
Efficient Constant Round Multi-Party
Computation Combining BMR and SPDZ

Yehuda Lindell1, Benny Pinkas1, Nigel P. Smart2, and Avishay Yanai1

1 Dept. Computer Science, Bar-Ilan University, Israel,
2 Dept. Computer Science, University of Bristol, UK

Abstract. Recently, there has been huge progress in the field of con-
cretely efficient secure computation, even while providing security in the
presence of malicious adversaries. This is especially the case in the two-
party setting, where constant-round protocols exist that remain fast even
over slow networks. However, in the multi-party setting, all concretely
efficient fully-secure protocols, such as SPDZ, require many rounds of
communication.
In this paper, we present an MPC protocol that is fully-secure in the
presence of malicious adversaries and for any number of corrupted par-
ties. Our construction is based on the constant-round BMR protocol of
Beaver et al., and is the first version of that protocol that is concretely
efficient for the dishonest majority case.
Our protocol includes an online phase that is extremely fast and mainly
consists of each party locally evaluating a garbled circuit. For the offline
phase we present both a generic construction (using any underlying MPC
protocol), and a highly efficient instantiation based on the SPDZ proto-
col. Our estimates show the protocol to be considerably more efficient
than previous fully-secure multi-party protocols.

1 Introduction

Background: Protocols for secure multi-party computation (MPC) enable a set
of mutually distrustful parties to securely compute a joint functionality of their
inputs. Such a protocol must guarantee privacy (meaning that only the output
is learned), correctness (meaning that the output is correctly computed from the
inputs), and independence of inputs (meaning that each party must choose its
input independently of the others). Formally, security is defined by comparing
the distribution of the outputs of all parties in a real protocol to an ideal model
where an incorruptible trusted party computes the functionality for the parties.
The two main types of adversaries that have been considered are semi-honest
adversaries who follow the protocol specification but try to learn more than
allowed by inspecting the transcript, and malicious adversaries who can run any
arbitrary strategy in an attempt to break the protocol. Secure MPC has been
studied since the late 1980s, and powerful feasibility results were proven showing
that any two-party or multi-party functionality can be securely computed [23,
12], even in the presence of malicious adversaries. When an honest majority
(or 2/3 majority) is assumed, then security can even be obtained information

theoretically [3, 4, 20]. In this paper, we focus on the problem of security in the
presence of malicious adversaries, and a dishonest majority.

Recently, there has been much interest in the problem of concretely efficient
secure MPC, where “concretely efficient” refers to protocols that are sufficiently
efficient to be implemented in practice (in particular, these protocols should
not, say, use generic ZK proofs that operate on the circuit representation of
these primitives). In the last few years there has been tremendous progress on
this problem, and there now exist extremely fast protocols that can be used in
practice; see [16–18, 15, 10] for just a few examples. In general, there are two
approaches that have been followed; the first uses Yao’s garbled circuits [23] and
the second utilizes interaction for every gate like the GMW protocol [12].

There are extremely efficient variants of Yao’s protocol for the two party
case that are secure against malicious adversaries (e.g., [16, 17]). These proto-
cols run in a constant number of rounds and therefore remain fast over slow
networks. The BMR protocol [1] is a variant of Yao’s protocol that runs in a
multi-party setting with more than two parties. This protocol works by the par-
ties jointly constructing a garbled circuit (possibly in an offline phase), and then
later computing it (possibly in an online phase). However, in the case of mali-
cious adversaries this protocol suffers from two main drawbacks: (1) Security is
only guaranteed if at most a minority of the parties are corrupt; (2) The proto-
col uses generic protocols secure against malicious adversaries (say, the GMW
protocol) that evaluate the pseudorandom generator used in the BMR protocol.
This non black-box construction results in an extremely high overhead.

The TinyOT and SPDZ protocols [18, 10] follow the GMW paradigm, and
have offline and online phases. Both of these protocols overcome the issues of the
BMR protocol in that they are secure against any number of corrupt parties,
make only black-box usage of cryptographic primitives, and have very fast on-
line phases that require only very simple (information theoretic) operations. (A
black-box constant-round MPC construction for the case of an honest majority
appears in [7] and for the case of a dishonest majority in [13]. However, the
[13] construction appears to be not “concretely efficient”.) In the case of multi-
party computation with more than two parties, these protocols are currently the
only practical approach known. However, since they follow the GMW paradigm,
their online phase requires a communication round for every multiplication gate.
This results in a large amount of interaction and high latency, especially over
slow networks. To sum up, there is no known concretely efficient constant-round
protocol for the multi-party case (with the exception of [5] that considers the
specific three-party case only). Our work introduces the first protocol with these
properties.

Our contribution: In this paper, we provide the first concretely efficient const-
ant-round protocol for the general multi-party case, with security in the presence
of malicious adversaries. The basic idea behind the construction is to use an ef-
ficient non-constant round protocol – with security for malicious adversaries –
to compute the gate tables of the BMR garbled circuit (and since the computa-
tion of these tables is of constant depth, this step is constant round). A crucial

2

observation, resulting in a great performance improvement, shows that in the
offline stage it is not required to verify the correctness of the computations of the
different tables. Rather, validation of the correctness is an immediate by product
of the online computation phase, and therefore does not add any overhead to
the computation. Although our basic generic protocol can be instantiated with
any non-constant round MPC protocol, we provide an optimized version that
utilizes specific features of the SPDZ protocol [10].

In our general construction, the new constant-round MPC protocol consists
of two phases. In the first (offline) phase, the parties securely compute random
shares of the BMR garbled circuit. If this is done naively, then the result is
highly inefficient since part of the computation involves computing a pseudo-
random generator or pseudorandom function multiple times for every gate. By
modifying the original BMR garbled circuit, we show that it is possible to actu-
ally compute the circuit very efficiently. Specifically, each party locally computes
the pseudorandom function as needed for every gate (in our construction we use
a pseudorandom function rather than a pseudorandom generator), and uses the
results as input to the secure computation. Our proof of security shows that if
a party cheats and inputs incorrect values then no harm is done, since it can
only cause the honest parties to abort (which is anyway possible when there is
no honest majority). Next, in the online phase, all that the parties need to do is
reconstruct the single garbled circuit, exchange garbled values on the input wires
and locally compute the garbled circuit. The online phase is therefore very fast.

In our concrete instantiation of the protocol using SPDZ [10], there are ac-
tually three separate phases, with each being faster than the previous. The first
two phases can be run offline, and the last phase is run online after the inputs
become known.

– The first (slow) phase depends only on an upper bound on the number of
wires and the number of gates in the function to be evaluated. This phase
uses Somewhat Homomorphic Encryption (SHE) and is equivalent to the
offline phase of the SPDZ protocol.

– The second phase depends on the function to be evaluated but not the func-
tion inputs; in our proposed instantiation this mainly involves information
theoretic primitives and is equivalent to the online phase of the SPDZ pro-
tocol.

– In the third phase the parties provide their input and evaluate the function;
this phase just involves exchanging shares of the circuit and garbled values
on the input wire and locally computing the BMR garbled circuit.

We stress that our protocol is constant round in all phases since the depth of
the circuit required to compute the BMR garbled circuit is constant. In addition,
the computational cost of preparing the BMR garbled circuit is not much more
than the cost of using SPDZ itself to compute the functionality directly. However,
the key advantage that we gain is that our online time is extraordinarily fast,
requiring only two rounds and local computation of a single garbled circuit. This
is faster than all other existing circuit-based multi-party protocols.

3

Finite field optimization of BMR: In order to efficiently compute the BMR
garbled circuit, we define the garbling and evaluation operations over a finite
field. A similar technique of using finite fields in the BMR protocol was intro-
duced in [2] in the case of semi-honest security against an honest majority. In
contrast to [2], our utilization of finite fields is carried out via vectors of field el-
ements, and uses the underlying arithmetic of the field as opposed to using very
large finite fields to simulate integer arithmetic. This makes our modification in
this respect more efficient.

2 The General Protocol

2.1 Modified BMR Garbling

In order to facilitate fast secure computation of the garbled circuit in the offline
phase, we make some changes to the original BMR garbling described in Ap-
pendix A. First, instead of using XOR of bit strings, and hence a binary circuit
to instantiate the garbled gate, we use additions of elements in a finite field,
and hence an arithmetic circuit. This idea was used by [2] in the FairplayMP
system, which used the BGW protocol [3] in order to compute the BMR circuit.
Note that FairplayMP achieved semi-honest security with an honest majority,
whereas our aim is malicious security for any number of corrupted parties.

Second, we observe that the external values3 do not need to be explicitly
encoded, since each party can learn them by looking at its own “part” of the
garbled value. In the original BMR garbling, each superseed contains n seeds
provided by the parties. Thus, if a party’s zero-seed is in the decrypted superseed
then it knows that the external value (denoted by Λ) is zero, and otherwise it
knows that it is one.

Naively, it seems that independently computing each gate securely in the
offline phase is insufficient, since the corrupted parties might use inconsistent
inputs for the computations of different gates. For example, if the output wire
of gate g is an input to gate g′, the input provided for the computation of
the table of g might not agree with the inputs used for the computation of
the table of g′. It therefore seems that the offline computation must verify the
consistency of the computations of different gates. This type of verification would
greatly increase the cost since the evaluation of the pseudorandom functions (or
pseudorandom generator in the original BMR) used in computing the tables
needs to be be checked inside the secure computation. This means that the
pseudorandom function is not treated as a black box, and the circuit for the
offline phase would be huge (as it would include multiple copies of a subcircuit
for computing pseudorandom function computations for every wire). Instead, we
prove that this type of corrupt behavior can only result in an abort in the online
phase, which would not affect the security of the protocol. This observation
enables us to compute each gate independently and model the pseudorandom

3
The external values (as denoted in [2]) are the signals (as denoted in [1]) observable by the parties
when evaluating the circuit in the online phase.

4

function used in the computation as a black box, thus simplifying the protocol
and optimizing its performance.

We also encrypt garbled values as vectors; this enables us to use a finite field
that can encode {0, 1}κ (for each vector coordinate), rather than a much larger
finite field that can encode all of {0, 1}n·κ. Due to this, the parties choose keys
(for a pseudorandom function) rather than seeds for a pseudorandom generator.
The keys that Pi chooses for wire w are denoted kiw,0 and kiw,1, which will be
elements in a finite field Fp such that 2κ < p < 2κ+1. In fact we pick p to be
the smallest prime number larger than 2κ, and set p = 2κ + α, where (by the
prime number theorem) we expect α ≈ κ. We shall denote the pseudorandom
function by Fk(x), where the key and output will be interpreted as elements of
Fp in much of our MPC protocol. In practice the function Fk(x) we suggest will
be implemented using CBC-MAC using a block cipher enc with key and block
size κ bits, as Fk(x) = CBC-MACenc(k (mod 2κ), x). Note that the inputs x to
our pseudorandom function will all be of the same length and so using naive
CBC-MAC will be secure.

We interpret the κ-bit output of Fk(x) as an element in Fp where p = 2κ+α.
Note that a mapping which sends an element k ∈ Fp to a κ-bit block cipher key
by computing k (mod 2κ) induces a distribution on the key space of the block
cipher which has statistical distance from uniform of

1

2

(
(2κ − α) ·

(
1

2κ
− 1

p

)
+ α ·

(
2

p
− 1

2κ

))
≈ α

p
≈ κ

2κ
.

The output of the function Fk(x) will also induce a distribution which is close
to uniform on Fp. In particular the statistical distance of the output in Fp, for a
block cipher with block size κ, from uniform is given by

1

2

(
2κ ·

(
1

2κ
− 1

p

)
+ α ·

(
1

p
− 0

))
=
α

p
≈ κ

2κ

(note that 1− 2κ

p = α
p). In practice we set κ = 128, and use the AES cipher as

the block cipher enc. The statistical difference is therefore negligible.

The goal of this paper is to present a protocol ΠSFE which implements the
Secure Function Evaluation (SFE) functionality of Functionality 1 in a constant
number of rounds in the case of a malicious dishonest majority. Our constant
round protocol ΠSFE implementing FSFE is built in the FMPC-hybrid model, i.e.
utilizing a sub-protocol ΠMPC which implements the functionality FMPC given
in Functionality 2. The generic MPC functionality FMPC is reactive. We require
a reactive MPC functionality because our protocol ΠSFE will make repeated
sequences of calls to FMPC involving both output and computation commands.
In terms of round complexity, all that we require of the sub-protocol ΠMPC is
that each of the commands which it implements can be implemented in constant
rounds. Given this requirement our larger protocol ΠSFE will be constant round.

5

Functionality 1 (The SFE Functionality: FSFE)

The functionality is parameterized by a function f(x1, . . . , xn) which is input
as a binary circuit Cf . The protocol consists of 3 externally exposed commands
Initialize, InputData, and Output and one internal subroutine Wait.

