈ {0, 1}λ.

– M̂(x) ← RE.Encode(M,x,K) is a probabilistic algorithm that takes as input a ma-
chine M , input x, and secret key K ∈ {0, 1}λ. The algorithm outputs a randomized

encoding M̂(x).

– y ← RE.Decode(Û , M̂(x)) is a deterministic algorithm that takes as input an encoded

state Û and a randomized encoding M̂(x), and computes an output y ∈ {0, 1}λ.

• Functionality: for every m,n, t, security parameter λ, n-bit input x, and m-bit machine
M such that M(x) halts in t steps, it holds that y = M(x) with overwhelming probability
over the coins of RE.Preproc,RE.Encode.
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• Security: there exists a PPT simulator Sim satisfying: for any poly-size distinguisher
D = {Dλ}λ∈N and polynomials m(·), n(·), t(·), there exists a negligible µ(·), such that for

any λ ∈ N, machines and inputs (M1, x1, ) . . . , (Mk, xk) ∈ {0, 1}n(λ)+m(λ):∣∣∣∣∣Pr

[
Dλ(Û , M̂1(x1), . . . , M̂k(xk)) = 1 :

(Û ,K)← RE.Preproc(m(λ), n(λ), t(λ), 1λ)

M̂i(xi)← RE.Encode(Mi, xi,K)

]
−

Pr
[
Dλ(Û , Ŝy1 , . . . , Ŝyk) = 1 : Û ,

{
Ŝyi

}
← Sim

(
{yi} ,m(λ), n(λ), t(λ), 1λ

)] ∣∣∣∣∣ ≤ µ(λ) ,

where yi is the output of Mi(xi) after t(λ) steps.

• Efficiency: For any m,n, t and machine M ∈ {0, 1}m that on input x ∈ {0, 1}n produces
a λ-bit output in t steps:

– (Û ,K) ← RE.Preproc(m,n, t, 1λ) can be computed by a uniform circuit of depth
polylog(t) · poly(m,n, λ) and total size t · poly(m,λ).

– M̂(x) ← RE.Encode(M,x,K) can be computed in sequential time (rather than just
parallel time) polylog(t) · poly(m,n, λ).

– RE.Decode(Û , M̂(x)) can be computed in (sequential) time t · poly(m,n, λ).

Theorem 4.6 ([GKP+13]). Assuming sub-exponential hardness of the LWE problem, there
exists a reusable randomized encoding scheme.

4.3 Construction

We now describe our construction of time-lock puzzles with pre-processing from reusable ran-
domized encodings.

Construction 4.7 (Time-Lock Puzzles with Pre-processing). Let RE be a reusable randomized
encoding scheme. For s ∈ {0, 1}λ and t ≤ 2λ, let M t

s be a machine that, on any input x ∈ {0, 1}λ,
outputs the string s after t steps (here we assume that t ≥ λ+ ω(1)). Further assume that M t

s

is described by 3λ bits (which is possible for large enough λ).

The time-lock puzzle with pre-processing is constructed as follows:

• Puzzle.Preproc(1t, 1λ) samples (Û ,K ′)← RE.Preproc(3λ, λ, t, 1λ) and outputs (P = Û ,K =
K ′).

• Puzzle.Gen(s,K) samples M̂ t
s(0

λ)← RE.Encode(Mt,s, 0
λ, t, 1λ) and outputs Z = M̂ t

s(0
λ).

• Puzzle.Sol(Z) outputs RE.Decode(P,Z).

Theorem 4.8. Let ε < 1. Assume that, for every polynomial bounded function t(·), there exists
a non-parallelizing language L ∈ Dtime(t(·)) with gap ε. Then, for any ε < ε, Construction 4.7
is a time-lock puzzle with pre-processing with gap ε.

4.4 Proof of Security

The completeness and efficiency properties of the puzzle follow directly from the completeness
and efficiency properties of the reusable randomized encoding scheme. We proceed to argue that
the puzzle is a secure time-lock puzzle with pre-processing. Let qRE(λ) be the fixed polynomial
given by the efficiency property of the reusable randomized encoding scheme, bounding the time
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required to compute a randomized encoding with machine size 3λ, input size λ, and any time
bound t ≤ 2λ. Let t(λ) := (qRE(λ))1/ε.

Assume towards contradiction that there exists a polysize adversary A = {Aλ}λ∈N, and a
polynomially bounded function t(·) ≥ t(·) such that dep(Aλ) < tε(λ) and for some polynomial
p(·) and infinitely many λ ∈ N there exist pairs of solutions (s1,0, s1,1), . . . , (sk,0, sk,1) ∈ {0, 1}λ+λ
such that:

Pr

b← Aλ(Z) :
b← {0, 1} ,
(P,K)← Puzzle.Preproc(1t, 1λ),
Z ← Puzzle.Gen(si,b,K)

 ≥ 1

2
+

1

p(λ)
. (2)

Let L ∈ Dtime(t(·)) be a non-parallelizing language with gap ε, which exists by assumption.
We construct a polysize circuit family B = {Bλ}λ∈N of depth dep(Bλ) ≤ tε(λ) that decides
Lλ = L ∩ {0, 1}λ for any λ as above, contradicting the fact that L is non-parallelizing.

We start be constructing a probabilistic polysize adversary B′ such that that dep(B′λ) =
o(tε(λ)) and B′λ decides Lλ with some noticeable advantage. Fix any λ with corresponding

(s1,0, s1,1), . . . , (sk,0, sk,1) ∈ {0, 1}λ+λ as above. For every i ∈ [k], let ML,tsi,0,si,1 be a machine
that, on input x ∈ {0, 1}λ, outputs si,1 if x ∈ L and and si,0 if x /∈ L, after exactly t(λ) steps.

