
A Constant Time, Single Round,
Attribute-Based Authenticated Key Exchange

in Random Oracle Model

Abstract. In this paper, we present a single round two-party attribute-
based authenticated key exchange (ABAKE) protocol in the framework of
ciphertext-policy attribute-based systems. Since pairing is a costly op-
eration and the composite order groups must be very large to ensure
security, we focus on pairing free protocols in prime order groups. The
proposed protocol is pairing free, working in prime order group and hav-
ing tight reduction to Strong Diffie Hellman (SDH) problem under the
attribute-based Canetti Krawzyck (CK) model which is a natural exten-
sion of the CK model for the public key setting. The security proof is
given in the random oracle model. Our ABAKE protocol does not de-
pend on any underlying attribute-based encryption schemes unlike the
previous solutions for ABAKE. Ours is the first scheme that removes
this restriction. Thus, the first major advantage is that smaller key sizes
are sufficient to achieve comparable security. Another notable feature of
our construction is that it involves only constant number of exponen-
tiations per party unlike the state-of-the-art ABAKE protocols where
the number of exponentiations performed by each party depends on the
size of the linear secret sharing matrix. We achieve this by doing appro-
priate precomputation of the secret share generation. Ours is the first
construction that achieves this property. Our scheme has several other
advantages. The major one being the capability to handle active adver-
saries. Most of the previous ABAKE protocols can offer security only
under passive adversaries. Our protocol recognizes the corruption by an
active adversary and aborts the process. In addition to this property,
our scheme satisfies other security properties that are not covered by
CK model such as forward secrecy, key compromise impersonation at-
tacks and ephemeral key compromise impersonation attacks.

Keywords: Authenticated Key Exchange, Attribute-based Authenticated Key
Exchange (ABAKE), CK model, Forward secrecy, Key Compromise Imperson-
ation (KCI) attacks.

1 Introduction

Attribute-based Encryption (ABE), introduced by Sahai and Waters [SW05],
allows for fine-grained access control on encrypted data and reduces bulk en-
cryptions to a number of people who have several common characteristics. After
that a lot of other ABE schemes were proposed [GPSW06], [BSW07], [GJPS08],
[OSW07], [LOS+10], [OT10]. Attribute-based systems fall under two categories:

(i) key-policy attribute-based systems, e.g. [GPSW06] in which users’ secret keys
are associated with access policies over an universe of attributes and the cipher-
texts are associated with sets of attributes and (ii) ciphertext-policy attribute-
based systems, e.g. [BSW07] in which users’ private keys are associated with the
attributes and the ciphertexts are associated with access policies. In this work,
we consider ciphertext-policy attribute-based systems. In reality, a user’s access
privileges are often granted based on the functional role he/she assumes in an
organization, where a role reduces to no more than a set of attributes. In this
regard, Ciphertext-Policy ABE (CP-ABE) enables cryptographic access control
with respect to functional roles.

The goal of an Authenticated Key Exchange (AKE) protocol is for two par-
ties to establish a common shared session key which they can later use to securely
communicate with each other. Besides the minimum requirement of session key
secrecy, we require other crucial properties from an AKE protocol such as key in-
dependence, Key Compromise Impersonation (KCI), resilience, forward secrecy.
Key independence means that the session keys are computationally independent
of each other. This is an essential security requirement of AKE protocols as it
helps to prevent against “Denning-Sacco” type of attacks [DS81]. KCI means
that the adversary should not be able to impersonate other parties to a party
by revealing the long term secret key of this party. Forward secrecy requires the
secrecy of the session keys to hold even if the adversary gets the long term secret
key or static key of parties who have previously established a common session
key later at some point of time.

Attribute-Based AKE (ABAKE) is a new variant of the AKE that allows
users to authenticate each other using their attributes unlike in the PKI settings
where the users authenticate each other using their public keys. ABAKE can
hide the identity information of an individual, which allows users to achieve
mutual authentication and establish a secret session key by their attributes and
some fine grained access control policy. Attribute-based key exchange finds its
application in distributed collaborative systems where it is more convenient for
users to communicate with other users using their roles or responsibilities which
can be described by attributes, interactive chat rooms, online forums where a
user can have read/write access to threads only if they have desired attributes
etc. Another interesting application is sharing of medical history of patients with
doctors who are appropriately qualified but both doctors and patients would like
to remain anonymous without revealing their specific identities. This may be of
particular use for health chat rooms or online medical consultancy services where
the patients would like to keep their identity hidden and also the doctors who are
providing consultancy services to the patients would like to keep their identity
anonymous to avoid legal hassles later on. Hence an authenticated key exchange
protocol that critically uses attributes can be employed in these settings.

All the previously proposed ABAKE schemes build upon some well-known
ABE schemes and the security guarantees of the underlying ABE scheme directly
translated to the security of the ABAKE scheme. While a naive approach for de-
signing a key exchange protocol may use encryption and signature algorithms as

building blocks, such a solution will be computationally very expensive. Specifi-
cally for attribute-based systems the encryption and signing algorithms are very
complex involving number of variables corresponding to attributes and access
structures and pairing operations. Hence a fundamental question in the design
of key exchange protocol is :

Is it possible to design a protocol for AKE in attribute-based systems, hand-
crafted using only basic group operations rather than using encryption schemes
as building blocks?

Our paper answers affirmatively to this question.

1.1 Related Works

In the recent literature some ABAKE are proposed. Ateniese et al. [AKB07]
proposed a fuzzy handshake technique that is closely related to the ABAKE
model. However there are some differences between the two as their scheme can
only handle simple authentication condition by allowing only a single threshold
gates as opposed to several threshold gates that may be present in a general AB-
AKE settings. Gorantla et al. [GBN10] proposed the first ABAKE scheme based
on key encapsulation mechanism which provides parties with the fine-grained
access control based on the attributes of parties. However it does not provide
the flexibility of each user to select their access structures which they want their
peers to satisfy. In fact, it is an attribute based group key exchange scheme where
the access policy is defined globally and only those members whose attributes
satisfy the access structure will be able to establish a common secret session key
among themselves. Besides the security of their scheme is analyzed based on the
Bellare-Rogaway (BR) model [BR94].
Birkett and Stebila [BS10] introduced the concept of predicate based key ex-
change with fine-grained access control with a predicate-based signature and
here the parties can specify the condition the peer is expected to satisfy. The
scheme is proven secure in the random oracle model in BR model. The BR
model does not allow the adversary to reveal the session specific informations
and ephemeral keys. In an independent work Steinwandt and Corona [SC10]
proposed a two-round attribute based group key exchange based on the group
key exchange scheme of Bohli et al. [BVS07] and is forward secure. Yoneyama
[Yon10] proposed a two-pass attribute based key exchange secure in the random
oracle model under the Gap Bilinear Diffie Hellman assumption in the attribute
based eCK [LLM07] model. But it does not achieve full security (i.e. adaptive
security) as it relies on Waters CP-ABE [Wat11] which is selectively secure.

All the previous works on attribute based key agreement except [BS10] do not
consider an active adversary. The [BS10] scheme uses a predicate-based signa-
ture to achieve security against active adversaries. However the security of their
protocol is proved in a much weaker security model namely the BR model. Also
since the [BS10] scheme uses predicate signature as its underlying building block
it has to be unforgeable against revealing the randomness of the underlying sig-
nature scheme. Unfortunately as observed in [BS10], there is no such predicate

signature scheme satisfying this property. An active adversary is one which can
extract the messages that are exchanged during key agreement and modify them
arbitrarily during transit. In the scheme presented in [Yon10], the adversary can
extract the ephemeral component (X, {U}) and change it to (X ′, {U ′}) and
chooses an access structure by itself that is trivially satisfied by the attributes
of user B and send it to B. Similarly he can extract the ephemeral component
(Y, {V }) and change it to (Y ′, {V ′}) and chooses an access structure by itself
that is trivially satisfied by the attributes of user A and send it to A. Thus the
final shared secret key of A and B will not be in agreement. So although the
adversary may not know the actual session key between the two parties he can
launch this type of denial-of-service (DOS) attack. Our protocol avoids this kind
of an attack by a signature on the ephemeral components.

The schemes discussed above are all in random oracle model. Another impor-
tant and useful model used by cryptographers to establish security is standard
model (StdM). The trade off between complexdity and security of schemes proven
under RO model and standard model are well known. Schemes proven secure
under standard model are often very complex and inefficient due to stringent
security demands posed by standard model. For instance, the ABAKE scheme
of Yoneyama [Yon13] uses a CCA-secure ciphertext policy attribute based key
encapsulation mechanism (CP-AB-KEM) for key exchange. This is instantiated
in their paper by Waters CP-ABE scheme [Wat11] and hence is quite com-
plex. In Waters CP-ABE system [Wat11], the size of the parameters output by
the Setup algorithm also depends on the attribute universe ,i.e., the number of
attributes in the system. The predicate based signature scheme of [BS10] can
be instantiated using some predicate based (attribute based) signature schemes
[SSN09], [LAS+10], [MPR11], [OT14]. Instantiations using [SSN09], [LAS+10]
cannot achieve expressive ABAKE (,i.e., these signatures only allow threshold
access policies). In [MPR11], three signature schemes are proposed. One instan-
tiation in [MPR11] and expressive, but the security proof is given in Generic
Group Model (GGM). Others instantiations in [MPR11] need large communica-
tion complexity. The instantiation in [OT14] provides fully secure and expressive
access policies in StdM model. However, communication complexity of it is larger
than that of the efficient instantiation in [MPR11],depending on the size to rep-
resent access policies. On th other hand, the schemes proven secure under RO
models are often simpler and efficient and the scheme discussed in previous sec-
tion and most notably our scheme, is very simple and this is mainly due to less
severe demands of RO models.

1.2 Our Contribution

– In this paper, we present an attribute-based key agreement protocol which
can be proved secure under the Strong Diffie-Hellman (SDH) assumption
[AKO09] in the random oracle model. We extend the techniques used in
[VSVR13] for attribute-based framework. Doing this is not trivial since in
an attribute-based system the keys and the ciphertexts have richer struc-
ture than identity-based encryption schemes. Besides, we need to keep the

attributes of parties unknown. We are able to achieve a tight reduction to
the SDH problem based on the random oracle model.

