Power Analysis Attacks against IEEE 802.15.4
Nodes

Colin O’Flynn and Zhizhang Chen

Dalhousie University,
{coflynn, zchen}@dal.ca

Abstract. IEEE 802.15.4 is a wireless standard used by a variety of
higher-level protocols, including many used in the Internet of Things
(IoT). A number of system on a chip (SoC) devices that combine a radio
transceiver with a microcontroller are available for use in IEEE 802.15.4
networks. IEEE 802.15.4 supports the use of AES-CCM* for encryption
and authentication of messages, and a SoC normally includes an AES
accelerator for this purpose. This work measures the leakage character-
istics of the AES accelerator on the Atmel ATMegal28RFA1, and then
demonstrates how this allows recovery of the encryption key from nodes
running an IEEE 802.15.4 stack. While this work demonstrates the at-
tack on a specific SoC, the results are also applicable to similar wireless
nodes and to protocols built on top of IEEE 802.15.4.

Keywords: AES, side-channel power analysis, DPA, IEEE 802.15.4

1 Introduction

IEEE 802.15.4 is a low-power wireless standard which targets Internet of Things
(IoT) or wireless sensor network (WSN) applications. Many protocols use IEEE
802.15.4 as a lower layer, including ZigBee (which encompasses many different
protocols such as ZigBee IP and ZigBee Pro), WirelessHART, MiWi, ISA100.11a,
6LoWPAN, Nest Weave, JenNet, Thread, Atmel Lightweight Mesh, IEEE 802.15.5,
and DigiMesh (this list only includes networking stacks that target commercial
or industrial applications). As part of the IEEE 802.15.4 standard a security
suite based on AES is included.

This paper presents an attack against a wireless node that uses the IEEE
802.15.4 protocol. We present the following important results from developing
this attack: (1) a shunt-based measurement method for devices with internal
voltage regulators, (2) an attack against the hardware AES engine in the Atmel
ATMegal28RFA1, (3) an attack on AES-128 in CCM* mode as used in IEEE
802.15.4 [18], and (4) a method of causing the AES engine in the target device
to perform the desired encryption. This attack is validated with a hardware
environment (shown in Fig. .

The attack demonstrated here uses side-channel power analysis [21], specifi-
cally a correlation-based attack [5]. We obtained the power measurements in this
work by physically capturing a node and inserting a shunt resistor. In general,

side-channel attacks can be performed with a noncontact electromagnetic (EM)
probe instead, which does not require modification to the device [14]. The EM
measurement typically achieves similar results to the resistive shunt [I7].

This attack does not destroy the node under attack, and the node will con-
tinue to function during the attack. This makes detection more difficult: although
a node is captured, it still appears on the network. The feasibility of capturing
wireless nodes and performing side-channel power analysis has previously been
demonstrated against AES and ECC [9].

This previous demonstration was limited to software implementations of AES
(i.e., not the actual hardware AES used by most nodes), and did not attack the
AES-CCM* operating mode used by IEEE 802.15.4. Instead the attack in [9]
assumed the encrypted data packet transmitted by the node allowed recovery of
the last-round state of the AES algorithm. This is not the case in AES-CCM*
used by IEEE 802.15.4 and most higher-layer protocols: recovering the last-round
state would require a plaintext and ciphertext pair.

In practical scenarios the ability to capture a node, perform the attack, and
return the node all within a short window reduces the risk of detection. The
approach of [9] requires an attacker to passively wait for a transmissions to
record power traces. While passively waiting is a reasonable approach for the
20-60 traces required by [9] to break a software AES implementation, this could
entail an unreasonably long wait period for the thousands of traces typically
required to break a hardware AES peripherals [20]. Our work allows an attacker
to rapidly force the operation to occur, and collecting 20 000 traces can be
accomplished in 15-60 minutes (depends on network stack and how much other
traffic node must process).

