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Abstract. Profiled side-channel attacks are understood to be powerful
when applicable: in the best case when an adversary can comprehensively
characterise the leakage, the resulting model leads to attacks requiring
a minimal number of leakage traces for success. Such ‘complete’ leakage
models are designed to capture the scale, location and shape of the pro-
filing traces, so that any deviation between these and the attack traces
potentially produces a mismatch which renders the model unfit for pur-
pose. This severely limits the applicability of profiled attacks in practice
and so poses an interesting research challenge: how can we design pro-
filed distinguishers that can tolerate (some) differences between profiling
and attack traces?
This submission is the first to tackle the problem head on: we propose dis-
tinguishers (utilising unsupervised machine learning methods, but also a
‘down-to-earth’ method combining mean traces and PCA) and evaluate
their behaviour across an extensive set of distortions that we apply to
representative trace data. Our results show that the profiled distinguish-
ers are effective and robust to distortions to a surprising extent.

1 Introduction

1.1 Motivation

The aim of side-channel analysis is to discover—‘learn’—information about the
(secret) internal configuration of a cryptographic device from physical measure-
ments (power consumption, electromagnetic radiation, run time, etc.) collected
while the device is in operation. The discipline of machine learning is precisely
concerned with computational algorithms which are able to ‘learn’ from data—
discover patterns, arrive at meaningful generalisations, make predictions about
previously unseen data instances, and so on. There is consequently a very natu-
ral overlap between the two fields, and increasing attention has been paid to the
potential uses of machine learning techniques as tools for extracting information
from side-channel measurements.

One pertinent problem when learning from data arises when the data is noisy
and some characteristics change across data sets. Such changes are unfortunately
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to be expected in the context of side-channel attacks for at least two reasons.
Firstly, an adversary is unlikely to have access to the precise target device dur-
ing the learning phase and will be forced to make do with a duplicate device.
Secondly, the measurement setup during the attack might not be the same as
the lab setup used during the learning phase. We are hence interested, given
the multitude of machine learning methods, which (if any), could be somewhat
robust with regards to some practically meaningful disparities between the data
sets used for profiling and the data set used during an attack.

1.2 Machine learning for profiling

The umbrella term ‘machine learning’ covers a variety of methods, which we
categorise loosely as ‘supervised’ and ‘unsupervised’. The former describes pro-
cedures which are provided (in a training phase) with a set of data instances
and corresponding a priori known outputs (or ‘labels’), and subsequently aim
to generalise the relationship between the instances and the outputs in such
a way as to reliably map new instances to their corresponding, otherwise un-
known, outputs. The latter describes procedures which do not have access to
any known outputs but seek to find patterns based on the inherent attributes
of the instances relative to one another.

The earliest proposals that utilised some form of ‘learned’ characteristics from
profiling data sets achieved this via Bayesian classification in a supervised man-
ner: so called template DPA attacks utilise multivariate Gaussian distributions,
which are built in a profiling phase [6] from traces with a known key. Recent
strategies have incorporated more explicit machine learning tools such as sup-
port vector machines (SVM) [12,11,14] and random forests [14]. Theoretically,
any supervised classification method could be chosen—with varying degrees of
success as different algorithms are more or less suited to different underlying
data structures. This is already a much-explored theme of recent research and
we do not intend to extend it in this work.

We will focus rather on unsupervised techniques—in particular, unsupervised
clustering algorithms. Clustering is the task of grouping objects (in this case,
observed power consumption traces) in such a way that the objects inside any
given group are similar to one another whilst objects in different groups are
dissimilar. Unlike supervised classification, where new objects are assigned to
an existing class based on knowledge of objects already within that class, a
clustering algorithm aims to find a meaningful arrangement of objects with no a
priori knowledge about the number or characteristics of the underlying classes.

1.3 Unsupervised clustering in conjunction with partition-based
DPA

By applying an unsupervised clustering algorithm to leakage measurements with
known sensitive values we thus learn a meaningful partition of the target values
(a ‘nominal power model’ in the terminology of [25]). Our suggestion is to extract
such a nominal power model in a profiling phase designed to be followed by a



partition-based DPA attack [20] (mutual information (MI) [10], Kolmogorov-
Smirnov (KS) [23], the variance ratio (VR) [20] and its multivariate extension in
the context of Differential Cluster Analysis (DCA) [4], to name a few examples).

Such a strategy represents an interesting middle course between completely
unprofiled attacks relying on difference-of-means or on ‘typical’ power models
such as the Hamming weight (HW) (which in many cases—especially in attacks
against hardware implementations—do not apply), and fully profiled attacks
which comprehensively (and expensively) characterise entire multivariate dis-
tributions for leakage traces. A ‘nominal’ power model need not be perfect in
order for a partition-based DPA to succeed; as long as it captures some (part
of a) meaningful pattern then, provided there is enough data to estimate the
distinguishing statistic sufficiently precisely, key recovery becomes feasible1.