– A key exchange is supposed to be fundamentally simpler than an encryption
scheme. All the previous known attribute-based key agreement protocols use
well known existing ABE schemes to get a key agreement among the users.
Hence the security of the key agreement were implicitly relying on the se-
curity guarantees provided by the underlying encryption schemes. Ours is
the first scheme that removes this restriction and we get a key agreement
protocol that does not rely on any ABE scheme. Moreover, our construction
is also efficient as it does not involve any pairing computations. A significant
aspect of the complexity of our scheme is, it involves only O(1) exponen-
tiations (to be specific only 8) and this is independent of the number of
attributes or number of parties in the system. A comparison of our protocol
with the existing state-of-the-art attribute-based two-party and group key
exchange are shown in Table 1.

– Our scheme is also resistant to a dynamic active adversary which is allowed
to modify the components exchanged during the key agreement. The scheme
performs a check which will detect any tampering done on the components.
In this way, a fully authenticated key agreement protocol (both the parties
are mutually authenticated to each other) is achieved. The protocol also sat-
isfies additional security properties such as forward secrecy, key compromise
impersonation attacks.

– Finally, we prove the security of our ABAKE system in the Attribute-Based
CK (ABCK) model which is a natural extension of the CK model for public
key settings. In the ABCK model, the adversary is allowed to pose queries
that allows him to reveal the static secret key, master secret key and the
ephemeral secret key. Also the freshness conditions are a little different than
the CK model and the parties are identified by a set of attribute SP . We
prove the security of our ABAKE in this model under the SDH assumption.
From the relation between hard problem and the instance of the protocol,
it is clear that the key size be just same as the problem size that makes the
SDH problem hard. Such tight reductions imply stronger security even with
smaller keys. Thus, in practice, we may obtain a decent degree of security
with reasonable sized keys.

In Table 1, Type of ABAKE refers to the settings in which the protocols
are applicable, e.g. ABGKE means it is an attribute based group key exchange
protocol as [GBN10] and [SC10]. Also Exp refers to the number of exponen-
tiations each party need to compute in the considered protocols. Gorantla et
al.’s ABGKE was based on the ABE scheme of Bethencourt et al. [BSW07].
From the design principle of [BSW07], they constructed an IND-CCA2-secure
Key Encapsulation Mechanism (KEM) for attribute based settings, which they
called, Encapsulation Policy attribute based KEM (EP-AB-KEM). The number

of exponentiations each party needs to compute during encryption is two for
each leaf node in the ciphertext’s access structure and |L| denotes the number of
leaf nodes in the access structure. The number of leaves in the access structure
corresponds to the number of rows in the share generating matrix M , i.e., size of
M denoted as size(M). In the decryption algorithm, each user needs to perform
two pairing operation for each leaf in the access structure that is matched by
a private key attribute, i.e., the size of the submatrix MI of M as shown in
Definition 2 in Section 2.3 and at most one exponentiation for each node along a
path from each such node to the root. We denote by |P | the maximum length of
this path from the node to the root. The scheme [Yon10] is a two-party ABAKE
like ours and it uses the Waters ABE [Wat11] as its underlying building block.
However Waters ABE had a flaw, they rectified the flaw and uses it for their
ABAKE scheme. Here nmax denotes the maximum number of columns in the
share generating matrix and n denotes the number of the columns of the share
generating matrix corresponding to the encryptor which in most cases will be
less than nmax, i.e., n ≤ nmax. Here size(M) denotes the number of rows of the
share generating matrix and I ⊂ {1, 2, · · · , l} corresponds to those rows of the
decryptor whose attributes satisfies the access structure of the encryptor (after
applying the injective function selected by the encryptor) ,i.e. size(MI). The
protocol in [SC10] is also a ABGKE which uses attribute based signcryption as
its main workhorse. So the number of pairing and exponentiation operations also
depends on the underlying attribute based signcryption schemes which is gen-
erally very large and computationally intensive considering the state-of-the-art
attribute based signcryption schemes like [PPB14], [EMR12] etc. Our protocol
has considerable advantages over the above mentioned protocols. Our protocol
involves no paring operations and a constant number of exponentiations (i.e., 8)
by appropriately doing the computations related to share generation in a pre-
processing stage as will be discussed in Section 4.1. So the computation cost
at each party for our protocol is independent of the size or depth of the access
structure.

1.3 Organization

In section 2, we present the preliminaries required for our ABAKE protocol. In
more details, subsections 2.1- 2.4 provide the required notations and the neces-
sary details on access structure,linear secret sharing schemes and the security
assumptions. In section 3, we describe ABCK model and define the security of
ABAKE schemes in this ABCK model. In section 4 we present our ABAKE
scheme . In section 4.1 we given the detailed complexity analysis of our protocol
and in section 5 we prove the security of our ABAKE scheme. Section 6 describes
the additional security guarantees that our scheme achieves. Finally section 7
concludes the paper.

Scheme
Type of
ABAKE

No of
Rounds

Exp (each
party)

No of
Pairings

(each party)

Basic
Building
Blocks

Security
Model &
Assump-

tions

Gorantla
et al.

[GBN10]
ABGKE 1

size(MI) · |P |+
2(size(M)) + 1

2size(MI) + 3

IND-CCA
secure EP-
AB-KEM

(from
Bethencourt

et al.’s
ABE),

Pseudo-
random
function

BR
,GGM,

RO

Yonehama
[Yon10]

2-party
ABAKE

1
2(size(M)× n) +

(size(M)×
(nmax − n))

(size(MI))
2×

nmax
Waters ABE

eCK,
DBDH,

RO

Steinwandt
et al.

[SC10]
ABGKE 2

Depends on the
underlying

Signcryption
Scheme

Depends on
the

underlying
Signcryption

Scheme

Attribute
Based

Signcryption
Scheme

CK, CDH,
RO

Ours
2-party
ABAKE

1 8∗ —
Basic Group
Operations

CK, SDH,
RO

Table 1 :Comparison with the existing schemes

∗ see Section 4.1 for details.

2 Preliminaries

2.1 Notation

Throughout this work, we denote the security parameter by κ.
We denote by x ∈R X the fact that the value x is chosen uniformly at random from

the set of values X. We denote by −→a a vector, which is the tuple of values (a1, . . . , an),

where n is the length of the vector −→a . For a vector
−→
V chosen by Pi we use the notation

V (i). The kth component of this vector is denoted by V
(i)
k . If the length of V i is m say,

then the entire vector V (i) is given by (V
(i)
1 , V

(i)
2 , · · · , V (i)

m).When we write {V (i)
k }

b
k=a,

we mean the tuple of values (V
(a)
k , · · · , V (b)

k). When we write Af() we mean that A is
given oracle access to the functionality f .

2.2 Access Structure

Definition 1. Access Structure [Bei96] Let P = {P1, · · ·Pn} be a set of parties. A
collection A ⊆ 2{P1,···Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An
access structure (respectively, monotone access structure) is a collection (respectively,
monotone collection) A of non-empty subsets of P1, · · ·Pn, i.e A ⊆ 2{P1,···Pn}\{∅}. The
sets in A are called the authorized sets, and the sets not in A are called the unauthorized
sets.

In our setting, attributes will play the role of parties and we will only deal with mono-
tone access structures. So, from now on, unless stated otherwise, by an access structure
we mean a monotone access structure. We note that it is possible to (inefficiently) real-
ize general access structures with our techniques by having the negation of an attribute
be a separate attribute (so the total number of attributes will be doubled).

2.3 Linear Secret Sharing

Our construction will employ linear secret sharing schemes (LSSS). We use the defini-
tion adapted from [Bei96].

Definition 2. (Linear Secret Sharing (LSSS) [Bei96] [Wat11]). A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if:

1. The shares for each party form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for Π. The matrix A
has l rows and n columns. For all i = 1, . . . , l, the ith row of A is labeled by a
party ρ(i) (ρ is a function from {i = 1, . . . , l} to P). When we consider the column
vector v = (s, r2 · · · rn), where s ∈ Zp is the secret to be shared and r2, · · · rn ∈ Zp
are randomly chosen, then Av is the vector of l shares of the secret s according to
Π. The share (Av)i belongs to party ρ(i).

It is shown in [Bei96] that every LSSS according to the above definition also enjoys
the linear reconstruction property. We state the linear reconstruction property: sup-
pose Π is a LSSS for access structure A. Let S denote an authorized set, and define
I ⊆ {i = 1, · · · , l, } as I = {i|ρ(i) ∈ S}. Then there exist constants {ωi ∈ Zp}i∈I such
that for any valid shares {λi} of a secret s according to Π,

∑
i∈I ωiλi = s. And these

constants {ωi} can be found in time polynomial in the size of the share-generating
matrix A [Bei96]. We note that for the security property of LSSS, no such constants
{ωi} exist for unauthorized sets.

Boolean Formulas Access policies might also be described in terms of monotonic
boolean formulas. LSSS access structures are more general and can be derived from
such representations. More precisely, one can use standard techniques to convert any
monotonic boolean formula into a corresponding LSSS matrix. We can represent the
boolean formula as an access tree, where the interior nodes are AND and OR gates,
and the leaf nodes correspond to attributes. The number of rows in the corresponding
LSSS matrix will be same as the number of leaf nodes in the access tree. So, naturally
boolean formulas are used to decribe the access policy, and equivalent LSSS are used
to encrypt message the message and decrypt the ciphertext in a CP-ABE system.

2.4 Monotone Span Program and LSSS.

The labelled matrix (A, ρ) in Definition 2 is also called a monotone span program
[KW93]. Karchmer and Widgerson [KW93] introduced the model of monotone span
program, and proved that if there is a monotone span program for some boolean func-
tion then there exists a linear secret sharing scheme for the corresponding access struc-
ture. We give the formal definitions and conclusions as in [KW93], [NN04].