The work presented here results in a practical attack against IEEE 802.15.4
wireless nodes that recovers the encryption key in use by the IEEE 802.15.4 layer.
In addition the attack is demonstrated against a hardware AES peripheral as
used by a standards-complaint IEEE 802.15.4 stack. This work is applicable to
protocols that use IEEE 802.15.4 as a lower layer, even if these higher-layer
protocols include additional security. The higher layer often uses the same vul-
nerable AES primitive as the IEEE 802.15.4 layer. Users of these protocols must
carefully evaluate how the vulnerabilities detailed in this paper might apply to
the higher-layer protocols.

We begin by describing the attack on the ATMegal28RFA1 AES hardware
peripheral in Section [2} Next, we look at specifics of the use of AES encryption
on the IEEE 802.15.4 wireless protocol in Section [3] This outlines the challenges
of applying the side-channel attack to the AES-CCM* mode of operation, which
is solved for the case of IEEE 802.15.4 in Section [d] Our application of this to a
real IEEE 802.15.4 node is discussed in Section [5] and our conclusions follow.

2 ATMegal28RFA1 Attack

The Atmel ATMegal28RFA1 is a low-power 8-bit microcontroller with an in-
tegrated IEEE 802.15.4 radio, designed as a single-chip solution for Internet of

Fig. 1. The ChipWhisperer capture hardware is used in this attack, although a regular
oscilloscope will also work.

Things (IoT) or wireless sensor network (WSN) applications [2]. As part of the
IEEE 802.15.4 radio module, a hardware AES-128 block is present, designed to
work with the AES security specification of IEEE 802.15.4. Other examples of
such chips (chips that include an IEEE 802.15.4 radio, microcontroller, and AES
block) include devices from Freescale [13], Silicon Laboratories [38], STMicro-
electronics [41], and Texas Instruments [43].

Before detailing the specifics of the attack on the ATMegal28RFA1, we
present a brief background on side-channel power analysis.

2.1 Side-Channel Power Analysis

Side channel power analysis was first reported in 1998 by Kocher et al [21].

When performing a side-channel power analysis attack on AES-128, we will
be attacking the 16-byte encryption key, denoted k = {ko, k1, -+ ,ki5}. We
assume the input plaintext value is known, the 16-byte plaintext being p =
{po,p1, -+ ,p15}. Finally, we also need to determine a “sensitive value" in the
targeted operation.

For AES, one example of a sensitive value is the output of the S-box after a
byte of the key has been XOR’d with a byte of the plaintext (i.e., SBox(k;®p;)).
We use a “leakage assumption" on the sensitive value, such as that the power
consumption of the device depends on the Hamming weight (HW) of the sensitive
value [5].

To perform the side-channel attack, we attack a single byte of the secret
key, k, at a time. We do this by enumerating all possibilities for the byte being
attacked and calculating a hypothetical intermediate value along with a hypo-
thetical leakage for each guess. Using a tool such as correlation power analysis

(CPA) [5], we can compare the measured power traces to our hypothetical power
traces.

Hopefully, one of the hypothetical power traces will have a large correlation
with the measured power used by the device. Knowing the input values to the
leakage model that resulted in the power trace with the largest correlation gives
us the most likely values the real system was operating on. This requires us to
perform the comparison against a number of traces — if our model is very good
and there is little system noise, it will take few traces for the output of the attack
algorithm to determine the correct key. The CPA attack can break a software
AES-128 implementation on an 8-bit microcontroller in fewer than 30 traces [31].
If our model is incorrect or the system noise is too high, the attack algorithm
may not determine the correct key, even with millions of traces.

The CPA attack has parallels in other fields. Communications systems, for
example, use a matched filter to match a received signal to one of several possi-
ble candidates (called symbols) [29]. In image processing, the normalized cross-
correlation is used to match a feature of an image [11]. Both of these are math-
ematically equivalent to the CPA attack, demonstrating that the CPA attack is
fundamentally an attempt to solve the same problem of matching a noisy signal
with various possible candidates.

