
Democoin:

A Publicly Verifiable and Jointly Serviced Cryptocurrency

Sergey Gorbunov∗

MIT
Silvio Micali†

MIT

May 30, 2015

A Quick White Paper

(This technology is covered by three patent applications)

Abstract

We present a new, decentralized, efficient, and secure digital cryptocurrency, in which the
ordinary users themselves keep turns to ensure that the systems works well.

∗sergeyg@mit.edu
†silvio@csail.mit.edu

1 Introduction

Money has been around for thousands of years. In the past, it was very physical, as in the case
of gold bars or coins. However, with the emerge of computer and network technologies, electronic
forms of money and payment systems have been considered. (See, in particular, Chaum’s electronic
cash [2]. In principle, money can be made totally electronic. If each money transaction goes through
a single, trusted, central authority A, this authority could keep track and publish, at each time t,
how much everyone owns and who owns to whom. On one side, this approach to money has the
big advantage of being very efficient for users, in that the public record kept by A can be very
compact and easy to consult, and yet sufficient to enable users to make payments to one another
with confidence. On the other side, however, this centralized approach also has severe limitations.
In particular, it is hard for a large community of users to find an entity A that everyone trusts. This,
in the eyes of many, continues to be true even if A were chosen to be a government. For example,
the authority A could wipe out a user U ’s ability to pay by simply publishing that he/she/it no
longer owns any money, or could make it appear that U has made payments to someone else that
U never made. Thus, this centralized approach could dramatically fail if A becomes corrupt, or is
compromised by adversaries.

To avoid this weakness, cryptocurrencies like Bitcoin have been created that are very
decentralized [5]. However, these systems require a public file (”ledger”) that is very big and
very inefficient to maintain and update. As a result, these systems too may not be too useful,
particularly if the number of users and transactions grows. In addition, Bitcoin requires that a
very large majority of key players are honest.

It is thus the purpose of the present invention to put forward an electronic money system
that has the advantages of the centralized approach, but without trusting the central authority
that maintains the public record of transactions, and without suffering the inefficiencies of the
decentralized approach.

We call our approach Democoin in order to convey that the power to ensure that the system
works properly resides with the players themselves. In order to better appreciate the advantages
of our system, it is useful to quickly recall our background.

2 Background

2.1 Cryptographic Primitives

Digital Signatures. A digital signature scheme consists of three fast algorithms: a probabilistic
key generator G, a deterministic signing algorithm S, and a verification algorithm V .

Given a number k as an input (e.g., k = 4, 000), a player x uses G to produce a pair of k-bit
keys (i.e., strings): a “public” key PKx and a “secret” signing key SKx. Crucially, a public key
does not “betray” its corresponding secret key. That is, even given knowledge of PKx, no one other
than x is able to compute SKx in less than astronomical time.

Player x uses SKx to digitally sign messages. For each possible message (binary string) m,
x runs algorithm S on inputs m and SKx in order to produce a string, denoted by SIGx(m) or
SIGPKx , referred to as x’s digital signature of m, or a digital signature of m relative to PKx.
Without loss of generality, we assume that m is retrievable from SIGx(m). (After all, a digital
signature of m could always include m itself.)

1

Everyone knowing PKx can use it to verify the digital signatures produced by x. Specifically,
on inputs (a) the public key PKx of a player x, (b) a message m, and (c) an alleged digital signature
of x for the message m, the verification algorithm V outputs either YES or NO, so as to satisfy the
following properties:

1. Legitimate signatures are always verified: If s = SIGx(m), then V (PKx,m, s) = Y ES; and

2. Digital signatures are very hard to forge: in essence, without knowledge of SKx finding a string
s such that V (PKx,m, s) = Y ES, for a message m never signed by x, requires astronomical
amount of time.

Accordingly, to prevent anyone else from signing messages on his behalf, a player x must keep his
signing key SKx secret (hence the term “secret key”), and to enable anyone to verify the messages
he does sign, x has an interest in publicizing key PKx (hence the term “public key”).

Collision-Resilient Hashing. A collision-resilient function H quickly maps arbitrarily long
strings to strings of fixed length (e.g., 256-bit strings) so as to guarantee that finding two different
strings X and Y , such that H(X) = H(Y), requires an astronomical amount of time.

Collision-resilient hashing functions are often used within digital signature schemes. If, for
instance, the schemes can only sign messages consisting of at most 4,000 bits, and a player x wishes
to sign a longer message m, then he may sign H(m) instead. That is, SIGx(m) could be defined
to consist of SIGx(H(m)), or of the pair (m,SIGx(H(m)), in order to ensure that m is retrievable
form SIGx(m).

2.2 Bitcoin

At a high level, in Bitcoin and its variants [4, 5, 6], at every point in time, (the owner of) a given
public key PK owns a given amount of money. Some of this money can be transferred from PK
to another public key PK ′ via a digital signature, computed with the secret key corresponding to
PK. Lacking trusted central authorities, this signed transaction, T , is broadcasted over the web
in a decentralized manner. That is, any one who sees T will forward it to his neighbors, who will
forward to their neighbors, and so on. Everyone seeing T is responsible for verifying its validity.
This verification certainly includes verifying that the digital signature proper is valid. However, it
must also include verifying that the key PK had sufficient money to transfer.

The latter verification may require validating the entire transaction history. Note that this is
no trivial task if the number of total transactions is large! Moreover, since one cannot guarantee
that everybody has seen all transactions, it becomes necessary to achieve consensus on what the
current transaction history is. To simplifying this tasks, transactions are aggregated into blocks,
B1, B2, Each block includes the hash of the previous block, a collection of new transactions,
and a solution to a cryptographic riddle. Such a riddle depends on the previous block and the new
transactions.

A user seeing blocks B1 through Bk, and a collection of new (and valid) transactions, tries to
aggregate these transactions into a new block Bk+1 by solving the proper riddle. He is incentivized
to do so because, if he succeeds in generating the Bk+1 block before anyone else, then he will will
gain a monetary reward. Cryptographic riddles are sufficiently complex to solve. A single user may
take a very long time to solve a given riddle. However, there are many users trying to produce a new
block and thus to solve a riddle. Currently, the riddle complexity is chosen so that, in expectation,

2

it takes 10 minutes for some user to find a solution. Ten minutes is ample time for every one
to see a new block and thus gain consensus on what the transaction history is. Nonetheless, the
possibility exists that two users solve the riddle sufficiently simultaneously. For instance, having
seen the same block chain B1, . . . , Bk, one user may succeed in producing a new block B′k+1 and,
almost simultaneously, another user may succeed in producing a block B′′k+1. In this example, each
of the two users may broadcast his own new candidate block in an attempt to get the associated
reward. At some point later, when even more transactions are being generated, a third user U
may see two possible chains B1, . . . , Bk, B

′
k+1 and B1, . . . , Bk, B

′′
k+1. To create a new block Bk+2

and collect the associated reward, U needs to decide whether to try to solve the riddle associated
with the new transactions and either block B′k+1 or block B′′k+1. Even if he does this in parallel,
because solving a riddle requires a computational effort and because the reward goes to the first
user who generated the block Bk+2, U will broadcast the first solution it finds in order to secure
this reward. Accordingly, when he does so, some of the users will see a k + 2-long block chain
B1, . . . , B

′
k+1, Bk+2, and others will see a chain B1, . . . , B

′′
k+1, Bk+2.