Definition 3. (Monotone Span Program (MSP) [KW93], [NN04]) . A Mono-
tone Span ProgramM is a quadruple (F,M, ε, ρ) where F is a field, M is a matrix (with
m rows and d ≤ m columns) over F, ρ : {1, 2, · · · ,m} → {1, 2, · · · , n} is a surjective
function and the row vector ε = (1, 0, 0 · · · 0) ∈ Fd is called the target vector. The size
of M is the number m of rows is denoted by size(M).

As the function ρ labels each row i of the matrix M to a party Pρ(i), each party can be
regraded as the owner of one or more rows. For any set of parties G ⊆ P, let us denote
the sub-matrix consisting of rows owned by the parties in G by MG. The span of the
matrix M , denoted by span(M), is the subspace generated by the rows of M . A MSP
M is said to compute an access structure A if G ∈ A⇔ ε ∈ span(MG).

Definition 4. (LSSS induced from MSP [KW93], [NN04]). Assume that there is
a monotone span program M = (F,M, ε, ρ), of size m, computing the access structure
A. Then there is a LSSS Π over F realizing the access structure in which the total
size of the shares is the number of rows in the span program, i.e., the size of the span
program (,i.e., m) [KW93].

We mention the linear reconstruction property of the LSSS here. For any secret s ∈ Z∗p,

let v = (s, r2, · · · rn) ∈ Z∗
d

p denote a random vector. For any authorized set S ∈ A, let
I = {i : Pρ(i) ∈ S} and let Mi denote the ith row of M and the shares {λi = (Mv)i =
Mi · v|i ∈ I} are held by S. Since S is an authorized set, the reconstruction constants
ωii∈I such that

∑
i∈I ωiMi = ε. Then S can compute∑

i∈I

ωiλi =
∑
i∈I

ωi (Mi · v) = ε · v = s. (1)

2.5 Complexity Assumptions

In this section, we present a brief overview of the hard problem assumptions.

Definition 5. Computation Diffie-Hellman Problem (CDH) - Given
(g, ga, gb) ∈R G3 for unknown a, b ∈ Z∗q , where G is a cyclic prime order multiplicative
group with g as a generator and q the order of the group, the CDH problem in G is to
compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the CDH
problem in G is defined as

AdvCDHA = Pr
[
A(g, ga, gb) = gab | a, b ∈ Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the
advantage AdvCDHA is negligibly small.

Definition 6. Decisional Diffie-Hellman Problem (DDH) - Given (g, ga, gb, h) ∈
G4 for unknown a, b ∈ Z∗q , where G is a cyclic prime order multiplicative group with g
as a generator and q the order of the group, the DDH problem in G is to check whether

h
?
= gab.

The advantage of any probabilistic polynomial time algorithm A in solving the DDH
problem in G is defined as

AdvDDHA = |Pr
[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, h) = 1

]
| | a, b ∈ Z∗q

The DDH Assumption is that, for any probabilistic polynomial time algorithm A, the
advantage AdvDDHA is negligibly small.

Definition 7. Strong Diffie Hellman Problem (SDH) [AKO09]): Let κ be the
security parameter and G be a multiplicative group of order q, where |q| = κ. Given
(g, ga, gb) ∈R G3 and access to a Decision Diffie Hellman (DDH) oracle DDHg,a(., .)
which on input gb and gc outputs True if and only if gab = gc, the strong Diffie Hell-
man problem is to compute gab ∈ G (i.e., the problem of solving Computational Diffie
Hellman Problem (CDH) using a DDH oracle)

The advantage of an adversary A in solving the strong Diffie Hellman problem is defined
as the probability with which A solves the above strong Diffie Hellman problem.

AdvSDHPADDHg,a(.,.) = Pr[A(g, ga, gb) = gab]

The SDH assumption holds in G if for all polynomial time adversaries A, the advantage
AdvSDHPA is negligible.

3 ABCK security model

In this section we describe the ABCK model which is a natural extension of the CK
model for attribute based settings. All the definitions gievn here are for single-round
two-party ABAKE scheme. For multiple rounds, we need to extend these definitions ap-
propriately. An ABAKE consists of three polynomial time algorithms – Setup, KeyGen
and KeyExchange. These algorithms are discussed below.

Setup: The setup algorithm takes as input the implicit security parameter κ and the
attribute universe U and outputs the master public key MPK and master secret key
MSK.

Setup(1κ)→ (MPK,MSK).

KeyGen: The key generation algorithm takes in the master secret key MSK, the master
public key MPK, and a set of attributes SP given by a party P , and outputs a static
secret key SKSP corresponding to SP .

KeyExchange(MSK,MPK, SP)→ SKSP .

KeyExchange: This algorithm is run between two or more users or parties in the sys-
tem(in our case the number of users is two as it is two-party setting). Each party in
an ABAKE protocol executes the KeyExchange algorithm which initially takes as in-
put the master public key MPK, an access structure A and a private key for a set of
attributes S. The party A (resp. B) starts the protocol by taking as input the mas-
ter public key MPK, the set of attributes SA (resp. SB), the access policy or access
structure AA (resp. AB), and outputs a message say out (resp. out′). The out sent by
A is considered to as in′ for B and out′ sent by B is considered to as in for A. The
party A attempts to construct the session key ZA using the key construction function
that takes MPK, the set of attributes SA, the static secret key SKSA ,the access policy
or access structure AB , out and in as parameters. The party B attempts to construct
the session key ZB , using the key construction function that takes MPK, the set of
attributes SB , the static secret key SKSB ,the access policy or access structure AA, out′

and in′ as parameters. The session key ZA will be equal to ZB if and only if SA ∈ AB
and SB ∈ AA (i.e, the attributes of one party satisfies the access structure of its peer
and viseversa). The session key Z = ZA = ZB is defined as the session key established
between party A and B.

Session. An instance of the protocol as described above when run at a party is called
a session. The user/entity that initiates a session is called the owner and the other
user is called the peer. A session is activated with an incoming message of the forms
(I,AA) or (R,AA,AB , out), where I and R with role identifiers, and A and B are user
identifiers. If A was activated with (I,AA), then A is called the session initiator. If
B was activated with (R,AA,AB , out), then B is called the session responder. After
activated with an incoming message of the form (I,AB , out′) from the responder B,
the initiator A computes the session key. After activated with an incoming message of
the form (R,AA, out) from the initiator A, the responder B computes the session key.
The shared secret key obtained after exchange of components among both the parties
is called the session key. On successful completion of a session, each entity outputs the
session key and deletes the session state. Otherwise, the session is said to be in abort
state and no session key is generated in this case. Each entity participating in a session
assigns a unique identifier to that session. If A is the initiator of the session it sets
the session identifier sid as (I,AA,AB , out, in) where out and in are respectively the
components sent to B and received from B. If B is the responder of a session initiated
by A, it sets the sid as (R,AA,AB , out′, in′) where out′ and in′ are respectively the
components sent to A and received by B. We note that the sid of the responder is
defined immediately it receives a message from the initiator of the form (I,AA, out),
whereas sid of the initiator is defined only when it receives the response from its peer.

Adversary. The adversaryA is also modeled as a probabilistic polynomial time Turing
machine which has full control on the communication network over which protocol
messages can be altered, injected or eavesdropped at any time. Apart from this the
adversary can also get secret keys corresponding to polynomial number of users of its
choice adaptively. The adversary can also register attributes of its choice on behalf of
any party. The adversary can also access the session states of a polynomial number
of sessions of parties which allows him to obtain all the ephemeral secrets or session
states corresponding to those sessions. To model these the adversary is given access to
the following oracle queries:

1. Send(Message): The ability of the adversary to control the communication network
is modeled by the Send query. Here the adversary can send a message of the form
(I, SA, SB ,m). It sends a message m to the party A on behalf of party B and
return A’s response to this message to the adversary. If m = 0, this query makes
party A to start an AKE session with B and to provide communication from B to
A. Else it will send the message m from party A to party B and makes B respond
to the supposed session (I, SA, SB ,m, ?)

2. SessionStateReveal(sid): The adversary A obtains the ephemeral secret keys and
the session state associated with the session sid, if the session is not yet completed
(the session key is not established yet). Session state includes all chosen randomness
and intermediate computation results, but not the static secret key.

We assume that once a session gets successfully completed, the session key is output
and all the associated session states are erased. So we allow the adveersary to make
SessionStateReveal queries on an incomplete session. The former case where the

adversary makes SessionStateReveal query on a completed session is captured by
the SessionKeyReveal(sid) oracle query.

3. SessionKeyReveal(sid): A is given the session key of a completed session sid, pro-
vided that the session holds a session key.

4. PartyCorruption(SP): The adversary learns the static secret key corresponding to
the set of attributes SP . The party P is said to be corrupt.

5. Establish(P, SP): This query allows the adversary to register a set of attributes
SP on behalf of the party P ; the adversary totally controls that party. If a party
is established by Establish(P, SP) query issued by the adversary, then we call the
party P dishonest.

If a party is not corrupt or dishonest, we call the party honest.

We now give the definition for a matching session and what it means for a session to
be fresh.

Definition 8. (Matching Sessions). Let Π be a protocol and sid = (ζ,AA,AB ,
out, in) and sid′ = (ζ′,AB ,AA, in′, out′) be the identifier of two sessions. Then sid and
sid′ are called matching (or partnered) sessions if:

– The attributes of user B satisfy the access structure of user A i.e. SB satisfies AA.

– The attributes of user A satisfy the access structure of user B i.e. SA satisfies AB.

– out = in′ and in = out′ and

– ζ 6= ζ′

Definition 9. (Freshness). A session with identifier sid is called fresh if none of
the following queries by an adversary are allowed on that session sid or it’s matching
session sid′ (if it exists)

– The adversary A issues a SessionKeyReveal query on sid or sid′.

– The adversary A issues a SessionStateReveal query on sid or sid′.

– The adversary A issues a Party Corruption(SP) query on the party P owning the
session sid or a Establish(P, SP) query on P .