Side-channel power analysis has previously been used to break a variety of
hardware devices. Table [I| summarizes published power analysis attacks against
commercially available hardware cryptographic devices. This table does not in-
clude software implementations running on commercially available hardware
or hardware implementations that are not commercial products (i.e., research
projects).

Table 1. Power analysis attacks against commercially available hardware crypto-
graphic implementations. Entries marked with { indicate firmware-based implemen-
tations, but still being commercially available.

Target Cipher |Attack|Ref.
CryptoMemory |proprietary| CPA | 3]
DESFire MF3ICD40| 3DES CPA |[33]
DS2432, DS28E01 | SHA-1 | CPA |[32]
Microchip HCSXXX| KeeLoq | CPA |[12]
ProASIC3 AES | PEA |[39]
SimonsVoss? proprietary| CPA |[35]
Spartan-6 AES CPA |]26]
Stratix II AES CPA |[28]
Stratix III AES | CPA |[2]
Virtex-II 3DES | CPA |[25]
Virtex-4, Virtex-5 AES CPA |[27]
XMEGA AES CPA |[20]
Yubikey 21 AES | CPA |[34]

From Table[1] it can be seen that the CPA attack is an extremely popular
attack for targeting real systems. The only non-CPA attack in [39] was a new
technique called pipeline emission analysis (PEA), used to break the ProASIC3
device. While each of the remaining attacks used CPA, additional work may
be needed before applying the CPA attack. For example in the attack on the
DESFire [33], a preprocessing technique realigned the traces before applying
CPA.

There are more advanced attacks that use a template of the device leakage [6].
Such a template does not use a leakage model based on assumptions, but instead
the leakage model is based on measurements of the target device as it performs
known encryptions. This requires that the attacker has access to a device that
closely matches the target device that they can manipulate or program.

While such template attacks are considerably more powerful — being able
to recover the encryption key with less measurements — the CPA attack using
a simple assumption is more versatile, since it only requires access to the sin-
gle target device of interest. A device vulnerable to a CPA attack will always
be vulnerable to a template attack, and it is almost certain that the template
attack will improve the success rate further. For this reason, this work deals
solely with the CPA attack, which also aligns this work with previous pub-
lications of successful CPA attacks against commercially available encryption
hardware [12J20025126/27/28/33|34/32/35142].

This paper uses the partial guessing entropy (PGE) to measure the attack
success. PGE provides an indicator of the reduction in search space for each
of the 16 key bytes. A PGE of zero for every key byte indicates that a full
encryption key was recovered. Details of this metric are given in Appendix [7]

To perform this side-channel attack, we evaluate a method of physically mea-
suring power on the ATMegal28RFA1 in Section We then determine an
appropriate power model in Section and we present the results of the CPA
attack in Section 2.4, We present additional considerations for attacking later
rounds of the AES algorithm in Section 2.5} these later-round attacks are re-
quired for the AES-CCM* attack.

2.2 Power Measurement

Power measurement is typically performed by inserting a resistive shunt into the
power supply of the target device, and measuring the voltage drop across the
shunt. Because devices often have multiple power supplies (such as VCClq e,
VCCro, VCCrF), the shunt must be inserted into the power supply powering
the cryptographic core. As with many similar IEEE 802.15.4 chips [13I384T43],
the core voltage of the ATMegal28RFA1 is lower (1.8 V) than the 10 voltage
(typically 2.8-3.3 V) [2]. Since these chips are designed to operate from a single
3V coin cell battery, the lower core voltage reduces power consumption, whereas
the higher 10 voltage allows the device to operate directly from the coin cell.
To avoid requiring an external voltage regulator for the lower core voltage,
most of these devices also contain an integrated 1.8 V voltage regulator. Some
devices require an external connection from the regulator output pin to the

VCC (3.3V) Y P |/0 Drivers

Voltage
Regulator
, Voiff
_E\/\/\ P Digital Core
47Q)

EE ATMega128RFA1

Fig. 2. Because of the internal connection of the voltage regulator for the core voltage,
the measurement shunt resistor must be mounted in the decoupling capacitor path.