Because users are asked to append to the longest chain, the k+1st block will eventually become
unique. In practice, although the last (or even the second last) block one sees may change, one can
safely assume that the first k blocks in a chain of length k + 2 will no longer change. Accordingly,
if a transaction, belonging to the third last block, transfers an amount X from public key PK to
public key PK ′, then the owner of PK ′ ‘can consider himself paid’.

Bitcoin Statistics. We present some basic statistics about Bitcoin protocol referring to
blockchain.info [1], to understand some of the scalability issues associated with it. Since Bitcoin is
fully a peer-to-peer protocol, every player must store the entire public ledger of transactions. As
of February 2015, the size of the public ledger exceeds 28 GB, which grew from 5 GB two years
ago. The number of current public keys is only about 225000, which grew from 50000 two years
ago. Moreover, the total number of transaction at every unit of time (i.e. 10 minutes) is only 650,
while 2 years ago it was only around 450 transactions. Extrapolating, even if the current public
ledger can fit on some powerful cellphones, in less than two years from now, this might no longer
be feasible.

Also, since in Bitcoin protocol every player must use its precious computational cycles on
solving certain cryptographic puzzles, the total computational power of all Bitcoin players combined
recently broke 1 exaFLOPS [3]. (exaFLOPS refer to the number of Floating-point Operations a
computer can do Per Second. Or more simply, how fast a computer can tear through math problems.
An exaFLOPS is 1018, or 1,000,000,000,000,000,000 math problems per second). Top 500 most
powerful supercomputers can only muster a mere 12.8 percent of the total computational power of
the Bitcoin players.

Weaknesses of Bitcoin The above discussion suffices to highlight some of the inefficiencies of
Bitcoin (and its variants). Namely,

• Large Storage. Users must download and store a large transaction history.

• Computational Waste. To add a new block to the public ledger requires a large amount of
computational resources in order to solve the necessary riddle, not only for the user that
succeeds, but also for all others that tried but failed.

3

• Payment Time. 30 minutes (or more) are needed to be sure that one is paid in Bitcoin. Assume
that the owner of a public key PK pays an amount X to the owner of a public key PK ′ by
generating the necessary digital signature at time t. Then, to be sure that the transaction is
agreed upon by everyone in the system, the owner of public key PK ′ must wait 30 minutes.
Indeed, since, on average, it takes about 10 minutes for this transaction to appear in a new block
and another 20 minutes for this block to become the third last one. One may engineer things
so that the expected time to add a block is lower than 10 minutes, but then this saving might
also require waiting for a block to be more than 3-deep in order to be reasonably confident that
the transaction history will no longer affect that block.

3 Three Alternative Systems

To avoid the weaknesses of Bitcoin, we explore three alternative currency systems. We start with a
centralized alternative, CentralCoin, and highlight some technical ideas that will prove useful also
in subsequent alternatives. We then move on to SpreadCoin, a more decentralized system. The
responsibility for the integrity of this system is spread across a multiplicity of specialized entities.
Finally, we introduce DemoCoin, where the responsibility for keeping the integrity of the system
resides with regular users.

Players. A player is a collection of individuals, an entity, or a collection of entities. A player i
may have one or more public keys, and may be identified with one of these public keys. For instance
if PKi is the public key of a player i, we may also talk of player PKi.

Money. In our systems, money can be denominated in US dollars, in another existing currency,
or in a currency of its own. We denote a monetary unit by the symbol #.

Time. We envisage a time sequence, T = 0, 1, 2, . . . For simplicity, the time interval [ti, ti+1] is
the same for all i (e.g., two minutes or one minute), but can be adjusted dynamically depending
on the number of players, transactions, etc. Preferably, the time unit is chosen so that, despite
reasonable clock shifts, most (or all) players know what the current time t is.

Payments. Money is associated to individual public keys. Initially, some public keys are publicly
known to have some given amount of money. Money is transferred, via a digital signature, from
one public key to another. (This is for clarity only. To transfer money to, say, 4 public keys, one
simply executes 4 separate transfers. But one can also envisage multiple money transfers by means
of a single transaction.) For instance, a payment P of an amount A from a key PK to a key PK ′

at a time (time) might be
P = SIGPK(PK,PK ′,#A, time, I)

where I represents any additional information deemed useful, such as an indication of the reason of
the payment, or no information. The main problem is to determine whether PK had #A to give.

4

4 Centralcoin

In Centralcoin, a special player, the central verifier, CV , is responsible to verify which money
transfers are valid and to report compactly the state of the system, and cannot cheat without
publicly proving his guilt. The public key of CV , PKCV , and his url are publicly known.

Centralcoin works in rounds. Each round t conceptually consists of three phases (e.g., 20 seconds
each), and is completed within the time interval [t, t + 1] (e.g., in one minute). We recall that at
the beginning of the protocol (that is, at time t = 0) all players know a compact list of public keys
with pre-loaded amounts of money.

Phase 1.

All players download the two CV -signed lists of the previous round, PAYt−1 and STATUSt−1;
verify CV ’s digital signatures; and verify that STATUSt−1 was updated correctly from
STATUSt−2 and PAYt−1. (Alternatively, a player may only verify a subset of the status
report, corresponding to his own public keys.)

Phase 2.

Each player generates his own round-t payments and causes them to become available to CV .

Phase 3.

CV computes, digitally signs, and publishes (e.g., at a given url) the new lists of the current
round: PAYt, which specifies all valid payments of round-t, and STATUSt, which specifies the
account information at the end of round t. For instance,

PAYt = SIGCV (t;P1, P2, . . .)
1 and STATUSt = SIGCV (t; (PK1,#A1, I1); (PK2,#A2, I2); . . .)

2

Discussion

• Ultra Compact Record. The big advantage of a centralized system is that the full status of the
system is very compact.

• New Public Keys. A new public key PK ′ may enter the system via a payment (PK,PK ′,#A, I)
appearing in PAYt at some round t.

(Alternatively, CV —or a separate entity— may register new keys, who first appear with a
balance of 0 in STATUSt at some round t.)

1Recalling that a payment P is of the form P = SIGPK(PK,PK′,#A, time, I), the list is preferably ordered by
the paying public key first, by the paid public key PK′ second, and by the amount A third.