The adversary begins the second phase of the game by choosing a fresh session sid*
and issuing a Test(sid*) query, where the Test query are defined as follows:

Test(sid*): Here the session sid* must be a fresh session. On the Test query, a bit
b ∈ {0, 1} is randomly chosen. The session key is given to the adversary A, if b = 0,
otherwise a uniformly chosen random value from the distribution of valid session keys
is returned to A. Only one query of this form is allowed for the adversary. Of course,
after the Test query has been issued, the adversary can continue querying the oracles
provided that the test session is fresh. A outputs his guess b′ in the test session. An
adversary wins the game if the selected test session is fresh and if he guesses the chal-
lenge correctly i.e., b′ = b. The advantage of A in the ABAKE scheme Π is defined as

AdvABCK
Π (A) = Pr[A wins]− 1

2

We now define the ABCK security definition as follows:

Definition 10. (ABCK security). We say that an ABAKE scheme Π is secure in
the ABCK model, if the following conditions hold:

1. If two honest parties complete matching sessions and SA satisfies AB and SB satis-
fies AA, then, except with negligible probability, they both compute the same session
key.

2. For any probabilistic polynomial-time adversary A, AdvABCK
Π (A) is negligible.

The following notions of security may also be considered depending upon the types
of oracle queries the adversary is allowed to ask:

1. Key Independence: An adversary A can ask Send(Message), SessionKeyReveal(sid),
Establish(P, SP), but not PartyCorruption query.

2. Forward Secrecy: An adversary A can ask all the queries as before for key indepen-
dence, and in addition PartyCorruption query. Note that forward secrecy implies
key independence.

3. Key Compromise Impersonation (KCI): Here also, as before that adversary A can
ask all the queries for both key independence and forward secrecy. In particular we
allow the adversary to corrupt the owner of the test session which captures KCI
attacks.

Our model also captures these security properties by giving the adversary access to the
appropriate oracle acess.

4 Our Construction

Design Rationale: Suppose two users Pi and Pj wish to establish a common session
key among themselves. Each user obtains his private key from Private Key Generator
(PKG) after proving he is a legitimate user. In order to validate these private key
components, the user performs the key sanity check mechanism. If it passes, then
as a pre-processing phase, each user formulates several access structures and wants
to be satisfied by other user’s attribute vector. Now, the two users participate in key
agreement session. User Pi checks whether the session state information obtained by Pj
is valid. If yes, Pi can compute the common shared secret key if and only if his attribute
vector satisfies the access structure used to calculate the session state information sent
by Pj , and vice versa. In this construction, access structures are boolean formulas which
are represented by LSSS. The main idea of our construction is that the secret of our
LSSS is chosen as one of the ephemeral key tk (k ∈ {i, j}) and as part of session state we
are using the share values as Diffi-Hellman exponents. If the other party has legitimate
attributes, he can exponentiate the constants generated in secret reconstruction phase
corresponding to the rows of the secret reconstruction submatrix of LSSS and get back
the Diffi-Hellman value of the secret, i.e., gtk . Note that this value gtk is bound to the
values c̃k, b̃k and ẽk and also used in the construction of the shared secret key. So if
the other party do not possess the appropriate attributes he cannot construct the gtk

value and hence the session keys will not be in agreement.

We now give the description of the attribute-based key agreement protocol and
formally prove its security in the next section.

Setup: The Key Generation Centre (KGC) or Private Key Generator (PKG) chooses
a group G of prime order q. Let g be the generator of group G. The PKG picks
s1, s2 ∈R Z∗p, where p divides q − 1, sets y1 = gs1 and y2 = gs2 . The master secret
key is 〈s1, s2〉 and the master public key is 〈y1, y2〉. It also defines the following hash
functions: H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Z∗p. It then makes params public and
keeps msk to itself, where params and msk are defined as follows:

params = 〈G, g, q, p, y1, y2, H1, H2〉 and msk = 〈s1, s2〉.

Key Generation: On input an attribute vector
−→
Si =

(
S(i)
1 , S(i)

2 , · · · , S(i)
mi

)
correspond-

ing to an party Pi the PKG does the following to generate its private key :

– Chooses xi ∈R Zp∗.
– Computes u1,i = gxi and sets hi = H1

(−→
Si
)
.

– Computes v1,i = hi
xi .

– Chooses ri ∈R Zp∗, computes u2,i = gri and v2,i = hi
ri .

– Sets ci = H2 (u1,i), bi = H2(u1,i, v1,i, u2,i, v2,i, 0) and ei = H2(u1,i, v1,i, u2,i, v2,i, 1).
– Computes d1,i = xi + s1 · ci where s1 is the master secret key. It also calculates
d2,i = xi + ri · bi + s2 · ei.

– Computes ĥi = hi
s2

– Finally it sends 〈u1,i, v1,i, u2,i, v2,i, d1,i, d2,i, ĥi〉 to the party Pi.

Similarly party Pj with attribute vector
−→
Sj =

(
S(j)
1 , S(j)

2 , · · · , S(j)
mj

)
gets it’s private key

〈u1,j , v1,j , u2,j , v2,j , d1,j , d2,j , ĥj〉 from the PKG corresponding to his attributes where
the respective components of the private key of Pj are computed in a similar fashion
as of Pi.

The users after receiving the private key components from the PKG performs Key
Sanity Check as shown in Appendix A to ensure the correctness of the components.

Key Agreement: The two parties Pi and Pj with attribute vectors
−→
S i and

−→
S j re-

spectively get their respective private keys from the PKG. They now proceed with the
key agreement phase as follows:

– First, Pi decides an access structure Ai and he hopes that the set of attributes−→
S j of party Pj satisfies Ai. Note that the access structure will be represented by
(Mi, ρi) where Mi is the (li × ni) share generating matrix Mi and ρi the injective
labeling function corresponding to this matrix Mi mapping the rows of Mi to
attributes in our case. Similarly, party Pj also decides an access structure Aj and

he hopes that the set of attributes
−→
Si of party Pi satisfies Aj . This access structure

Aj will also be specified by a (lj × nj) share generating matrix Mj and the injective
labeling function ρj that maps the rows of Mj to attributes.

– Party Pi then chooses an ephemeral secret component wi ∈R Zp∗ and computes
Wi = gwi . Similarly party Pj chooses an ephemeral secret component wj ∈R Zp∗
and computes Wj = gwj .

– Party Pi (respectively Pj) also chooses a random vector −→σi ∈R (Zp∗)ni where
−→σi vector is of the form −→σi = (ti, σ2

(i), · · ·σ(i)
ni). Similarly party Pj chooses −→σj ∈R

(Zp∗)nj where −→σj is of the form −→σj = (tj , σ2
(j), · · ·σ(j)

nj). Here ti in the place of σ1
(i)

(respectively tj in the place of σ1
(j)) represents the secret value corresponding to

the underlying LSSS scheme.

– Party Pi now computes the following values:
1. Compute Xi = gti .

2. Compute c̃i = H2

(
Xi, u

(1)
i

)
, b̃i = H2 (Xi, u1,i, v1,i, u2,i, v2,i, 0)

and ẽi = H2 (Xi, u1,i, v1,i, u2,i, v2,i, 1).

3. For each row τ ∈ {1, 2, . . . , li}, compute T
(i)
τ = g

−→
M

(i)
τ ·−→σi , where

−→
M

(i)
τ is τth row

of the matrix Mi.

4. Compute ηi = wi + d1,i ·H2

(
{T (i)

τ }liτ=1,Wi,Mi, ρi
)

.

Party Pi then sends the values
{−→
Fi = 〈u1,i, v1,i, d2,i, bi, ei, c̃i, b̃i, ẽi, ĥi,Mi, ρi〉,

−→
Vi =

〈ηi, {T (i)
τ }liτ=1,Wi〉

}
to party Pj as shown in Table 2.

Similarly party Pj also computes the values:
1. Compute Xj = gtj .

2. Compute c̃j = H2

(
Xj , u

(1)
j

)
, b̃j = H2 (Xj , u1,j , v1,j , u2,j , v2,j , 0)

and ẽj = H2 (Xj , u1,j , v1,j , u2,j , v2,j , 1).

3. For each row τ ∈ {1, 2, . . . , lj}, compute T
(j)
τ = g

−→
M

(j)
τ ·−→σj , where

−→
M

(j)
τ is τth

row of the matrix Mj .

4. Compute ηj = wj + d1,j ·H2

(
{T jτ }

lj
τ=1,Wj ,Mj , ρj

)
.

Party Pj then sends the values
{−→
Fj = 〈u1,j , v1,j , d2,j , bj , ej , c̃j , b̃j , ẽj , ĥj ,Mj , ρj〉,

−→
Vj = 〈ηj , {T (j)

τ }
lj
τ=1,Wj〉

}
to party Pi.

– Party Pj on receiving the tuple {
−→
Fi,
−→
Vi} from party Pi checks the consistency

of the individual components as shown in Table 2. We note that to check the
consistency of the the hash values c̃j , b̃j , ẽj , the party Pj needs to get back the
secret component Xi which is only possible if the party Pj possesses an authorized
set, i.e., the party Pj has the required attributes to compute ti. In other words as
shown in subsection 2.3 and 2.4, if the party Pj has permissible attributes that
comprises an authorized set, he can compute the required constants corresponding
to the submatrix that will be generated and the secret value can be reconstructed
back from these constants and the corresponding shares of the party.

Party Pi Party Pj
1. Local Computation:

(a) Choose wi ∈R Z∗p,

(b) Compute Wi = gwi

(c) Choose −→σi = (ti, σ2
(i), · · ·σ(i)

ni) ∈R (Zp
∗)ni ,

where ti is the secret value.

(d) Xi = gti

(e) Compute: (i) c̃i = H2(Xi, u1,i)

(ii) b̃i = H2 (Xi, u1,i, v1,i, u2,i, v2,i, 0)

(iii) ẽi = H2 (Xi, u1,i, v1,i, u2,i, v2,i, 1)

(f)For each row τ ∈ {1, 2, . . . , li}, compute

T
(i)
τ = g

−→
M

(i)
τ ·−→σi , where

−→
M

(i)
τ is τth row of

the matrix Mi.