Such machines indeed exist since L ∈ Dtime(t(·)). Further assume that ML,tsi,0,si,1 is described
by 3λ bits (which is possible for large enough λ), and thus has the same description length as
M t
si,b

.

Given input x ∈ {0, 1}λ, to decide if x ∈ L, the randomized B′λ acts as follows:

• Sample (Û ,K)← RE.Preproc(13λ, 1λ, t, 1λ).

• Sample Zi := M̂L,tsi,0,si,1(x)← RE.Encode(ML,tsi,0,si,1 , x,K) for every i ∈ [k].

• Obtain b← Aλ
(
Û , {Zi}ki=1

)
and output b.

First, note that B′ is of polynomial size and its depth is given by:

dep(B′λ) = qRE(λ) + dep(Aλ) = tε(λ) + tε(λ) ≤ 2tε(λ) = o(tε(λ)) .

We next show that B′ distinguishes instances x ∈ L from instances x /∈ L with noticeable
advantage. For any x ∈ {0, 1}λ, let b ∈ {0, 1} indicate whether x ∈ Lλ we have that si,b =

ML,tsi,0,si,1(x) = M t
si,b

(0λ). Therefore, by the security of the reusable randomized encoding scheme

there exists a PPT simulator Sim and a negligible function µ(·) such that for any x ∈ {0, 1}λ:

Pr[B′λ(x) = 1] =

Pr

[
Aλ
(
Û ,
{
M̂L,tsi,0,si,1 (x)

}k
i=1

)
= 1 :

(Û ,K)← RE.Preproc
(
13λ, 1λ, t, 1λ

)
,

M̂L,tsi,0,si,1 (x)← RE.Encode
(
ML,tsi,0,si,1 , x,K

) ] =

Pr

[
Aλ
(
Û ,
{
Ŝsi,b

}k
i=1

)
= 1 : Û ,

{
Ŝsi,b

}k
i=1
← Sim

(
{si,b}ki=1 , 1

3λ, 1λ, t(λ), 1λ
)]
± µ(λ) .

And:

Pr

[
Aλ
(
P, {Zi}ki=1

)
= 1 :

(P,K)← Puzzle.Preproc(1t, 1λ),
Zi ← Puzzle.Gen(si,b,K)

]
=

Pr

[
Aλ
(
Û ,
{
M̂ t
si,b

(0λ)
}k
i=1

)
= 1 :

(Û ,K)← RE.Preproc
(
13λ, 1λ, t, 1λ

)
,

M̂ t
si,b

(0λ)← RE.Encode(M t
si,b
, x,K)

]
=

Pr

[
Aλ
(
Û ,
{
Ŝsi,b

}k
i=1

)
= 1 : Û ,

{
Ŝsi,b

}k
i=1
← Sim

(
{si,b}ki=1 , 1

3λ, 1λ, t(λ), 1λ
)]
± µ(λ) .
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It follows by our assumption towards contradiction (Equation 2) that for large enough λ
and any x ∈ Lλ, x̄ /∈ Lλ:∣∣Pr[B′λ(x) = 1]− Pr[B′λ(x̄) = 1]

∣∣ ≥ 2

p(λ)
− 2µ(λ) ≥ 1

p(λ)
.

To obtain the required B that deterministically works for any x ∈ {0, 1}λ, we rely on the
standard parallel repetition argument showing that BPP/poly ⊆ P/poly [Gol01b, Theorem
1.3.7]. Note that following this argument, |B| = poly(B′) = poly(λ) and dep(B) = dep(B) +
polylog(λ) = o(tε(λ)) contradicting the fact that L is non-parallelizing.

5 Proofs of Work

In this section, we define proofs of work and construct them based on succinct randomized
encodings. The security of the construction also assumes the existence of a hard language that
is non-amortizing in the worst case.

Definition. In proofs of work, we require that the minimal time required to solve k random
puzzles is proportional to k times the time it takes to solve the puzzle honestly, up to some
fixed polynomial loss. We give the formal definition below.

Definition 5.1 (Proofs of Work). A puzzle (Puzzle.Gen,Puzzle.Sol) is a proof of work with gap
ε < 1 if there exists a polynomial t(·), such that for every polynomials t(·) ≥ t(·) and k(·), and
every polysize adversary A = {Aλ}λ∈N such that |Aλ| ≤ k(λ) · tε(λ), there exists a negligible
function µ such that for every λ ∈ N:

Pr

[(
s1, . . . , sk(λ)

)
← Aλ(Z1, . . . , Zk(λ)) :

si ← {0, 1}λ ,
Zi ← Puzzle.Gen(t(λ), si)

]
≤ µ(λ) .

Construction. Our construction of proofs of work is the same as the construction of time-lock
puzzles given in Section 3.3.

5.1 Security

In order to prove security of our construction, we will rely on a specific kind of language with
worst-case hardness that we refer to as “non-amortizing” language. We first present its defini-
tion. The definition addresses non-uniform families of circuits, and can be naturally augmented
to the uniform case.

Non-amortizing language. A poly-time decidable language L is non-amortizing if solving
multiple instances together is not significantly easier than solving each of them separately. That
is, the circuit size of any family of circuits deciding the k-fold direct product Lk is as large as
k times the time required to decide L up to some fixed polynomial loss.