Initialize: On input (init , Cf) from all parties, the functionality activates
and stores Cf .

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , xi) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , xi). The functionality then calls Wait.

Output: On input (output) from all honest parties the functionality computes
y = f(x1, . . . , xn) and outputs y to the adversary. The functionality then
calls Wait. Only if Wait does not abort it outputs y to all parties.

Functionality 2 (The Generic Reactive MPC Functionality: FMPC)

The functionality consists of five externally exposed commands Initialize, In-
putData, Add, Multiply, and Output, and one internal subroutine Wait.

Initialize: On input (init , p) from all parties, the functionality activates and
stores p. All additions and multiplications below will be mod p.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functional-
ity retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y mod p). The
functionality then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the function-
ality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p). The
functionality then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i 6= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i 6= 0.

In what follows we use the notation [varid] to represent the result stored in
the variable varid by the FMPC or FSFE functionality. In particular we use the
arithmetic shorthands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of
calling the Add and Multiply commands on the FMPC functionality.

6

2.2 The Offline Functionality: preprocessing-I and preprocessing-II

Our protocol, ΠSFE, is comprised of an offline-phase and an online-phase, where
the offline-phase, which implements the functionality Foffline, is divided into two
subphases: preprocessing-I and preprocessing-II. To aid exposition we first present
the functionality Foffline in Functionality 3. In the next section, we present an
efficient methodology to implement Foffline which uses the SPDZ protocol as
the underlying MPC protocol for securely computing functionality FMPC; while
in Appendix B we present a generic implementation of Foffline based on any
underlying protocol ΠMPC implementing FMPC.

In describing functionality Foffline we distinguish between attached wires and
common wires: the attached wires are the circuit-input-wires that are directly
connected to the parties (i.e., these are inputs wires to the circuit). Thus, if every
party has ` inputs to the functionality f then there are n · ` attached wires. The
rest of the wires are considered as common wires, i.e. they are directly connected
to none of the parties.

Our preprocessing-I takes as input an upper bound W on the number of wires
in the circuit, and an upper bound G on the number of gates in the circuit.
The upper bound G is not strictly needed, but will be needed in any efficient
instantiation based on the SPDZ protocol. In contrast preprocessing-II requires
knowledge of the precise function f being computed, which we assume is encoded
as a binary circuit Cf .

In order to optimize the performance of the preprocessing-II phase, the secure
computation does not evaluate the pseudorandom function F (), but rather has
the parties compute F () and provide the results as an input to the protocol. Ob-
serve that corrupted parties may provide incorrect input values Fkix,j () and thus

the resulting garbled circuit may not actually be a valid BMR garbled circuit.
Nevertheless, we show that such behavior can only result in an abort. This is due
to the fact that if a value is incorrect and honest parties see that their key (co-
ordinate) is not present in the resulting vector then they will abort. In contrast,
if their seed is present then they proceed and the incorrect value had no effect.
Since the keys are secret, the adversary cannot give an incorrect value that will
result in a correct different key, except with negligible probability. This is impor-
tant since otherwise correctness would be harmed. Likewise, a corrupted party
cannot influence the masking values λ, and thus they are consistent throughout
(when a given wire is input into multiple gates), ensuring correctness.

2.3 Securely Computing FSFE in the Foffline-Hybrid Model

We now define our protocol ΠSFE for securely computing FSFE (using the BMR
garbled circuit) in the Foffline-hybrid model, see Protocol 1.

2.4 Implementing Foffline in the FMPC-Hybrid Model

At first sight, it may seem that in order to construct an entire garbled circuit (i.e.
the output of Foffline), an ideal functionality that computes each garbled gate can

7

Functionality 3 (The Offline Functionality – Foffline)

This functionality runs the same Initialize, Wait, InputData and Output
commands as FMPC (Functionality 2). In addition, the functionality has two
additional commands preprocessing-I and preprocessing-II, as follows.

preprocessing-I: On input (preprocessing-I,W,G), for all wires w ∈ [1, . . . ,W]:
– The functionality chooses and stores a random masking value [λw]

where λw ∈ {0, 1}.
– For 1 ≤ i ≤ n and β ∈ {0, 1},
• The functionality stores a key of user i for wire w and value β,

[kiw,β] where kiw,β ∈ Fp
• The functionality outputs [kiw,β] to party i by running Output

as in functionality FMPC.
preprocessing-II: On input of (preprocessing-II, Cf) for a circuit Cf with at

most W wires and G gates.
– For all wires w which are attached to party Pi the functionality opens

[λw] to party Pi by running Output as in functionality FMPC.
– For all output wires w the functionality opens [λw] to all parties by

running Output as in functionality FMPC.
– For every gate g with input wires 1 ≤ a, b ≤ W and output wire

1 ≤ c ≤W .
• Party Pi provides the following values for x ∈ {a, b} by running

InputData as in functionality FMPC:

Fkix,0
(0‖1‖g), . . . , Fkix,0

(0‖n‖g) Fkix,0
(1‖1‖g), . . . , Fkix,0

(1‖n‖g)

Fkix,1
(0‖1‖g), . . . , Fkix,1

(0‖n‖g) Fkix,1
(1‖1‖g), . . . , Fkix,1

(1‖n‖g)

• Define the selector variables

χ1 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ2 =

{
0 if fg(λa, λb) = λc

1 otherwise

χ3 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ4 =

{
0 if fg(λa, λb) = λc

1 otherwise

• Set Ag = (A1
g, . . . , A

n
g), Bg = (B1

g , . . . , B
n
g), Cg = (C1

g , . . . , C
n
g),

and Dg = (D1
g , . . . , D

n
g) where for 1 ≤ j ≤ n:

Ajg =

(
n∑
i=1

Fkia,0
(0‖j‖g) + Fki

b,0
(0‖j‖g)

)
+ kjc,χ1

Bjg =

(
n∑
i=1

Fkia,0
(1‖j‖g) + Fki

b,1
(0‖j‖g)

)
+ kjc,χ2

Cjg =

(
n∑
i=1

Fkia,1
(0‖j‖g) + Fki

b,0
(1‖j‖g)

)
+ kjc,χ3

Dj
g =

(
n∑
i=1

Fkia,1
(1‖j‖g) + Fki

b,1
(1‖j‖g)

)
+ kjc,χ4

• The functionality stores the values [Ag], [Bg], [Cg], [Dg].

8

Protocol 1 (ΠSFE: Securely Computing FSFE in the Foffline-Hybrid Model)

On input of a circuit Cf representing the function f which consists of at most
W wires and at most G gates the parties execute the following commands.

Pre-Processing: This procedure is performed as follows
1. Call Initialize on Foffline with the smallest prime p in {2κ, . . . , 2κ+1}.
2. Call Preprocessing-I on Foffline with input W and G.
3. Call Preprocessing-II on Foffline with input Cf .

Online Computation: This procedure is performed as follows
1. For all input wires w for party Pi the party takes his input bit ρw and

computes Λw = ρw⊕λw, where λw was obtained in the preprocessing
stage. The value Λw is broadcast to all parties.

2. Party i calls Output on Foffline to open [kiw,Λw] for all his input wires
w, we denote the resulting value by kiw.

3. The parties call Output on Foffline to open [Ag], [Bg], [Cg] and [Dg]
for every gate g.

4. Passing through the circuit topologically, the parties can now locally
compute the following operations for each gate g

– Let the gates input wires be labeled a and b, and the output wire
be labeled c.

– For j = 1, . . . , n compute kjc according to the following cases:
• Case 1 – (Λa, Λb) = (0, 0): compute

kjc = Ajg −

(
n∑
i=1

Fkia(0‖j‖g) + Fki
b
(0‖j‖g)

)
.

• Case 2 – (Λa, Λb) = (0, 1): compute

kjc = Bjg −

(
n∑
i=1

Fkia(1‖j‖g) + Fki
b
(0‖j‖g)

)
.

• Case 3 – (Λa, Λb) = (1, 0): compute

kjc = Cjg −

(
n∑
i=1

Fkia(0‖j‖g) + Fki
b
(1‖j‖g)

)
.

• Case 4 – (Λa, Λb) = (1, 1): compute

kjc = Dj
g −

(
n∑
i=1

Fkia(1‖j‖g) + Fki
b
(1‖j‖g)

)
.

– If kic /∈ {kic,0, kic,1}, then Pi outputs abort. Otherwise, it proceeds.
If Pi aborts it notifies all other parties with that information. If
Pi is notified that another party has aborted it aborts as well.

– If kic = kic,0 then Pi sets Λc = 0; if kic = kic,1 then Pi sets Λc = 1.
– The output of the gate is defined to be (k1c , . . . , k

n
c) and Λc.

5. Assuming party Pi does not abort it will obtain Λw for every circuit-
output wire w. The party can then recover the actual output value
from ρw = Λw⊕λw, where λw was obtained in the preprocessing stage.

9

be used separately for each gate of the circuit (that is, for each gate the parties
provide their PRF results on the keys and shares of the masking values asso-
ciated with that gate’s wires). This is sufficient when considering semi-honest
adversaries. However, in the setting of malicious adversaries, this can be prob-
lematic since parties may input inconsistent values. For example, the masking
values λw that are common to a number of gates (which happens when any wire
enters more than one gate) need to be identical in all of these gates. In addi-
tion, the pseudorandom function values may not be correctly computed from the
pseudorandom function keys that are input. In order to make the computation
of the garbled circuit efficient, we will not check that the pseudorandom func-
tion values are correct. However, it is necessary to ensure that the λw values are
correct, and that they (and likewise the keys) are consistent between gates (e.g.,
as in the case where the same wire is input to multiple gates). We achieve this
by computing the entire circuit at once, via a single functionality.

The cost of this computation is actually almost the same as separately com-
puting each gate. The single functionality receives from party Pi the values
kiw,0, k

i
w,1 and the output of the pseudorandom function applied to the keys only

once, regardless of the number of gates to which w is input. Thereby consistency
is immediate throughout, and this potential attack is prevented. Moreover, the
λw values are generated once and used consistently by the circuit, making it easy
to ensure that the λ values are correct.

Another issue that arises is that the single garbled gate functionality expects
to receive a single masking value for each wire. However, since this value is secret,
it must be generated from shares that are input by the parties. In Appendix B we
describe the full protocol for securely computing Foffline in the FMPC-hybrid model
(i.e., using any protocol that securely computes the FMPC ideal functionality).
In short, the parties input shares of λw to the functionality, the single masking
value is computed from these shares, and then input to all the necessary gates.

In the semi-honest case, the parties could contribute a share which is random
in {0, 1} (interpreted as an element in Fp) and then compute the product of all
the shares (using the underlying MPC) to obtain a random masking value in
{0, 1}. This is however not the case in the malicious case since parties might
provide a share that is not from {0, 1} and thus the resulting masking value
wouldn’t likewise be from {0, 1}

This issue is solved in the following way. The computation is performed by
having the parties input random masking values λiw ∈ {1,−1}, instead of bits.
This enables the computation of a value µw to be the product of λ1

w, . . . , λ
n
w and

to be random in {−1, 1} as long as one of them is random. The product is then
mapped to {0, 1} in Fp by computing λw = µw+1

2 .

In order to prevent corrupted parties from inputting λiw values that are not
in {−1,+1}, the protocol for computing the circuit outputs (

∏n
i=1 λ

i
w)2 − 1, for

every wire w (where λiw is the share contributed from party i for wire w), and
the parties can simply check whether it is equal to zero or not. Thus, if any party
cheats by causing some λw /∈ {−1,+1}, then this will be discovered since the
circuit outputs a non-zero value for (

∏n
i=1 λ

i
w)2−1, and so the parties detect this

10

and can abort. Since this occurs before any inputs are used, nothing is revealed
by this. Furthermore, if

∏n
i=1 λ

i
w ∈ {−1,+1}, then the additional value output

reveals nothing about λw itself.

In the next section we shall remove all of the complications by basing our
implementation for FMPC upon the specific SPDZ protocol. The reason why the
SPDZ implementation is simpler – and more efficient – is that SPDZ provides
generation of such shared values effectively for free.

3 The SPDZ Based Instantiation

Functionality 4 (The SPDZ Functionality: FSPDZ)

The functionality consists of seven externally exposed commands Initialize,
InputData, RandomBit, Random, Add, Multiply, and Output and one
internal subroutine Wait.

Initialize: On input (init , p,M,B,R, I) from all parties, the functionality
activates and stores p. Pre-processing is performed to generate data needed
to respond to a maximum of M Multiply, B RandomBit, R Random
commands, and I InputData commands per party.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

RandomBit: On command (randombit , varid) from all parties, with varid
a fresh identifier, the functionality selects a random value r ∈ {0, 1} and
stores (varid , r). The functionality then calls Wait.