(g) ηi = wi + d1,i ·H2

(
{T (i)

τ }liτ=1,Wi,Mi, ρi
)

−→
Fi=〈u1,i,v1,i,d2,i,bi,ei,c̃i,b̃i,ẽi,ĥi,Mi,ρi〉,

−→
Vi = 〈ηi, {T (i)

τ }liτ=1,Wi〉−−−→
−→
Fj=〈u1,j ,v1,j ,d2,j ,bj ,ej ,c̃j ,b̃j ,ẽj ,ĥj ,Mj ,ρj〉,

−→
Vj = 〈ηj , {T (j)

τ }
lj
τ=1,Wj〉←−−−

2. Verification:

(a) Check 1: (Membership Testing)

Check if (i) F1
(j), F2

(j), F9
(j) ∈ G∗;

(ii) {Fk(j)}8k=3 ⊂ Zp∗

If ¬(a) or ¬(b) or both, Abort

(b) Check for correctness of
−→
Fj:

Compute (i) u′2,j =

(
gd2,j

u1,j · y2ej

)bj−1

(ii) v′2,j =

 hj
d2,j

v1,j ·
(
ĥj
)ej
bj

−1

(iii) If
−→
Si satisfies Aj , then compute

X ′j =
∏
τ∈I(T

(j)
τ)ωτ

where I = {τ |ρ(τ) ∈
−→
Si} and {ωτ}τ∈I ⊂ Z∗P

(iv) Check 2 : Check if

c̃j
?
= H2(X ′j , u1,j)

b̃j
?
= H2(X ′j , u1,j , v1,j , u

′
2,j , v

′
2,j , 0)

ẽj
?
= H2(X ′j , u1,j , v1,j , u

′
2,j , v

′
2,j , 1)

If any of them not equal, Abort, else proceed.

1. Local Computation:

(a) Choose wj ∈R Z∗p,

(b) Compute Wj = gwj

(c) Chooses −→σj = (tj , σ2
(j), · · ·σ(j)

nj) ∈R (Zp
∗)nj ,

where tj is the secret value.

(d) Xj = gtj

(e) Compute: (i) c̃j = H2(Xj , u1,j)

(ii) b̃j = H2 (Xj , u1,j , v1,j , u2,j , v2,j , 0)

(iii) ẽj = H2 (Xj , u1,j , v1,j , u2,j , v2,j , 1)

(f)For each row τ ∈ {1, 2, . . . , lj}, compute

T
(j)
τ = g

−→
M

(j)
τ ·−→σj , where

−→
M

(j)
τ is τth row of

the matrix Mj .

(g) ηj = wj + d1,j ·H2

(
{T (j)

τ }
lj
τ=1,Wj ,Mj , ρj

)

2. Verification:

(a) Check 1: (Membership Testing)

Check if (i) F1
(i), F2

(i), F9
(i) ∈ G∗;

(ii) {Fk(i)}8k=3 ⊂ Zp∗

If ¬(a) or ¬(b) or both, Abort

(b) Check for correctness of
−→
Fi:

Compute (i) u′2,i =

(
gd2,i

u1,i · y2ei

)bi−1

(ii) v′2,i =

 hi
d2,i

v1,i ·
(
ĥi
)ei
bi

−1

(iii) If
−→
Sj satisfies Ai, then compute

X ′i =
∏
τ∈I(T

(i)
τ)ωτ

where I = {τ |ρ(τ) ∈
−→
Sj} and {ωτ}τ∈I ⊂ Z∗P

(iv) Check 2 : Check if

c̃i
?
= H2(X ′i, u1,i)

b̃i
?
= H2(X ′i, u1,i, v1,i, u

′
2,i, v

′
2,i, 0)

ẽi
?
= H2(X ′i, u1,i, v1,i, u

′
2,i, v

′
2,i, 1)

If any of them not equal, Abort, else proceed.

Party Pi Party Pj

(c) Check for correctness of
−→
Vj:

Check 3 : Check if gηj

(gxj)
H2

(
{T (j)
τ },Wj ,Mj ,ρj

)
(y1)

cj ·H2

(
{T (j)
τ },Wj ,Mj ,ρi

)

?
= gwj

where cj = H2(u1,j).

If not equal Abort, else proceed to step 3.

3. Shared secret key generation:

Compute Z1 =
(
u1,jy1

cjX ′j
)d1,i+ti

Z2 = v1,iv1,j

Z3 =
(
X ′j
)ti .

Z = H2 (Z1, Z2, Z3).

(c) Check for correctness of
−→
Vi:

Check 3 : Check if gηi

(gxi)
H2

(
{T (i)
τ },Wi,Mi,ρi

)
(y1)

ci·H2

(
{T (i)
τ },Wi,Mi,ρi

)

?
= gwi

where ci = H2(u1,i).

If not equal Abort, else proceed to step 3.

3. Shared secret key generation:

Compute Z1 = (u1,iy1
ciX ′i)

d1,j+tj

Z2 = v1,jv1,i

Z3 = (X ′i)
tj .

Z = H2 (Z1, Z2, Z3).

Table 2. Description of the Key Agreement protocol.

Remark 1. We now show the correctness of the steps 2 (b) of our key agreement pro-
tocol.(

gd2,i

u1,i.y2ei

)bi−1

=

(
gxi+ri·bi+s2·ei

gxi · gs2·ei

)bi−1

=
(
gri·bi

)bi−1

= gri = u2,i.

(
hi
d2,i

v1,i · (his2)ei

)bi−1

=

(
hi
xi+ri·bi+s2·ei

hi
xi · (his2)ei

)bi−1

=
(
hi
ri·bi

)bi−1

= hi
ri = v2,i.

If the attribute vector
−→
Sj satisfies the access structure Ai of user Pi, then

∑
τ∈I ωτ

−→
M

(i)
τ ·

−→σi = (
∑
τ∈I ωτ

−→
M

(i)
τ)·−→σi = (1, 0, . . . , 0)·(ti, σ2

(i), · · ·σ(i)
ni) = ti.Hence,X ′i =

∏
τ∈I(T

(i)
τ)ωτ =∏

τ∈I(g
−→
M

(i)
τ ·−→σi)ωτ = g

∑
τ∈I ωτ

−→
M

(i)
τ ·−→σi = gti .

Therefore, the components that are recomputed are valid and if the attributes of
party Pj satisfies the access structure of party Pi, the computation of

b̃i = H2

(
σ1

(i), u1,i, v1,i, u2,i, v2,i, 0
)

and ẽi = H2

(
σ1

(i), u1,i, v1,i, u2,i, v2,i, 1
)

will match

with the one obtained from Pi. So, any tampering done with these values during transit
will always be caught.

Check 3 is done to ensure that a dynamic adversary cannot tamper the components
exchanged and affect the shared secret key generation. It verifies the signature ηi =

wi + di1 ·H2

(
{T (i)

τ }liτ=1,Wi,Mi, ρi
)

on Xi.

g

(
wi+d1,i·H2

(
{T (i)
τ }

li
τ=1,Wi,Mi,ρi

))

(gxi)
H2

(
{T (i)
τ }

li
τ=1,Wi,Mi,ρi

)
.(y1)

ci·H2

(
{T (i)
τ }

li
τ=1,Wi,Mi,ρi

)

=
g

(
wi+(xi+s1·ci)·H2

(
{T (i)
τ }

li
τ=1,Wi,Mi,ρi

))

g
xi·H2

(
{T (i)
τ }

li
τ=1,Wi,Mi,ρi

)
· gs1·ci·H2

(
{T (i)
τ }

li
τ=1,Wi,Mi,ρi

)
= gwi .

We now show the correctness of our protocol, i.e., the keys computed by both the
parties are same.

Lemma 1. The shared secret key computed by both the parties are identical.

Proof. Party Pi computes:

Z1 =
(
u1,jy1

cjX ′j
)d1,i+ti =

(
u1,jy1

cjgtj
)d1,i+ti =

(
g(xj+s1·cj+tj)

)(d1,i+ti)

= g(d1,j+tj)(d1,i+ti),
since u1,j = gxj and xj + s1 · cj = d1,j .

Party Pj computes:

Z1 = (u1,iy1
ciX ′i)

d1,j+tj =
(
u1,iy1

cigti
)d1,j+tj =

(
g(xi+s1ci+ti)

)(d1,j+tj)

= g(d1,i+ti)(d1,j+tj),
since u1,i = gxi and xi + s1 · ci = d1,i.

Thus, Z1 computed by both the parties are identical. Z2 and Z3 are also consistent.
Thus the final shared secret key Z computed by both the parties are consistent.

ut

4.1 Complexity Analysis of Our Protocol

In this section we give the complexity analysis of our protocol. Firstly, we note the
computational cost of each party is dominated by the number of exponentiations it
needs to do in the actual execution of the protocol. In the naive implementation of
our protocol the number of exponentiations performed by each party will depend on
the size of the share generating matrix for share generation and secret reconstruction
phase. However here we show by doing appropriate preprocessing, the number of ex-
ponentiations at each party can be made O(1) (precisely 8). The detailed analysis is
shown as follows:

1. In the Local Computation phase of our protocol, each party needs to perform 2
exponentiations corresponding to steps 1 (b), 1 (d) respectively.

2. In the naive implementation of our protocol, in the share generation phase (step 1
(f)), each party needs to perform size(M)- many exponentiations where size(M)
denotes the number of rows in the share generating matrix M . However it is to be

noted that the computation of T
(i)
τ = g

−→
M

(i)
τ ·−→σi values can be precomputed in the

preprocessing steps as the share generation phase does not depend on the other
party’s access structure. So each party can locally chose random access structure

that it needs the other party to satisfy and it precomputes the T
(i)
τ values and

stores it in a table T say. So the actual computational cost for each party in the
actual protocol execution is independent of the cost of share generation. For each
execution of the protocol a party can simply pick up an unused tuple of values
from the table T and use it for the current session.

3. In step 2 (b) (i) and (ii) of the verification phase, each party can get away with
performing no exponentiation in the actual protocol execution. This is beacuse the
checks does not require the knowledge of ephemeral secret keys wi or wj or the
value ηi or ηj . The components 〈u1,i, v1,i, d2,i, bi, ei, ĥi〉, are sent only once by each
party because they are part of static private key of that party and are invariant
across all sessions in which this party is involved. So a party can perform these
checks in the preprocessing step for the first time itself; next time onwards it need
not do these checks.