Definition 5.2 (Non-Amortizing Language). A language L ∈ Dtime(t(·)) is non-amortizing
with gap ε < 1 if for every polynomial k(·) and family of non-uniform polysize circuits B =
{Bλ}λ∈N such that Bλ operates on inputs in {0, 1}λ×k(λ) and |Bλ| ≤ k(λ) · (t(λ))ε, and every

large enough λ, Bλ fails to decide Lkλ = Lk(λ) ∩ {0, 1}λ×k(λ).

The security of our construction is stated in the following theorem.

Theorem 5.3. Let ε < 1. Assume that, for every polynomial bounded function t(·), there exists
a non-amortizing language L ∈ Dtime(t(·)) with gap ε. Then, for any ε < ε, Construction 3.5
is a proof of work with gap ε.
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5.2 Proof of Theorem 5.3

The completeness and efficiency properties of the puzzle follows directly from the completeness
and efficiency properties of the succinct randomized encoding scheme. We proceed to argue
that that the puzzle is a secure proof of work. Let qRE(λ) be the fixed polynomial given by the
efficiency property of the succinct randomized encoding scheme, bounding the time required to
compute a randomized encoding with machine size 3λ, input size λ, and any time bound t ≤ 2λ.
Let t(λ) := (qRE(λ))1/ε.

Assume towards contradiction that there exists an adversary A = {Aλ}λ∈N, and polyno-
mially bounded functions t(·) ≥ t(·) and k(·) such that for some polynomial p(·) and infinitely
many λ ∈ N, |Aλ| < k(λ) · (t(λ))ε, and:

Pr

[(
s1, . . . , sk(λ)

)
← Aλ(Z1, . . . , Zk(λ)) :

si ← {0, 1}λ ,
Zi ← Puzzle.Gen(t(λ), si)

]
≥ 1

p(λ)
.

Let L ∈ Dtime(t(·)) be a non-amortizing language with gap ε, which exists by assumption.
We construct a polysize circuit family B = {Bλ}λ∈N operating on inputs in {0, 1}λ×k(λ) and of

size |Bλ| ≤ k(λ) · (t(λ))ε such that, for any λ as above, B decides Lkλ = Lk(λ) ∩ {0, 1}λ×k(λ),
contradicting the fact that L is non-amortizing.

We start be constructing a probabilistic adversary B′ such that that |B′λ| = o (k (λ) · (t(λ))ε)
and B′λ decides Lλ with some noticeable advantage. Then, we conclude the proof using a standard
parallel repetition argument.

Fix any λ as above and choose random s1, . . . , sk ∈ {0, 1}λ. Let ML,ts1 , . . . ,M
L,t
sk be k

machines where the ith machine ML,tsi , on input xi ∈ {0, 1}λ, outputs si if xi ∈ L and a
randomly chosen r′i ∈ {0, 1}λ if xi /∈ L, after exactly t(λ) steps. Note that such machines indeed

exist since L ∈ Dtime(t(·)). Further assume that ML,tsi is described by the same number of bits
as M t

sb
, e.g. 3λ bits (which is possible for large enough λ).

Given input (x1, . . . , xk) ∈ {0, 1}λ×k(λ), to decide if (x1, . . . , xk) ∈ Lkλ, the randomized B′λ
acts as follows:

• Sample Zi := M̂L,tsi (x)← RE.Encode(ML,tsi , xi, t(λ), 1λ).

• Obtain (s′1, . . . , s
′
k)← Aλ(Z1, . . . , Zk). If s′i = si for every i ∈ [k], output 1; else output 0.

First, note that the size of B′ is given by:

|B′λ| = k(λ) · qRE(λ) + |Aλ| = k(λ) · (t(λ))ε +k(λ) · (t(λ))ε ≤ 2k(λ) · (t(λ))ε = o (k (λ) · (t (λ))ε) .

We next show that B′ distinguishes instances (x1, . . . , xk) ∈ Lk from instances (x1, . . . , xk) /∈ Lk
with noticeable advantage. By the security of the randomized encoding scheme there exists a
PPT simulator Sim and a negligible function µ(·) such that:

Pr[B′λ(x1, . . . , xk) = 1] =

Pr

[
Aλ
({

M̂L,tsi (xi)
}k
i=1

)
= (s1, . . . , sk) : M̂L,tsi (xi)← RE.Encode(ML,tsi , xi, t(λ), 1λ)

]
=

Pr

[
Aλ
({

Ŝai

}k
i=1

)
= (s1, . . . , sk) :

ai = ML,tsi (xi)

Ŝai ← Sim
(
ai, 1

3λ, 1λ, t(λ), 1λ
) ]± k · µ(λ),
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and:

Pr
[
Aλ
(
{Zi}ki=1

)
= (s1, . . . , sk) : Zi ← Puzzle.Gen(t(λ), ai)

]
=

Pr

[
Aλ
({

M̂ t
ai

(
0λ
)}k

i=1

)
= (s1, . . . , sk) : M̂ t

ai(0
λ)← RE.Encode(M t

ai , 0
λ, t(λ), 1λ)

]
=

Pr

[
Aλ
({

Ŝai

}k
i=1

)
= (s1, . . . , sk) : Ŝai ← Sim

(
ai, 1

3λ, 1λ, t(λ), 1λ
)]
± k · µ(λ).

It follows by our assumption towards contradiction that for large enough λ and any (x1, . . . , xk) ∈
Lkλ, (x̄1, . . . , x̄k) /∈ Lkλ:∣∣Pr[B′λ(x1, . . . , xk) = 1]− Pr[B′λ(x̄1, . . . , x̄k) = 1]

∣∣ ≥ 2

p(λ)
− 2k · µ(λ) ≥ 1

p(λ)
.