A payment is valid if the signature of the paying key is valid, and if the amount is valid, relative to the amount
of money that PK has at the end of round t − 1 and all the preceding round-t payments of PK. For instance, if,
according to status St−1, PK has #A at the end of round t− 1, the first k payments (sorted by time) of PK in this
round have a valid signature of PK and have a total amount of A′ < A, while the amount of the k + 1st payment of
PK is greater than the remaining balance A−A′, then the k + 1st payment of PK is not considered valid.

2where
PKi is the ith public key in the system, in lexicographic order,
#Ai the amount of money PKi has, Ii is any additional information about PKi, and
nt−1 is the total number of public keys at time t− 1.

5

• Tree-Hash-and-Sign. Authenticating the lists PAYt and STATUSt is very efficient, as CV needs
to compute a single signature for each list. However, a player wishing to keep an authenticated
record only for a single payment at round t, would have to download the entire PAYt. Similarly,
a player wishing to keep an authenticated record for the balance of money available to a given
public key at the end of round t would have to download the entire STATUSt.

To lessen this burden of such a player, CV may digitally sign each entry in PAYt or STATUSt.
In this case, however, it may be challenging for CV to produce so many digital signature within
a single round phase. The best is to to have the CV to tree-hash (rather than simply one-way
hash) the two lists, and then digitally sign just the root of each hash tree. The big advantages
of this approach are that:

1. CV can authenticate each entire list by means of a single digital signature and one ordinary
hash for each entry in the list;

2. The digital signature authenticating the list is compact (i.e. independent on the number of
entries in the list).

3. Someone interested only in the authenticated record about a given item in either list may
have to deal only with a minimal amount of data.

Details about tree-hash-and-sign are presented in our final section.

• Semi-Honesty. In Centralcoin, CV need not be totally trusted, but semi-honest, that is,
refraining from any dishonest behavior resulting in a publicly available proof of his guilt. In
particular, lacking knowledge of the secret key SK corresponding to a given public key PK,
CV cannot manufacture a payment from PK to some other public key PK ′. Nor can CV ,
without being caught, illegally diminish the amount of money PK has. Assume that CV does
so, for the first time, at some round t. Then, CV has already correctly signed the correct
STATUSt−1. The only legitimate way of decreasing the amount of money of PK in STATUSt

consists of subtracting all the amounts that PK has paid to other keys in round t (and adding
all the payments PK received in round t). Thus, since these transfers are digitally signed by
PK, by illegally lowering the money available to PK, CV must digitally sign something false,
generating a public proof of his guilt and exposing itself to possible high fines or other sanctions.

• Simultaneous Electronic Transactions. CV may still, however, prevent money to be transferred
from some key PK to some other key PK ′. That is, CV may prevent the owner of PK
(respectively, PK ′) to use (respectively, receive) any money. In fact, although timely receiving
a valid round-t payment P = SIGPK(PK,PK ′,#A, t, I), the CV may not include P in PAYt.
Yet, it may be hard for the owner of PK (or PK ′) to prove that he indeed did give P on time
to CV . It is a question of whom one believes. To keep CV unambiguously accountable for this
type of cheating, we propose to utilize the technology of US Patent 5,666,420, Simultaneous
Electronic Transactions, and foreign equivalents. In essence, this technology guarantees the
exchange a message for a receipt so that (a) the recipient of the message learns the message
simultaneously with (b) the sender getting a corresponding, very detailed, and digitally signed
receipt. In this application, the message consists of the payment P , the receiver is CV , and CV
cannot learn P without also signing a receipt for P . In this fashion, whether the sender were
the owner of PK or the owner of PK ′, or someone acting on their behalf, CV could not, with
impunity, ignore the payment P . Indeed, CV must produce a digital signature proving that it

6

received P on time, and thus proves its own guilt if it does not include P in PAYt, a list that
it itself digitally signs.

With simultaneous electronic transactions, Centralcoin is free of undetected cheating, and with tree-
hash-and-sign Centralcoin guarantees efficient storage and retrieval of even individual authenticated
records. However, the system may be prone to sabotage. Indeed, CV is a unique point of
vulnerability.

5 Spreadcoin

In Spreadcoin, there are multiple verifiers, V1, . . . , Vk. Each verifier Vi has his own public key,
V PKi, and its corresponding secret key, V SKi. Each V PKi, is assumed to be publicly known.
Preferably k is odd: e.g., k = 11. Spreadcoin only requires that a majority of the verifiers are
semi-honest. Spreadcoin works in rounds as follows.

Phase 1.

All players download the authenticated lists PAY i
t−1 and STATUSi

t−1 produced by each verifier
Vi in the previous round, and checks the associated signatures of the verifiers.

Phase 2.

Each player provides his own round-t payment to the verifiers.

Phase 3.

Each verifier i computes and publishes (e.g., at a given url) two authentiticated lists: PAY i
t ,

specifying all valid payments of round-t, according to i, and STATUSi
t , specifying the money

balance of each public key at the end of round t, according to i. For instance,

PAY i
t = SIGi(P

i
1, P

i
2, . . .) and STATUSt = SIGi(t; (PKi

1,#Ai
1, I

i
1); (PKi

2,#Ai
2, I

i
2); . . .) .

• The round-t list of valid payments, PAYt, is taken to be the list of all payments P that, for a
majority of the verifiers i, belong to PAY i

t .

• The round-t account status, STATUSi
t , is taken to be the list of all tuples (PK,#A, I) that,

for a majority of the verifiers i, belong to STATUSi
t .

Discussion

• Efficiency. The record continues to be very compact. Handling 650 transactions every 10
minutes, and 275000 keys (as in Bitcoin) is no problem. Even with a million public keys and a
one million transactions every minute, it would be much preferable to Bitcoin’s public ledger.

• Semi-honesty. Simultaneous electronic transactions could again guarantee that each verifier is
kept fully accountable for all his actions. As for CV in Centralcoin, a verifier in Spreadcoin
cannot act dishonestly without also generating a publicly available proof of his own guilt.

• Resilience. Spreadcoin is much more resilient than Centralcoin. To subvert Spreadcoin, an
enemy would have to successfully bring down 6 of 11 sites, if k = 11, or 51 out of 101, if
k = 101. Moreover, as the majority is what counts, one is less pressed to pursue occasional
verifiers who misbehave, despite the fact that they are going to be caught.

7

• Pre- and Post-Facilitators. To avoid a player to send or cause to send his own payments to
multiple verifiers, we may envision that he sends them to a facilitator, who then distributes
them to all verifier. (Or that he posts them where the verifiers can pick them up.)
Similarly, a facilitator can collect PAY i

t and STATUSi
t from every verifier i, and make all of

them conveniently available in a single location, or even compile (and digitally sign, so as to
keep himself accountable) the proper lists PAYt and STATUSt.
One can also arrange each round into more phases. The first ones are for allowing a player to
use the facilitator. The other ones are for allowing a player to deal directly with the verifiers,
if the facilitator does not work satifactorily.