A key advantage of the suggested method is that it is potentially highly ro-
bust and portable: since no ‘meaning’ is ever attached to the cluster labels, there
is less scope for their relevant interpretation to be disrupted by changes between
the profiling and attack scenarios (e.g. measurement set-up, environmental con-
ditions, device age, and imprecise location of interesting windows); all that is
required for the power model to apply effectively to the attack measurements is
that the arrangement of ‘similarly leaking values’ be preserved. This is far less
stringent than requiring the characteristics and precise locations of conditional
multivariate Gaussian distributions to be preserved, which is necessary in order
to port Bayesian templates. The practical challenges of template attacks when
the profiling and attack measurements are generated by distinct devices (or even
just distinct acquisition campaigns) are the subject of considerable attention in
the literature [18,8]; Choudhary et al. [7] find that the main difference is a DC
offset, which may be compensated for to some extent by simply mean-centering
the traces and/or via well-chosen compression techniques such as linear discrimi-
nant analysis or PCA. However, to our knowledge, none of the proposed methods
are able to handle the type of horizontal misalignment or discrepancy between
the profiling and attack measurements to which our (intentionally less precise)
method is robust.

1.4 Our contributions

Firstly, we present a general strategy to integrate (unsupervised) clustering into a
DPA attack flow, which is independent of the particular clustering algorithm and
partition-based distinguisher selected. This is important because the effective-
ness of machine learning tasks is notoriously sensitive to the choice of algorithm;
the ‘best’ choice depends on the form of the data and is generally not known a
priori.

Secondly, we present a couple of example realisations (using K-means and
agglomerative hierarchical clustering, with the univariate [20] and multivariate
1 Note that, in the case that the target function is injective (e.g. the AES S-box),
the ‘trivial’ nominal power model which treats each intermediate value as a distinct
class invariably fails to distinguish between key hypotheses in any partition-based
DPA (see [20,25]). Therefore, a meaningful non-trivial grouping is required.



[4] variance ratio as DPA distinguisher) and show that they do indeed succeed
against a hardware as well as a software implementation of AES. We also propose
an heuristic for extracting a proportional power model under identical profiling
assumptions, for use in a subsequent correlation DPA. This approach outper-
forms the clustered profiling in the software setting (where the device leaks
approximately the Hamming weight of the intermediates); naturally, clustered
profiling maintains an advantage in the hardware setting (where the leakage of
the device is a complex function).

Thirdly, we evaluate the distinguishers across a wide range of ‘distortions’
that we apply to our real world data. We find that the distinguishers remain ef-
fective in a wide range of scenarios where full templating is impossible (or in the
best case very problematic), such as small profile samples, inaccuracy in iden-
tifying exact leakage points, and misalignment, varying measurement precision,
and alternative pre-processing between the attack and profile samples.

1.5 Outline

The rest of the paper proceeds as follows. In Sect. 2.1 we overview DPA, with
special attention to profiling and to the variance ratio as a DPA distinguisher; in
Sect. 2.2 we overview unsupervised clustering in general, and K-means and hier-
archical clustering in particular; in Sect. 2.3 we overview Principal Component
Analysis. Then, in Sect. 3 we describe our general methodology for ‘rough-and-
ready’ profiling and the subsequent attack phases. In Sect. 4 we present our
experimental results, and we conclude in 5.

2 Preliminaries

2.1 Differential power analysis

We consider a ‘standard DPA attack’ scenario as defined in [16], and briefly ex-
plain the underlying idea as well as introduce the necessary terminology here. We
assume that the power consumption P = {P1, ..., PT } of a cryptographic device
(as measured at time points {1, ..., T}) depends, for at least some τ ⊂ {1, ..., T},
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext—a random variable X
R
∈ X—

which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that Pt = Lt ◦ Fk∗(X) + εt, t ∈ τ , where Lt : Z → R describes the data-
dependent leakage function at time t and εt comprises the remaining power
consumption which can be modeled as independent random noise (this simplify-
ing assumption is common in the literature—see, again, [16]). The attacker has
N power measurements corresponding to encryptions of N known plaintexts
xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can
accurately compute the internal values as they would be under each key hypothe-
sis {Fk(xi)}Ni=1, k ∈ K and uses whatever information he possesses about the true
leakage functions Lt to construct a prediction model (or models) Mt : Z →Mt.



A distinguisherD is some function which can be applied to the measurements
and the hypothesis-dependent predictions in order to quantify the correspon-
dence between them, the intuition being that the predictions under a correct key
guess should give more information about the true trace measurements than an
incorrect guess. For a given such comparison statistic,D, the theoretic attack vec-
tor is D = {D(L◦Fk∗(X)+ε,M ◦Fk(X))}k∈K, and the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K
(where x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the observed noise).
Then the attack is o-th order theoretically successful if #{k ∈ K : D[k∗] ≤
D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

Profiled DPA A profiled DPA attack is one in which the adversary has access
to (and control of) a device matching the one they intend to target. They can
therefore, in a preliminary stage, build informed models for the secret-value-
dependent form of the device leakage [6,19,12]. The measurements obtained from
a target device can then be compared with these models (e.g. using Bayesian
classification) to reveal the most likely secret values. The motivation behind
our clustering-based profiled DPA attack is to use an unsupervised clustering
algorithm to obtain a meaningful mapping from intermediate values to leakage
classes in a profiling phase, which can be used in a subsequent attack phase to
hypothetically map new traces to classes under each key guess, thus revealing
the secret key as the one associated with the most demonstrably ‘meaningful’
arrangement. Of course, we do not expect such a method to be anywhere near as
efficient as a detailed, multivariate Gaussian template in the key recovery phase
of the attack, but it is precisely its lack of detail and specificity which enables it
to remain effective in non-ideal attack scenarios.