VCCeore pin. With this type of device we could perform the power measurements
by either (a) inserting a shunt resistor between the output and input, or (b)
using an external low-noise power supply with a shunt resistor (as in [9]). The
ATMegal28RFA1 is not such a device — it internally connects the regulator to the
VCCeore pin, but does require a decoupling capacitor placed on the VCCl.,.. pin
(which also serves as the output capacitor for the voltage regulator). By inserting
a shunt resistor into the path of the decoupling capacitor, we can measure high-
frequency current flowing into the VCC,, . pin. Note that this measurement
will be fairly noisy, as we will also have noise from current flowing out of the
voltage regulator. This is shown schematically in Fig. 2|

(R Tr=

gsf!

Fig. 3. A 0603-sized 47-ohm resistor was inserted into the VCClcore decoupling capac-
itor, and a differential probe is used to measure across this resistor.

Fig. [3] shows the implementation of this arrangement, where a differential
probe is placed across the resistor. An example of the power measurement re-
sulting from this probe is shown in Fig. [l A number of measurements with a
regular oscilloscope are overlaid to provide an indication of the repeatability of
the measurement.

ATMegal28RFA1 Power Trace

0.15f

0.10

Power Consumption

0.00f

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (uS)

Fig. 4. This figure shows the power trace for the first 1.2 1S of the AES-128 encryption.
A total of ten such traces have been overlaid to demonstrate the consistent nature of
the signal.

2.3 Related Hardware Attack

To the authors’ knowledge, the only previous published attack of an Atmel prod-
uct with hardware AES acceleration was the XMEGA attack by Kizhvatov [20].
We used the XMEGA attack as a starting point, with the assumption that dif-
ferent Atmel products may use the same internal AES design.

Kizhvatov determined that for a CPA attack on the XMEGA device, a vulner-
able sensitive value was the Hamming distance between successive S-box input
values. These input values are the XOR of the plaintext with the secret key that
occurs during the first AddRoundKey. This suggests a single S-box is implemented
in hardware, with successive applications of the input values to the S-box.

Our notation considers p; and k; to be a byte of the plaintext and encryption
key respectively, where 0 < ¢ < 15. To determine an unknown byte k;, we
first assume we know a priori the value of p;, p;—1, and k;_1. We discuss the
determination of k;_; later, but we can assume for now that byte k;_; is known.

This allows us to perform a standard CPA attack, where the sensitive value
is given by the Hamming weight of . That is to say the leakage for unknown
encryption key byte i is: [; = HW (b;). Provided ko is known, this attack can
proceed as a standard CPA attack, with only 28 guesses required to determine
each byte.

bi=(Pi-1® ki) ®Pidki), 1<i<15 (1)

As suggested in [20], if ko is unknown in practice, an attacker can simply
proceed with an attack for all 2% possibilities of ky. The attacker may then test
each of the resulting 256 candidate keys to determine the correct value of k.
This would entail a total of 2% x (2% x 15) guesses.

For the specific case of kg, a more straightforward approach exists. The author
of [20] later determined that ko can be determined directly by using a leakage
assumption based on the Hamming distance from the fixed value 0x00. This
leakage function is shown in (2)).

lo=HW (by) = HW (po ® ko) (2)

This allows the entire encryption key to be attacked with a total of 16 x 28
guessesﬂ
We now attempt to apply this attack to a different device, the ATMegal28RFA1.

2.4 Application to ATMegal28RFA1

Our experimental platform was a Dresden Elektronik radio board, model number
RCB128RFA1 V6.3.1. As mentioned previously, power measurements were taken
by inserting a resistor between the VCC,,.. power pin and decoupling capacitor.
A differential probe was used to measure the voltage across this resistor. Fig. [f]
shows the complete capture setup.