6 Democoin

In Democoin, multiple verifiers are randomly and independently chosen at each round, from an
appropriate set of potential verifiers (e.g., the set of all players), in a way that is clear to everyone.
The only requirement is that a reasonable majority of the potential verifiers are semi-honest.

Phase 1.

All players download the authenticated lists PAY i
t−1 and STATUSi

t−1 as in Spreadcoin.

Phase 2.

Each player computes the current-round set of verifiers, and causes his own round-t payments
to become available to them.

Phase 3.

Each verifier i computes and publishes (e.g., at a given url) PAY i
t and STATUSi

t as in
Spreadcoin. For instance,

PAY i
t = SIGi(P

i
1, P

i
2, . . .) and STATUSi

t = SIGi(t; (PKi
1,#Ai

1, I
i
1); (PKi

2,#Ai
2, I

i
2); . . .) .

PAYt and STATUSi
t are defined as in Spreadcoin, but relative to the verifiers of round t.

Preferred Verifier Selection. In the preferred embodiment, each public key PK, appearing in
STATUSt−1 and belonging to a potential verifier, becomes a round-t verifier key with some small
probability p, so that the expected number of verifiers is a suitably chosen integer k.

For instance, let H be a (preferably one-way) hash function, and preferably let vt be a
substantially unpredictable value that becomes public at time t. Then, PK is a verifier key at
round t if

.H(PK, vt) ≤ p .

That is, we interpret H(PK, vt) as the binary expansion of a number between 0 and 1, and PK
becomes a verifier key if this number is less than (or equal to) p.

8

Discussion

• Semi-honest Majority of Actual Verifiers. If H is a suitable hash function, then, for every x,
H(x) de facto is an uncontrollable random number. Moreover, because H typically maps
arbitrarily long values to 256-bit values, the probability that .H(PK, vt) ≤ p essentially
coincides with p. The probability p can be fixed, or may depend on the number of users,
so that one can ensure that the expected number of verifiers of a round is k as desired.

Thus, because a reasonable majority of the potential verifiers are semi-honest, with high
probability the majority of the actual verifiers are semi-honest.

In addition, besides the fact that any possible dishonest behavior generates a publicly observable
proof of guilt any way, dishonest actual verifiers would lack the time to coordinate themselves.
This is so because no one could even predict —let alone control— who the verifiers of a future
round will be. Indeed, the actual verifiers of a given round t depend on the value vt that becomes
available only at (or close to) round t. For instance vt could be the (rough) temperature of
several main cities around the world at time t, or the latest number of stocks last traded at the
NY Stock exchange, etc.

• Verifier Availability. Of course, even if well selected, verifiers need to be available in order to
perform their vital functions. It is thus important to realize that verifiers have great incentives
to be available. Credit cards typically ask for a variable processing fees between 2% or 3% of the
payment amount processed, in addition to a fixed processing fee. The verifiers in Spreadcoin
or Democoin can also be paid similar fees. For simplicity only, but without any limitation
intended, assume that 1% of the amount of each payment P in PAYt is divided among all
verifiers of round t who have processed P , and thus included P in PAY i

t . Then, the owner of
a potential verifier key PK has very strong incentives to be aware of when PK is selected as
a verifier key, and thus to process all the round-t payments he can, in order to maximize the
money owned to him. With this policy, even if one or two selected verifiers do not perform
their duties, there is enough of them who actively process the round-t payments.

Note that a selected verifier i for round t can contribute his own PAY i
t and STATUSi

t in a
common pool, from which his signatures are retrieved. Alternatively, recall that each record in
STATUSt−1 consists of a tuple of the form (PK,#A, I), and thus the owner of PK can choose
to include in the information field I the url at which PAY i

t and STATUSi
t can be found if PK

becomes the key of verifier i.

Also note that the information field I can also be used to indicate if PK declines or welcomes
the opportunity to be selected as a verifier key.

• Stability and Consensus. One could select the verifiers of a given round t in a way that
also depends on crucial aspects on previous rounds. For instance, in a way that depends
on H(STATUSt−1).

Note, however, that this verifier selection is less stable than our preferred verifier selection. For
instance, consider a user U who has been out-of-touch for a few rounds. Such a player may
recall —say— STATUSt−5, but not of STATUSt−1. Yet, because new public keys are added
slowly, the set of public keys in STATUSt−1 and STATUSt−5 are essentially the same. Thus,
because our preferred process turns each public key into a verifier key individually and with
small probability, the set of true verifiers of round t and the set of verifiers of round t according

9

to U are essentially the same. Better said, the opinion of the true verifiers, and that of the
majority of the verifiers in U ’s mind will most probably coincide.

In other words, despite the lack of synchrony and centralization, and despite the verifiers
may change completely at each round, our preferred verifier selection guarantees a remarkably
accurate consensus in a very efficient manner.

• Reputable Majority. No matter how good the selection process may be, one may try to subvert
it by packing the set of potential verifier keys with keys of “corrupted people”. This, however,
may be hard to do if the number of players is large. (Much easier would be, in Bitcoin,
to control the set of miners, which already belong to a few consortia (i.e., “mining pools”)
anyway.) Nonetheless, some additional precautions can certainly be taken.

One possibility is to elicit an entry fee, or a (pro-rated) yearly fee from each public key in
the system. Such a fee could be paid outside the system or within the system (e.g., via an
automatic payment from each public key to a given key —or some given keys— in the system).
This way, packing the set of public keys with artificially numerous and potentially controllable
keys would be very costly.

A second possibility is having the probability of turning a public key PK into a verifier key
depend also on the amount of money that PK as at a given round t, that is, on the second field
of the (PK,#A, I) in STATUSt−1. This strategy ensures that players who are more heavily
invested in the system also have more responsibility in running it. Accordingly, one does not
get much advantage by artificially growing the number of his own public keys in the system.
What matters is the total sum of money one has in all his keys. Another advantage of this
strategy is that the envisaged distribution of processing fees is proportional to the amount one
owns. Thus, “no one looses money on average for payment processing”.

A third possibility is having a separate entity, call it the verifier registration authority (VRA),
who certifies (anonymously or not) the public keys eligible to be selected as verifier keys. In
this case, the VRA may ensure that each user has at most one key PK that can become
a verifier key. This way, it becomes harder to pack the candidate verifier keys with easily
controllable keys. For instance, the VRA may ask a registrant to provide a proof of identity
(and possibly insert some indication of this identity) in the certificate for the public key PK:
e.g., SIGV RA(PK, V erifierEligible, I). Alternatively, the VRA could authenticate a single
list of public keys eligible to become verifier keys.

A fourth possibility is to have a mixture of verifiers: for example: (a) fixed set of verifiers
(possibly none) as in Spreadcoin; (b) a set of dynamically selected verifiers (possibly none); and
(3) a set of registered over-time verifiers (possibly none).