To obtain the required B that deterministically works for any (x1, . . . , xk) ∈ {0, 1}λ×k(λ), we
rely on the standard parallel repetition argument showing that BPP/poly ⊆ P/poly [Gol01b,
Theorem 1.3.7].

Acknowledgments. We wish to thank Ryan Williams for his patient and thorough answers
to our questions.
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A Time-Lock Puzzles from Message-hiding Encodings

We observe that a different construction of time-lock puzzles can be obtained from a relaxation of
randomized encodings called message-hiding encodings [IW14, KLW15], at the price of assuming
stronger non-parallelizing languages with average-case hardness.

A.1 Message-Hiding Encodings

In message-hiding encodings, a secret message m is encoded with respect to some public pred-
icate P and input x. Decoding m is possible only if P (x) = 1, and otherwise the encoding
computationally hides m. As in succinct randomized encodings, the complexity of encoding the
message is essentially independent of the complexity of P .

Definition A.1 (Message-Hiding Encoding [KLW15]). A message-hiding encoding scheme MHE
consists of two algorithms (MHE.Encode,MHE.Decode) satisfying the following requirements.

• Syntax:

– m̂ ← MHE.Encode(P, x, t,m) is a probabilistic algorithm that takes as input a ma-
chine P , input x, time bound t, and message m ∈ {0, 1}λ, where λ is the security
parameter. The algorithm outputs an encoding m̂.

– m̃ ← MHE.Decode(m̂) is a deterministic algorithm that takes as input an encoding
m̂ and computes a message m̃ ∈ {0, 1}λ.

• Functionality: for every input x and machine M such that P accepts x after t steps, it
holds that m̃ = m with overwhelming probability over the coins of MHE.Encode.

• Security: for any poly-size distinguisher D = {Dλ}λ∈N and polynomials m(·), n(·), t(·),
there exists a negligible µ(·), such that for any λ ∈ N, machine P ∈ {0, 1}m(λ), messages
m0,m1, and input x ∈ {0, 1}n(λ) such that P rejects x after t steps:∣∣∣∣Pr[Dλ(m̂0) = 1 : m̂0 ← MHE.Encode(P, x, t(λ),m0)]−

Pr[Dλ(m̂1) = 1 : m̂1 ← MHE.Encode(P, x, t(λ),m1)]

∣∣∣∣ ≤ µ(λ) .

• Efficiency: For any machine M that on input x halts and outputs a bit in t steps, and any

m ∈ {0, 1}λ:

– MHE.Encode(P, x, t,m) can be computed in (sequential) time polylog(t)·poly(|P |, |x|, λ).

– RE.Decode(m̂) can be computed in (sequential) time t · poly(|P |, |x|, λ).

Message-hiding encodings are a relaxation of succinct randomized encoding and can thus be
constructed from indistinguishability obfuscation [KLW15].
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A.2 Non-Parallelizing Languages with Average-Case Hardness

In addition to message-hiding encodings, we also assume the existence of non-parallelizing lan-
guages with average-case hardness. These are defined similarly to standard non-parallelizing
languages (Definition 3.6) except that we require that shallow circuits fail to decide such lan-
guages on instances samples from some distribution X with probability that is significantly
higher than half. We require that for every difficulty parameter t and input length there exists
a non-parallelizing language L decidable in time t and that there is a uniform way to decide the
language and sample hard instances for every t.

Definition A.2 (Average-Case Non-Parallelizing Language Ensemble). A collection of lan-
guages {Lλ,t}λ,t∈N is average-case non-parallelizing with gap ε < 1 if the following properties
are satisfied.

• Completeness: For every λ, t ∈ N, we have that Lλ,t ⊆ {0, 1}λ and there exists a decision

algorithm L such that for every λ, t ∈ N and every x ∈ {0, 1}λ, L(t, x) runs in time t and
outputs 1 iff x ∈ Lλ,t.

• Average-Case Non-Parallelizing: There exists an efficient sampler X such that for every
family of polysize circuits B = {Bλ}λ∈N there exists a negligible function µ such that for
every λ, t ∈ N if dep(Bλ) ≤ tε then:

Pr
x←Xλ(1λ,t)

[Bλ(x) = L(t, x)] ≤ 1

2
+ µ(λ) .

A.3 Construction

We describe the construction of time-lock puzzles based on a message-hiding encoding scheme
and an average-case non-parallelizing language ensemble. Note that unlike Construction 3.5,
this construction does depend on the specific choice of non-parallelizing language.

Construction A.3 (Time-Lock Puzzles from Message-Hiding Encodings). Let MHE be a message-
hiding encoding scheme, let {Lλ,t}λ,t∈N be a collection of average-case non-parallelizing lan-

guages with decision algorithm L and input sampler X . For s ∈ {0, 1}λ and t ≤ 2λ, let P t be
the decision predicate L(t, x) for the language Lλ,t.
The time-lock puzzle is constructed as follows:

• Puzzle.Gen(t, s) samples a hard instance x← Xλ(1λ, t), samples:

ŝ1 ← MHE.Encode(P t, x, t, s) , ŝ0 ← MHE.Encode(1− P t, x, t, s) ,

and outputs Z = (t, x, ŝ0, ŝ1).

• Puzzle.Sol(t, x, ŝ0, ŝ1) computes b = P t(x) and outputs MHE.Decode(ŝb).

A.4 Proof of Security

The security of Construction A.3 is stated in the following theorem.