Random: On command (random, varid) from all parties, with varid a fresh
identifier, the functionality selects a random value r ∈ Fp and stores
(varid , r). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x+ y) and then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x · y) and then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i 6= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i 6= 0.

11

3.1 Utilizing the SPDZ Protocol

As discussed in Section 2.1, in the offline-phase we use an underlying secure
computation protocol, which, given a binary circuit and the matching inputs to
its input wires, securely and distributively computes that binary circuit. In this
section we simplify and optimize the implementation of the protocolΠoffline which
implements the functionality Foffline by utilizing the specific SPDZ MPC protocol
as the underlying implementation of FMPC. These optimizations are possible
because the SPDZ MPC protocol provides a richer interface to the protocol
designer than the naive generic MPC interface given in functionality FMPC. In
particular, it provides the capability of directly generating shared random bits
and strings. These are used for generating the masking values and pseudorandom
function keys. Note that one of the most expensive steps in FairplayMP [2] was
coin tossing to generate the masking values; by utilizing the specific properties
of SPDZ this is achieved essentially for free.

In Section 3.2 we describe explicit operations that are to be carried out on the
inputs in order to achieve the desired output; the circuit’s complexity analysis
appears in Section 3.3 and the expected results from an implementation of the
circuit using the SPDZ protocol are in Section 3.4.

Throughout, we utilize FSPDZ (Functionality 4), which represents an ideal-
ized representation of the SPDZ protocol, akin to the functionality FMPC from
Section 2.1. Note that in the real protocol, FSPDZ is implemented itself by an of-
fline phase (essentially corresponding to our preprocessing-I) and an online phase
(corresponding to our preprocessing-II). We fold the SPDZ offline phase into the
Initialize command of FSPDZ. In the SPDZ offline phase we need to know the
maximum number of multiplications, random values and random bits required in
the online phase. In that phase the random shared bits and values are produced,
as well as the “Beaver Triples” for use in the multiplication gates performed in
the SPDZ online phase. In particular the consuming of shared random bits and
values results in no cost during the SPDZ online phase, with all consumption
costs being performed in the SPDZ offline phase. The protocol, which utilizes
Somewhat Homomorphic Encryption to produce the shared random values/bits
and the Beaver multiplication triples, is given in [9].

As before, we use the notation [varid] to represent the result stored in the
variable varid by the functionality. In particular we use the arithmetic short-
hands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of calling the Add
and Multiply commands on the functionality FSPDZ.

3.2 The Πoffline SPDZ based Protocol

As remarked earlier Foffline can be securely computed using any secure multi-
party protocol. This is advantageous since it means that future efficiency im-
provements to concretely secure multi-party computation (with dishonest ma-
jority) will automatically make our protocol faster. However, currently the best
option is SPDZ. Specifically, it utilizes the fact that SPDZ can very efficiently
generate coin tosses. This means that it is not necessary for the parties to input

12

the λiw values, to multiply them together to obtain λw and to output the check
values (λw)2− 1. Thus, this yields a significant efficiency improvement. We now
describe the protocol which implements Foffline in the FSPDZ-hybrid model

preprocessing-I:

1. Initialize the MPC Engine: Call Initialize on the functionality FSPDZ

with input p, a prime with p > 2k and with parameters

M = 13 ·G, B = W, R = 2 ·W · n, I = 2 ·G · n+W,

where G is the number of gates, n is the number of parties and W is the
number of input wires per party. In practice the term W in the calculation
of I needs only be an upper bound on the total number of input wires per
party in the circuit which will eventually be evaluated.

2. Generate wire masks: For every circuit wire w we need to generate a
sharing of the (secret) masking-values λw. Thus for all wires w the parties
execute the command RandomBit on the functionality FSPDZ, the output
is denoted by [λw]. The functionality FSPDZ guarantees that λw ∈ {0, 1}.

3. Generate keys: For every wire w, each party i ∈ [1, . . . , n] and for j ∈
{0, 1}, the parties call Random on the functionality FSPDZ to obtain output
[kiw,j]. The parties then call Output to open [kiw,j] to party i for all j and

w. The vector of shares [kiw,j]
n
i=1 we shall denote by [kw,j].

preprocessing-II: (This protocol implements the computation gate table as it is
detailed in the BMR protocol. The correctness of this construction is explained
at the end of Appendix A.)

1. Output input wire values: For all wires w which are attached to party Pi
we execute the command Output on the functionality FSPDZ to open [λw]
to party i.

2. Output masks for circuit-output-wires: In order to reveal the real
values of the circuit-output-wires it is required to reveal their masking values.
That is, for every circuit-output-wire w, the parties execute the command
Output on the functionality FSPDZ for the stored value [λw].

3. Calculate garbled gates: This step is operated for each gate g in the
circuit in parallel. Specifically, let g be a gate whose input wires are a, b and
output wire is c. Do as follows:

(a) Calculate output indicators: This step calculates four indicators
[xa], [xb], [xc], [xd] whose values will be in {0, 1}. Each one of the garbled
labels Ag,Bg,Cg,Dg is a vector of n elements that hide either the vector
kc,0 = k1

c,0, . . . , k
n
c,0 or kc,1 = k1

c,1, . . . , k
n
c,1; which one it hides depends

on these indicators, i.e if xa = 0 then Ag hides kc,0 and if xa = 1
then Ag hides kc,1. Similarly, Bg depends on xb, Cg depends on xc
and Dc depends on xd. Each indicator is determined by some function
on [λa], [λb],[λc] and the truth table of the gate fg. Every indicator is
calculated slightly different, as follows (concrete examples are given after

13

the preprocessing specification):

[xa] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg([λa], [λb])− [λc])

2

[xb] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg([λa], (1− [λb]))− [λc])

2

[xc] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg((1− [λa]), [λb])− [λc])

2

[xd] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg((1− [λa]), (1− [λb]))− [λc])

2

where the binary operator
?

6= is defined as [a]
?

6= [b] equals [0] if a = b,
and equals [1] if a 6= b. For the XOR function on a and b, for example,
the operator can be evaluated by computing [a] + [b]− 2 · [a] · [b]. Thus,
these can be computed using Add and Multiply.

(b) Assign the correct vector: As described above, we use the calculated
indicators to choose for every garbled label either kc,0 or kc,1. Calculate:

[vc,xa] = (1− [xa]) · [kc,0] + [xa] · [kc,1]

[vc,xb] = (1− [xb]) · [kc,0] + [xa] · [kc,1]

[vc,xc] = (1− [xc]) · [kc,0] + [xa] · [kc,1]

[vc,xd] = (1− [xd]) · [kc,0] + [xa] · [kc,1]

In each equation either the value kc,0 or the value kc,1 is taken, depending
on the corresponding indicator value. Once again, these can be computed
using Add and Multiply.

(c) Calculate garbled labels: Party i knows the value of kiw,b (for wire
w that enters gate g) for b ∈ {0, 1}, and so can compute the 2 · n values
Fkiw,b(0‖1‖g), . . . , Fkiw,b(0‖n‖g) and Fkiw,b(1‖1‖g), . . . , Fkiw,b(1‖n‖g).

Party i inputs them by calling InputData on the functionality FSPDZ.
The resulting input pseudorandom vectors are denoted by

[F 0
kiw,b

(g)] = [Fkiw,b(0‖1‖g), . . . , Fkiw,b(0‖n‖g)]

[F 1
kiw,b

(g)] = [Fkiw,b(1‖1‖g), . . . , Fkiw,b(1‖n‖g)].

The parties now compute [Ag], [Bg], [Cg], [Dg], using Add, via

[Ag] =
∑n

i=1

(
[F 0
kia,0

(g)] + [F 0
kib,0

(g)]
)

+ [vc,xa]

[Bg] =
∑n

i=1

(
[F 1
kia,0

(g)] + [F 0
kib,1

(g)]
)

+ [vc,xb]

[Cg] =
∑n

i=1

(
[F 0
kia,1

(g)] + [F 1
kib,0

(g)]
)

+ [vc,xc]

[Dg] =
∑n

i=1

(
[F 1
kia,1

(g)] + [F 1
kib,1

(g)]
)

+ [vc,xd]

where every + operation is performed on vectors of n elements.

14

4. Notify parties: Output construction-done.

The functions fg in Step 3a above depend on the specific gate being evaluated.
For example, on clear values we have,

– If fg = ∧ (i.e. the AND function), λa = 1, λb = 1 and λc = 0 then xa =
((1∧1)−0)2 = (1−0)2 = 1. Similarly xb = ((1∧(1−1))−0)2 = (0−0)2 = 0,
xc = 0 and xd = 0. The parties can compute fg on shared values [x] and [y]
by computing fg([x], [y]) = [x] · [y].

– If fg = ⊕ (i.e. the XOR function), then xa = ((1⊕ 1)− 0)2 = (0− 0)2 = 0,
xb = ((1 ⊕ (1 − 1)) − 0)2 = (1 − 0)2 = 1, xc = 1 and xd = 0. The parties
can compute fg on shared values [x] and [y] by computing fg([x], [y]) =
[x] + [y]− 2 · [x] · [y].

Below, we will show how [xa], [xb], [xc] and [xd] can be computed more efficiently.

3.3 Circuit Complexity

In this section we analyze the complexity of the above circuit in terms of the
number of multiplication gates and its depth. We are highly concerned with
multiplication gates since, given the SPDZ shares [a] and [b] of the secrets a,
and b resp., an interaction between the parties is required to achieve a secret
sharing of the secret a · b. Achieving a secret sharing of a linear combination of
a and b (i.e. α · a + β · b where α and β are constants), however, can be done
locally and is thus considered negligible. We are interested in the depth of the
circuit because it gives a lower bound on the number of rounds of interaction
that our circuit requires (note that here, as before, we are concerned with the
depth in terms of multiplication gates).

Multiplication gates: We first analyze the number of multiplication operations
that are carried out per gate (i.e. in step 3) and later analyze the entire circuit.

– Multiplications per gate. We will follow the calculation that is done per
gate chronologically as it occurs in step 3 of preprocessing-II phase:
1. In order to calculate the indicators in step 3a it suffices to compute one

multiplication and 4 squares. We can do this by altering the equations
a little. For example, for fg = AND, we calculate the indicators by
first computing [t] = [λa] · [λb] (this is the only multiplication) and then
[xa] = ([t] − [λc])

2, [xb] = ([λa] − [t] − [λc])
2, [xc] = ([λb] − [t] − [λc])

2,
and [xd] = (1− [λa]− [λb] + [t]− [λc])

2.

[xa] = ([t]− [λc])
2

[xb] = ([λa]− [t]− [λc])
2

[xc] = ([λb]− [t]− [λc])
2

[xd] = (1− [λa]− [λb] + [t]− [λc])
2

As another example, for fg = XOR, we first compute [t] = [λa]⊕ [λb] =
[λa] + [λb] − 2 · [λa] · [λb] (this is the only multiplication), and then

15

[xa] = ([t]− [λc])
2, [xb] = (1− [λa]− [λb] + 2 · [t]− [λc])

2, [xc] = [xb], and
[xd] = [xa].

[xa] = ([t]− [λc])
2

[xb] = (1− [λa]− [λb] + 2 · [t]− [λc])
2

[xc] = [xb]

[xd] = [xa]

Observe that in XOR gates only two squaring operations are needed.
2. To obtain the correct vector (in step 3b) which is used in each garbled

label, we carry out 8 multiplications. Note that in XOR gates only 4
multiplications are needed, because kc,xc = kc,xb and kc,xd = kc,xa .

Summing up, we have 4 squaring operations in addition to 9 multiplication
operations per AND gate and 2 squarings in addition to 5 multiplications
per XOR gate.

– Multiplications in the entire circuit. Denote the number of multipli-
cation operation per gate (i.e. 13 for AND and 7 for XOR) by c, we get G · c
multiplications for garbling all gates (where G is the number of gates in the
boolean circuit computing the functionality f). Besides garbling the gates
we have no other multiplication operations in the circuit. Thus we require
c ·G multiplications in total.

Depth of the circuit and round complexity: Each gate can be garbled by
a circuit of depth 3 (two levels are required for step 3a and another one for step
3b). Recall that additions are local operations only and thus we measure depth in
terms of multiplication gates only. Since all gates can be garbled in parallel this
implies an overall depth of three. (Of course in practice it may be more efficient
to garble a set of gates at a time so as to maximize the use of bandwidth and
CPU resources.) Since the number of rounds of the SPDZ protocol is in the order
of the depth of the circuit, it follows that Foffline can be securely computed in a
constant number of rounds.