• Efficient Updates for Potential Verifiers. For logical clarity, we stated that, in Phase 1, all
players download the authenticated lists PAY j

t−1 and STATUSj
t−1 at each round. Let us now

argue that it is sufficient for a potential verifier i to download the relevant list(s) only once in
a while.

For instance, assume that i downloads the status-list once a month, and that suddenly, at
round t, she is selected to become a verifier. To perform her role, and receive the corresponding
reward, i needs to know STATUSt−1. Even without any facilitator, once selected, i could
immediately retrieve the published and authenticated lists STATUSj

t−1, for sufficiently many

10

verifiers j of round t − 1. To do this, she needs to determine who the verifiers of rounds t − 1
were. Since each potential verifier is chosen at round t − 1 if .H(PK, vt−1) ≤ p, to make this
determination i needs to know two pieces of information: (a) the public keys of the potential
verifiers and (b) the value vt−1. Note there is no problem for her to obtain information about
the value vt−1, because by definition this value was a publicly available one. As for piece of
information (a), i can essentially compute it from her status-list of a month ago. For instance,
assume that the number of potential verifier keys grows at the rate of 20%/year, and that
there were 500, 000 such keys a month before, when i downloaded the full status-list of the
system. Then, roughly 10,000 new potential verifier keys have been added in the last month
without i’s knowledge. Assume that the selection probability p were such that 101 verifiers were
individually and randomly selected at round t− 1. Then, the probability that one of the newly
added 10,000 keys is actually selected as a verifier key is 0.0002.3 Accordingly, the set of actual
verifiers of round t computed by i according to her one-month-old record, coincides, with high
probability, with the true list of verifiers of round t, computed based on all potential verifier
keys of round t − 1. Moreover, with overwhelming probability, the number of actual verifiers
selected from the newly added 10,000 keys will be very few. Accordingly, when a reasonable
majority of the potential verifiers are semi-honest, with overwhelming probability, the majority
of both sets of verifiers (i.e., the actual verifiers, and the verifiers according to i’s one-month-old
data) will be semi-honest. In sum, even if she downloads the full list of potential verifier keys
once a month, a newly selected verifier, would be ready to perform her functions accurately.

Alternatively, rather than performing a full status download once a month, a potential verifier
i could download once a month just all transactions of the last 30 days, from which (given her
previously computed full status information of a month ago) i can easily reconstruct the current
status information. Furthermore, if tree-hash-and-sign mechanism is used, i could easily check
that her reconstructed status is correct by simply (i) locally computing the alleged root hash
of the tree for round t − 1, and (ii) verifying that each verifier authenticated the same root
hash at round t− 1.

Alternatively yet, in order to facilitate these updates, each selected verifier j of a given round
t, in addition to PAY j

t and STATUSj
t , could also authenticate and publish NEW j

t , the list
of newly added potential verifier keys at round t. Notice that, by so doing, j remains fully
accountable for all the data she publishes.

• Efficient Updates for All Other Players. A player i without verifying responsibilities may only
care about whether a given payment P made to him is valid. Such a player can certainly
perform monthly updates as a potential verifier. However, with no rewards and no liabilities,
he may be satisfied with a much lighter check of the validity of P . For instance, if a facilitator is
present, and tree-hash-and-sign is used, then i may download only the facilitator-authenticated
information that enables i to determine whether P is a valid payment.

Alternatively, if i downloads full status information once a month, then he may use his one-
month-old information about the set of potential verifiers, and the new public value vt of round
t, in order to compute only one alleged verifier j for round t; and download and verify only
the compact j-authenticated record of payment P (assuming again that tree-hash-and-sign is
used).

3The probability that one the the new 10,000 keys is selected when the target number of verifiers is 11, would be
even lower: namely, 0.00002.

11

• Democoin vs. Bitcoin. Bitcoin relies on a very complex and space- and time-inefficient
mechanism to ensure that the status of the system cannot be subverted. Moreover, more
and more it is being pointed out that a very large honest majority is required for the system
to work properly.

By contrast, Democoin relies on a very simple and very efficient mechanism to ensure that
a player with obsolete knowledge about the status of the system can accurately and securely
reconstruct the true current status of the system. Moreover, Democoin only requires that a
reasonable majority of the users is honest.

7 Scalability and Sample Instantiations

Democoin is very scalable, particularly with the help of a properly designed architecture for
information flow. To concretely argue that this is the case, we consider three sample instantiations
—referred to as “Urban”, “Regional”, and “National”— differing in the envisaged number of users
and transactions. In all these instantiations, we envisage that

(a) A round consists of 10 minutes.4

(b) A single authenticated payment (or status report record) is about 100 Bytes.
(Indeed, 100 Bytes are sufficient to include large amount of auxiliary information.)

(c) A player can efficiently retrieve information about other players necessary for communication.
(E.g., via registry or an IRC channel with players’ public keys and IP-addresses information).

(d) Anyone can efficiently retrieve information from a storage provider, the cloud.
(E.g., Amazon Cloud acts as a post-facilitator.)

We emphasize once more that in all our sample instantiations, the cloud (i.e., the post-facilitator)
is NOT a trusted central authority. Indeed, the cloud cannot fake a payment on behalf of a user,
cannot maliciously alter how much money a given public key holds, nor selectively remove from the
full status report the information about some players, so as to de facto deprive them of the use of
their money.5 At most, the cloud may not post the entire status report. Should this indeed happen
in some round, then no money changes hands in that round, and a new cloud provider can be used.
Moreover, even this problem can be mitigated by relying on multiple clouds: for instance, Amazon
Cloud and Google Cloud.

We highlight four criteria for analyzing the scalability of Democoin:

Network Bandwidth: the bytes per second/month a player should be able to transfer.

(Indeed several cell-phone or Internet providers cap the total number of data that a user can
exchange in a moth.)

Connection Capacity: the maximum number of simultaneous connections a player can have.

Storage and Computation: the resources needed for a user to participate in the system.

4Note that this is the time it takes Bitcoin to generate a new block. (But recall that one would have to wait for
three blocks to be generated before have some confidence that one transaction in the third last block will enter the
definite transaction history. By contrast, in Democoin, a definite status report is reached after each round.

5In fact, a verifier generates a status report by digitlly signing together the money currently held by all public
keys. Thus, the cloud may at most refuse to post an entire status report, but not pick and choose which public keys
will appear in the report.

12

7.1 The Urban Instantiation.

The Urban Instantiation is so defined:

• Number of Users: 300,000.

• Number of transaction every 10 minutes: 1,000.

That is, in the Urban Instantiation, users and transactions numbers are slightly larger than those
in the current usage of Bitcoin.

Data Size Since a single payment consists of 100 Bytes, the approximate size of the PAY report
is only 100KB, the size of a full status report is about 30MB, and (using tree-hash-and-sign
mechanism) the size of self-sufficient authenticating record for a single public key is about 2KB.
Altogether, these are very reasonable sizes (and a 30MB status report is certainly preferable to a
15GB public ledger in Bitcoin).