Theorem A.4. If {Lλ,t}λ,t∈N is average-case non-parallelizing with gap ε < 1, then, for any
ε < ε, Construction A.3 is a time-lock puzzle with gap ε.
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A.4.1 Proof of Theorem A.4

The completeness and efficiency properties of the puzzle follow directly from the completeness
and efficiency properties of the message-hiding encoding scheme. We proceed to argue that the
puzzle is a secure time-lock puzzle. Let qMHE(λ) be the fixed polynomial given by the efficiency
property of the message-hiding encoding scheme, bounding the time required to compute an
encoding of the predicate P t, an input of size λ, and any time bound t ≤ 2λ. Let t(λ) :=
(qMHE(λ))1/ε.

Assume towards contradiction that there exists a polysize adversary A = {Aλ}λ∈N, and a
polynomially bounded function t(·) ≥ t(·) such that dep(Aλ) < tε(λ) and for some polynomial
p1 and infinitely many λ ∈ N there exists a pair of solutions s0, s1 ∈ {0, 1}λ such that:

Pr

[
b← Aλ(Z) :

b← {0, 1} ,
Z ← Puzzle.Gen(t(λ), sb)

]
≥ 1

2
+

1

p1(λ)
.

By construction we can rewrite the above as:

Pr


b← {0, 1} ,
x← Xλ(1λ, t(λ))

ŝ1 ← MHE.Encode(P t(λ), x, t(λ), sb)

ŝ0 ← MHE.Encode(1− P t(λ), x, t(λ), sb)
b← Aλ(t(λ), x, ŝ0, ŝ1)

 ≥ 1

2
+

1

p1(λ)
.

For every x ∈ {0, 1}λ let bx = L(t(λ), x). Since {Lλ,t} is average-case non-parallelizing, we
have that for some negligible function µ1:∣∣∣∣ Pr

x←Xλ(1λ,t(λ))
[bx = 1]− 1

2

∣∣∣∣ ≤ µ1(λ) ,

and therefore for some polynomial p2:

Pr


x← Xλ(1λ, t(λ))

ŝ1 ← MHE.Encode(P t(λ), x, t(λ), sbx)

ŝ0 ← MHE.Encode(1− P t(λ), x, t(λ), sbx)
bx ← Aλ(t(λ), x, ŝ0, ŝ1)

 ≥ 1

2
+

1

p2(λ)
. (3)

We construct a polysize circuit family B = {Bλ}λ∈N of depth dep(Bλ) ≤ tε(λ) such that for
some polynomial p3 and for any λ as above:

Pr
x←Xλ(1λ,t(λ))

[Bλ(x) = L(t(λ), x)] ≥ 1

2
+

1

p3(λ)
. (4)

contradicting the fact that {Lλ,t} is average-case non-parallelizing.
Note that it is sufficient to construct a probabilistic polysize adversary B as above. Fix any λ

as above with corresponding s0, s1 ∈ {0, 1}λ. Given input x← Xλ(1λ, t(λ)), to decide if x ∈ Lλ,t
Bλ acts as follows:

• Sample:

ŝ1 ← MHE.Encode(P t, x, t, s1) , ŝ0 ← MHE.Encode(1− P t, x, t, s0) .

• Obtain b← Aλ(t(λ), x, ŝ0, ŝ1) and output b.
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First, note that B is of polynomial size and its depth is given by:

dep(Bλ) = qMHE(λ) + dep(Aλ) = tε(λ) + tε(λ) ≤ 2tε(λ) = o(tε(λ)) .

We next show that B satisfies (4). For every x ∈ {0, 1}λ let bx = L(t(λ), x). By the security of
the message-hiding encoding scheme there exists a negligible function µ2 such that:

Pr[Bλ(x) = bx : x← Xλ(1λ, t(λ))] =

Pr


x← Xλ(1λ, t(λ))
ŝ1 ← MHE.Encode(P t, x, t, s1)
ŝ0 ← MHE.Encode(1− P t, x, t, s0)
bx ← Aλ(t, x, ŝ0, ŝ1)

 ≥

Pr


x← Xλ(1λ, t(λ))
ŝ1 ← MHE.Encode(P t, x, t, sbx)
ŝ0 ← MHE.Encode(1− P t, x, t, sbx)
bx ← Aλ(t, x, ŝ0, ŝ1)

− µ2(λ) .

By (3) we have that for some polynomial p3:

Pr


x← Xλ(1λ, t(λ))
ŝ1 ← MHE.Encode(P t, x, t, sbx)
ŝ0 ← MHE.Encode(1− P t, x, t, sbx)
bx ← Aλ(t, x, ŝ0, ŝ1)

− µ2(λ) ≥

1

2
+

1

p3(λ)
.

A.5 From Message-Hiding Encodings to Randomized Encodings via FHE

In this section, we sketch how succinct randomized encodings can be obtained from message-
hiding encodings, assuming fully-homomorphic encryption (FHE). The transformation follows
the same ideas introduced in [GKP+13] to convert attribute-based encryption to functional
encryption.

The construction will rely on garbling schemes that are similar to the (standard) randomized
encoding schemes given in Definition 3.9, only that the input x can be bit-wise encoded very fast
and separately of the machine M . Like randomized encodings, such schemes can be constructed
from one-way functions [Yao86] (and un particular from FHE).

The high-level idea is to encrypt the secret machine M and input x and provide a garbled
decryption procedure M̂SK, where the the encoded input (i.e. the evaluated ciphertext corre-
sponding to M(x)) will be given under message-hiding encodings that will guarantee that only
the correct encoded input is revealed.

We now formally define garbling schemes and describe the construction in detail.