Other Considerations: The overall cost of the pre-processing does not just de-
pend on the number of multiplications. Rather, the parties also need to produce
the random data via calls to Random and RandomBit to the functionality
FSPDZ.4 It is clear all of these can be executed in parallel. If W is the number
of wires in the circuit then the total number of calls to RandomBit is equal to
W , whereas the total number of calls to Random is 2 · n ·W .

Arithmetic vs Boolean Circuits: Our protocol will perform favourably for
functions which are reasonably represented as boolean circuit, but the low round
complexity may be outweighed by other factors when the function can be ex-
pressed much more succinctly using an arithmetic circuit, or other programatic

4 These Random calls are followed immediately with an Open to a party. However,
in SPDZ Random followed by Open has roughly the same cost as Random alone.

16

representation as in [14]. In such cases, the performance would need to be tested
for the specific function.

3.4 Expected Runtimes

To estimate the running time of our protocol, we extrapolate from known public
data [10, 9]. The offline phase of our protocol runs both the offline and online
phases of the SPDZ protocol. The numbers below refer to the SPDZ offline phase,
as described in [9], with covert security and a 20% probability of cheating, using
finite fields of size 128-bits, to obtain the following generation times (in milli-
seconds). As described in [9], comparable times are obtainable for running in the
fully malicious mode (but more memory is needed).

No. Parties Beaver Triple RandomBit Random Input

2 0.4 0.4 0.3 0.3
3 0.6 0.5 0.4 0.4
4 0.9 1.2 0.9 0.9

Table 1. SPDZ offline generation times in milliseconds per operation

The implementation of the SPDZ online phase, described in both [9] and
[14], reports online throughputs of between 200,000 and 600,000 per second for
multiplication, depending on the system configuration. As remarked earlier the
online time of other operations is negligible and are therefore ignored.

To see what this would imply in practice consider the AES circuit described in
[19]; which has become the standard benchmarking case for secure computation
calculations. The basic AES circuit has around 33,000 gates and a similar number
of wires, including the key expansion within the circuit.5 Assuming the parties
share a XOR sharing of the AES key, (which adds an additional 2 · n · 128 gates
and wires to the circuit), the parameters for the Initialize call to the FSPDZ

functionality in the preprocessing-I protocol will be

M ≈ 429, 000, B ≈ 33, 000, R ≈ 66, 000 · n, I ≈ 66, 000 · n+ 128.

Using the above execution times for the SPDZ protocol we can then estimate the
time needed for the two parts of our processing step for the AES circuit. The
expected execution times, in seconds, are given in the following table. These
expected times, due to the methodology of our protocol, are likely to estimate
both the latency and throughput amortized over many executions.

No. Parties preprocessing-I preprocessing-II
2 264 0.7–2.0
3 432 0.7–2.0
4 901 0.7–2.0

5 Note that unlike [19] and other Yao based techniques we cannot process XOR gates
for free. On the other hand we are not restricted to only two parties.

17

The execution of the online phase of our protocol, when the parties are given
their inputs and actually want to compute the function, is very efficient: all
that is needed is the evaluation of a garbled circuit based on the data obtained
in the offline stage. Specifically, for each gate each party needs to process two
input wires, and for each wire it needs to expand n seeds to a length which is
n times their original length (where n denotes the number of parties). Namely,
for each gate each party needs to compute a pseudorandom function 2n2 times
(more specifically, it needs to run 2n key schedulings, and use each key for n
encryptions). We examined the cost of implementing these operations for an
AES circuit of 33,000 gates when the pseudorandom function is computed using
the AES-NI instruction set. The run times for n = 2, 3, 4 parties were 6.35msec,
9.88msec and 15msec, respectively, for C code compiled using the gcc compiler on
a 2.9GHZ Xeon machine. The actual run time, including all non-cryptographic
operations, should be higher, but of the same order.

Our run-times estimates compare favourably to several other results on im-
plementing secure computation of AES in a multiparty setting:

– In [8] an actively secure computation of AES using SPDZ took an offline
time of over five minutes per AES block, with an online time of around a
quarter of a second; that computation used a security parameter of 64 as
opposed to our estimates using a security parameter of 128.

– In [14] another experiment was shown which can achieve a latency of 50
milliseconds in the online phase for AES (but no offline times are given).

– In [18] the authors report on a two-party MPC evaluation of the AES circuit
using the Tiny-OT protocol; they obtain for 80 bits of security an amortized
offline time of nearly three seconds per AES block, and an amortized online
time of 30 milliseconds; but the reported non-amortized latency is much
worse. Furthermore, this implementation is limited to the case of two parties,
whereas we obtain security for multiple parties.

Most importantly, all of the above experiments were carried out in a LAN setting
where communication latency is very small. However, in other settings where
parties are not connect by very fast connections, the effect of the number of
rounds on the protocol will be extremely significant. For example, in [8], an
arithmetic circuit for AES is constructed of depth 120, and this is then reduced
to depth 50 using a bit decomposition technique. Note that if parties are in
separate geographical locations, then this number of rounds will very quickly
dominate the running time. For example, the latency on Amazon EC2 between
Virginia and Ireland is 75ms. For a circuit depth of 50, and even assuming just
a single round per level, the running-time cannot be less than 3750 milliseconds
(even if computation takes zero time). In contrast, our online phase has just 2
rounds of communication and so will take in the range of 150 milliseconds. We
stress that even on a much faster network with latency of just 10ms, protocols
with 50 rounds of communication will still be slow.

18

4 Security Proof

The security proof is contains two steps. In the first step we reduce security
in the semi-honest case, i.e. for an adversary A that does not deviate from the
described protocol and only tries to learn information from the transcript, to
the security of the original BMR protocol. In the second step we show that our
protocol remains secure even if A is malicious, i.e. is allowed to deviate from the
protocol. This second step is performed by giving a reduction from the malicious
model to the semi-honest model. In both steps the adversary A is assumed to
corrupt parties in the beginning of the execution of our protocol.

To be able to follow the proof smoothly we first present some conventions
and notations. In both the original BMR protocol and our protocol the players
obtain a garbled circuit and a matched set of garbled inputs, they are then
able to evaluate the circuit without further interaction. The players evaluate
the circuit from the bottom up until they reach the circuit-output wires. I.e.
the input wires are said to be at the “bottom” of the circuit, whilst the output
wires are at the “top”. In their evaluation the players use the garbled gate g
to reveal a single external value for wire c (i.e. Λc, where c is g’s output wire)
together with an appropriate key-vector kc,Λc = k1

c,Λc
, . . . , knc,Λc . There is only

one entry in the garbled gate that can be used to reveal the pair (Λc,kc,Λc);
specifically if g’s input wires are a and b then entry (2Λa + Λb) in the table
of the garbled gate of g is used (where the entries indices are 0 for Ag, 1 for
Bg, 2 for Cg and 3 for Dg). For each gate we denote the garbled gate’s entry
for which the players evaluate that gate as the active entry and the other three
entries as inactive entries. Similarly we use the term active signal to denote the
value Λc that is revealed for some wire c, and the term active path for the set
of active signals that have been revealed to the players during the evaluation of
the circuit. Recall that in the online phase of our protocol the players exchange
the active signal of all the circuit-input wires. We denote by I the set of indices
of the players that are under the control of the adversary A, and by xI denoted
their inputs to the functionality (note that in the malicious case these inputs
might be different from the inputs that the players have been given originally).
In the same manner, J is the set of indices of the honest-parties and xJ denoted
their inputs. (Therefore |I ∪ J | = n and I ∩ J = ∅.) We denote by W , Win and
Wout the sets of all wires, the set of circuit-input wires (a.k.a. attached wires)
and the set of circuit-output wires of the circuit C. We denote the set of gates
in the circuit as G = {g1, . . . , g|G|}. Recall that κ is the security parameter.

4.1 Security in the semi-honest model

The idea is to show that there exist a probabilistic polynomial-time procedure,
P, whose input is a view sampled from the view distribution of a semi-honest
adversary involved in a real execution of the original BMR protocol6, namely

6
In this section we actually refer to the execution in the hybrid model where the parties have
access to the underlying MPC functionality. We denote it as real execution for convenience.

19

View 1 (The view REAL
BMR
A)

For every i ∈ I the adversary sees the following:

1. Masking shares: Shares of the masking values for all wires W , i.e. {λiw ∈
{0, 1} | w ∈W}.

2. Masking values for attached wires: The ` masking values λw of Pi’s
attached wires w are revealed in the clear.

3. Seeds: Player Pi’s seed values {siw,0, siw,1 ∈ {0, 1}κ | w ∈W}.
4. Seed extensions: For each seed siw,b player Pi sees two pseudo-random

extensions G1(siw,b), G
2(siw,b) ∈ {0, 1}nκ.

In addition the adversary sees:

1. Masking values for output wires: The masking values {λw ∈ {0, 1} |
w ∈Wout}.

2. Garbled circuit: For every gate g the garbled table {Ag, Bg, Cg, Dg |
g ∈ G} where Ag, Bg, Cg, Dg ∈ {0, 1}nκ.

3. Inputs: The input values x̄I .
4. Active path: For every wire w in the circuit one active signal together

with its matched superseed, i.e. (Λw, Sw,Λw), using one entry of the garbled
gate. The rest of the values (i.e. the inactive entries) are indistinguishable
from random.

REAL
BMR
A in View 1; and its output is a view from the view distribution of a semi

honest adversary involved in a real execution of our protocol, namely REAL
Our
A (x̄)

in View 2. Formally, the procedure is defined as

P : {REAL
BMR
A }x̄ → {REAL

Our
A (x̄)}x̄

where x̄ = x1, . . . , xn is the players’ input to the functionality.

In this section we present the procedure P and show that {P(REAL
BMR
A)}x̄

and {REAL
Our
A (x̄)}x̄ are indistinguishable. We then show that the existence of a

simulator, SBMR, for A’s view in the execution of the original BMR protocol
implies the existence of a simulator SOUR for A’s view in the execution of our
protocol. In the following we first describe REAL

BMR
A (View 1) and REAL

Our
A (x̄)

(View 2), then we describe the procedure P and prove the mentioned claims.

We are ready to describe the procedure P (Procedure 3), which is given a view
REAL

BMR
A that is sampled from the distribution of the adversary’s views under

the input x̄ of the players in the original BMR protocol, and outputs a view
from the distribution of the adversary’s views in our protocol (i.e. REAL

Our
A (x̄)).

We will then show that the resulting distribution of views is indistinguishable
from REAL

Our
A (x̄) for every x̄. Since P sees the garbled circuit and the matched

set of (garbled) inputs from all players, it can evaluate the circuit by itself and
determine the active path and the output ȳI , however, P does not knows x̄J
(it only knows x̄I) and thus cannot construct a garbled circuit for our protocol

20

View 2 (The view REAL
Our
A (x̄))

For every i ∈ I the adversary sees the following:

1. Masking values for attached wires: The ` masking values λw of Pi’s
attached wires w are revealed in the clear.

2. Keys. Player Pi’s random keys {kiw,0, kiw,1 ∈ Fp | w ∈W}.
3. Keys extensions. For every key kiw,b, and for every gate g which wire w

enters into, the values{
Fki

w,b
(0‖1‖g), . . . , Fki

w,b
(0‖n‖g),

Fki
w,b

(1‖1‖g), . . . , Fki
w,b

(1‖n‖g) | w ∈W
}
.

In addition the adversary sees:

1. Masking values for output wires: The masking values {λw ∈ {0, 1} |
w ∈Wout}.

2. Construction done. The message construction-done broadcasted by the
functionality.

3. Inputs. The input values x̄I .
4. Open message The message open.
5. Garbled circuit. For every gate g {Ag, Bg, Cg, Dg | g ∈ G} where

Ag, Bg, Cg, Dg ∈ (Fp)n.
6. Active path. For every wire w in the circuit one active signal together

with its matched key-vector, i.e. (Λw,kw,Λw), using one entry of the gar-
bled gate.

21

from scratch, it must instead use the information that can be extracted from it’s
input view.

Procedure 3 (The Procedure P)

Input. A view v taken from distribution REAL
BMR
A under the input x̄.

Output. A view v′ conforming to the message flow in REAL
Our
A (x̄).

The procedure proceeds as follows:

1. Take the masking values for the attached wires and for the output wires
Wout to be the same as in v.

2. Set xI to be the same as in v.
3. To construct the garbled circuit:

(a) Choose a random set of keys {kiw,b | w ∈ W, b ∈ {0, 1}, i ∈ I ∪ J} for
the players, and for each key compute the appropriate 2n PRF values.

(b) Choose a random set of masking values for all wires that are not
attached with the players PI and are not in Wout.