To reduce network bandwidth, connection capacity, and storage we architect a simple,
generalizable, and effective information flow, depicted in Figure 1 and described below.

Architecture At each round t, we envisage 110 verifiers (chosen as before), organized in a two-
level, 11-node tree: a root with 10 children (and thus 10 leaves in this case). We regard the root
to have level 1, and each leaf to have level 2. The verifiers are partitioned in 11 groups/buckets of
cardinality 10 each. Each group is conceptually assigned to a separate node in the tree. We refer to
the 10 verifiers assigned to the root as top verifiers and to the other 100 verifiers as helper verifiers.

The information flow is as follows. At the beginning of the round, the top verifiers download
the full status report of the previous round, that is, STATUSt−1. Since this status consists of a
30MB, the top verifiers can accomplish this task even with a cell phone.

Now, let us discuss the preferred information flow for each of the envisaged 1000 payments of
round t. Consider a payment from a (payer) public key Pi to a (payee) public key Pj . Then,
since we are envisaging using a tree-hash-and-sign algorithm, (the owner of) Pi retrieves from the
cloud the 2KB proving the individual status of Pi and forwards this proof to (the owner of) Pj

together with his 100-Byte payment; (the owner of) Pj preferably verifies both pieces of information
and forwards them to each of the 10 helper verifiers in a bucket associated to one of the 10 leafs.
Otherwise said, the payee selects a bucket B and forwards the relevant payment and individual
status to each verifier in B.6

Note that the computation involved so far is trivial: (the owner of) Pi generates one digital
signature; while (the owner of) Pj verifies one digital signature and computes one hash to select
the bucket B. Also the bandwidth is low: (the owner of) Pi downloads 2K bytes from the cloud
and forwards 2.1K bytes to Pj ; and (the owner of) Pj forwards 2.1K bytes to each of the 10 helper
verifiers in bucket B.

6All other information flows that convey the essential information should be considered part of the inventive
architecture. For instance, the payer may only sends his payment to Pj ; while Pj downloads from the cloud the
individual status of PKi, and forwards it and the payment to the helper verifiers of the selected group. Alternatively
yet, the payee only forwards the payment to the helper verifiers, who then downloads the individual status of PKi

of the previous round from the clouds. Etc.

13

In our architecture the bucket B is preferably selected at random. In particular, to ensure that
lazy payees do not instead always select —say— the first bucket, B can be selected via a given
cryptographic hash function H. For instance, (the owner of) Pj may hash the payment (possibly
with additional information, such as vt) and use the last decimal digit of the hashed payment to
determine which of the 10 possible buckets of help verifiers should be the selected B. (In this case,
a helper verifier in B, receiving and processing the payment information, will also use H to verify
that the payment information was correctly sent to the bucket B to which he belongs.)

Since 1000 payments are distributed randomly across 10 buckets, each bucket of verifiers will be
selected for approximately 100 payments. Accordingly, each helper verifier must be able to receive
2.1K bytes from approximately 100 users. Therefore, even via a standard cellphone he can receive
this data within 1 minute (even being capped at 10 simultaneous connections).

At this point, each helper verifier checks that, for each payment he handles, all the relevant
information is correct. (That is, for each payment of $X from a public key Pi to another public key
Pj , he checks that the digital signature of the payment, the digital signature(s) of individual status
report of Pi for the previous round, and that the amount X does not exceed the money attributed to
Pi in that report.) Then, he preferably compiles all valid payments in a single, preferably ordered,
list L, and digitally signs L together with an indication of the round t (e.g., the current time).
Finally, he sends to each of the 10 top verifiers, his signed and dated list L, and preferably also the
individual prior status of each paying public key.

To receive this information, each top verifier only need to open 100 connections to download
the countersigned payments. Again, even using a standard cell phone, this can be done within 1
minute.7 Each top verifier i then produces the reports STATUSi

t and PAY i
t , and posts them on

the cloud. The size of both of these reports is about 31 MB and can be uploaded to the cloud
within 4 minutes by a cell phone. Additionally, also the signed information received from the helper
verifiers could be uploaded to the cloud, so as to keep everyone accountable.

More Efficient Updates. We highlight that its possible to optimize this design by upload-
ing/downloading only self-contained records between the verifiers and the cloud. For instance,
suppose at round t − 1 all verifiers and the cloud hold up-to-date status report STATUSt−1.
Suppose a top level verifier i wants to efficiently communicate STATUSi

t to the cloud. Using
tree-hash-and-sign mechanism, a hash of every record of the report corresponds to a leaf in the
tree; and only the root of the tree needs to be signed by the verifier. There are at most 2000
record changes between STATUSt−1 and STATUSt, given 1000 payments. Hence, assuming the
cloud knows STATUSt−1, to communicate STATUSi

t−1 , the verifier only needs to communicate
the changes in the tree (that is, 2000 new records), and the signature of the new root. Given
STATUSt−1 and the new records, the cloud can reconstruct the entire tree and obtain the hash of
the root. It then can use the signature of this hash obtained from the verifier to reconstruct the
full version of STATUSi

t . Using this mechanism, only approximately 210K bytes of data needs to
be communicated between the verifiers and the cloud.

In sum, the Urban Instantiation can be run via a cell network with

• Network Bandwidth and Capacity: 1 Mega-bit per second (Mb/s), capped by 2 GigaBytes
(GB) per month, and

7Note, that is may be tempting to store reports produced by the helper verifiers on the cloud and ask the top
level verifiers to retrieve it from there. However, this is bad design decision since in this design the cloud may choose
to deny an individual’s payment by erasing the corresponding reports from the helper verifiers.

14

Figure 1: Information Flow in Democoin on Urban Instantiation Example. Using a cryptographic
hash function, each user selects a bucket of level 2 helper verifiers to which it forwards the payment.
Helper verifiers check the payment, countersign and forward it to the level 1 verifiers. Level 1
verifiers check all payments and forward reports STATUSi

t , PAY i
t to a storage provider/facilitator.

Any user can then query the storage provider for a short self-contained authenticated record either
from the status reports or from the payments reports to update its state information about the
system.

• Connections Capacity: 10.

Regional Instantiation. A regional instantiation is so defined:

• Number of Users: 3,000,000.

• Number of transaction every 10 minutes: 10,000.

That is, in the Urban Instantiation, users and transactions numbers are 10 times higher than in
the Urban one. We envision running a Regional Instantiation via laptops.