To sample the power measurements, we used an open-source platform called
the ChipWhisperer Capture Rev2 [31]. This capture hardware synchronizes its
sampling clock to the device clock, and we configured it to sample at 64 MS/s
(which is 4 times the ATMegal28RFA1 clock frequency of 16 MHz).

To reduce noise in the power traces used for side-channel analysis, a band-
pass filter with a passband of 3-14 MHz was inserted between the output of the
differential probe and the low-noise amplifier input of the ChipWhisperer.

We implemented a simple test program in the ATMegal28RFA1 that en-
crypts data received over the serial port on the experimental platform. This
encryption is done via either a software AES-128 implementation or the hard-
ware AES-128 peripheral in the ATMegal28RFA1. When using the hardware
peripheral, the encryption takes 25 us to complete, or about 400 clock cycles.

We used a standard correlation power analysis (CPA) attack [5], ranking the
most likely byte as the one with the highest correlation values. To evaluate our

! This is not published in their paper, but was described in private communication
from the author.

measurement toolchain, we first performed an attack against a software AES
implementation on the ATMegal28RFA1.

Fig. [p] shows the results of the CPA attack against the software AES-128
implementation: we recovered the complete key in under 60 traces. These results
can be compared to similar attacks using the ChipWhisperer hardware, where
a software AES implementation on an AVR microcontroller is broken in around
30 traces [31].