Definition A.5 (Garbling Scheme). A garbling scheme GAR consists of three algorithms
(GAR.EncodeMach,GAR.EncodeInp,RE.Decode) satisfying the following requirements.

• Syntax:

– (M̂,K) ← GAR.EncodeMach(M,n, t, 1λ) is a probabilistic algorithm that takes as
input a machine M , input size n, time bound t, and a security parameter 1λ. The
algorithm outputs an encoding M̂ and secret key K ∈ {0, 1}λ.
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– x̂ ← GAR.EncodeInp(xi, i,K) is a probabilistic algorithm that takes an input bit xi
and index i ∈ [n] key K ∈ {0, 1}λ. The algorithm outputs an encoding x̂i.

– y ← GAR.Decode(M̂, x̂) is a deterministic algorithm that takes as input encodings

M̂ and x̂ = (x̂1, . . . , x̂n) and computes an output y ∈ {0, 1}λ.

• Functionality: for every input x and machine M such that, on input x, M halts in t steps
and produces a λ-bit output, it holds that y = M(x) with overwhelming probability over
the coins of GAR.EncodeMach,GAR.EncodeInp.

• Security: there exists a PPT simulator Sim satisfying: for any poly-size distinguisher
D = {Dλ}λ∈N and polynomials m(·), n(·), t(·), there exists a negligible µ(·), such that for

any λ ∈ N, machine M ∈ {0, 1}m(λ), input x ∈ {0, 1}n(λ):∣∣∣∣Pr

[
Dλ(M̂, x̂) = 1 :

(M̂,K)← GAR.EncodeMach(M,n(λ), t(λ), 1λ)
x̂← {GAR.EncodeInp(xi, i,K) : i ∈ [n(λ)]}

]
−

Pr[Dλ(Ŝ, ŝ) = 1 : (Ŝ, ŝ)← Sim(y, 1m(λ), 1n(λ), t(λ), 1λ)]

∣∣∣∣ ≤ µ(λ) ,

where y is the output of M(x) after t(λ) steps.

• Efficiency: For any machine M that on input x ∈ {0, 1}n produces a λ-bit output in t
steps:

– GAR.EncodeMach(M,n, t, 1λ) can be computed in time t · poly(|M |, n, λ).

– GAR.EncodeInp(xi, i,K) can be computed in time poly(log n, λ).

– GAR.Decode(M̂, x̂) can be computed in time t · poly(|M |, n, λ).

Construction A.6 (Succinct Randomized Encodings from Message-Hiding Encodings). Let GAR =
(GAR.EncodeMach,GAR.EncodeInp,GAR.Decode) be a garbling scheme. Let FHE = (FHE.Enc,FHE.Dec,
FHE.Eval) be a fully-homomorphic encryption scheme.

For a ciphertext CT, interpreted as an encryption of machine M and input x, denote by
P t,bCT,PK,i an inputless machine that homomorphically evaluates M on x, obtains and evaluated

cipher ĈT (interpreted as an encryption of M(x)), and accepts iff the i-th bit ĈTi is b.
Also, for decryption key SK, denote by MSK the machine that takes as input an evaluated

ciphertext ĈT and decrypts it. We assume that the size of the underlying plaintext in ĈT is λ
and that ĈT is of polynomial size `(λ). We denote by tDec(λ) the running time of MSK.

The succinct randomized encodings is constructed as follows:

• M̂(x)← RE.Encode(M,x, t, 1λ):

– Sample (PK,SK)← FHE.Gen(1λ).

– Garble decryption (M̂SK,K)← GAR.EncodeMach(MSK, `(λ), tDec, 1
λ).

– Compute all possible garbled inputs
{
mb
i := x̂bi ← GAR.EncodeInp(b, i,K)

}
i∈[`(λ)],b∈{0,1}.

– Encrypt the computation CT← FHE.Enc(PK, (M,x)).

– Compute message-hiding encodings
{
m̂b
i ← MHE.Encode(P t,bCT,PK,i,⊥, x̂

b
i)
}
i∈[`(λ)],b∈{0,1}

.

– Output M̂(x) := M̂SK,
{
m̂b
i

}
.

• y ← RE.Decode(M̂(x)):
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– Obtain x̂ĈT :=
{
mĈTi
i = x̂ĈTii = MHE.Decode(m̂ĈTi

i )
}
i∈[`(λ)]

.

– Output y := GAR.Decode(M̂SK, x̂
ĈT).

Theorem A.7. Construction A.6 is a succinct randomized encoding.

The formal proof of the theorem closely follows the proof of [GKP+13, Theorem 3.1], where
message-hiding encodings take the role of attribute-based encryption and randomized encodings
take the role of functional encryption, and is omitted. Here we only give the intuition.

In terms of correctness, note that predicates P t,bCT,PK,i underlying the message-hiding encod-

ings are only satisfied for the values ĈTi that correspond to a correct homomorphic evaluation
of M on x. In terms of efficiency, the encoding procedure consists of message-hiding encodings,
which are guaranteed to be computable fast independently of t, and garbling decryption, which
is again a computation that is independent of t. The security follows by a combination of three
underlying primitives. By the security of message-hiding encoding only the encoding of the
correct ĈT is revealed and nothing else. This, in turn implies, that the garbled decryption re-
veals no information about decryption key SK and can be completely simulated from the output
M(x). Thus, we can safely rely on the semantic security of the encryption to claim that no
information is leaked on M,x except from what can be simulated from M(x).