4. In step 2 (b) (iii), each party needs to reconstruct back the secret value if he/she is
a legitimate party, i.e., its attributes satisfy the access structure of the other party.
The secret reconstruction cost of each party comes for free since we are working
with access structures specified as boolean formula. This is due to the fact that the
secret can be constructed by using Gaussian Elimination method in O(n3) time
for access policies expressed as boolean formulas (for more details, see [SRD15]).

5. For performing the checks 3 and 4 in step 2 (c), each party needs to do 4 exponenti-
ations in all. Finally in step 3 in the Shared secret key generation phase, each party
neds to perform 2 exponentiations (the value (y1)cj can again be precomputed).

So in total each party needs to perform 8 exponentiations in the actual execution of
our protocol by performing these preprocessing steps as mentioned.

5 Security Proof

In this section, we present a formal security proof for the protocol described in the
previous section. The proof is based on the ABCK security model described in section
3. The scheme is proved secure under the Gap Diffie-Hellman (GDH) assumption in the
random oracle model. The security proof is modeled as a game between the challenger
and the adversary.

Theorem 1. Under the GDH assumption in G and the RO model,the protocol in sec-
tion 4 is ABCK-secure.

Proof. We now give the security proof for our protocol from section 4.

Setup: The challenger is given the SDH problem instance 〈G, g, q, p, C = ga, D = gb〉
and access to the Diffie Hellman Oracle DH (y1, ., .). The challenger sets the mas-
ter public key y1 = C and hence the master secret key s1 is implicitly set as a.
The challenger chooses s2 ∈R Z∗p and sets y2 = gs2 . The challenger gives the tuple
〈G, g, q, p, y1, y2〉 to the adversary. The challenger simulates the hash oracles in the
following way:

H1 Oracle: The challenger is queried by the adversary for the hash value of the attribute

vector
−→
Si corresponding to party Pi. If the H1 Oracle was already queried with

−→
Si

as input, the challenger returns the value computed before which is stored in the
hash list Lh1 described below. Otherwise the challenger tosses a coin τi where the
Pr (τi = 0) = α. The output of this oracle is defined as:

hi =

{
gki , if τi = 0(
gb
)ki , if τi = 1

where ki ∈R Zp∗. The challenger makes an entry in the hash list Lh1 = 〈hi,
−→
Si , τi, ki〉

for future use and returns hi.

H2 Oracle : When the adversary queries the hash function H2 on any input say x, if the
H2 oracle was already queried before with this input, the challenger simply extracts
the value from the hash list Lh2 described below and returns the value. Otherwise,
the challenger chooses a random element say y ∈R Zp∗, makes an entry of the form
〈x, y〉 and returns y. For example, the adversary may query the challenger with inputs

(u1,i) or (u1,i, v1,i, u2,i, v2,i, 0) or (u1,i, v1,i, u2,i, v2,i, 1) or
(
{T (i)

τ }liτ=1,Wi,Mi, ρi
)

or

(Z1, Z2, Z3).

Let h1, h2, h3, h4 and h5 are the number of queries corresponding to each type of
queries in the order mentioned above.

If the H2 Oracle was already queried with u1,i as input, the challenger extracts
the value ci from the hash list Lh2 described below and returns the value. Other-
wise, the challenger chooses a random value ci ∈R Zp∗ respectively. It makes an
entry in the hash list Lh2 = 〈ci, u1,i〉 and returns ci. Similarly when the adversary
queries the challenger with inputs (u1,i, v1,i, u2,i, v2,i, 0) or (u1,i, v1,i, u2,i, v2,i, 1), if the
H2 Oracle was already queried with (u1,i, v1,i, u2,i, v2,i, 0) or (u1,i, v1,i, u2,i, v2,i, 1) as
input, the challenger extracts the value bi or ei from the hash list Lh2 described below
and returns the value. Otherwise, the challenger chooses a random value bi ∈R Zp∗
or ei ∈R Zp∗. It makes an entry in the hash list Lh2 = 〈bi, (u1,i, v1,i, u2,i, v2,i, 0)〉 or
Lh2 = 〈ei, (u1,i, v1,i, u2,i, v2,i, 1)〉 and returns bi or ei respectively. Similarly the rest of
the queries will also be answered in a similar fashion.

Party corruption: The adversary presents the challenger with an attribute vector−→
Si and the challenger should return the private key of that party Pi. The challenger
proceeds in the following way:

The challenger checks if the H1 Oracle was already queried for
−→
Si . If yes and τi = 1,

it aborts. Otherwise it extracts ki, hi from the list Lh1 and proceeds to the next step.

If
−→
Si was not queried before, the challenger runs the H1 Oracle with

−→
Si as input. If

τi = 1, it aborts. Else the challenger chooses ki ∈R Z∗p, computes hi = gki , adds the

tuple 〈hi,
−→
Si , τi, ki〉 to the Lh1 list.

The challenger does not know the master secret key s1 as master public key y1 = ga

setting s1 = a. Therefore, in order to generate the private key of users, the challenger
makes use of the random oracles and generates the private key as described below:

– The challenger chooses ci, bi, ei, xi
′, ri
′ ∈R Zp∗.

– It sets u1,i = gx
′
i · y1−ci .

– It sets H2 (u1,i) = ci and stores the tuple 〈ci, u1,i〉 in the Lh2 list.

– It sets d1,i = x′i, d2,i = x′i + r′i · bi + s2 · ei and u2,i = gr
′
i · y1ci·bi

−1

.

– It computes v1,i = gki·x
′
i · y1−ki·ci and v2,i = gki·r

′
i · y1ki·ci·bi

−1

.

– It also sets the hash function values H2 (u1,i, v1,i, u2,i, v2,i, 0) = bi,
H2 (u1,i, v1,i, u2,i, v2,i, 1) = ei and adds the tuples 〈bi, u1,i, v1,i, u2,i, v2,i, 0〉,
〈ei, u1,i, v1,i, u2,i, v2,i, 1〉 to the list Lh2.

– It computes hi
s2 .

– It returns the tuple 〈u1,i, v1,i, u2,i, v2,i, d1,i, d2,i, hi
s2〉 as the private key of the user

with attribute vector
−→
Si and makes an entry in the list LE = 〈u1,i, v1,i, u2,i, v2,i, d1,i,

d2,i, hi
s2 ,
−→
Si〉.

Lemma 2: The private key returned by the challenger during the PartyCorruption query
are consistent with the system.

Proof: We now prove that the components returned by the challenger are consistent
with that of the system. The components returned by the challenger should satisfy the
3 checks given in Secret Key Sanity Check.

– Test 1 : Check if
gd1,i

y
H2(u1,i)
1

?
= u1,i.

This can be verified as
gx
′
i

ga·H2(u1,i)
where ci = H2 (u1,i). This is equal to gx

′
i−a·ci =

gx
′
i · y1−ci = u1,i.

– Test 2 : Check if
gd2,i

u2,i
H2(u1,i,v1,i,u2,i,v2,i,0) · y2H2(u1,i,v1,i,u2,i,v2,i,1)

?
= u1,i.

This follows as
gx
′
i+r
′
i·bi+s2·ei(

gr
′
i · y1ci·bi−1

)bi · gs2·ei = gx
′
i−a·ci = gx

′
i · y1−ci = u1,i, as bi =

H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

– Test 3 : Check if
h
d2,i
i

v2,i
H2(u1,i,vi,1,ui,2,vi,2,0) · (his2)H2(u1,i,v1,i,u2,i,v2,i,1)

?
= v1,i.

This follows as
h
x′i+r

′
i·bi+s2·ei

i(
gki·r

′
i · y1ki·ci·bi−1

)bi · (his2)ei
= hi

x′i · y1−ki·ci = v1,i

where bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

Thus the components generated by the challenger are consistent with the system as
the tests 1, 2 and 3 are satisfied. �

Session Simulation: The adversary requires the challenger to simulate shared secret
keys. The challenger simulates sessions other than the test session. Here we mention
the party which initiates the session as the owner of the session and the other party
who responds to the request of the owner as the peer. We have to consider the following
cases during the session simulation phase.

Case 1: In this case, the adversary has executed the PartyCorruption query with respect
to Pi. Hence the adversary knows the static secret key of Pi. The adversary treats Pi as
owner and generates the tuple of values given by 〈u1,i, v1,i, d2,i, bi, ei, hi

s2 , {T (i)
τ }liτ=1, ηi =

wi + d1,i ·H2

(
{T (i)

τ }liτ=1,Wi,Mi, ρi
)
,

Wi, Xi,Mi, ρi〉 and passes it to the challenger and asks the challenger to complete the
session with Pj as the peer.

Case 1a: If τj = 0, the challenger knows the secret key and hence executes the actual
protocol and delivers the session key to the adversary.

Case 1b: If τj = 1, the challenger does not know the secret key and hence simulates
the session key as follows:

1. The challenger first performs the checks presented in the Step 2 of the Key Agree-
ment protocol, on 〈u1,i, v1,i, d2,i, bi, ei, hi

s2 , {T (i)
τ }liτ=1, ηi,Wi,Mi, ρi〉.

2. The challenger generates the parameters for the party Pj in the form of a sim-
ilar tuple of values given by 〈u1,j = gxj , v1,j = hj

xj , d2,j = xj + rj · bj + s2 ·
ej , bj , ej , c̃j , b̃j , ẽj , hj

s2 , {T (j)
τ }

lj
τ=1, wj′ + xj · fj , gwj′ · y1−cj ·fj ,Mj , ρj〉,

where rj , xj , w
′
j , fj ∈R Z∗p, −→σj = (tj , σ2

(j), · · ·σ(j)
nj) ∈R (Zp∗)ni . It computes hj =

H1(
−→
Sj), bj = H2

(
u1,j , v1,j , g

rj , h
rj
j , 0

)
, ej = H2 (u1,j , v1,j , g

rj , hj
rj , 1),

b̃j = H2

(
gtj , u1,j , v1,j , g

rj , h
rj
j , 0

)
, ẽj = H2

(
gtj , u1,j , v1,j , g

rj , hj
rj , 1

)
and {T (i)

τ }liτ=1

is computed as per the protocol specification.