PGE for Software AES-128 on ATMegal28RFAl

140
Byte O -~ Byte9
Byte 1 --- Byte 10
1200 R\ e Byte2 - - Bytell f
~~~~ Byte 3 Byte 12
—_ - - Byte4d Byte 13
2 1004 -- B 1
© yte 5 — Byte 14
= -- Byte6 — Bytel5
o - - —
S sgol Byte 7 Average | |
=} - Byte8
w
(O]
2 6ol
]
o)
©
—
$ 40
<
20+
0
0 40 60 80 100

Trace Number

Fig. 5. Attacking a software AES algorithm on the ATMegal28RFA1 is used to confirm
that the measurement setup is a viable method of measuring the leakage. Here the PGE
across all bytes falls to zero in under 60 traces, completely recovering the key.

We then recorded a total of 50 000 power traces, where the ATMegal28RFA1
was performing AES-128 ECB encryptions using random input data during
the time each power trace was recorded. For each trace, 600 data points were
recorded at a sampling rateﬂ of 64 MS/s. Each trace therefore covered about the
first third of the AES encryption.

Our initial CPA attack was repeated five times over groups of 10 000 traces.
The resulting average partial guessing entropy for each byte is shown in Fig. [6]
The first byte (which uses the leakage assumption of ) has the worst perfor-
mance, as the guessing entropy does not reach zero with 10 000 traces.

? Note that this 64 MS/s sample rate is successful because the capture hardware
samples synchronously with the device clock. If using a regular oscilloscope with an
asynchronous timebase we expect a much higher sample rate to be required, similar
to that reported in the XMEGA attack.



Examples of the correlation output vs. sample point are shown in Fig. [7]
which shows the peaks at the output of the correlation function on the CPA
attack for the “correct" key guess. The sign of the peak is not important —
the sign will flip depending on probe polarity — but note that the correct key
guess results in a larger magnitude correlation than the incorrect guess at certain
points. These points are when the physical hardware is performing the operation

in (T).

Guessing of k;_; This attack used the leakage of the first byte ¢ = 0 to
bootstrap the key recovery. Once we know this byte, we can use to recover
successive bytes.

Practically, we may have a situation where ¢ — 1 is not recoverable. Previous
work assumed either some additional correlation peak allowing us to determine
i—1, or the use of a brute-force search across all possibilities of the byte i —1 [20].
We can improve on this with a more efficient search algorithm, described next.

The leakage function could be rewritten to show more clearly that the
leaked value depends not on the byte values, but on the XOR between the two
successive bytes, as in .

by = (kic1 ® ki) ® (pic1®pi), 1<i<15 (3)

The side-channel attack can be performed with the unknown byte k;_1 set
to 0x00, and the remaining bytes are recovered by the CPA attack described
previously. These recovered bytes are not the correct value, but instead provide
the value that has to be XOR’d with the previous byte to generate the correct
byte.

The 256 candidate keys can then be generated with almost no computational
work, by iterating through each possibility for the unknown byte k;_1, and using
the XOR values recovered from the CPA attack to generate the remaining byte
values k;, kiv1,- -, k1.

This assumes we are able to directly test those candidate keys to determine
which is the correct value. As is described in the next section, we can instead
use a CPA attack on the next-round key to determine the correct value of k;_1.

2.5 Later-Round Attacks

Whereas previous work has been concerned with determining the first-round
encryption key, we will see in Section [4] that information on later-round keys is
also required.

We determined that for later rounds the leakage assumption of and
still holds, where the unknown byte k; is a byte of the round key, and the
known plain-text byte p; is the output of the previous round. We can extend our
notation such that the leakage from round r becomes I = HW (b]), where each
byte of the round key is k], and the input data to that round is pi.

10



PGE for Hardware AES-128 on ATMegal28RFAl, r=1

140
Byte0O  --- Byte9
Bytel --- Bytel0
120 Byte2  --- Bytell [
Byte3 ~— Bytel2
Byte4 — Byte13
g Byte5 — Byte 14 ||
'E Byte6 — Byte 15
SURR) Byte7 === Average ||
w Byte 8
U]
o
o 60 |
(o)}
o
g
I 40 |
20 |
ol N e U

4000 8000 10000
Trace Number

Fig. 6. The CPA attack on the hardware AES peripheral reduces the guessing entropy
to reasonable levels in under 5000 traces, and is able to recover the key in around
10 000 traces.

Location of Correlation Peaks for Bytes 1 and 2

Byte 1 - Correct
—— Byte 1-Incorrect
Byte 2 - Correct

Byte 2 - Incorrect
0.08
-06 - /A N 5 -

Power Consumption (unitless)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
Sample Number

Fig. 7. Correlation peaks for byte ¢ = 1 and ¢ = 2. The “incorrect guess" means the
2% — 1 guesses which are not the value of k;. The sample number refers to the sample
points since start of the encryption operation, again sampling at 64 MS/s.

11



Examples of the PGE when attacking the start of the third round (r = 3)
are given in Fig. [8| The entropy change for all rounds tested (r = 1,2, 3,4) was
similar.

For details of the execution time of the hardware AES implementation, refer
to Table [2| This table shows the samples used for each byte in determining the
most likely encryption key for the first four rounds. For byte 0 (the first byte),
is the sensitive operation. For later bytes is the sensitive operation.

Note the sample rate is four times the device clock, and in Table 2] the sample
delta from start to end of the sensitive operations within each round is about
64 samples, or 16 device clock cycles. This suggests that a sensitive operation
is occurring on each clock cycle. Each round takes approximately 32-34 cycles
based on the repeating nature of the leakages in later rounds.

PGE for Hardware AES-128 on ATMegal28RFA1l, r=3

120
Byte O --- Byte9
Byte 1 --- Byte 10
----- Byte 2 --- Bytel1l ||
~~~~ Byte 3 — Byte 12
- - Byte4d — Byte 13
v - - Byte5 — Bytel4
-'l_S -- Byte6 — Byte15 [|
\n - - Byte7 = Average
o --- Byte8
]
a
]
o
o
g
<
6000 8000 10000

Trace Number

Fig. 8. Attacking later rounds in the AES peripheral is also successful using the same
leakage assumptions as the first-round attack.

