Notes on Two Fully Homomorphic Encryption Schemes Without Bootstrapping

Yongge Wang
UNC Charlotte
Charlotte, NC 28223, USA
yonwang@uncc.edu

Abstract

Recently, IACR ePrint archive posted two fully homomorphic encryption schemes without bootstrapping. In this note, we show that these schemes are trivially insecure.

1 Introduction

Though it is a very challenging problem to design fully homomorphic encryption schemes without bootstrapping. We still see that quite a few researchers post candidate designs frequently. This note points out that the two schemes posted to IACR ePrint archive recently are trivially insecure: the scheme by Masahiro Yagisawa [4] on 2015-05-19 and the scheme by Dongxi Liu [3] on 2015-05-17.

2 Masahiro Yagisawa [4]'s Scheme

Octonion (see, e.g., Conway and Smith [2] or Baez [1]) is the largest of the four normed division algebra and is the only normed division algebra that is neither commutative nor associative. Each octonion number is a vector $\mathbf{a}=\left[a_{0}, \cdots, a_{7}\right] \in R^{8}$ where R is the real number. For each octonion number $\mathbf{a}=\left[a_{0}, \cdots, a_{7}\right]$, we define an associated 8×8 matrix

$$
A_{\mathbf{a}}=\left(\begin{array}{rrrrrrrr}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
-a_{1} & a_{0} & a_{4} & a_{7} & -a_{2} & a_{6} & -a_{5} & -a_{3} \\
-a_{2} & -a_{4} & a_{0} & a_{5} & a_{1} & -a_{3} & a_{7} & -a_{6} \\
-a_{3}-a_{7}-a_{5} & a_{0} & a_{6} & a_{2} & -a_{4} & a_{1} \\
-a_{4} & a_{2}-a_{1}-a_{6} & a_{0} & a_{7} & a_{3} & -a_{5} \\
-a_{5} & -a_{6} & a_{3}-a_{2}-a_{7} & a_{0} & a_{1} & a_{4} \\
-a_{6} & a_{5} & -a_{7} & a_{4}-a_{3}-a_{1} & a_{0} & a_{2} \\
-a_{7} & a_{3} & a_{6} & -a_{1} & a_{5} & -a_{4} & -a_{2} & a_{0}
\end{array}\right)
$$

For two octonions $\mathbf{a}=\left[a_{0}, \cdots, a_{7}\right]$ and $\mathbf{b}=\left[b_{0}, \cdots, b_{7}\right]$, we can add them as $\mathbf{a}+\mathbf{b}=$ $\left[a_{0}+b_{0}, \cdots, a_{7}+b_{t}\right]$ and multiply them as $\mathbf{a b}=\mathbf{b} A_{\mathbf{a}}$. The norm of an octonion $\mathbf{a}=\left[a_{0}, \cdots, a_{7}\right]$ is defined as $\|\mathbf{a}\|=\sqrt{a_{0}^{2}+\cdots+a_{7}^{2}}$.

Using octonions over $G F(q)$, Yagisawa [4] introduced a fully homomorphic encryption scheme. Though Yagisawa [4] defined his fully homomorphic encryption scheme
in terms of a sequence of private octonion numbers, the scheme could be simplified using matrix operations. Let $G F(q)$ be the underlying finite field that we will work with. Let $\mathbf{1}=[1,0,0,0,0,0,0,0]$ and $\mathbf{z} \in G F(q)^{8}$ be a random octonion with $\|\mathbf{z}\|=0$ and $z_{0} \neq 0$. Then the protocol works as follows:
Key Setup. Choose a random invertible 8×8 matrix $K \in G F(q)^{8 \times 8}$. K is the private key.
Encryption. For a message $m \in G F(q)$, choose a random $r \in G F(q)$ and compute the cipher text $C_{m}=\operatorname{M.Enc}(K, m)=K^{-1} A_{m \mathbf{1}+r \mathbf{z}} K \in G F^{8 \times 8}$ where $A_{m \mathbf{1}+r \mathbf{z}}$ is the associated matrix for $m \mathbf{1}+r \mathbf{z}$ when $m \mathbf{1}+r \mathbf{z}$ is considered as an octonion number.
Decryption. For a received ciphertext C_{m}, compute $A_{m 1+r \mathbf{z}}=\operatorname{M.Dec}\left(K, C_{m}\right)=$ $K C_{m} K^{-1}$. The plaintext message m can then be recovered by finding an octonion \mathbf{u} such that $\|\mathbf{u}\|=0$ and $\mathbf{1} A_{m \mathbf{1}+r \mathbf{z}}=m \mathbf{1}+\mathbf{u}$.
Ciphertext addition. The addition of two ciphertexts $C_{m_{0}}$ and $C_{m_{1}}$ is defined as the component wise addition $C_{m_{0}+m_{1}}=C_{m_{0}}+C_{m_{1}}$. That is, this is just the regular matrix addition.
Ciphertext multiplication. The multiplication of two ciphertexts $C_{m_{0}}$ and $C_{m_{1}}$ is defined as the regular matrix multiplication