(c) For every gate g in the circuit, with input wires a, b and output wire c,
the algorithm sets the the garbled entries (except one as described im-
mediately) to be random values from (Fp)n whilst for the (2 ·Λa+Λb)-
th entry the algorithm instead conceals the Λc key-vector (in contrast
to the real construction in which the key-vector that the entry con-
ceals depends on the masking values of a, b and c). That is, when the
algorithm construct the garbled gates it ignores the masking values
that it chose in the previous step. For example, take Λa = 1,Λb = 0
and Λc = 1 then the entry by which the players evaluate the gate is
the 2 · Λa + Λb = 2 (i.e. the third) entry which is Cg. Thus P makes
Cg to encrypt the 1-key vector, i.e. kc,1 by:

Ajg
R← Fp

Bjg
R← Fp

Cjg =

(
n∑
i=1

Fkia,1
(0‖j‖g) + Fki

b,0
(1‖j‖g)

)
+ kjc,1

Dj
g
R← Fp

for j = 1, . . . , n as described in Functionality 3. Note that we explicitly
conceal kjc,1 for every element in kc,1 because we already know from
the active path of v that the external value of wire c is Λc = 1.

4. Add the messages construction-done and open to the obvious location in
the resulting view.

Claim 1 Given that the BMR protocol is secure in the semi-honest model, our
protocol is secure in the semi-honest model as well.

22

Proof. From the security of the BMR protocol we know that

{SBMR(1κ, I, xI , yI)}x̄
c≡ {REAL

BMR
A }x̄

thus, for every PPT algorithm, and specifically for algorithm P it holds that

{P(SBMR(1κ, I, xI , yI))}x̄
c≡ {P(REAL

BMR
A)}x̄

then, if the following computational indistinguishability holds (proven in claim
2)

{REAL
Our
A (x̄)}x̄

c≡ {P(REAL
BMR
A)}x̄ (1)

then by transitivity of indistinguishability, it follows that

{P(SBMR(1κ, I, xI , yI))}x̄
c≡ {P(REAL

BMR
A)}x̄

c≡ {REAL
Our
A (x̄)}x̄

⇒ {P(SBMR(1κ, I, xI , yI))}x̄
c≡ {REAL

Our
A (x̄)}x̄

hence, P ◦ SBMR is a good simulator for the view of the adversary in the semi
honest model. �

In the following we prove Equation 1:

Claim 2 The probability ensemble of the view of the adversary in the real exe-
cution of our protocol and the probability ensemble of the view of the adversary
resulting by the procedure P, both indexed by the players’ inputs to the function-
ality x̄, are computationally indistinguishable. That is:

{REAL
Our
A (x̄)}x̄

c≡ {P(REAL
BMR
A)}x̄

Proof. Remember that in the procedure P we do not have any information
about the masking values {λw | w ∈ W} (except of those which are known to
the adversary), therefore we couldn’t compute the indicators xA, xB , xC , xD (as
described in section 3.2) and thus couldn’t tell which key vector is encrypted in
each entry, that is, we couldn’t fill out correctly the four garbled gate’s entries
A,B,C,D. On the other hand, in the procedure P we do know the set of external
values {exvw | w ∈W}, thus, we know for sure that for every gate g, with input
wires a, b and output wire c, the key vector encrypted in the 2Λa + Λb-th entry
of the garbled table of gate g is the Λc -th key vector kc,Λc .

Let us denote by {REAL
Our
A (x̄)}f,x̄,kiw,β ,λj the view of the adversary in the

execution of our protocol (which computes the functionality f) with players’
inputs x̄ when using the keys {kiw,β | 1 ≤ i ≤ n,w ∈ W,β ∈ {0, 1}} and the

masking values {λj | j ∈ W}. Similarly, denote by {P(REAL
BMR
A)}f,x̄,kiw,β ,λj the

view of the adversary in the output of the procedure P.
Given that

{REAL
Our
A (x̄)}f,x̄,kiw,β ,λj

c≡ {P(REAL
BMR
A)}f,x̄,kiw,β ,λj (2)

23

are computationally indistinguishable (i.e. under the same functionality, players’
inputs, keys and masking values) it follows that

{REAL
Our
A (x̄)}x̄

c≡ {P(REAL
BMR
A)}x̄

since the functionality, keys and masking values are taken from exactly the same
distributions in both cases. In the following (claim 3) we prove that Equation 2
holds.

Claim 3 Fix a functionality f , players’ inputs x̄, keys {kiw,β | 1 ≤ i ≤ n,w ∈
W,β ∈ {0, 1}} and masking values {λj | j ∈ W} used in both the execution of
our protocol and the procedure P, then equation (2) holds; that is

{REAL
Our
A (x̄)}f,x̄,kiw,β ,λj

c≡ {P(REAL
BMR
A)}f,x̄,kiw,β ,λj

Proof. Remember that the difference between {REAL
Our
A (x̄)}f,x̄,kiw,β ,λj and {P(REAL

BMR
A)}f,x̄,kiw,β ,λj

are the values of the entries of the garbled gates which are not in the active
path, that is, in {REAL

Our
A (x̄)}f,x̄,kiw,β ,λj these values are computed as described

in section 3.2 while in {P(REAL
BMR
A)}f,x̄,kiw,β ,λj they are just random values from

(Fp)n.
Let D be a polynomial time distinguisher such that

|Pr[D({REAL
Our
A (x̄)}f,x̄,kiw,β ,λj) = 1]−Pr[D({P(REAL

BMR
A)}f,x̄,kiw,β ,λj) = 1]| = ε(κ)

and assume by contradiction that ε is some non-negligible function in κ.

Let C be the boolean circuit that computes the functionality f . For the pur-
pose of the proof we index the gates of C (the set of gates is denoted by G) in
the following manner: C may be considered as a Directed Acyclic Graph (DAG),
where the gates are the nodes in the graph and a output wire of gate g1 which
enters as input wire to gate g2 indicates the edge (g1, g2) in the graph; We com-
pute a topological ordering of the graph, that is, if the output wire of gate g1

enters to gate g2 then the index that g1 gets in the ordering is lower than the
index of gate g2. (Note that there might exist many valid topological ordering
for the same graph). For the sake of the proof, whenever we write gi we refer to
the ith gate in the topological ordering.

We define the hybrid Ht as the view in which the gates g1, g2, . . . , gt are
computed as in the procedure P (i.e. the inactive entries are just random el-
ements from (Fp)n) and the gates gt+1, . . . , g|G| are computed as described in
our protocol (Section 3.2). Observe that H0 is distributed exactly as the view of
the adversary in {REAL

Our
A (x̄)}f,x̄,kiw,β ,λj and H |G| is distributed exactly as the

view of the adversary in {P(REAL
BMR
A)}f,x̄,kiw,β ,λj . Thus, by hybrid argument it

follows that there exists an integer 0 ≤ z < |G|−1 such that the distinguisher D
can distinguish between the two distributions Hz and Hz+1 with non-negligible

24

probability ε′.

Let us take a closer look at the hybrids Hz and Hz+1: Let g be a gate from
layer z + 1 with input wires a, b and output wire c,

– If the view is taken fromHz+1 then the garbled table (Ag, Bg, Cg, Dg) is com-
puted as described in the procedure P, that is, the external values Λa, Λb, Λc
are known and thus the key kc,Λc is encrypted using keys ka,Λa and kb,Λb
in the 2Λa + Λb-th entry (the active entry) while the other three (inactive)
entries are independent of ka,Λa , kb,Λb , ka,Λ̄a and kb,Λ̄b (because P chooses
them at random from (Fp)n).

– If the view is taken from Hz then the garbled table of g is computed correctly
for all the four entries. Let g̃a be a gate whose output wire is a (which, as
written above, is an input wire to gate g); note that by the topological
ordering of the gates the index of g̃a has lower index than the index of g
and thus there is exactly one entry (the active entry) in the garbled table of
g̃a which encrypts ka,Λa while the other three (inactive) entries are random
values from (Fp)

n, therefore reveal no information about ka,Λa , and more
important, no information about ka,Λ̄a . The same observation holds for the
gate g̃b whose output wire is b. We get that in the computation of the garbled
table of gate g (recall that it is in layer z+ 1 and we are currently looking at
hybrid Hz) there is exactly one entry (i.e. the active entry) which depends on
both ka,Λa and kb,Λb while the other three (inactive) entries are depend on at
least one of ka,Λ̄a and kb,Λ̄b , which the distinguisher D has no information
about. Thus, whenever a computation of F using a key from the vectors
ka,Λ̄a or kb,Λ̄b is required in order to compute the inactive entries of gate g

(in the view Hz), we could use some other key k̃ instead; in particular, we
could use F without even know k̃ at all, e.g. when working with an oracle.

In the following we exploit the above observation: since the distinguisher D
has no information about ka,Λ̄a or kb,Λ̄b , we could construct the garbled table
using some other keys, and because we are interested in the result of F under
those keys (and not in the keys themselves) we could even use an oracle to a
PRF. Thus, if D distinguishes between Hz and Hz+1 then we can use it to dis-
tinguish between an oracle to a pseudorandom function and an oracle to a truly
random function (under multiple invocations of the oracle, because there are 2n
keys in the two vectors ka,Λ̄a and kb,Λ̄b).

Let us first define pseudo random function under multiple keys:

Definition 1. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an efficient, length pre-
serving, keyed function. F is a pseudo random function under multiple keys if for
all polynomial time distinguishers D, there is a negligible function neg such that:

|Pr[DFk̄(·)(1n) = 1]− Pr[Df̄(·)(1n) = 1]| ≤ neg(n)

where Fk̄ = Fk1
, . . . , Fkm(n)

are the pseudo random function F keyed with poly-

nomial number of randomly chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are

25

m(n) random functions from {0, 1}n → {0, 1}n. The probability in both cases is
taken over the randomness of D as well.

It is easy to see (by a hybrid argument) that if F is a pseudo random function
then it is a pseudo random function under multiple keys, thus, since the function
F used in our protocol is a PRF then for every polynomial time distinguisher
D̃, every positive polynomial p and for all sufficiently large κ:

|Pr[D̃Fk̄(·)(1κ) = 1]− Pr[D̃f̄(·)(1κ) = 1]| ≤ 1

p(κ)
(3)

We now present a reduction from the indistinguishability between Hz and
Hz+1 to the indistinguishability of the pseudorandom function F under multiple
keys. Given the polynomial time distinguisher D who distinguishes between Hz

and Hz+1 with non negligible probability ε′, we construct a polynomial time
distinguisher D′ who distinguishes between F under multiple keys and a set of
truly random functions (and thus contradicting the pseudorandomness of F).
The distinguisher D′ has an access to O = O1, . . . ,O2n (which is either a PRF
under multiple keys or a set of truly random functions), D′ act as follows:

1. Chooses keys and masking values for all players and wires, i.e. {kiw,b | w ∈
W, b ∈ {0, 1}, i ∈ {1, . . . , n}} and {λw | w ∈W}.

2. Constructs the gates g1, . . . , gz as described in the procedure P, i.e. only the
[active entry] is calculated correctly, the rest three entries are taken to be
random from (Fp)n.

3. Construct the garbled table of gate gz+1 in the following manner: denote its
input wires by a, b and the output wire by c; we want that the key-vector
kc,Λc be encrypted using the key-vectors ka,Λa and kb,Λb and held in the
2Λa + Λb entry, thus:
– Whenever a result of F applied to the key kia,Λa is required, it computes

it correctly as in our protocol. (The same holds for the key kib,Λb).

– Whenever a result of F applied to the key ki
a,Λa

is required, the distin-

guisher D′ queries the oracle Oi instead. (The same holds for the key
ki
b,Λb

; here, however, the distinguisher D′ queries the oracle On+i).
4. Completes the computation of the garbled circuit, i.e. the garbled tables of

gates gz+2, . . . , g|G|, correctly, as in our protocol.
5. Hands the resulting view to D and outputs whatever it outputs.

Observe that if O = Fk̄ then the view that D′ hands to D is distributed
identically to Hz while if O = f̄ then the view that D′ hands to D is distributed
identically to Hz+1. Thus:

|Pr[D′Fk̄(·)(1κ) = 1]− Pr[D′f̄(·)(1κ) = 1]| =
|Pr[D(Hz) = 1]− Pr[D(Hz+1) = 1]| = ε′

where ε′ is a non-negligible probability (as mentioned above), in contradiction to
the pseudo-randomness of F . We conclude that the assumption of the existence
of D is incorrect and thus:

{REAL
Our
A (x̄)}f,x̄,kiw,β ,λj

c≡ {P(REAL
BMR
A)}f,x̄,kiw,β ,λj

26

4.2 Security in the malicious model

When our protocol relies on SPDZ as its underlying MPC then the keys that
each party sees are guaranteed to be uniformly chosen from Fp and the masking
values of all wires are guaranteed to be random values from {0, 1}. Thus, the
garbled circuit is guaranteed to be built correctly and privately by the parties
as a function of the original circuit C (which computes the functionality f), the
set of keys of all parties, the set of masking values of all wires and by the PRF
results that the parties apply to these keys. However, the elements of the last
item (the PRF results) are not guaranteed to be computed correctly (moreover,
below we show that it is a waste to verify the correctness of their computation)
and we must show that cheating in a PRF result(s) would cause the honest
parties to abort.
Specifically, there are two locations in which a maliciously corrupted party might
deviate from the protocol:

– A corrupted party might cheat in the offline phase by inputting a false value
as one (or more) of the PRF results of its keys (i.e. PRF result that is not
computed as described in the protocol).