This time the total size of the status report is about 300 MB, that is 10 times bigger than
before. Thanks to the tree-hash-and-sign method, however, the size of self-contained report about
an individual public key is only 5K bytes. To maintain a good performance, we increase the number
of helper verifiers by a factor of 10, so that the total number of verifiers, from 110, now becomes
1010. We partition all verifiers in 101 groups (buckets) of 10, and conceptually assign each bucket
to a node of a 3-level 10-degree tree T . (I.e., the root of T has, as before, 10 children (of level 2),
but now each of these children has 10 children (of level 3).) The 10 verifiers assigned to the root
are again called top verifiers, and all other verifiers are helper verifiers.

15

There are now 100 buckets on the third level. Each payee (or payer) of a given current
payment chooses at random (using a cryptographic hash function) which bucket will handle the
payment. Therefore, on average, each level-3 helper verifier only handles 100 payments, which
can be downloaded within a minute by a laptop computer. Once verified, these payments are
forwarded to a bucket of level-2 helper verifiers (again, chosen at random). Similarly, each level-2
verifier needs to open only 10 connections and download 1000 payments, of size approximately 100
Kilobytes which can be done easily within a minute. After verifying the information received from
his children buckets, and after combining them, and signing the combined information, each level-2
helper verifier, sends the proper information to each of the top verifiers, that is, to each verifier in
the group associated to the root, the only node of level 1. After verifying, combining, and signing
all the received information, that is, after generating STATUSi

t and PAY i
t , each top verifier i

uploads them to the cloud. This uploading would take about 4 minutes with a standard laptop.
(Again, thanks to the envisaged tree-hash-and sign method, each top verifier i can use the same

“More Efficient Update” method, already discussed for the Urban Instantiation case, in order
to dramatically cut down the amount of data to be uploaded, and thus the time of the uploading,
without increasing at all the trust of the power of the cloud.)

Finally, any player may update its state by querying the storage provider for relevant self-
contained new records within a minute. The computational time needed from verifiers is also
about a minute. Therefore, the envisioned duration of a round in this instantiation is below 10
minutes, in fact it only takes 8 minutes.

In sum, the Regional Instantiation can be run (within 10 minutes) with

• Network Bandwidth and Capacity: 10 Mb/s, capped by 80 GB per month, and

• Connections Capacity: 10.

National Instantiation. The National Instantiation is so defined:

• Number of Users: 30M.

• Number of transaction every 10 minutes: 100K.

In this instantiation, we scale the institutional example by a factor of 100. That is, suppose
there are 30 million users and 100 thousand transactions every 10 minutes. The size of the status
reports grows to 3 GB, but the size of self-contained authenticated individual record remains
small – about 7 KB. We also add a 4th level of 1000 buckets of helper verifiers. Therefore, they
are now an additional 10000 verifiers at the 4th level, each receiving about 100 payments for
verification. All other parameters scale correspondingly and can be easily handled by a standard
laptop. Moreover, the entire round can easily be performed within about 20 minutes using efficient-
updates mechanism described in the Urban Instantiation (the communication overhead for 100K
payments is insignificant, but we have to add extra 10 minutes to account for the computational
time to verify these payments).

Even Larger Instantiations Generalizing the architecture discussed above, one can easily
handle Continental and Planetary Instantiations, respectively capable of handling 300M and 3B
users, and 10× and 100× as many transactions as the National Instantiation. The adoption of the
More Efficient Updating will be crucial here. The rounds will become longer. But feasibility will
still be maintained.

16

8 Democracy, Fairness, and Security

Democracy. Democoin is a democratic monetary system in that the responsibility of running it
resides with the users themselves. For efficiency reasons, however, Democoin is not run by all users
simultaneously. Rather, at each round, only some users are randomly select to act as verifiers, so as
to guarantee the integrity of the system. The verifiers of a given round are rewarded for their effort
and availability. Indeed, they stand to be collectively paid 1% of the total money that changes
hands in that round. No payment is made by the users to outside parties for running the system.
(Except for the payment due to the cloud for providing accessible storage, but this is a negligible
amount relative to that traditionally due to ”trusted parties” to run a financial system).

Fairness. Better yet, Democoin is fair.8 A verifier of a given stands to make a lot of money, and,
at every round, all users have the same probability of becoming verifiers. Nonetheless, a user who
is never selected during his lifetime to be a verifier and has always paid 1% of his money transfers
to other users, may not go to a better life feeling that the system was “fair to him.” It may thus be
useful to analyze how often a player expects to be a verifier in the three instantiations of Section 7.

Assume that the total 1% reward of a given round is distributed equally among all verifiers (i.e.,
that top verifiers and helper verifier are treated alike). Then, because the ratio of total number of
users and the total number of verifiers is roughly the same in the Urban, Regional, and National
Instantiation, in all these instantiations the probability for a user to become a verifier is the same
at every round. Moreover, because in the first two instantiations each round consists of 8 minutes,
it can be easily seen that in the Urban and Regional Instantiation a player is expected to become a
verifier about 22 times a year, that is, just under 2 times a month. Altogether this is a non-trivial
frequency. This frequency can be increased by increasing the verifiers-to-users ratio.

Security. Let’s now consider the probability of overall security. The system works as envisaged
if the majority of the verifiers in every bucket is honest and execute correctly according to the
system specifications. Suppose that 90% of the users are honest and hence that a status report (or
payment) is valid if and only if 90% of verifiers validate it. (If such a 90% consensus is not reached
in a given round, then de facto “no money has changed hands in that round.”) In this case, the
probability that a randomly selected player is malicious is 0.1, and the probability that a randomly
selected pair of players are malicious players is 0.1∗0.1 = 0.01. Continuing this calculation, we can
derive the probability that 9 or more verifiers, at a given bucket, are chosen to be malicious, which
is equals to about 10−8.9 Now, in Urban Instantiation there are 11 buckets of verifiers. Hence, the
probability that one of them is malicious is at most 1.1 ∗ 10−7. Hence, every 9 million rounds, we
expect one bad selection of the verifiers. Given 8 minute rounds, we expect about 65, 744 rounds
in a year. Hence, we expect a bad occurrence once every 137 years, which is enough for practical
instantiations on the Urban scale.

However, suppose we increase the number of verifiers in each bucket to 50 and suppose 80% of
them are honest. Then, the probability that a single bucket of verifiers is malicious (that is, 40

8Democoin is also fair, in a difference sense, when the probability of being selected is proportional to the money
a user owns, possibly over different public keys.

9Given ten selected players in a bucket, the probability that one of them is not-malicious and the rest are malicious
is 10 ∗ (0.9 ∗ 0.19). We also have to account for the case when all players are chosen to be malicious which is 0.110.
Summing up the two probabilities, we obtain that from the selected 10 players, 9 or more are malicious is about 10−8.

17

or more of the selected verifiers are malicious), is about 1.3 ∗ 10−19.10. Now, given 11 buckets in
the Urban Instantiation, the probability that one of them is malicious is at most 1.43 ∗ 10−18, or
once every 7 ∗ 1017 rounds. Alternatively said, we expect a bad occurrence once every 10 Trillion
years. Moreover, in Regional and National Instantiations, this frequency reduces (but remains
astronomically high) to approximately every 1 Trillion and 100 Billion Years.