$$
C_{m_{0} \times m_{1}}=C_{m_{1}} C_{m_{0}}=K A_{m_{1}} K^{-1} K A_{m_{0}} K^{-1}=K A_{m_{1}} A_{m_{0}} K^{-1}
$$

It is straightforward to observe that for the above scheme, the message 0 is encrypted to a matrix C_{m} such that $\left\|\mathbf{1} C_{m}\right\|=0$. In other words, we can easily distinguish the ciphertext of m and $-m$ since $\left\|\mathbf{1}\left(C_{m}+C_{-m}\right)\right\|=0$.

2.1 Yagisawa's [4] original encryption scheme

It should be noted that our matrix operation based encryption scheme is equivalent to Yagisawa's [4] original encryption scheme when messages are chosen from $G F(q)$. If the scheme is considered a homomorphic scheme over octonion $G F(q)^{8}$, then our scheme is not equivalent to to original scheme. In the following, we briefly describe the original scheme in [4].
Key Setup. Let \mathbf{x} be a variable representing octonions. Choose random invertible octonions $\mathbf{k}_{0}, \cdots, \mathbf{k}_{t-1} \in G F(q)^{8}$. The private key is key $=\left\{\mathbf{k}_{0}, \cdots, \mathbf{k}_{t-1}\right\}$.
Encryption. For a message $\mathbf{m} \in G F(q)^{8}$, the cipher text $C_{\mathbf{m}}(\mathbf{x})=0 . \operatorname{Enc}($ key, $\mathbf{m})=$ $\mathbf{k}_{0}\left(\cdots\left(\mathbf{k}_{t-1}\left(\mathbf{m}\left(\mathbf{k}_{t-1}^{-1}\left(\cdots\left(\mathbf{k}_{0}^{-1} \mathbf{x}\right) \cdots\right)\right.\right.\right.\right.$.
Decryption. Let $g_{0}(\mathbf{x})=\mathbf{k}_{t-1}^{-1}\left(\cdots\left(\mathbf{k}_{0}^{-1} \mathbf{x}\right) \cdots\right)$ and $g_{1}(\mathbf{x})=\mathbf{k}_{1}\left(\cdots\left(\mathbf{k}_{t-1} \mathbf{x}\right) \cdots\right)$. For a received ciphertext $C_{m}(\mathbf{x})$, compute $\mathbf{m}=0 . \operatorname{Dec}\left(\right.$ key,$\left(C_{m}(\mathbf{x})\right)=g_{0}\left(C_{m}\left(g_{1}(\mathbf{1})\right)\right)$.
Ciphertext addition. The addition of two ciphertexts $C_{\mathbf{m}_{0}}(\mathbf{x})$ and $C_{\mathbf{m}_{1}}(\mathbf{x})$ is defined as the component wise addition $C_{\mathbf{m}_{0}+\mathbf{m}_{1}}(\mathbf{x})=C_{\mathbf{m}_{0}}(\mathbf{x})+C_{\mathbf{m}_{1}}(\mathbf{x})$. That is, this is just the octonion addition.
Ciphertext multiplication. The multiplication of two ciphertexts $C_{\mathbf{m}_{0}}(\mathbf{x})$ and $C_{\mathbf{m}_{1}}(\mathbf{x})$ is defined as $C_{\mathbf{m}_{1} \mathbf{m}_{0}}=C_{\mathbf{m}_{1}}\left(C_{\mathbf{m}_{0}}(\mathbf{x})\right)$.

2.2 Differences of the two encryption scheme

If Yagisawa's scheme is only used to encrypt messages in $G F(q)$ (instead of octonion messages in $G F(q)^{8}$) by mapping a message $m \in G F(q)$ to $m \mathbf{1}+r \mathbf{z} \in G F(q)^{8}$,
then it is straightforward to check that our matrix operation based scheme is equivalent to Yagisawa's original scheme. However, if Yagisawa's scheme is used to encrypt messages octonion messages in $G F(q)^{8}$, then these two schemes are not equivalent. Masahiro Yagisawa constructed the following counter example.