– A corrupted party Pc, to whom the circuit input wire w is attached, might
cheat in the online phase by sending the external value Λ′w 6= λw ⊕ ρw, i.e.
Pc sends Λw.

It is clear that the first kind of behavior has the same effect as if the adver-
sary inputs to the functionality the value ρ̄w instead of ρw, since Λ̄w = λw⊕ ρ̄w,
and thus, this behavior is permitted to a malicious adversary (i.e. a malicious
adversary is able to change the input to the functionality without being consid-
ered as a cheat since this behaviour is unavoidable even in the ideal model).

We break the proof of the security in the malicious case into two steps: first
we show that the adversary cannot break the correctness of the protocol with
more than negligible probability, and then we use that result (of correctness) in
order to show that the joint distributions of the output of the parties in the ideal
and real worlds are indistinguishable.

Correctness Let us denote the event in which a corrupted party cheats by
inputting a false PRF result in the offline phase as cheat (the event refers to one
corrupted party and we show below that even if only one party cheats then the
honest parties abort). In the following we prove the following claim:

Claim 4 A malicious adversary cannot break the correctness property of our
protocol except with a negligible probability. Formally, denote the set of outputs
of the honest parties in our protocol as ΠJ

SFE and their outputs when computed by
the functionality f as yJ , then for every positive polynomial p and for sufficiently
large κ it holds that

Pr[ΠJ
SFE 6= yJ ∧ΠJ

SFE 6= ⊥ | cheat] ≤ 1

p(κ)

27

Proof. To harm the correctness property of the protocol, the adversary has to
provide to the offline phase incorrect results of F applied to its keys, such that
the generated garbled circuit will cause the honest parties to output some set of
values that is different from yJ .
Let GCSH be the garbled circuit generated by the offline phase in the semi-
honest model, i.e. when the adversary provides the correct results of F , and
let GCM be the garbled circuit resulted in the malicious model (such that in
both cases the random tape used by the underlying MPC, the adversary and the
parties is the same, that is, same keys and masking values are being used).

Observe that if the adversary succeeds in breaking the correctness then there
must be at least one wire c and at least one honest party Pj where the gate g
has input wires a, b and output wire c, such that in the evaluation of GCSH (in
the online phase) the active signal that Pj sees is (v, kjc,v) (where v = Λc is the

external value) and in GCM the active signal is (v̄, kjc,v̄) (that is, the adversary
succeeded in flipping the signal that passes through wire c).

In the following analysis we let the adversary more power than it has in
reality and assume that it can predict, even before supplying its PRF results
(i.e. in the offline phase), which entries are going to be evaluated in the online
phase (i.e. it knows the active path). For example, it knows that for some gate
g with input wires a, b and output wire c, Λa = Λb = 0 and thus the active
entry for gate g is Ag. In addition, observe that the success probability of the
adversary (of breaking the correctness property) is independent for every gate,
thus it is sufficient to calculate the success probability of the adversary for a
single gate and then multiply the result by the number of gates in the circuit.

We first analyze the success probability of the adversary in breaking the
correctness of the gate g with input wires a, b and output wire c. Assume, without
loss of generality, that the active entry of gate g is Ag which is a vector of n
elements from Fp, such that the j-th element of Ag is calculated (as described
in Functionality 3) by

Ajg =

(
n∑
i=1

Fkia,0(0‖j ‖g) + Fkib,0(0‖j ‖g)

)
+ kjc,v (4)

Recall that J is the set of corrupted parties and J = [N] r I. For simplicity
define

Xj , FkIa,0(0‖j ‖g) + FkIb,0(0‖j ‖g) =
∑
i∈I

(
Fkia,0(0‖j ‖g) + Fkib,0(0‖j ‖g)

)
Y j , FkJa,0(0‖j ‖g) + FkJa,0(0‖j ‖g) =

∑
i∈J

(
Fkia,0(0‖j ‖g) + Fkib,0(0‖j ‖g)

)
i.e. Xj is the sum of the PRF results that the adversary provides and Y j is the
sum of the PRF results that the honest player provides. Thus, rewriting equation
(4) we obtain

Ajg = Xj + Y j + kjc,v

28

In order to break the correctness of gate g, the adversary has to flip the active
signal for at least one j ∈ J (i.e. for at least one honest party), that is, the
adversary has to provide false PRF results X̃j such that

Ãjg = X̃j + Y j + kjc,v̄

Let ∆j be the difference between the two hidden keys, i.e. ∆j = kjc,v − kjc,v̄
mod p, then it follows that kjc,v̄ = kjc,v −∆j mod p and thus in order to make

the honest party Pj evaluate the key kjc,v̄ instead of the key kjc,v the adversary

has to set X̃ = X −∆j . Then it holds that

X̃ + Y + kjc,v = X −∆j + Y + kjc,v

= X + Y + kjc,v̄

= Ãjg

as required and the j-th element (which actually verified by Pj) will be flipped.
Observe that in order to succeed the adversary has to find ∆j . But, since kjc,v
and kjc,v̄ are random elements from Fp, the value ∆j is also a random element
from Fp. Note that the adversary provides all the PRF result before the garbled
circuit and the garbled inputs are revealed and thus the values that it provides
are independent of the garbled circuit (in particular, they are independent of the
keys kjc,v and kjc,v̄). Note that the same analysis holds for the entries Bg, Cg, Dg

as well.
Let flipped-g be the event in which the adversary succeeds in flipping the

signal for at least one honest party Pj in the active entry of gate g, it follows
that:

Pr[flipped-g] = Pr[∆j = kjc,v − k
j
c,v̄] =

1

p
<

1

2κ

Now, assume that when the adversary guesses a wrong ∆j for some entry
of some gate, the parties do not abort and somehow can keep evaluating the
circuit using the correct key; then the probability of the adversary breaking the
correctness of the protocol is just a sum of its success probability for all gates.
Let t be a polynomial such that t(κ) is an upper bound for the number of gates
in the circuit, then by union bound we get:

Pr[ΠJ
SFE 6= yJ | cheat] <

t(κ)

2κ
<

1

q(κ)

for every positive polynomial q.

Emulation in the ideal model. In the following we describe the ideal model
in which the adversary’s view will be emulated, then we show the existence of
a simulator S ′OUR in the malicious model which uses the simulator SOUR in the
semi-honest model. The ideal model is as follows:

29

Inputs. The parties send their inputs (x̄) to the trusted party.
Function computed. The trusted party computes f(x̄).
Adversary decides. The adversary gets the output yI and sends to the trusted

party whether to ‘continue’ or ‘halt’. If ‘continue’ then the trusted party
sends to the honest parties PJ the output yJ , otherwise the trusted party
sends abort to players PJ .

Outputs. The honest parties output whatever the trusted party sent them
while the corrupted parties output nothing. The adversary A outputs any
arbitrary (PPT) function of the initial input of the corrupted parties and
the value yJ obtained from the trusted party.

The reason that the adversary may decide whether the honest parties obtain the
output or not is due to the fact that guaranteed output delivery and fairness
cannot be achieved with dishonest majority in the general case (as shown in [6]).

The ideal execution of f on inputs x̄ and corrupted parties PI (who are

controlled by adversary A) is denoted by IDEAL
f
A,I(x̄) and the real execution is

denoted by REAL-MAL
Our
A,I(x̄); in both cases they refer to the joint distribution of

the outputs of all parties. (In the following proof we use REAL
Our
A (x̄) to refer to

the real execution in the semi-honest model).

Proof outline. In the following proof we make use of two procedures P ′
(which is close to the procedure P) and H. The procedure P ′ is given a view
of the adversary in the semi-honest model (or a view that is indistinguishable
to it, e.g. a simulated view) and a set of keys KI, and outputs the exact same
view, but rather, the keys that are opened to the adversary now are KI. The
procedure H is given a view of the adversary in the semi-honest model (or a
view that is indistinguishable to it) and a set of PRF results FI, and outputs
the exact same view, but rather, applies the set of PRF results FI to the view
as if the adversary has provided them in the real execution of the protocol (that
is, the set FI affects the exact same locations in the input view that it would
have affect it in a real execution of the protocol in the malicious model).

The simulator S ′OUR will engage in the ideal computation such that it only
gives the input xI to the trusted party and then receives the output yI . The
simulator S ′OUR also instructs the trusted party whether to abort or not (i.e.
whether to send the honest parties their output). The output of the parties (all
of them) in the ideal settings must be indistinguishable to their output in the
real execution of our protocol.

The idea of the simulation method is that we can use the fact that there
exist a simulator SOUR in the semi-honest model which can construct a garbled
circuit that is indistinguishable from the one constructed by our protocol in the
semi-honest model. By internally running A, the simulator S ′OUR can extract
the inputs of the adversary x̄, the keys KI that were opened to it and the exact
locations in which A has cheated (that is, the set FI of PRF results that it pro-
vides given that the set of keys that it sees are KI). Hence, using the procedures

30

P ′ and H, the simulator S ′OUR can tweak the garbled circuit which resulted by
SOUR in the specific locations to match the garbled circuit.

The procedure P ′:
Let us define the procedure P ′ (Procedure 4) which receives as input a view
simulated by SOUR or a real view of the adversary in the semi-honest model
(REAL

Our
A (x̄)), along with a set of keys KI = {kiw,j | i ∈ I, w ∈ W, j ∈ {0, 1}}

(i.e. two keys per wire per corrupted party) and rebuilds the garbled circuit
just as P did (in the semi-honest case), but instead of using random keys of its
choice it uses the keys received as input for the corrupted parties I. Even though
Procedure P originally used to transform a view of the BMR execution into a
view of the execution of our protocol, we can use it to transform a view of our
protocol into another view of our protocol (e.g. by only changing the keys); this
is exactly what we do in the simulation.

Procedure 4 (The Procedure P ′)

Input.

– A view v taken from distribution REAL
Our
A (x̄) or the output of SOUR.

– A set of keys KI = {kiw,j | i ∈ I, w ∈W, j ∈ {0, 1}}

Output. A view v′ which is the same as v, but in v the garbled circuit is
built using the set of keys KI from the input.

Execute the procedure P on v with the exception that in step 3a use the keys
KI given as input rather than choosing new ones for every key of parties I.

Claim 5 Denote by REAL
Our
A (x̄)(x̄) the view of the semi-honest adversary in our

protocol when the inputs of the parties are x̄, and denote by P ′(REAL
Our
A (x̄)(x̄),KI)

the result of procedure P ′ applied on REAL
Our
A (x̄)(x̄) using the keys KI; then, given

that the keys in KI are chosen uniformly from Fp it follows that for every x̄

REAL
Our
A (x̄)

c≡ P ′(REAL
Our
A (x̄),KI) (5)

Proof. The proof follows identically the proof of Claim 2.

Corollary 51 Given that the keys in KI are chosen uniformly from Fp, the
probability ensemble of the view in the semi honest model REAL

Our
A (x̄) and the

view when the procedure P ′ applied on it (using KI), such that the ensembles
are indexed by the inputs of the parties x̄, are indistinguishable, that is

{REAL
Our
A (x̄)}x̄

c≡ {P ′(REAL
Our
A (x̄),KI)}x̄ (6)

31

The procedure H:
We now define the procedure H (Procedure 5) which is given a view from the
distribution REAL

Our
A (x̄) and a set of PRF results FI (computed correctly or not)

for every key of parties {Pi}i∈I . The procedure returns a corresponding view in
which the garbled circuit is computed as if it was computed in a real execution
of our protocol where the adversary inputs in the offline phase the PRF results
FI.