The variance ratio as a DPA distinguisher Because clustered profiling out-
puts a ‘nominal’ power model—a labelling of distinct leakage classes where the
labels themselves are arbitrary—the DPA phase of the attack must use a distin-
guishing statistic which is invariant to re-labelling of those classes (as per [25]).
These coincide with the ‘partition-based’ distinguishers identified by Standaert
et al. in [20], and include the MI [10], the KS two sample test statistic [23], and
the variance ratio [20].

We choose to practically verify our strategy using the latter of these, because
of its conceptual simplicity, its computational efficiency, its good performance
in previous studies [20,24], and the fact that it very naturally extends to multi-
variate DCA attacks as shown by Batina et al. in [4]. The variance ratio ranks
hypothesis-dependent cluster arrangements according to the proportion of the
overall variance which is accounted for:

DVR(k) =

∑
t∈τ ′

var({Pt,i}Ni=1)2

1
N

∑
m∈M

nm
∑
t∈τ ′

var({Pt,i|M ◦ Fk(xi) = m})2
, (1)



where τ ′ is the attacker’s best knowledge about τ (one hopes that τ ′ ∩ τ 6= ∅),
M is a nominal approximation (taking values in M) for the leakage output by
unsupervised cluster-based profiling, and nm = #{xi|M ◦ Fk(xi) = m}, i.e. the
number of observations in the trace set for which the predicted cluster label is
m.2

2.2 Unsupervised clustering

Clustering is the task of grouping objects together so that those inside any given
group are similar to one another whilst those in different groups are dissimilar,
without any a priori knowledge about the number or characteristics of the un-
derlying classes (unlike supervised classification). All methods learn through an
iterative process involving trial and error, and vary widely in application and
effectiveness depending on the assumed cluster model (hierarchical, centroid-
based, density- or distribution-based, graph-based, and so on) the chosen ‘sim-
ilarity’ measure (e.g. the Euclidean distance between objects), the thresholds
chosen for inclusion or exclusion, and the conjectured number of clusters.

K-means clustering K-means clustering aims to partition the N data objects
into K clusters such that each object belongs to the cluster with the nearest
mean. The mean vectors are called the cluster centroids. Whilst conceptually
simple, the actual arrangement is computationally difficult to achieve (NP-hard,
in fact). Fortunately, heuristic algorithms exist which converge quickly to local
optima over a series of refining iterations.

Formally, if {xi}Ni=1 is a set of (real-valued) d-dimensional observations, the
objective of K-means is to partition the N observations into K < N clus-
ters C = {C1, C2, . . . , CK} so as to minimise the within-cluster sum of squares

arg min
C

K∑
j=1

∑
xi∈Cj

||xi − µj||2.

‘Lloyd’s algorithm’ is a popular heuristic solution:

1. Initialisation: Pick a set of K vectors to serve as the initial centroids (e.g. by
choosing K observations at random from the dataset, by choosing K points
uniformly at random from within the range of the dataset, or by computing
the means of random clusters).

2. Assignment: Assign each observation to the “nearest” centroid, according to
some appropriate distance metric (for example, the Euclidean, Manhattan
or Hamming distance, or one minus the sample correlation between obser-
vations, depending on the type of data).

3. Update: If the assignments changed in step 2, calculate the means of the
observations in the clusters and set these to be the new centroids; else,
return.

2 The variances in Eqn. (1) are squared as per [4]; this makes the univariate VR slightly
different to the original definition given in [20], but (importantly) consistent with
the multivariate version.



For our experiments, we use the in-built Matlab command kmeans, which
performs the above as a preliminary phase (which may or may not converge
to a local minimum). It then treats the output as the starting point for an
‘online’ phase, in which points are reassigned individually (if doing so reduces
the sum of distances), and the centroids recalculated after each reassignment
(instead of in batch). This will converge to a local minimum, but it may not be a
global minimum. Using several replicates with different random starting points
can increase the likelihood of finding a solution which is a global minimum.
We initialise the centroids by drawing K observations at random for each of 5
replicate runs, and we measure closeness according to the Euclidean distance.

Of course, since we are primarily interested in what can be achieved without
prior information on the leakage, we suppose that the correct number of clusters
K is unknown and must be discovered from the data as part of the machine
learning task. We propose to search over different values of K and see which
produces the ‘best’ clustering. Different notions of cluster quality exist; we choose
to work with the silhouette value, defined for the ith object as Si = bi−ai

max(ai,bi)
,

where ai is the average distance from the ith object to the other objects in the
same cluster, and bi is the minimum (over all clusters) average distance from
the ith object to the objects in a different cluster. In our experiments, we select
the number of clusters K to be the one producing the highest mean silhouette
value.