Let $\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{m}_{2}$ be invertible octonions such that $\mathbf{m}_{0}\left(\mathbf{m}_{1} \mathbf{m}_{2}\right) \neq\left(\mathbf{m}_{0} \mathbf{m}_{1}\right) \mathbf{m}_{2}$ and $\mathbf{m}_{0}^{-1}, \mathbf{m}_{1}^{-1}, \mathbf{m}_{2}^{-1}$ are inverses of $\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{m}_{2}$ respectively. Then for Yagisawa's scheme, we have

$$
\begin{aligned}
& c_{0}=0 . \operatorname{Enc}\left(\operatorname{key}, \mathbf{m}_{0}\left(\mathbf{m}_{1} \mathbf{m}_{2}\right)\right)=C_{\mathbf{m}_{0}}\left(C_{\mathbf{m}_{1}}\left(C_{\mathbf{m}_{2}}(\mathbf{x})\right)\right) \\
& c_{1}=0 . \operatorname{Enc}\left(\operatorname{key}, \mathbf{m}_{2}^{-1}\left(\mathbf{m}_{1}^{-1} \mathbf{m}_{0}^{-1}\right)\right)=C_{\mathbf{m}_{2}^{-1}}\left(C_{\mathbf{m}_{1}^{-1}}\left(C_{\mathbf{m}_{0}^{-1}}(\mathbf{x})\right)\right)
\end{aligned}
$$

Since the inverse of $\left(\mathbf{m}_{0} \mathbf{m}_{1}\right) \mathbf{m}_{2}$ is $\mathbf{m}_{2}^{-1}\left(\mathbf{m}_{1}^{-1} \mathbf{m}_{0}^{-1}\right)$, we have

$$
0 . \operatorname{Dec}\left(\mathrm{key}, c_{1}\right) \operatorname{O.Dec}\left(\mathrm{key}, c_{0}\right) \neq 1
$$

On the other hand, for our matrix operation based encryption, we have

$$
\begin{aligned}
& c_{0}=\operatorname{M} \cdot \operatorname{Enc}\left(K,\left(\mathbf{m}_{0} \mathbf{m}_{1}\right) \mathbf{m}_{2}\right)=K^{-1} A_{\mathbf{m}_{2}} A_{\mathbf{m}_{1}} A_{\mathbf{m}_{0}} K \\
& c_{1}=\operatorname{M} \cdot \operatorname{Enc}\left(K, \mathbf{m}_{2}^{-1}\left(\mathbf{m}_{1}^{-1} \mathbf{m}_{0}^{-1}\right)\right)=K^{-1} A_{\mathbf{m}_{0}^{-1}} A_{\mathbf{m}_{1}^{-1}} A_{\mathbf{m}_{2}^{-1}} K
\end{aligned}
$$

Thus we have

$$
\operatorname{M.Dec}\left(K, c_{1}\right) \operatorname{M.Dec}\left(K, c_{0}\right)=\mathbf{1}
$$

3 Dongxi Liu [3]'s Scheme

Liu [3] proposed a candidate fully homomorphic encryption scheme using linear algebra over $G F(q)$. Though the design in [3] is very complicated, we give a simple (equivalent) description of the protocol in [3]. From the simplified description, it is straightforward that the public evaluation keys leak all of the private key.

Let l, n be given numbers with $l \leq n-2$. It is recommended to use $n=5$ and $l=3$ in [3]. The protocol works as follows.

Key Setup.

- Choose random vectors $\mathbf{k}=\left[k_{0}, \cdots, k_{n}\right] \in G F(q)^{n+1}$ and $\Theta=\left[\theta_{0}, \cdots, \theta_{l-1}\right] \in$ $G F(q)^{l}$.
- For each $m \in G F(q)$, let $\mathbf{c}_{m}=\operatorname{ENC}(\mathbf{k}, m)=\left[c_{0}, \cdots, c_{n}\right] \in G F(q)^{n+1}$ such that $m=\mathbf{k} \cdot \mathbf{c}_{m}$ where \cdot is the inner product of \mathbf{k} and \mathbf{c}_{m}. That is, $\mathbf{k} \cdot \mathbf{c}_{m}=$ $c_{0} k_{0}+c_{1} k_{1}+\cdots+c_{n} k_{n}$.
- Let $\Phi=\left[\operatorname{ENC}\left(\mathbf{k}, \theta_{0}\right), \cdots, \operatorname{ENC}\left(\mathbf{k}, \theta_{l-1}\right), \operatorname{ENC}(\mathbf{k}, 1)\right]$.
- The private key is \mathbf{k} and Θ.
- The public evaluation key is pek $=\left\{\mathbf{p}_{i, j}=\operatorname{ENC}\left(\mathbf{k}, k_{i} k_{j}\right): 0 \leq i, j \leq n\right\}$