B Necessity of One-Way Functions

In this section, we show that time-lock puzzles imply one-way functions. As a corollary, we
can deduce that succinct randomized encodings and non-parallelizing languages imply one-way
functions. Extended these ideas, we show that succinct randomized encodings alone imply
one-way functions against uniform adversaries (without the additional assumption regarding
non-parallelizing languages).

A weak one-way function from time-lock puzzles. As a first step, we construct weak
one-way functions from time-lock puzzles. Then, one can obtain strong one-way functions using
standard amplification [Yao82].

Let (Puzzle.Gen,Puzzle.Sol) be a time-lock puzzle with gap ε < 1 and assume that for
security parameter λ ∈ N, and any s ∈ {0, 1}λ, t ≤ 2λ, Puzzle.Gen(t, s; r) uses random coins
r of length `(λ) = λO(1). We define a function f that takes as input random coins r and
a random parameter τ sampled from some small set, and outputs a puzzle with some fixed
solution s0 ∈ {0, 1}λ that opens in time t = 2τ . Formally, f : {0, 1}`(λ) × [log2 λ] → {0, 1}∗ is
defined by:

f(r, τ) = Puzzle.Gen(2τ , s0; r) .

Claim B.1. f is Ω
(

1
log2 λ

)
-one-way.

Proof sketch. Fix any poly-size A = {Aλ} and let d(λ) be a polynomial bound on A’s depth.
We essentially show that when 2ετ > d(λ), A fails to distinguish the output of the one-way
function f(r, τ) from a random puzzle with some other fixed solution s1 6= s0, which has no
preimage under f (by the completeness of the puzzle). Since 2ετ > d(λ) with probability at
least 1

log2 λ
, the result will follow.

Formally, recall that by the definition of time-lock puzzles there exists a polynomial t(·),
such that for every polynomial t(λ) ≥ t(λ) such that d(λ) ≤ tε(λ):∣∣Pr

[
Aλ(Z) ∈ f−1(Z) | Z ← Puzzle.Gen(t(λ), s0)

]
−

Pr
[
Aλ(Z) ∈ f−1(Z) | Z ← Puzzle.Gen(t(λ), s1)

] ∣∣ ≤ µ(λ) ,
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for some negligible µ and any s0, s1 ∈ {0, 1}λ.
We consider any polynomial t∗(λ) = 2τ

∗(λ) that satisfies both conditions in the above defi-
nition. Then

Pr
[
Aλ(f(r, τ)) /∈ f−1(f(r, τ)) | (r, τ)← {0, 1}`(λ) × [log2(λ)]

]
=

Pr

[
Aλ(Z) /∈ f−1(Z) | (r, τ)← {0, 1}`(λ) × [log2(λ)]

Z = Puzzle.Gen(2τ , s0; r)

]
≥

1

log2 λ
Pr

[
Aλ(Z) /∈ f−1(Z) | r ← {0, 1}`(λ)

Z = Puzzle.Gen(t∗(λ), s0; r)

]
≥

1

log2 λ

(
Pr

[
Aλ(Z) /∈ f−1(Z) | r ← {0, 1}`(λ)

Z = Puzzle.Gen(t∗(λ), s1; r)

]
− µ(λ)

)
≥

1

log2 λ
− λ−ω(1) .

B.1 Reducing Complexity Assumptions:
One-Way Functions from Relaxed Time-Lock Puzzles

Note that, in the above proof, we did not really invoke the full power of time-lock puzzles.
Concretely, time-lock puzzles that are secure against adversaries of a certain bounded size rather
than bounded depth would have sufficed. For such time-lock puzzles non-parallelizing languages
are not needed. Instead we can use languages that are decidable in uniform polynomial-time
t, but cannot be decided by circuits of significantly smaller size s < tε (in the spirit of the
assumptions made in the context of derandomizing BPP [IW01]).

We observe that if we settle for one-way functions against uniform adversaries, we can
rely only on succinct randomized encodings and remove additional complexity assumptions
altogether. The intuition behind this observation is that for the class of uniform polynomial
time languages we have an unconditional time hierarchy theorem [HS65]. This intuition cannot
be fulfilled as is since our reduction from breaking time-lock puzzles to violating the hierarchy
theorem is a randomized, and a time hierarchy theorem is not known for BPP. However, the
intuition can be salvaged using a hierarchy theorem for slightly non-uniform BPP [Bar02]. We
elaborate below.

We first define the required relaxation of time-lock puzzles.

Definition B.2 (Relaxed Time-Lock Puzzles). A puzzle (Puzzle.Gen,Puzzle.Sol) is a relaxed
time-lock puzzle with gap ε < 1 if there exists a polynomial t(·), such that for every polynomial
t(·) ≥ t(·) and every probabilistic poly-time (uniform) adversary A with running time timeA(λ) ≤
tε(λ), there exists a negligible function µ, such that for every λ ∈ N, and every pair of (uniformly
computable) solutions s0, s1 ∈ {0, 1}λ:

Pr

[
b← A(Z) :

b← {0, 1} ,
Z ← Puzzle.Gen(t(λ), sb)

]
≤ 1

2
+ µ(λ) ,

where the probability is also over the random coin tosses of A.

Claim B.3. If (Puzzle.Gen,Puzzle.Sol) is a relaxed time-lock puzzle, then f defined above is

Ω
(

1
log2 λ

)
-one-way against uniform inverters.

The proof of the claim is essentially identical to the proof of Claim B.1, except that instead
of considering poly-size circuit inverters and their depth, we consider uniform inverters and
their running time.
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B.1.1 Constructing Relaxed Time-Lock Puzzles

The construction of relaxed time-lock puzzles is, in fact, identical to Construction 3.5 of (stan-
dard) time-lock puzzles. The existence of non-parallelizing languages is replaced by the following
unconditional theorem by Barak.