Hierarchical clustering Hierarchical clustering arranges data objects into a
multi-level tree of nested partitions. Clusters which are close on one level are
joined at the next level, so that once objects are associated with each other they
remain so at all higher levels of the tree. Strategies to achieve this can either be
agglomerative, so that each observation starts in its own cluster, and clusters are
merged as the tree is ascended, or they can be divisive, so that all observations
start in one single cluster which is incrementally split as the tree is descended.

An agglomerative procedure proceeds as follows:

1. Compute pairwise ‘dissimilarity’ between objects: Typical notions of distance
include Euclidean, Manhattan, Minkowski, Mahalanobis and Chebychev, but
the algorithm is flexible to other dissimilarity measures which may or may
not strictly satisfy the definition of a metric.

2. Initialise the clusters: We begin with N singleton clusters comprising the
individual objects of the dataset.

3. While K > 1 (i.e., until all objects are collected together in a single cluster
at the top of the tree):
– Compute distance between clusters: Once there is more than one object

in a cluster, there are different ways to do this, e.g., the shortest, furthest,
or average distance between objects in two clusters.

– Merge ‘close’ clusters in pairs.



4. Identify clusters: Partition objects according to the tree structure, either by
computing the inconsistency associated with each link3 and selecting those
above a certain threshold, or by pruning the tree at the point corresponding
to a fixed desired number of clusters.

Our experiments use the Matlab implementation of the above, with the Eu-
clidean distance as the dissimilarity measure (step 1) and average cluster linking
(step 3). For step 4, partitioning according to consistency thresholds should lead
to the ‘most natural’ arrangement and number of clusters; because of the diffi-
culty of a priori selecting the appropriate consistency threshold, we tested all
values from 0.9 to 1.2 in increments of 0.02 and, as for the K-means clustering,
choose the one producing the largest silhouette index.

2.3 Principal component analysis

Principal component analysis (PCA) is a popular method for dimensionality re-
duction. An n ×m matrix is orthogonally transformed so that the m columns
in the new matrix are linearly uncorrelated and sorted in decreasing order of
variance. By construction, the columns are the eigenvectors of the covariance
matrix, sorted according to the size (largest to smallest) of the corresponding
eigenvalues λ1, . . . , λm. The first q < m of these columns maximise (w.r.t. all
other n× q transformations) the total variance preserved whilst minimising the
mean squared reconstruction error

∑m
i=q+1 λi. The hope is that all of the ‘im-

portant’ information will be concentrated into a small number of components.
PCA has been proposed as a means of locating ‘points of interest’ for inclusion

in Gaussian templates [2,17]. It has also been used to pre-process traces for more
efficient non-profiled correlation DPA attacks [5]. Moreover, it is typically used in
combination with unsupervised clustering algorithms to concentrate the relevant
information into a lower dimensional data space so as to avoid the problem of
sparseness, where no observations are ‘close’ (sometimes called the ‘curse of
dimensionality’). It is natural, then, for us to transform the trace data so as
to work with high-ranked principal components only in the clustering phase.
The precise number to retain is normally determined by (arbitrarily) setting a
threshold for the proportion of total variance explained, but since our goal is to
find the ‘best’ cluster arrangement we select the number of projected dimensions
(up to 10) depending on the silhouette values attained in each case.

3 Methodology

The profiling strategy we suggest is independent of the specific choice of learn-
ing algorithm: it can operate with any clustering technique C which returns a
mapping M from intermediate values of the algorithm z ∈ Z to a set of nominal
3 Defined as the height of the individual link minus the mean height of all links at the
same hierarchical level, all divided by the standard deviation of all the heights on
that level.



cluster labels m ∈ M. The success of the subsequent attack stage depends, of
course, on the validity of the clusters discovered by the learning algorithm4.

3.1 Our general profiling strategy

Let {t1, . . . , tNp} be a set of 1×T trace measurements taken from a profiling de-
vice sufficiently similar to the target. Let {zi}

Np

i=1 be a set of known intermediate
values handled by the device during the interval spanned by the measurements.
The strategy, in its most general form, is as follows:

1. Partition the data according to the intermediate values and compute the
mean traces {t̄z}z∈Z .

2. Obtain a mapping M : Z −→M by clustering the mean traces. Values in Z
not represented in the profiling dataset are mapped to cluster C+1 where C
is the total number of clusters identified by the chosen algorithm (essentially,
an ‘other’ category).

3. Use M as the power model in ‘partition-based’ DPA.

3.2 Model building and distinguishers

In practice, there are many options open to the attacker in steps 2 and 3. It
is notoriously difficult to a priori apply the most well-suited machine learning
solution to any particular problem instance [26], and an exhaustive testing of all
possible strategies is infeasible. Given the infeasibility to find ‘optimal’ strategies
across scenarios, we provide some meaningful choices using the methods outlined
in Sect. 2.2 with varying parameters. We suggest to first perform PCA on the
mean traces5 and then to experimentally obtain the best clusterings we can via
each of the two algorithms. We vary the number of components retained as well
as a) the specified number of clusters for the K-means algorithm, or b) the con-
sistency threshold for the agglomerative hierarchical algorithm. In both cases
the ‘best’ cluster arrangements are identified according to the silhouette index.
This ‘best’ model is the one used for the DPA attack, which (for the purposes
of verifying feasibility) we perform using the variance ratio for its conceptual
and computational simplicity, and its natural multivariate extension DCA from
[4]. For the univariate variant (denoted VR(M), where M is either the K-means
acquired (MKM ) or the hierarchical clustering acquired (MHC) power model)
we compute Eqn. (1) pointwise across the window and select the (key guess,time
point) pair which produces the largest score (see Eqn. (2) below); for the mul-
tivariate variant (DCA(M)) we compute Eqn. (1) for the entire window in one
go (see Eqn. (3)).