Let KI, as before, be the set of keys generated for the corrupted parties in
the offline phase, and λI be the set of masking values generated for the circuit
output wires and for the wires that are attached to the corrupted parties (i.e. the
masking values that are in the adversary’s view). Note that the PRF results that
the corrupted parties input to the functionality (in the offline phase) depend only
on the adversary’s random tape r, and on the keys and masking values outputted
to them from the undelying MPC. That is, the PRF results that they provide
can be seen as A(r,KI, λI). Since the PRF results that the corrupted parties
input to the functionality influence only the resulted garbled gates, in the exact
same manner as described in Procedure H; we get the following:

Claim 6 Let REAL-MAL
Our
A,I(x̄)

KI,FI
be the view of the adversary (not the joint-

view of all parties) in the execution of our protocol in the malicious model where
the keys that the adversary sees are KI, and the PRF results that it provides are
FI. Similarly, let REAL

Our
A (x̄)KI

be the view of the adversary in the execution of
our protocol in the semi-honest model where the keys that it sees are KI. For
every {KI,FI} it follows that

REAL-MAL
Our
A,I(x̄)

KI,FI
≡ H(REAL

Our
A (x̄)KI

,FI) = H(REAL
Our
A (x̄)KI

,A(r,KI, λI))

(7)

Proof. The proof follows immediately from the definition of the procedure H.

The simulator S ′OUR:
As mentioned earlier, the simulator S ′OUR uses the procedures H and P ′ de-
scribed above:

1. The simulator S ′OUR runs our protocol internally such that it takes the role
of the honest parties PJ and the trusted party, and uses the algorithm A to
control the parties PI . The simulator halt the internal execution right after
it receives the external values ΛI to all the corrupted parties in the online
phase (that is, it halts after Step ?? of the online phase of Protocol 1). From
the internal execution the simulator S ′OUR can extract (learn) the following
values:
(a) The keys kIw,0, k

I
w,1 (of the adversary, in addition to the honest party’s

keys kJw,0, k
J
w,1 since S ′OUR is the trusted party who chooses them) for

every wire w.
(b) Masking values λ for all wires, in particular, the masking values of the

circuit-input wires that are attached to PI , i.e. λI.

32

Procedure 5 (The Procedure H)

Input. A view v taken from distribution REAL
Our
A (x̄) under the input x̄; and a

set of PRF results FI of F applied to the set of keys of parties {Pi}i∈I (that
is, 2n PRF results for every key {kiw,j | i ∈ I, w ∈W, j ∈ {0, 1}}
Output. A view v′ conforming to the message flow in REAL

Our
A (x̄) but with

modified garbled gates according to FI.
The view v contains all the keys belonging to the corrupted parties I, thus
the procedure can tell which of the PRF results in FI are computed correctly
and which are not. Recall that FI can be seen as a set of vectors from (Fp)n,
formally, we denote the values in FI as follows (where g is the gate to which
wire w enters):

{F̃ki
w,b

(0 ‖ 1 ‖ g), . . . , F̃ki
w,b

(0 ‖ n ‖ g)}i∈I,w∈W,b∈{0,1}

{F̃ki
w,b

(1 ‖ 1 ‖ g), . . . , F̃ki
w,b

(1 ‖ n ‖ g)}i∈I,w∈W,b∈{0,1}

while the correct PRF values as:

{Fki
w,b

(0‖1‖g), . . . , Fki
w,b

(0‖n‖g)}i∈I,w∈W,b∈{0,1}

{Fki
w,b

(1‖1‖g), . . . , Fki
w,b

(1‖n‖g)}i∈I,w∈W,b∈{0,1}

The procedure changes the garbled gates in the view as follows:
Let g be a gate with input wires a, b and output wire c, from Functionality 3
we can see that

F̃kia,0
(0 ‖ j ‖ g) influences Ajg F̃ki

b,0
(0 ‖ j ‖ g) influences Ajg

F̃kia,0
(1 ‖ j ‖ g) influences Bjg F̃ki

b,1
(0 ‖ j ‖ g) influences Bjg

F̃kia,1
(0 ‖ j ‖ g) influences Cjg F̃ki

b,0
(1 ‖ j ‖ g) influences Cjg

F̃kia,1
(1 ‖ j ‖ g) influences Dj

g F̃ki
b,1

(1 ‖ j ‖ g) influences Dj
g

Thus, for every F̃ki
w,b

(α ‖ β ‖ γ) of the above, the procedure computes the

correct value Fki
w,b

(α‖β ‖γ). Then it computes the difference

F∆ki
w,b

(α ‖ β ‖ γ) = F̃ki
w,b

(α ‖ β ‖ γ)− Fki
w,b

(α‖β ‖γ)

Finally, it adds that difference to the appropriate coordinate in one of the
vectors Ag, Bg, Cg, Dg as described above. For instance. let F∆

kia,0
(0 ‖ j ‖ g) =

F̃kia,0
(0 ‖ j ‖ g) − Fkia,0(0 ‖ j ‖ g) then the procedure adds F∆

kia,0
(0 ‖ j ‖ g) to

the value Ag given in v.
When done with those changes, the procedure outputs the resulted view v′.

33

(c) The values FI, i.e. 2n results for every key. Since S ′OUR is the trusted
party in the internal execution, it also knows the PRF results for the
honest parties’ keys. We denote the set of PRF results (for all keys, both
adversary’s and honest party’s) as F. Moreover, observe that S ′OUR can
check whether A has cheated in FI.

(d) From λI and ΛI the simulator S ′OUR can conclude A’s input to the
functionality xI .

2. Now, focusing on the ideal world, the honest parties and S ′OUR (this time as
the adversary) send their inputs to the trusted party. S ′OUR sends xI (that
was extracted earlier).

3. The simulator S ′OUR receives the output yI from the trusted party.
4. S ′OUR now knows A’s input to the functionality xI and the output of f on xI

and xJ (where xJ remains hidden to it), it computes v = SOUR(1κ, I, xI , yI).
5. The simulator S ′OUR computes v′ = P ′(v,KI).
6. The simulator S ′OUR computes v′′ = H(v′,FI) (note that FI = A(r,KI, λI)).
7. Having the modified view v′′ and the garbled circuit GCM within it, S ′OUR

now evaluates the circuit on behalf of the honest players with the inputs xI
and xJ = 0|J|.7 If they abort then S ′OUR instructs the trusted party to not
send the output yJ to PJ (i.e. to output ⊥). Otherwise, if the evaluation
succeeds then S ′OUR instructs the trusted party to output the correct output
yJ . 8

8. The simulator S ′OUR outputs the view v′′ as the adversary’s simulated out-
put.

Indistinguishability: Real vs. Ideal:
To complete the proof of security in the malicious model we have to prove the
following:

Claim 7 The distribution ensemble of the output of the parties under the simu-
lation of S ′OUR and under the real execution of our protocol are indistinguishable.
Formally, let {REAL-MAL

Our
A,I(x̄)}x̄ be the probability ensemble (indexed by the in-

puts of the parties) of the view of the parties that are under the control of the

adversary A in the real execution of our protocol and {IDEAL
S′
OUR

A (x̄)}x̄ be the
probability ensemble of their view in the execution aided by a trusted party (i.e.
in the ideal model with the simulator S ′OUR), then:

{REAL-MAL
Our
A,I(x̄)}x̄

c≡ {IDEAL
S′
OUR

A (x̄)}x̄

Proof. Immediate from the proof of Claim 8, that is, in Claim 8 we state the
same thing, and prove it for every possible set of inputs of the players x̄.

7 Note that the correctness property shown earlier holds for every input of the honest
parties xJ , thus, in order to decide whether to instruct the trusted party to ’halt’ or
’continue’ S ′

OUR can just use some fake input xJ = 0|J|.
8

The decision whether to abort or not is not based on whether the adversary cheated or not,
but rather, based on the actual evaluation of the circuit because there might be cases where the
adversary cheats and influence only the corrupted parties, e.g. when cheating in i-th PRF values
used in a garbled gate of some gate whose output wire is a circuit output wire (where i ∈ I).

34

Claim 8 For every x̄ it holds that

REAL-MAL
Our
A,I(x̄)

c≡ IDEAL
S′
OUR

A (x̄)

Proof. Let V AREAL-MAL(x̄) be the view of the adversary in the real execution of
our protocol (i.e. the view of the adversary that is taken from REAL-MAL

Our
A,I(x̄))

and V
A,S′

OUR

IDEAL (x̄) be the view of the adversary that the simulator SOUR
′ outputs;

also, let OJREAL-MAL(x̄) be the output of the honest parties in the real execution

of the protocol and O
J,S′

OUR

IDEAL (x̄) be their output in the ideal model.
We can obviously restate our claim as:

{V AREAL-MAL(x̄), OJREAL-MAL(x̄)} c≡ {V A,S
′
OUR

IDEAL (x̄), O
J,S′

OUR

IDEAL (x̄)}

Given that V AREAL-MAL(x̄)
c≡ V

A,S′
OUR

IDEAL (x̄) (which is proven in Claim 9) we now
prove the above by a reduction. Assume by contradiction that there exist a PPT
distinguisher D and a non-negligible function ε in κ such that

|Pr[D({V AREAL-MAL(x̄), OJREAL-MAL(x̄)}) = 1]−Pr[D({V A,S
′
OUR

IDEAL (x̄), O
J,S′

OUR

IDEAL (x̄)}) = 1]| = ε(κ)

we describe a distinguisher D′ that is able to distinguish between V AREAL-MAL(x̄)

and V
A,S′

OUR

IDEAL (x̄) with non-negligible probability; note that since we prove the
above for every choice of x̄ the distinguisher may use x̄ in its algorithm. The
distinguisher D′ act as follows:

1. The distinguisher D′ is given a view v of the adversary which is either from a
real execution of the protocol or a simulated view, i.e. either V AREAL-MAL(x̄)

or V
A,S′

OUR

IDEAL (x̄).
2. The view v contains the garbled circuit constructed either by the players

or by the simulator, moreover, as mentioned above, D′ knows the inputs of
all parties (because we prove the claim for specific choice of x̄), thus, D′
evaluate the circuit using x̄ and assign the output of the honest parties into
yJ .

3. The distinguisher D′ hands {v, yJ} to D and outputs whatever it outputs.

From the correctness property shown in the proof of Claim 4 it follows that if
v has been taken from V AREAL-MAL(x̄) then {v, yJ} and {V AREAL-MAL(x̄), OJREAL-MAL(x̄)}
are indistinguishable, otherwise, if v has been taken from V

A,S′
OUR

IDEAL (x̄) then

{v, yJ} and {V A,S
′
OUR

IDEAL (x̄), O
J,S′

OUR

IDEAL (x̄)} are indistinguishable due to the simple
fact that the distinguisher D′ does exactly what the honest parties do in the real
execution. Formally:

|Pr[D({V AREAL-MAL(x̄), OJREAL-MAL(x̄)}) = 1]− Pr[D′(V AREAL-MAL(x̄)) = 1]| = ε2(κ)

|Pr[D({V A,S
′
OUR

IDEAL (x̄), O
J,S′

OUR

IDEAL (x̄)}) = 1]− Pr[D′(V A,S
′
OUR

IDEAL (x̄)) = 1]| = ε3(κ)

where ε2(κ) and ε3(κ) are negligible. It follows that

Pr[D′(V AREAL-MAL(x̄)) = 1] = Pr[D({V AREAL-MAL(x̄), OJREAL-MAL(x̄)}) = 1]− ε2(κ) and

Pr[D′(V A,S
′
OUR

IDEAL (x̄)) = 1] = Pr[D({V A,S
′
OUR

IDEAL (x̄), O
J,S′

OUR

IDEAL (x̄)}) = 1]| − ε3(κ)

35

and thus

Pr[D′(V AREAL-MAL(x̄)) = 1]− Pr[D′(V A,S
′
OUR

IDEAL (x̄)) = 1] = ε(κ)− ε2(κ) + ε3(κ)

which is non-negligible, in contradiction to the result in Claim 9.

Claim 9 Let V AREAL-MAL(x̄) be the view of the adversary in the real execution

of our protocol and V
A,S′

OUR

IDEAL (x̄) be the view of the adversary outputted by the
simulator SOUR

′ such that in both cases the inputs to the protocol are x̄. For
every x̄ it holds that

V AREAL-MAL(x̄)
c≡ V A,S

′
OUR

IDEAL (x̄)

Proof. From the above definitions of Procedure P ′ and H we get:

REAL-MAL
Our
A,I(x̄)

KI,FI
≡ H(REAL

Our
A (x̄)KI

,FI)

c≡ H(P ′(REAL
Our
A (x̄)KI

),FI)
c≡ H(P ′(SOUR(1κ, I, xI , yI)KI

),FI)

Where the first equality is given from Equation 7, the second follows from 5
and the third follows from the operation of the simulator of the semi-honest
model. That is, if there exist a distinguisher who succeed to distinguish between

V AREAL-MAL(x̄) and V
A,S′

OUR

IDEAL (x̄) with non-negligible probability then we can easily
construct a distinguisher who is able to distinguish between REAL

Our
A (x̄) and

SOUR(1κ, I, xI , yI) in contradiction to the security in the semi honest model.