Theorem B.4 ([Bar02]). For any constant ε < 1 and any (uniformly computable) polynomially-
bounded function t(·), there exists a language L ∈ Ptime(t(·))/ log log(·) such that every proba-
bilistic polynomial time B with running time timeB(λ) ≤ tε(λ), and non-uniform advice of size
log log(λ), and every large enough λ, B fails to decide Lλ = L ∩ {0, 1}λ.

Above Ptime(t(·))/ log log(·) is the set of languages decidable by a BPP machine with non-
uniform advice of size log log(λ) in the input size λ. We shall assume w.l.o.g that the error of
all BPP machines is bounded by 2−λ.

Theorem B.5. For any ε < 1, Construction 3.5 is a relaxed time-lock puzzle with gap ε.

The proof of the theorem is an adaptation of the proof of Theorem 3.7. At high-level, the
only difference is that now when proving security, rather than constructing a circuit decider for
a non-parallelizing language we construct a decider that only has slight non-uniform advice for
a language given by Theorem B.4. For the sake of completeness, we give the details below.

B.1.2 Proof of Theorem B.5

The completeness and efficiency properties of the puzzle follow directly from the completeness
and efficiency properties of the succinct randomized encoding scheme. We proceed to argue that
the puzzle is a secure relaxed time-lock puzzle. Let qRE(λ) be the fixed polynomial given by the
efficiency property of the succinct randomized encoding scheme, bounding the time required to
compute a randomized encoding with machine size 3λ, input size λ, and any time bound t ≤ 2λ.
Let t(λ) := (qRE(λ))1/ε.

Assume towards contradiction that there exists a uniform adversary A, and a polynomially
bounded function t(·) ≥ t(·) such that timeA(λ) < tε(λ) and for some polynomial p(·) and
infinitely many λ ∈ N there exists a pair of solutions s0, s1 ∈ {0, 1}λ (computable in uniform
polytime) such that:

Pr

[
b← A(Z) :

b← {0, 1} ,
Z ← Puzzle.Gen(t(λ), sb)

]
≥ 1

2
+

1

p(λ)
. (5)

Fix any ε < ε < 1, and let L ∈ Ptime(t(·))/ log log(·) be the language with gap ε given by
Theorem B.4. We construct a probabilistic machine B with running time timeB(λ) ≤ tε(λ)
with advice of size log log(λ) that decides Lλ = L ∩ {0, 1}λ for any λ as above, contradicting
Theorem B.4.

Fix any λ as above with corresponding s0, s1 ∈ {0, 1}λ. Let ML,ts0,s1 be a probabilistic
machine that, on input x ∈ {0, 1}λ, outputs s1 if x ∈ L and and s0 if x /∈ L, after exactly
t(λ) steps. Such a machine, with error 2−λ, can be uniformly constructed given log log(λ) bits
of non-uniform advice since L ∈ Ptime(t(·))/ log log(·) (and s0, s1 can be generated in uniform
polytime). Further, denote by ML,t,rs0,s1 this machine with fixed random coins r, and assume that
each such machine is described by 3λ bits (which is possible for large enough λ), and thus has
the same description length as M t

sb
.

Given input x ∈ {0, 1}λ, to decide if x ∈ L, the Bλ acts as follows:

• Sample Z := M̂L,t,rs0,s1 (x) ← RE.Encode(ML,t,rs0,s1 , x, t(λ), 1λ), where r are uniformly random
coins.
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• Obtain b← Aλ(Z) and output b.

First, note that B can be implemented with log log(λ) bits of non-uniform advice and runs in
polynomial time:

time(Bλ) = qRE(λ) + timeA(λ) = tε(λ) + tε(λ) ≤ 2tε(λ) = o(tε(λ)) .

We next show that B distinguishes instances x ∈ L from instances x /∈ L with noticeable
advantage. For any x ∈ {0, 1}λ, let b ∈ {0, 1} indicate whether x ∈ Lλ we have that sb =
ML,ts0,s1(x) = M t

sb
(0λ). Therefore, by the security of the randomized encoding scheme there

exists a PPT simulator Sim and a negligible function µ(·) such that for any x ∈ {0, 1}λ:

Pr[Bλ(x) = 1] =

Pr

[
Aλ(M̂L,t,rs0,s1 (x)) = 1 :

r ← {0, 1}poly(λ)

M̂L,ts0,s1(x)← RE.Encode(ML,ts0,s1 , x, t(λ), 1λ)

]
=

Pr
[
Aλ(Ŝsb) = 1 : Ŝsb ← Sim

(
sb, 1

3λ, 1λ, t(λ), 1λ
)]
± (µ(λ) + 2−λ) ,

and:

Pr [Aλ(Z) = 1 : Z ← Puzzle.Gen(t(λ), sb)] =

Pr
[
Aλ(M̂ t

sb
(0λ)) = 1 : M̂ t

sb
(0λ)← RE.Encode(M t

sb
, 0λ, t(λ), 1λ)

]
=

Pr
[
Aλ(Ŝsb) = 1 : Ŝsb ← Sim

(
sb, 1

3λ, 1λ, t(λ), 1λ
)]
± µ(λ) .

It follows by our assumption towards contradiction (Equation 5) that for large enough λ
and any x ∈ Lλ, x̄ /∈ Lλ:

|Pr[Bλ(x) = 1]− Pr[Bλ(x̄) = 1]| ≥ 2

p(λ)
− 2µ(λ) ≥ 1

p(λ)
.

This completes the proof.
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