4 In particular, in the notation of Sect. 2.1, the extent to which {z′|M(z′) = M(z)} ≈
{z′|L(z′) = L(z)}∀z ∈ Z—see [25].

5 Note that this process involves centering around the global mean, thereby avoiding
the DC offset problems highlighted by [7].



DVR(M)(k) = max
t∈τ ′

 var({Pt,i}Ni=1)2

1
N

∑
m∈M

nmvar({Pt,i|M ◦ Fk(xi) = m})2

 , (2)

DDCA(M)(k) =

∑
t∈τ ′

var({Pt,i}Ni=1)2

1
N

∑
m∈M

nm
∑
t∈τ ′

var({Pt,i|M ◦ Fk(xi) = m})2
, (3)

where M is either the K-means acquired (MKM ) or the hierarchical clustering
acquired (MHC) power model.

We also (by way of comparison) introduce a counterpart heuristic to ‘profile’
for correlation DPA on a similar basis. Firstly (denoted MP1), we use the pro-
jection of the mean traces along the first principal direction as the power model;
secondly (denoted MP2), we take all the projections accounting for 70% of the
variance in the mean traces, weight them by their contribution, and either add or
subtract them from a running total depending on their positive or negative cor-
relation with the first principal direction (thus allowing for the possibility that
the relevant variation is contained in more than one component). Analogous to
the nominal profiling, values in Z which are not represented in the sample are
mapped to the global mean. We exploit these power models by computing the
univariate correlation distinguishing vectors at each point in time in the attacked
traces, and choosing the (key guess,time point) pair producing the highest score
(see Eqn. (4) below). Correlation DPA seems a fitting benchmark because of
its known good performance, but we certainly do not make any claims about
the optimality of our ‘profiling’ methods—they are merely heuristics to produce
power models under the same restrictions as the clustering analyses.

DCorr(M)(k) = max
t∈τ ′

{
cov({Pt,i}Ni=1,M ◦ Fk(x))√
var({Pt,i}Ni=1)var(M ◦ Fk(x))

}
, (4)

where M is the proportional model acquired either from the first principal di-
rection (MP1) or by combining information from the directions accounting for
70% of the variance (MP2).

3.3 Experimentally verifying ‘robustness’

Different measurement set-ups, pre-processing and device ageing introduce dis-
crepancies between the profiling and attack samples. DC offset has been recog-
nised as a significant obstacle to classical Gaussian templating which can be
overcome by appropriate compression and normalisation [7]. Since our method
naturally incorporates these steps, it is also robust to DC offset. However, it
goes much further: it operates on the raw attack-stage traces, without requiring
to know or apply the principal subspace projection derived and applied in the
profiling stage, nor even the precise points or window of points for which the
profiled models were built. Hence acquisitions from the target device need not be



made at the same frequency, nor subjected to the same filtering or compression
techniques, for the attack to be implemented. We test the effectiveness of our
method against the following practically relevant scenarios6:

– The precise width and location of the window of points used to build the
cluster-based power model is not known in the attack phase. We simulated
this scenario by choosing non-matching windows. (See Sect. 4.3).

– The attack traces are measured at a different resolution to those from which
the template is built. We achieved this by binning trace values with increas-
ing coarseness. (See Sect. 4.4).

– The attack traces contain more measurement error. We achieved this by
adding Gaussian noise in increasingly large proportion to the observed con-
ditional noise. Note that this incorporates the scenario in which the traces
are misaligned (possibly deliberately, via ‘hiding in the time dimension’
[15]; it also covers countermeasures such as [9,3] which are based on fre-
quency/voltage changing. Assuming some proportion of the traces coincide
for a given intermediate value, the signal will persist weakly, with the re-
maining (non-aligned) traces functioning as noise. (See Sect. 4.5).

– The attack traces have been differently pre-processed. We achieved this by
taking a moving average of increasing window width. (See Sect. 4.6).

– The attack traces are imperfectly aligned, as though (for example) the dy-
namic power saving technique of [9] had been in operation, or a hiding coun-
termeasure such as [27]. Whilst methods exist to improve alignment (see,
e.g. [22]), none are known to remove the problem entirely. By ranging from
small to greater distortions, we approximate cases in which alignment meth-
ods have been applied with varying success. We achieved this by inserting
an increasing number of ‘interpolated’ values in random positions in each
trace. (See Sect. 4.7).