Acknowledgments

The first and fourth authors were supported in part by the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC consolidators grant agreement n. 615172 (HIPS). The second au-
thor was supported under the European Union’s Seventh Framework Program
(FP7/2007-2013) grant agreement n. 609611 (PRACTICE), and by a grant from
the Israel Ministry of Science, Technology and Space (grant 3-10883). The third
author was supported in part by ERC Advanced Grant ERC-2010-AdG-267188-
CRIPTO and by EPSRC via grant EP/I03126X. The first and third authors were
also supported by an award from EPSRC (grant EP/M012824), from the Min-
istry of Science, Technology and Space, Israel, and the UK Research Initiative
in Cyber Security.

References

1. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In H. Ortiz, editor, 22nd STOC, pages 503–513. ACM, 1990.

2. A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-
party computation. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM CCS,
pages 257–266. ACM, 2008.

36

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Simon [22], pages 1–10.

4. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Simon [22], pages 11–19.

5. S. G. Choi, J. Katz, A. J. Malozemoff, and V. Zikas. Efficient three-party compu-
tation from cut-and-choose. In Garay and Gennaro [11], pages 513–530.

6. R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In J. Hartmanis, editor, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 364–369. ACM, 1986.

7. I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In V. Shoup, editor, Advances in Cryptology -
CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes
in Computer Science, pages 378–394. Springer, 2005.

8. I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In I. Visconti and
R. D. Prisco, editors, SCN 2012, volume 7485 of LNCS, pages 241–263. Springer,
2012.

9. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In
J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of LNCS,
pages 1–18. Springer, 2013.

10. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Safavi-Naini and Canetti [21], pages
643–662.

11. J. A. Garay and R. Gennaro, editors. Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part II, volume 8617 of Lecture Notes in Computer Science.
Springer, 2014.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In A. V. Aho, editor,
19th STOC, pages 218–229. ACM, 1987.

13. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious trans-
fer - efficiently. In D. Wagner, editor, Advances in Cryptology - CRYPTO 2008,
28th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 572–591. Springer, 2008.

14. M. Keller, P. Scholl, and N. P. Smart. An architecture for practical actively secure
MPC with dishonest majority. In A. Sadeghi, V. D. Gligor, and M. Yung, edi-
tors, 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 549–560. ACM, 2013.

15. E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computa-
tion for binary circuits. IACR Cryptology ePrint Archive, 2014:101, 2014.

16. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In R. Canetti and J. A. Garay, editors, CRYPTO 2013 Proceedings, Part
II, volume 8043 of LNCS, pages 1–17. Springer, 2013.

17. Y. Lindell and B. Riva. Cut-and-choose yao-based secure computation in the
online/offline and batch settings. In Garay and Gennaro [11], pages 476–494.

37

18. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to
practical active-secure two-party computation. In Safavi-Naini and Canetti [21],
pages 681–700.

19. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party com-
putation is practical. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 250–267. Springer, 2009.

20. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In D. S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,
pages 73–85. ACM, 1989.

21. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology - CRYPTO 2012
- 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer,
2012.

22. J. Simon, editor. Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA. ACM, 1988.

23. A. C. Yao. Protocols for secure computations. In 23rd Annual Symposium on
Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982,
pages 160–164. IEEE Computer Society, 1982.

A The BMR Protocol of [1]

In this appendix we outline the basis of our protocol, which is the BMR protocol
of Beaver, Micali and Rogaway for semi-honest adversaries. (BMR also have a
version for malicious adversaries. However, it requires an honest majority and is
also not concretely efficient.) The protocol is comprised of an offline-phase and
an online-phase. During the offline-phase the garbled circuit is created by the
players, while in the online-phase a matching set of garbled inputs is exchanged
between the players and each of them evaluates the garbled circuit locally. The
protocol is based on the following data items:

Seeds and superseeds: Two random seeds are associated with each wire in
the circuit by each player. We denote the 0-seed and 1-seed that are chosen by
player Pi (where 1 ≤ i ≤ n) for wire w as siw,0 and siw,1 (where 0 ≤ w < W

and W is the number of wires in the circuit and siw,j ∈ {0, 1}κ). During the
garbling process the players produce two superseeds for each wire, where the
0-superseed and 1-superseed for wire w are a simple concatenation of the 0-
seeds and 1-seeds chosen by all the players, namely, Sw,0 = s1

w,0‖ · · · ‖snw,0 and

Sw,1 = s1
w,1‖ · · · ‖snw,1 where ‖ denotes concatenation. Note that Sw,j ∈ {0, 1}L

where L = n · κ.

Garbling wire values: For each gate g which calculates the function fg (where
fg : {0, 1} × {0, 1} → {0, 1}), the garbled gate of g is computed such that the
superseeds associated with the output wire are encrypted (via a simple XOR)
using the superseeds associated with the input wires, according to the truth table
of fg. Specifically, a superseed Sw,0 = s1

w,0‖ · · · ‖snw,0 is used to encrypt a value

M of length L by computing M
⊕n

i=1G(siw,0), where G is a pseudo-random

38

generator stretching a seed of length κ to an output of length L. This means
that every one of the seeds that make up the superseed must be known in order
to learn the mask and decrypt.

Masking values: Using random seeds instead of the original 0/1 values does
not hide the original value if it is known that the first seed corresponds to 0 and
the second seed to 1. Therefore, an unknown random masking bit, denoted by
λw, is assigned to wire w (for 0 ≤ w < W). These masking bits remain unknown
to the players during the entire protocol, thereby preventing them from knowing
the real values ρw that pass through the wires. The values that the players do
know are called the external values Λw. An external value is defined to be the
exclusive-or of the real value and the masking value; i.e., Λw = ρw ⊕ λw. When
evaluating the garbled circuit the players only see the external values of the
wires, which are random bits that tell nothing about the real values, unless they
know the masking values. We remark that each party Pi is given the masking
value associated with its input. Thus, it can compute the external value itself
(based on its actual input) and can send it to all other parties.

BMR garbled gates and circuit: We can now define the BMR garbled cir-
cuit, which consists of the set of garbled gates, where a garbled gate is defined
via a functionality that maps inputs to outputs. Let g be a gate with input
wires a, b and output wire c. Each party Pi (for 1 ≤ i ≤ n) inputs the seeds
sia,0, s

i
a,1, s

i
b,0, s

i
b,1, s

i
c,0, s

i
c,1. Thus, the superseeds produced are Sa,0, Sa,1, Sb,0,

Sb,1, Sc,0, Sc,1, where each superseed is given by Sα,β = s1
α,β‖ · · · ‖snα,β . In addi-

tion, Pi also inputs the output of a pseudo-random generator G applied on each
of these seeds, and its shares of the masking bits, i.e. λia, λ

i
b, λ

i
c.

The output is the garbled gate of g which comprised of a table of four ci-
phertexts, each of them encrypting either Sc,0 or Sc,1. The property of the gate
construction is that given one superseed for a and one superseed for b it is pos-
sible to to decrypt exactly one ciphertext, and reveal the appropriate superseed
for c (based on the values on the input wires and the gate type). The func-
tionality, garble-gate-BMR, for garbling a single gate, is formally described in
Functionality 5.

The BMR Online Phase: In the online-phase the players only have to obtain
one superseed for every circuit-input wire, and then every player can evaluate
the circuit on his own, without interaction with the rest of the players. Formally,
the protocol that implements the online phase is given by Protocol 2.

39

Functionality 5 (garble-gate-BMR)

Let κ denote the security parameter, and let G : {0, 1}κ → {0, 1}2nκ be a
pseudo-random generator. Denote the first L = n · κ bits of the output of G
by G1, and the last nκ bits of the output of G by G2.
The garbling of gate g computing fg : {0, 1} × {0, 1} → {0, 1} with inputs
wires a, b and output wire c is defined as follows:

Inputs: For each gate the inputs are given by

1. Seeds: s1a,0, . . . , s
n
a,0, s1a,1, . . . , s

n
a,1, s1b,0, . . . , s

n
b,0, s1b,1, . . . , s

n
b,1,

s1c,0, . . . , s
n
c,0, s1c,1, . . . , s

n
c,1 where each seed is in {0, 1}κ.

2. PRG output: The output of G applied to each of the seeds above, such
that the first n ·κ bits of the output are denoted by G1 and the other n ·κ
bits by G2.

3. Masking bits. Bits λa, λb and λc.

Outputs: The garbled gate of g is the following four ciphertexts Ag, Bg, Cg, Dg
(in this order that is determined by the external values):

Ag = G1(s1a,0)⊕ · · · ⊕G1(sna,0)⊕G1(s1b,0)⊕ · · · ⊕G1(snb,0)

⊕

{
Sc,0 if fg(λa, λb) = λc

Sc,1 otherwise

Bg = G2(s1a,0)⊕ · · · ⊕G2(sna,0)⊕G1(s1b,1)⊕ · · · ⊕G1(snb,1)

⊕

{
Sc,0 if fg(λa, λ̄b) = λc

Sc,1 otherwise

Cg = G1(s1a,1)⊕ · · · ⊕G1(sna,1)⊕G2(s1b,0)⊕ · · · ⊕G2(snb,0)

⊕

{
Sc,0 if fg(λ̄a, λb) = λc

Sc,1 otherwise

Dg = G2(s1a,1)⊕ · · · ⊕G2(sna,1)⊕G2(s1b,1)⊕ · · · ⊕G2(snb,1)

⊕

{
Sc,0 if fg(λ̄a, λ̄b) = λc

Sc,1 otherwise

40

Protocol 2 (Protocol BMR-online-phase)

Step 1 – send values:
1. Every player Pi broadcasts the external value values on the wires

associated with its input. At the end of this step the players know
the external value Λw for every circuit-input wire w. (Recall that Pi
knows λw and so can compute Λw based on its input.)

2. Every player Pi broadcasts one seed for each circuit-input wire,
namely, the Λw-seed. At the end of this step the players know the
Λw-superseed for every circuit-input wire.

Step 1 – evaluate circuit: The players evaluate the circuit from bottom
up, such that to obtain the superseed of an output wire of the gate, use
Ag if the external values of g’s input wires are Λa, Λb = (0, 0), use Bg if
Λa, Λb = (0, 1), Cg if Λa, Λb = (1, 0) and Dg if Λa, Λb = (1, 1) where a, b
are the input wires. (see the original paper for more details).

Correctness: We explain now why the conditions for masking Sc,0 and Sc,1 are
correct. The external values Λa, Λb indicate to the parties which ciphertext to
decrypt. Specifically, the parties decrypt Ag if Λa = Λb = 0, they decrypt Bg if
Λa = 0 and Λb = 1, they decrypt Cg if Λa = 1 and Λb = 0, and they decrypt Dg

if Λa = Λb = 1.
We need to show that given Sa,Λa and Sb,Λb , the parties obtain Sc,Λc . Con-

sider the case that Λa = Λb = 0 (note that Λa = 0 means that λa = ρa, and
Λa = 1 means that λa 6= ρa, where ρa is the real value). Since ρa = λa and
ρb = λb we have that fg(λa, λb) = fg(ρa, ρb). If fg(λa, λb) = λc then by def-
inition fg(ρa, ρb) = ρc, and so we have λc = ρc and thus Λc = 0. Thus, the
parties obtain Sc,0 = Sc,Λc . In contrast, if fg(λa, λb) 6= λc then by definition
fg(ρa, ρb) 6= ρc, and so we have λc = ρ̄c and thus Λc = 1. A similar analysis
show that the correct values are encrypted for all other combinations of Λa, Λb.

B A Generic Protocol to Implement Foffline

In this Appendix we give a generic protocol Πoffline which implements Foffline

using any protocol which implements the generic MPC functionality FMPC. The
protocol is very similar to the protocol in the main body which is based on
the SPDZ protocol, however this generic functionality requires more rounds of
communication (but still requires constant rounds). Phase Two is implemented
exactly as in Section 3, so the only change we need is to alter the implementation
of Phase One; which is implemented as follows:

1. Initialize the MPC Engine: Call Initialize on the functionality FMPC

with input p, a prime with 2κ < p < 2κ+1.
2. Generate wire masks: For every circuit wire w we need to generate a

sharing of the (secret) masking-values λw. Thus for all wires w the players
execute the following commands

41

– Player i calls InputData on the functionality FMPC for a random value
λiw of his choosing.

– The players compute

[µw] =

n∏
i=1

[λiw],

[λw] =
[µw] + 1

2
,

[τw] = [µw] · [µw]− 1.

– The players open [τw] and if τw 6= 0 for any wire w they abort.
3. Generate garbled wire values: For every wire w, each party i ∈ [1, . . . , n]

and for j ∈ {0, 1}, player i generates a random value kiw,j ∈ Fp and call

InputData on the functionality FMPC so as to obtain [kiw,j]. The vector of

shares [kiw,j]
n
i=1 we shall denote by [kw,j].

42