3. If H2 was already queried with inputs
(
{T (j)

τ }
lj
τ=1, g

w′j · y1−cj ·fj ,Mj , ρj
)

, generate

a fresh w′j and recompute the last but two components. With very high probability,

the new
(
{T (j)

τ }
lj
τ=1, g

w′j · y1−cj ·fj ,Mj , ρj
)

will not result in a previously queried

input set to H2. Set H2

(
{T (j)

τ }
lj
τ=1, g

w′j · y1−cj ·fj ,Mj , ρj
)

as fj .

4. The parameters generated by the challenger will satisfy Check 2 in Step 2 of
Key Agreement. This is because the parameters 〈u1,j , v1,j , d2,j , bj , ej , hj

s2〉 are
generated in the same way as the original scheme.

5. The parameters generated by the challenger will satisfy Check 3 in the Step 2 of
Key Agreement of Section 5, on account of the following.

gw
′
j+xj ·fj

(gxj)H2({T
(j)
τ }

lj
τ=1,g

w′
j ·y1

−cj ·fj ,Mj ,ρj).(y1)cj ·H2({T
(j)
τ }

lj
τ=1,g

w′
j ·y1

−cj ·fj ,Mj ,ρj)
= gw

′
j ·y1−cj ·fj = gwj

6. The parameters generated by the challenger will satisfy Check 4 of Key Agreement
as they are generated in the same way as the original scheme.

7. Thus the parameters generated by the challenger are consistent with that of the
system.

8. The challenger sends the parameters to the adversary.

9. The challenger computes Z1 =
(
gxi · y1ci · gti

)xj+tj where ci = H2 (u1,i). It also
computes P1 =

(
u1,i · y1ci · gti

)cj and P2 = y1 where cj = H2 (u1,j). Note that
the challenger can compute the value gti only if it’s attributes satisfy the access
structure of party Pj .

10. The challenger computes Z2 = v1,i · v1,j and Z3 =
(
gti
)tj .

11. The challenger is given access to the DH (y1, ·, ·) oracle, since we assume the hard-
ness of Strong-Diffie Hellman problem. The challenger makes use of the DH (y1, ·, ·)
Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z1

)
(valid since P2 = y1)

and H2 (Z1, Z2, Z3) = Z, where Z2 = v1,i · v1,j and Z3 =
(
gti
)tj .

– If a Z exists, the challenger returns Z as the shared secret key.

– Otherwise the challenger chooses Z ∈R Z∗p and for any further query of the
form (Z1, Z2, Z3) to the H2 Oracle, if DH

(
P2, P1, Z1/Z1

)
, Z2 = v1,i · v1,j and

Z3 =
(
gti
)tj , the challenger returns Z as the result to the query.

Finally the challenger returns Z as the shared secret key.

Case 2: The adversary does not know the secret key of Pi, the owner of the session.
Here the adversary simply asks the challenger to generate a session with Pi as owner
and Pj as peer.

Case 2a: The case where τi = 0 and τj = 0. In this case, the challenger can simulate
the computations of both the parties since the challenger knows the private key of the
owner Pi and the peer Pj .

Case 2b: The case where either τi = 0 or τj = 0. Without loss of generality let us
consider that τi = 0 and τj = 1. Here the challenger knows the secret key of i but does
not know the secret key of Pj . Hence for Pi the challenger will generate the session
secret key as per the algorithm. For Pj the challenger simulates similar to Case 1b

Case 2c: The case where τi = 1 and τj = 1. In this case the challenger does not know
the secret key of both Pi and Pj . Hence the challenger has to simulate the session
values for both Pi and Pj , which is done identically to Case 1b.

Test Session: The adversary impersonates as user Pi and sends the parameters as
the following tuple of values 〈u1,i, v1,i, d2,i, bi, ei, c̃i, b̃i, ẽi, hi

s2 , {T (i)
τ }liτ=1, ηi = wi +

d1,i ·H2({T (i)
τ }liτ=1,Wi,Mi, ρi),Wi,Mi, ρi〉 to the challenger for session simulation. The

challenger runs the H1 Oracle with input
−→
Si . The test session is assumed to run between

two users Pi and Pj , where adversary impersonates as Pi and challenger has to generate
parameters for user Pj . If τi = 0, it aborts. Else it does the following:

– The challenger now passes on to the adversary, the parameters as being the follow-

ing tuple of values 〈u1,j = gxj , v1,j = hj
xj , d2,j = xj+rj ·bj+s2·ej , bj , ej , hjs2 , {T (j)

τ }
lj
τ=1, wj+

d1,j ·H2({T (j)
τ }

lj
τ=1, g

wj ,Mj , ρj),Mj , ρj〉, where T
(j)
τ = (D·g−d1,j)M

(j)
τ1 ·
∏nj
ς=2 g

σ
(j)
ς M

(j)
τς ,

here
−→
M

(j)
τ = (M

(j)
τ1 ,M

(j)
τ2 , . . . ,M

(j)
τnj) is τth row of the matrix Mj . Note that

tj = b − d1,j is implicitly defined, and d1,j is the private key component as-

sociated with user Pj which is known to the challenger, and {T (i)
τ }liτ=2 ∈R G,

rj , xj ∈R Zp∗, wj ,−→σj ∈R (Z∗p)nj , hj = H1(
−→
Sj), bj = H2(u1,j , v1,j , g

rj , hj
rj , 0),

ej = H2(u1,j , v1,j , g
rj , hj

rj , 1). The parameters passed satisfy the checks as they
are generated in the way similar to the scheme and gtj = gb−d1,j = D · g−d1,j .

– The challenger performs the checks specified in Step 2 of the Key Agreement
algorithm described in Section 4 on 〈u1,i, v1,i, d2,i, bi, ei, hi

s2 , {T (i)
τ }liτ=1,

ηi,Wi, Xi,Mi, ρi〉. If the checks pass, the challenger proceeds to next step. Else, it
aborts.

– The challenger returns a Z ∈R Zp∗ as the shared secret key. This won’t be a valid
shared secret key. But in order to find that this is invalid the adversary should
have queried the H2 Oracle with a valid tuple (Z1, Z2, Z3). Thus the challenger

computes Z2 = (Z2/v1,j)
ki
−1

and Z3 = Z3 ·
(
gti
)d1,j . The challenger also computes

S =
(
Z1/Z2 · Z3

)ci−1

where ci = H2 (u1,i).

– Finally the challenger can return the solution for the CDH hard problem as shown
in the lemma below.

Lemma 3: The challenger returns the solution to the CDH instance of the SDH hard
problem set in the beginning.

Proof: The challenger computes S =
(
Z1/Z2 · Z3

)ci−1

where ci = H2 (u1,i).

– S =
(
g(d1,i+ti)(d1,j+b−d1,j)/Z2 · Z3

)ci−1

. Since, τi = 1,

Z2 = (Z2/v1,j)
(ki)
−1

= (v1,i · v1,j/v1,j)(ki)
−1

= (hi
xi)(ki)

−1

=
(
gb·ki

)xi·(ki)−1

= gb·xi .

(Note: The component hi =
(
gb
)ki as τi = 1.).

– Z3 = Z3 ·
(
gti
)d1,j =

(
gti
)(b−d1,j) · (gti)d1,j = gb·ti .

– Therefore S =
(
g(xi+a·ci+ti)(d1,j+b−d1,j)/gb·xi · gb·ti

)ci−1

= gab.

Thus we have proved that the challenger returns the solution to the CDH Problem. ut

Probability Analysis

In this section we present the probability analysis of our scheme presented in Section 4.

Theorem 2. If ε is the probability of the adversary in distinguishing between a random
shared secret key and a valid shared secret key, the probability of solving the underlying
SDH problem, ε′ is given by

ε′ = ε · 1
h5

(
1− 1

qE + 2

)qE+1

.

(
1

qE + 2

)
where qE = Number of key extract or Party Corruption queries and h5 is the number

of queries on the hash oracle H2 of the form 〈Z1, Z2, Z3〉.

Proof. A solution to the hard problem can be generated only if the following events
hold good.

– S1 : The challenger is able to answer all the Party Corruption queries. In other
words, the challenger should not abort in the Party Corruption phase.

– S2 : In the test session, the private key of user that the adversary impersonates
should not be computable.

– S3 : In the test session, the challenger should be able to compute the private key
of the user it is simulating.

– S4 : The challenger should choose the valid tuple (Z1, Z2, Z3) from the list Lh2
which has the hard problem injected in it.

Therefore, a solution to SDH problem can be obtained if

(Adversary succeeds in the game in Section 3)
∧

S1

∧
S2

∧
S3

∧
S4.

Pr (breaking SDH) = Pr (Adversary′s success) .P r (S1) · Pr (S2) · Pr (S3) · Pr (S4).

Consider the H1 Oracle. Assume P (τi = 0) = α. Let qE be the total number of key
extract or Party Corruption queries. Now qE can be divided into two mutually disjoint

subsets Ā and B̄. Let Ā be a set of queries for which H1

(−→
Si
)

resulted in τi = 0 and

hence the private keys can be computed as described in Party Corruption phase and

it will not abort in the Party corruption phase. Let B be the set for which H1

(−→
Si
)

resulted in τi = 1 and hence an abort in the Party Corruption phase. Therefore private
keys cannot be computed for attributes in B. There are α.qE attributes in A and
remaining (1− α) .qE attributes in B.

– Pr (S1) = Pr
(−→
Si ∈ A

)
for all the qE queries. This is equal to

(
α · qE
qE

)qE
= αqE .

– Pr (S2) = Pr
(−→
Si ∈ B

)
, where

−→
Si is the attribute vector of the party Pi that the

adversary impersonates in the Test Session. Therefore τi = 1 in this case and hence

hi =
(
gb
)ki . This is needed to solve the SDH problem. The probability is equal to

(1− α) .qE
qE

= 1− α.