Encryption. For a message $\mathbf{m} \in G F(q)$, choose random $r_{0}, \cdots, r_{l} \in G F(q)$ with $m=r_{0} \oplus r_{1} \oplus \cdots \oplus r_{l}$. The ciphertext of m is $\mathbf{c}_{m}=\left(r_{0} \cdot \operatorname{ENC}\left(\mathbf{k}, \theta_{0}\right)\right) \oplus \cdots \oplus\left(r_{l-1}\right.$. $\left.\operatorname{ENC}\left(\mathbf{k}, \theta_{l-1}\right)\right) \oplus\left(r_{l} \cdot \operatorname{ENC}(\mathbf{k}, 1)\right)$.
Decryption. For a received ciphertext \mathbf{c}_{m}, compute $m=\mathbf{k} \cdot \mathbf{c}_{m}$.

Ciphertext addition. The addition of two ciphertexts $\mathbf{c}_{m_{0}}$ and $\mathbf{c}_{m_{1}}$ is defined as the component wise addition $\mathbf{c}_{m_{0}+m_{1}}=\mathbf{c}_{m_{0}}+\mathbf{c}_{m_{1}}$. That is, this is just the regular component wise vector addition.
Ciphertext multiplication. The multiplication of two ciphertexts $\mathbf{c}_{m_{0}}=\left[c_{0}, \cdots, c_{n}\right]$ and $\mathbf{c}_{m_{1}}=\left[c_{0}^{\prime}, \cdots, c_{n}^{\prime}\right]$ is defined as $\mathbf{c}_{m_{0} m_{1}}=\sum_{i, j=0}^{n} c_{i} c_{j} \mathbf{p}_{i, j}$.

The correctness of the protocol could be easily verified (for details, it is referred to the original paper [3]. However, the protocol cannot be secure since the private key \mathbf{k} could be trivially derived from the public evaluation key pek. As an example, we can assume that $\mathbf{p}_{i, j}=\left[p_{i, j, 0}, \cdots, p_{i, j, n}\right]$. Then we have the equations

$$
\begin{align*}
& k_{0} k_{0}=p_{0,0,0} k_{0}+\cdots+p_{0,0, n} k_{n} \\
& \cdots \tag{1}\\
& k_{i} k_{j}=p_{i, j, 0} k_{0}+\cdots+p_{i, j, n} k_{n} \\
& \cdots \\
& k_{n} k_{n}=p_{n, n, 0} k_{0}+\cdots+p_{n n,, n} k_{n}
\end{align*}
$$

Using equation (1), one can easily obtain the private key \mathbf{k} by constructing polynomial equations $f\left(k_{i}\right)=0$ in one variable and then using the Euclidean algorithm to compute $\operatorname{gcd}\left(f(x), x^{q}-x\right)$ (or use Berlekamp's algorithm). For example, from the first equation, one can obtain an expression of k_{n} in terms of k_{0}, \cdots, k_{n-1}. By substituting this k_{n} into all remaining equations, one eliminates the occurrence of k_{n} from all remaining equations.

Acknowledgment

I would like to thank Masahiro Yagisawa for some discussion on the protocls in [4].

References

1. John Baez. The octonions. Bulletin of the American Mathematical Society, 39(2):145-205, 2002.
2. John H Conway and Derek A Smith. On quaternions and octonions. AMC, 10:12, 2003.
3. Dongxi Liu. Practical fully homomorphic encryption without noise reduction. Technical report, Cryptology ePrint Archive, Report 2015/468. http://eprint.iacr.org/2015/468, 2015.
4. Masahiro Yagisawa. Fully homomorphic encryption without bootstrapping. Technical report, Cryptology ePrint Archive, Report 2015/474. http://eprint.iacr.org/2015/474, 2015.