4 Experimental results

We test our strategies on leakages acquired from two unprotected implementa-
tions of AES—one software, running on an ARM microcontroller (10,000 traces
total); one hardware, designed for an RFID-type system (5,000 traces total)7.
In each case, we perform repeated experiments on random subsamples of the
data, for increasing profiling and (disjoint) attack sample sizes with a fixed
6 All our data stems from real devices: one implementation of AES on an ARM7
processor, and one implementation of AES in dedicated hardware (an ASIC custom-
built for the TAMPRES project [1,13]) using a 32-bit architecture but with a serial S-
box look-up. In order to create data sets with different characteristics we did however
not change the measurement setups as this would have been a too cumbersome
process. Instead we manipulated the original data sets and hence, strictly speaking,
the distorted data was created by simulations.

7 The different sample sizes reflect the fact that we sourced independently-generated
datasets for our experiments rather than relying on acquisition set-ups over which
we had full control.



window width (20 for the software traces, 10 for the hardware, because of the
coarser granularity of the latter) around the (already identified) ‘most interest-
ing’ point.8 We then explore the robustness of the attacks to different window
widths and to the various profiling/attack trace discrepancies detailed above.

4.1 ‘Straightforward’ (software) scenario

Fig. 1 shows the guessing entropies (average ranks of the correct subkey [21])
after attacks against the output of the first S-box in software as the sample sizes
vary. Crucially, the clustering strategy can be seen to ‘work’—that is, all the
variants reduce uncertainty about the subkey. The K-means clustering (denoted
‘(MKM )’ in the legend) appears to require a larger profiling sample to produce
an effective power model than the hierarchical clustering (denoted ‘(MHC)’), but
eventually outperforms the latter. The multivariate VR distinguisher (aka DCA
[4]) outperforms the univariate one in the case of both clustered profiles. In this
‘straightfoward’ scenario (the leakage is known to correspond closely to the HW)
our heuristics for acquiring proportional power models also prove effective so that
both correlation attacks (denoted ‘Corr(MP1)’ and ‘Corr(MP2)’) outperform all
those using clustered profiling, with slight advantage to the one relying only on
the first principal direction (MP1). These are even able to recover the subkey
within 800 attack measurements from a profiling dataset of just 200.

0 200 400 600 800
0

50

100

150

Attack sample

Profile sample: 200

0 200 400 600 800
0

50

100

150

Attack sample

Profile sample: 1000

0 200 400 600 800
0

50

100

150

Attack sample

Profile sample: 4000

 

 DCA(M
KM

)

DCA(M
HC

)

VR(M
KM

)

VR(M
HC

)

Corr(M
P1

)

Corr(M
P2

)

Fig. 1: Guessing entropy of partially profiled DPA attacks against an unprotected
software implementation of AES. Window width: 20; reps: 500.

4.2 ‘Problematic’ (hardware) scenario

Hardware leakages are typically less ‘easy’ to exploit (e.g. in simple attacks using
the HW power model; indeed, we tested and found such attacks to fail to recover
the key even when provided with the full 5,000 measurements). The implementa-
tion that we target has two working 32-bit registers, with the byte substitutions

8 Identified by using the (point-wise) conditional means as optimal power models in
(point-wise) correlation DPA, and selecting the one giving the strongest margin of
success.



in each column occurring in parallel with the MixColumns operation on the pre-
vious column. This makes it much harder to isolate a single contributory process
in the overall leakage.

Preliminary investigations revealed considerable variation in the exploitabil-
ity of the different S-boxes; we picked one (S-box 14) which was more amenable
to attack in order to report interesting (but clearly not definitive) results (see
Fig. 2). In this case, theK-means-based profiling coupled with the (multivariate)
DCA distinguisher performs particularly strongly, even outperforming the best
of the two correlation attacks (especially when only 200 traces are available for
profiling).
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Fig. 2: Guessing entropy of partially profiled DPA attacks against an unprotected
hardware implementation of AES. Window width: 10; reps: 500.

We thus learn that there may be cases where ‘cheap’ rough-and-ready nomi-
nal profiling, with minimal prior knowledge, is a relatively effective option. How-
ever, our results are by no means conclusive: performance of machine learning
methods is notoriously scenario-dependent [26], so that (e.g.) minor alterations
in the chosen location or width of the trace window, as well as different al-
gorithms or parameters, may produce wildly different outcomes. (We test for
this in the next section). Moreover, we have not here strived towards a ‘best’
method for acquiring a proportional power model to act as a definitive bench-
mark. Nonetheless, we consider these experimental results to be an interesting
insight into what is possible.

Tab. 1 summarises the parameters chosen by our cluster model selection rule.
As the software profiling sample size increases, the number of clusters (on aver-
age) detected by K-means also increases, close to 9 (unsurprisingly—it is known
to closely follow the HW leakage function). The mean is around 7 or 8 for all
sample sizes in the case of the hardware leakage (where less is known a priori);
around 5 principal components are retained in both cases. The hierarchical al-
gorithm finds quite different (less concise) arrangements, almost always using
only one principal component. However, it clearly captures something meaning-
ful about the true arrangement of the target values, as the effective (though
inefficient) attack phases confirm.



Software Hardware

Sample K-means Hier. K-means Hier.
size K #PC K #PC K #PC K #PC

200 2.1 5.2 55.8 1.0 6.5 5.3 50.1 1.0
1000 4.3 5.3 93.6 1.0 7.9 5.2 92.6 1.0
4000 8.6 5.2 94.1 1.0 8.4 5.3 94.6 1.0

Table 1: Summary of selected cluster-based power models. Window width: 20
for the software, 10 for the hardware; reps: 500. Table reports means.