– Pr (S3) = Pr
(−→
Sj ∈ A

)
,
−→
Sj is the attribute vector of the party Pj the challenger

emulates in the Test Session. This ensures that the private key of Pj is computable
by the challenger. This is equal to α.

– Pr (S4) = Pr (a valid 〈Z1, Z2, Z3〉 ∈ Lh2 is chosen by the challenger) =
1

h5
, where

h5 is the number of queries made of the form 〈Z1, Z2, Z3〉 to the H2 Oracle.

Therefore the probability of solving the SDH problem, ε′ = ε.αqE . (1− α) .α.

ε′ = ε.
1

h5
.αqE+1. (1− α).

By maximizing this probability with respect to α, we get α =

(
qE + 1

qE + 2

)
.

Therefore ε′ = ε · 1
h5

(
1− 1

qE + 2

)qE+1

.

(
1

qE + 2

)
.

ut

6 Additional Security Properties

The proposed protocol offers additional security properties which we discuss informally.
Formal details of these properties can be found in the full version of the paper.

Forward Secrecy: A key agreement protocol has forward secrecy, if after a session
is completed and its shared secret key is erased, the adversary cannot learn it even if
it corrupts the parties involved in that session. In other words, learning the private
keys of parties should not affect the security of the shared secret key. Relaxing the
definition of forward secrecy, we assume that the past sessions with passive adversary

are the ones whose shared secret keys are not compromised. the freshness property of
our ABCK model allows the adversary to corrupt both the parties in the test session.
In the security proof also the challenger can perfectly simulate the PartyCorruption
queries. The proposed scheme offers forward secrecy.

Resistance to Key Compromise Impersonation Attacks: Whenever a party Pi’s
private key is learned by the adversary, it can impersonate as Pi. A key compromise
impersonation (KCI) attack can be carried out when the knowledge of Pi’s private key
allows the adversary to impersonate another party to Pi. Our scheme is resistant to
KCI attacks. This is because in the proof, when the adversary tries to impersonate
Pi to user Pj , the challenger is able to answer private key queries from the adversary
corresponding to user Pj . Thus the resistance to KCI attacks is inbuilt in the security
proof.

Resistance to Ephemeral Key Compromise Impersonation: Generally the users
pick the ephemeral keys (wi, g

wi) from a pre-computed list in order to minimize online
computation cost. But the problem with this approach is that the ephemeral compo-
nents may be subjected to leakage. This attack considers the case when the adversary
can make state-reveal queries even in the test session. But our scheme is resistant to
that type of an attack because when an adversary tries to impersonate a party Pi
without knowing the private key of Pi, it cannot generate the components d2,i and the
signature on gwi (We assume that wi is erased immediately after the signature on gwi

is computed and hence is not available to the adversary during state-reveal queries).
Thus it is secure and resists ephemeral key compromise impersonation attack.

7 Conclusion

The main advantages of our protocol is that it is efficient, requires only one round of
communication among the users and the messages can be scheduled arbitarily. More-
over our scheme also provides protection against active adversaries and also does not
rely on any underlying attribute based encryption scheme as a key exchange problem
should be fundamentally more simpler than any encryption scheme. Also our scheme
enjoys the property of having constant number of exponentiations per party and also
involves no pairing operations. Moreover our proof techniques can be easily modified to
achieve security in attribute based eCK model. We leave open the problem of designing
ABAKE scheme in standard model without using attribute based encryption schemes
or signatures as basic building blocks ,i.e, designing an ABAKE scheme in standard
model handcrafted from scratch.

References

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret hand-
shakes with dynamic and fuzzy matching. In NDSS, volume 7, pages 1–19,
2007.

[AKO09] Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto. Compact cca-secure
encryption for messages of arbitrary length. In Public Key Cryptography–
PKC 2009, pages 377–392. Springer, 2009.

[Bei96] Amos Beimel. Secure schemes for secret sharing and key distribution. PhD
thesis, Technion-Israel Institute of technology, Faculty of computer science,
1996.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distri-
bution. In Advances in CryptologyCRYPTO93, pages 232–249. Springer,
1994.

[BS10] James Birkett and Douglas Stebila. Predicate-based key exchange. In In-
formation Security and Privacy, pages 282–299. Springer, 2010.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In Security and Privacy, 2007. SP’07. IEEE
Symposium on, pages 321–334. IEEE, 2007.

[BVS07] Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt.
Secure group key establishment revisited. International Journal of Infor-
mation Security, 6(4):243–254, 2007.

[DS81] Dorothy E Denning and Giovanni Maria Sacco. Timestamps in key distri-
bution protocols. Communications of the ACM, 24(8):533–536, 1981.

[EMR12] Keita Emura, Atsuko Miyaji, and Mohammad Shahriar Rahman. Dynamic
attribute-based signcryption without random oracles. International Journal
of Applied Cryptography, 2(3):199–211, 2012.

[GBN10] M Choudary Gorantla, Colin Boyd, and Juan Manuel González Nieto.
Attribute-based authenticated key exchange. In Information Security and
Privacy, pages 300–317. Springer, 2010.

[GJPS08] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded
ciphertext policy attribute based encryption. In Automata, languages and
programming, pages 579–591. Springer, 2008.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Pro-
ceedings of the 13th ACM conference on Computer and communications
security, pages 89–98. Acm, 2006.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Structure
in Complexity Theory Conference, pages 102–111, 1993.

[LAS+10] Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-
based signature and its applications. In Proceedings of the 5th ACM Sympo-
sium on Information, Computer and Communications Security, pages 60–
69. ACM, 2010.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security
of authenticated key exchange. In Provable Security, pages 1–16. Springer,
2007.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In Advances in
Cryptology–EUROCRYPT 2010, pages 62–91. Springer, 2010.

[MPR11] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based
signatures. In Topics in Cryptology–CT-RSA 2011, pages 376–392. Springer,
2011.

[NN04] Ventzislav Nikov and Svetla Nikova. New monotone span programs from
old. IACR Cryptology ePrint Archive, 2004:282, 2004.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion with non-monotonic access structures. In Proceedings of the 14th
ACM conference on Computer and communications security, pages 195–
203. ACM, 2007.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional en-
cryption with general relations from the decisional linear assumption. In
Advances in Cryptology–CRYPTO 2010, pages 191–208. Springer, 2010.

[OT14] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based sig-
natures for non-monotone predicates in the standard model. Cloud Com-
puting, IEEE Transactions on, 2(4):409–421, 2014.

[PPB14] Tapas Pandit, Sumit Kumar Pandey, and Rana Barua. Attribute-based
signcryption: Signer privacy, strong unforgeability and ind-cca2 security in
adaptive-predicates attack. In Provable Security, pages 274–290. Springer,
2014.

[SC10] Rainer Steinwandt and Adriana Suárez Corona. Attribute-based group key
establishment. IACR Cryptology ePrint Archive, 2010:235, 2010.

[SRD15] Y Sreenivasa Rao and Ratna Dutta. Attribute-based key-insulated signa-
ture for boolean formula. International Journal of Computer Mathematics,
(ahead-of-print):1–25, 2015.

[SSN09] Siamak F Shahandashti and Reihaneh Safavi-Naini. Threshold attribute-
based signatures and their application to anonymous credential systems.
In Progress in Cryptology–AFRICACRYPT 2009, pages 198–216. Springer,
2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ad-
vances in Cryptology–EUROCRYPT 2005, pages 457–473. Springer, 2005.

[VSVR13] S Sree Vivek, S Sharmila Deva Selvi, Layamrudhaa Renganathan Venkate-
san, and C Pandu Rangan. Efficient, pairing-free, authenticated identity
based key agreement in a single round. In Provable Security, pages 38–58.
Springer, 2013.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. In Public Key Cryptography–PKC
2011, pages 53–70. Springer, 2011.

[Yon10] Kazuki Yoneyama. Strongly secure two-pass attribute-based authenticated
key exchange. In Pairing-Based Cryptography-Pairing 2010, pages 147–166.
Springer, 2010.

[Yon13] Kazuki Yoneyama. Generic construction of two-party round-optimal
attribute-based authenticated key exchange without random oracles. IE-
ICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 96(6):1112–1123, 2013.

Appendix A.

Secret Key Sanity Check: After receiving the private key from the PKG in the key
extract phase, the user performs the following check to ensure the correctness of the
components of the private key. The user first computes the following and then performs
three checks as follows:

a. ci = H2 (u1,i)

b. bi = H2 (u1,i, v1,i, u2,i, v2,i, 0)

c. ei = H2 (u1,i, v1,i, u2,i, v2,i, 1)

Test 1: Check if
gd1,i

y
H2(u1,i)
1

?
= u1,i.

This can be verified as
gxi+s1·ci

gs1·H2(u1,i)
where ci = H2 (u1,i).

This is equal to gxi = u1,i. This check ensures the correctness of d1,i and u1,i.

Test 2: Check if
gd2,i

(u2,i)
H2(u1,i,v1,i,u2,i,v2,i,0) · y2H2(u1,i,v1,i,u2,i,v2,i,1)

?
= u1,i.

This can be verified as
g(xi+ri·bi+s2·ei)

gri·H2(u1,i,v1,i,u2,i,v2,i,0) · gs2·H2(u1,i,v1,i,u2,i,v2,i,1)
= gxi = u1,i,

as bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

This check ensures the correctness of d2,i, u2,i, v1,i, v2,i.

Test 3 : Check if
(hi)

d2,i

v2,i
H2(u1,i,v1,i,u2,i,v2,i,0) · (ĥi)

H2(u1,i,v1,i,u2,i,v2,i,1)
?
= v1,i.

This can be verified as
hi
xi+ri·bi+s2·ei

(hi
ri)H2(u1,i,v1,i,u2,i,v2,i,0) · (ĥi)

H2(u1,i,v1,i,u2,i,v2,i,1)
= hi

xi =

v1,i where ĥi = hs2i , bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

Test 3 ensures the correctness of ĥi. Test 2 and Test 3 ensures that g and hi are
raised to the same exponent xi in u1,i and v1,i respectively.

If the received private key satisfies all the tests then it is valid.