Moreover, note that in order to mount a successful attack, it is not enough that at least 40 of the
50 selected verifiers are malicious, but that these malicious verifiers succeed in coordinating their
actions within a round, that is, in a few minutes. (Recall in fact that the set of verifiers of a future
round t cannot be predicted long in advance, because it depends on a variable vt that is totally
unpredictable until round t.) Since a round is very short, this coordination may not be practically
feasible. Moreover, by slightly increasing the number of verifiers, it is possible to achieve virtually
any level of security deemed useful.

9 Tree-Hash-and-Sign Authentication

Tree-hash-and-sign is an effective mechanism to authenticate a large list of records with a single
signature, while supporting efficient “local” verification (without the need to download the entire
list). This mechanism is used in many existing payment systems, such as Bitcoin. We summarize
it in this section for completeness.

Suppose a verifier V wants to tree-hash-and-sign a list of payments PAY = (P1, . . . , Pn).
(This procedure can be used analogously on any list of records, such as a list of players’ accounts
information). First, he builds a Merkle tree of the list PAY , inductively starting from the leaves
and converging at the root. The leaves of the tree are associated with level 0 and the root of the
tree is associated with level q = log n (for simplicity, we suppose n = 2q for some q). To compute
the Merkle tree, the verifier first hashes the individual payments Pi and associates the hashes to
the leaves of the tree:

h0i = H(Pi)

Then, inductively, he computes a hash for a node by hashing two of its children. In particular,
to compute a hash hij for a node at level i (in range 1, . . . , q), let hi−1c and hi−1c′ be the two hashes
for the children of the node. Then,

hij = H(hi−1c , hi−1c′).

The hash hT = hq1, associated with the root of the tree, is a “commitment” to the entire list of
payments PAY . For example, suppose PAY = (P1, P2, P3, P4), then the Merkle tree the verifier
would compute would look like:

10This probability p can be derived using formula: p =
∑50

i=40

((
50
i

)
∗0.2i ∗0.850−i

)
. Here, 0.2 is the probability of

selecting a malicious verifier, and 0.8 is the probability of selecting an honest verifier; and we sum up over all “bad”
selections.

18

hPAY = H(h11, h
1
2)

h11 = H(h01, h
0
2)

h01 = H(P1) h02 = H(P2)

h12 = H(h03, h
0
4)

h03 = H(P3) h04 = H(P4)

To authenticate the list, the verifier may publicize a single digital signature SIGV (t;hPAY),
where t denotes the time.

Now, a self-standing V-authenticated record about Pi consists of:

1. the payment Pi itself (and optionally the hash of every node in the path from the leaf
corresponding to Pi, h

0
i = H(Pi), to the root, hPAY), and

2. the hashes of all siblings of the nodes along that path (together with any payments associated
with the leaves it downloads) and

3. V ’s digital signature of the hash of the root, SIGV (t, hPAY).

For instance, in the above example, the self-standing V -authenticated record about the payment
P1 consists of

(1) P1 (and optionally, h01, h
1
1, hPAY),

(2) the associated sibling hashes h02 and h12 and the payments at the leaves P1, P2, and
(3) SIGV (t, hPAY).)

To verify this authenticating record of Pi one can:

1. verify the signatures of the individual payments at the leaves,

2. compute the hash of the root, hPAY , by recomputing, in a bottom-up fashion, the hash of every
node along the path to the root

(In fact for each such node he has already computed the hash of one of its children, c, and has
retrieved the hash of the other child, that is, of the sibling of c) and

3. verify the signature of the root: SIGV (t;hPAY).

Again, referring to the above example, the owner would check that P1 and P2 are valid payments,
whether

hT
?
= H

(
H
(
H(P1), H(P2)

)
, h12

)
and that SIGV (t;hPAY) is a valid signature.

19

Efficiency. It is easy to see that the verifier’s computation is very efficient. He only needs to
evaluate an efficient hash function (for example, SHA-512) to construct the Merkle tree. Hence, the
total number of hashes he needs to compute for n payments is 2n − 1 (corresponding to the total
number of nodes in the tree). Since hashing is very efficient, it would take less than a second for a
standard computer to produce a Merkle tree for, say, a million payments. Then, the verifier needs
to produce a single digital signature authenticating the entire list. For example, using one of the
standard Elliptic-Curve Signature Algorithms, the time it would take to produce such a signature
would be around 2 milliseconds, and would be around 200 bytes (including in it a large amount of
useful information deemed useful).

It is also easy to see that the player needs to download very little information from the verifier
and that its computation is efficient. In particular, the player downloads the path consisting of log n
hashes, the sibling logn hashes (and the two payments at the leaves in clear). Since logarithmic
function remains very small even for astronomically large n, the total number of hashes the player
needs to download and recompute remains very small. Moreover, it only needs to perform a few
(three) signature verification algorithms.

Using a standard Elliptic-Curve Signature Algorithms (used in Bitcoin and other payment
systems), we present a summary highlighting the efficiency of this approach in Table 1. It is easy
to see that even for astronomically large 1 Billion payments, only (approximately) 31 Kilobytes
needs to be downloaded by a player. Since even a cellphone with a weak internet connection can
download at a rate of (at least) 1 Megabyte per second, this download rate can easily be handled.
Moreover, the verification time remains very small, and is largely dominated by the verification of
the signatures.

of Payments Path Length PDownload Size (KB) PVerify Time (ms)

128 7 8 10

1024 10 11 10

32768 15 16 10

1048576 (≈ 106) 20 21 11

1073741824 (≈ 109) 30 31 11

Table 1: Tree-hash-and-sign approximate efficiency evaluation. Above, “Path Length” stands for
the length of a path of hashes a player needs to download to authenticate a payment; “PDownload
Size” stands for player’s total number of Kilobytes he needs to download; “PVerify Time” for
player’s time (in milliseconds) to verify this record (for a standard cellphone).

References

[1] Bitcoin Block Chain Info, https://blockchain.info, Feb 2015.

[2] D. L. Chaum, Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,
Commun. ACM, Volume 24, Number 2, Pages 84–90, 1981.

[3] Bitcoin Computation Waste, http://gizmodo.com/the-worlds-most-powerful-computer-
network-is-being-was-504503726, 2013.

[4] S. King, S. Nadal, PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake, 2012.

20

https://blockchain.info
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726

[5] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[6] Litecoin, https://litecoin.org/, 2011.

21

https://litecoin.org/

	Introduction
	Background
	Cryptographic Primitives
	Bitcoin

	Three Alternative Systems
	Centralcoin
	Spreadcoin
	Democoin
	Scalability and Sample Instantiations
	The Urban Instantiation.

	Democracy, Fairness, and Security
	Tree-Hash-and-Sign Authentication