4.3 Discrepancy in window width and location

Because (in our application) the k-means clustering method consistently outper-
forms the hierarchical method, and because the first of our heuristics for deriving
a proportional power model outperforms the second, from here on, we present
outcomes only of the attacks associated with those two power models. Full re-
sults (additionally spanning a wider range of sample sizes) can be found in the
supplementary material to this submission and will be made available online in
the event of publication.

We now consider scenarios in which the trace window used to derive the
power models varies, and in which it differs (in width and/or location) to the
window selected for the attack.

The top half of Tab. 2 shows the guessing entropies attained by the attacks
against the software traces for different trace window widths. We fixed the profil-
ing sample size at 4000 and the attack sample size at 400 whilst varying both the
profiling and attack window widths, keeping the known interesting point central.
All of the attacks continue to successfully recover the key, with the exception of
the cluster-based DCA and VR when the profiling sample size is as large as 40.

In the case of the hardware traces (bottom half of Tab. 2) the (multivariate)
DCA attack is robust to wider profiling windows, but suffers substantially for the
increase of the attack window. By contrast, profiling for the correlation-based
attacks becomes less effective for a wider profiling window, but when a decent
model has been estimated it remains effective as the attack window widens. The
(univariate) VR attack is robust to either change.

Tab. 3 shows the results of varying the location of the attack window rela-
tive to the profiling window in attacks against both implementations, for fixed
window widths of 20 and 10 for the software and hardware implementations re-
spectively, and a fixed profiling sample size of 4000 (to ensure that the models
themselves are well fitted). The cost of the offset is evident in small sample sizes
for all of the tested attacks against the software traces; larger samples help to
compensate for this.

The clustered and the correlation attacks appear fairly robust in the case
of the hardware traces, with substantial degradation only occurring once the



Attack DCA(MKM) VR(MKM) Corr(MP1)
width −→ 1 4 10 20 40 1 4 10 20 40 1 4 10 20 40

S
of
tw

ar
e

P
ro
fi
le

w
id
th

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

Attack DCA(MKM) VR(MKM) Corr(MP1)
width −→ 1 4 10 20 40 1 4 10 20 40 1 4 10 20 40

H
ar
d
w
ar
e

P
ro
fi
le

w
id
th

1 1 1 1 85 132 1 1 1 1 1 1 1 1 1 1
4 1 1 1 47 116 1 1 1 1 1 1 1 1 1 1
10 1 1 1 60 113 1 1 1 1 1 1 1 1 1 1
20 1 1 1 54 107 1 1 1 1 1 67 80 69 71 74
40 1 1 1 68 119 1 1 1 1 1 126 118 109 118 123

Table 2: Outcomes as the profiling and attack window widths vary. (100 repe-
titions; profiling sample of 4000, attack sample of 400)).

window is shifted by half its own width, suggesting that by that point most of
the informative leakage is outside the window.

Attack Software Hardware
sample DCA(MKM) VR(MKM) Corr(MP1) DCA(MKM) VR(MKM) Corr(MP1)
size −→ 50 400 50 400 50 400 50 400 50 400 50 400

O
ff
se
t

−bw/2c 53 1 87 1 15 1 121 65 68 1 22 1
−bw/4c 37 1 65 1 3 1 51 1 66 1 20 1

0 34 1 72 1 1 1 15 1 65 1 21 1
bw/4c 27 1 83 1 1 1 25 1 76 1 24 1
bw/2c 74 4 109 1 22 1 66 1 113 3 90 1

Table 3: Outcomes when the attack sample window is misaligned with the pro-
filing window. (100 repetitions; window width of 20 for the software implemen-
tation, 10 for the hardware; profiling sample of 4000).

4.4 Discrepancy in measurement resolution

We next simulate discrepancy in measurement resolution, by discretising the at-
tack sample measurements into fewer numbers of equally-sized bins. Tab. 4 shows
the subsequent outcomes: with the exception of the (univariate) VR against the
software traces, the effectiveness of the attacks is largely unchanged, although
with some eventual increase in the number of traces required to achieve the same
reduction in guessing entropy as the measurements reach their most granular.

4.5 Discrepancy in measurement error

Increased measurement error can be simulated simply by adding, to the raw
traces, a (zero mean) Gaussian distributed random sample. The variance is cho-



Attack Software Hardware
sample DCA(MKM) VR(MKM) Corr(MP1) DCA(MKM) VR(MKM) Corr(MP1)
size −→ 50 400 50 400 50 400 50 400 50 400 50 400

N
u
m
b
er

of
b
in
s

256 30 1 86 1 5 1 16 1 68 1 23 1
128 28 1 83 1 5 1 16 1 66 1 21 1
64 38 1 81 1 9 1 17 1 62 1 29 1
32 68 1 107 1 29 1 20 1 65 1 32 1
16 70 1 135 133 26 1 33 1 71 1 55 1

Table 4: Outcomes when the attack acquisition is measured with less precision
than the profiling sample. (100 repetitions; window width of 20 for the software
implementation, 10 for the hardware).

sen in increasing proportion to the (time point specific) conditional variance of
the raw traces, computed via the residuals (the mean for all traces sharing the
same intermediate value, subtracted from the raw measurement). For example
(because of the additive properties of variance) to double the total conditional
variance, one adds a sample with the same variance again; to triple it, one adds
a sample with twice the variance, and so on.

Noise has the expected effect on all tested strategies (Tab. 5): they remain
effective, but the number of traces required for equivalent success scales propor-
tionally. This is by contrast with, for example, strategies using Gaussian tem-
plates with Bayesian likelihood key recovery, which suppose that the random as
well as the deterministic parts of the profiled leakage distributions match those
of the attack-stage measurements.

Attack Software Hardware
sample DCA(MKM) VR(MKM) Corr(MP1) DCA(MKM) VR(MKM) Corr(MP1)
size −→ 50 400 50 400 50 400 50 400 50 400 50 400

N
oi
se

fa
ct
or

1 31 1 93 1 9 1 22 1 86 1 29 1
2 71 1 103 1 33 1 56 1 107 1 65 1
4 100 3 118 8 78 1 71 1 100 14 80 2
8 124 14 115 38 103 1 116 7 123 50 95 9
16 115 52 133 107 129 14 112 40 113 85 114 67

Table 5: Outcomes when noise in the attack sample increases relative to the
profiling sample. (100 repetitions; window width of 20 for the software imple-
mentation, 10 for the hardware)

4.6 Discrepancy in trace pre-processing

It is straightforward to apply additional filtering to the attack traces; we do so by
computing moving averages within a window of increasing width. Tab. 6 shows
the outcomes as the smoothing window widens; they are very robust against the



software implementation—smoothing over two observations actually appears to
aid the attacks—and slightly less so against the hardware (as we would expect,
since the latter completes in fewer clock cycles thereby giving rise to already
shorter, more coarsely sampled traces). As before, the (generally more efficient)
correlation variant is also robust to this particular discrepancy.

Attack Software Hardware
sample DCA(MKM) VR(MKM) Corr(MP1) DCA(MKM) VR(MKM) Corr(MP1)
size −→ 50 400 50 400 50 400 50 400 50 400 50 400

S
m
o
ot
h
in
g

w
in
d
ow

1 43 1 96 1 16 1 19 1 62 1 19 1
2 44 1 75 1 5 1 24 1 59 1 17 1
4 51 1 104 1 5 1 74 1 100 4 79 1
8 77 1 106 1 16 1 111 32 121 54 100 17
16 115 5 123 3 53 1 112 82 118 94 113 64

Table 6: Outcomes when the attack acquisition is smoothed via a moving average
of increasing window width. (100 repetitions; window width of 20 for the software
implementation, 10 for the hardware)

4.7 Non-fixed sampling frequency

Next we explore what happens to the attack outcomes when the traces are
misaligned in some way which the attacker was unable to fully ‘undo’—candidate
causal scenarios include the power saving strategy proposed in [9] and the related
DPA hiding countermeasure in [27] (though successfully circumvented in [3]).
We simulate this distortion in our (already filtered) trace dataset by ‘padding’
an increasing proportion of sample points with simply interpolated additional
values9 in random positions which vary by trace.

The attack outcomes are presented in Table 7. Under these conditions, all of
the tested strategies fail; the correct key ranking does not improve, even as the
number of traces increases.

5 Summary

We have shown that unsupervised clustering can recover nominal power models
for use in effective ‘partition-based’ key recovery attacks, with minimal require-
ments in the profiling phase and a degree of flexibility in the attack phase,
particularly when it comes to distorted attack traces. Via DCA they present
a naturally multivariate methodology to exploit multiple trace points without
requiring alignment, identical measurement set-up, or equivalent pre-processing
between the profile and attack samples. We have also shown that proportional
9 Computed as the mean of the preceding and following measurements.



Attack Software Hardware
sample DCA(MKM) VR(MKM) Corr(MP1) DCA(MKM) VR(MKM) Corr(MP1)
size −→ 50 400 50 400 50 400 50 400 50 400 50 400

In
se
rt
io
n
s

(p
ro
p
.)

0.005 133 125 131 124 139 137 122 125 122 97 117 46
0.01 126 111 134 119 128 135 135 127 123 146 139 108
0.05 120 135 133 123 131 123 125 117 126 127 125 131
0.1 141 134 131 127 129 134 131 116 138 135 126 135
0.5 130 113 138 121 116 131 143 131 128 138 134 131

Table 7: Outcomes when the attack traces are misaligned, as the proportion
of sample points padded increases. (100 repetitions; window width of 20 for the
software implementation, 10 for the hardware)

power models may also be recovered under the same assumptions, leading to
successful correlation DPA attacks which are generally more efficient and almost
as robust as the ‘partition-based’ strategies. Neither are suitable for the task
of evaluation, which requires considering ‘worst case’ attacks in ideal scenarios,
but they do provide further insight into the capabilities of attackers with limited
powers.

Avenues for further work include exploring whether other clustering algo-
rithms are able to improve on the observed example results, and whether there
exist attack strategies better able to deal with the particular distortion of mis-
alignment within an acquisition.
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