Determining k;_; Using Later Rounds As described in Section we can
perform the CPA attack on byte k; where k;_; is unknown by determining not
the value of the byte, but the XOR of each successive byte with the previous
key. This means performing the attack first where k;_; is assumed to be 0x00.

By then enumerating all 28 possibilities for k;_;, we can quickly generate 28
candidate keys to test. But if we are unable to test those keys, we need another
way of validating the most likely value of k;_.

12

Table 2. A small range of points is selected from each trace, corresponding to the
location of the device performing for ¢ = 0, or for + > 1. The variable r
corresponds to the AES round being attacked, and ¢ is the byte number.

r=1|r=2|r=3|r=4
66-70 [198-204|336-342(474-478
70-75 |205-210(340-345(478-481
73-78 |208-215|345-348|482-489
79-83 (213-216|350-355[486-490
81-88 [218-221|355-368(490-494
85-90 |220-225|358-361(494-498
89-95 (225-233|362-365(498-501
93-98 (230-235|366-370{502-505
98-102 [233-237|370-374|506-508
101-106|237-241(373-377|510-513
106-111|240-247(378-383|514-519
110-114|245-250(382-385(518-521
114-119|248-254|385-390|522-524
118-123|253-258(390-394|525-529
121-126|258-265(394-398|530-534
126-129|262-268(398-402|534-538

0~ O Ok W N O

T e)
_wNn =OoO

—_
(@3]

If we know the initial (first-round) key, we can determine the input to the
second round, and thus perform a CPA attack on the second-round key. Instead
we have 256 candidates for the first round (r = 1), and want to determine which
of those keys is correct.

To determine which of the keys is correct, we can perform a CPA attack on
the first byte of the second round, k2, repeating the CPA attack 256 times, once
for each candidate first-round key.

The correlation output of the CPA attack will be low for all guesses of k2
where k! is wrong, and only for the correct guess of k and k' will there be a
peak.

This technique will be used in Section where we cannot test candidate
keys as we are not recovering the complete key.

3 IEEE 802.15.4 Security

IEEE 802.15.4 is a low-power wireless standard, sending short data packets of
up to 127 bytes at bit-rate of 250 kbit/s. Devices running TEEE 802.15.4 can
achieve extremely low power consumption, running for years on a small bat-
tery [I7]. When we refer to “IEEE 802.15.4," we are specifically targeting the
IEEE 802.15.4-2006 standard.

The IEEE 802.15.4 standard is generally used as a lower layer with another
network on top, as IEEE 802.15.4 does not specify details such as routing or dis-
tribution of keying material. Examples of popular higher-layer protocols include
ZigBee and ISA100.11a (see Section [1]for a full enumeration). These higher-layer

13

protocols often use IEEE 802.15.4 level security in combination with higher-level
security — but this higher-layer security frequently uses the cryptographic prim-
itives provided by IEEE 802.15.4. This paper demonstrates the vulnerabilities
of these primitives, and those vulnerabilities may also exist in higher-layer pro-
tocols.

The IEEE 802.15.4 standard uses AES-128 as the basic building block for
both encryption and authentication of messages. The standard defines a mode
of operation called CCM*, which extends the regular CCM mode by allowing
the use of encryption without authentication [I§].

CCM itself is a combination of counter mode of AES with cipher block chain-
ing message authentication code (CBC-MAC) [45]. For the side-channel attack,
we are only concerned with the details of data passed to the AES-128 block, and
not the further processing that occurs after this block.

The AES-128 block itself is used in AES-CTR mode, with an input format
as shown in Fig. [0] The first 14 bytes are the nonce, and the last two bytes are
the AES-CTR mode counter. Each received frame must use a new nonce, as the
counter itself only counts the number of 16-byte blocks in the frame.

To ensure that the nonce is fresh, a field called FrameCounter is included
with each transmitted message and used as part of the nonce. The receiver
verifies that the value of FrameCounter is larger than any previously used value,
avoiding the reuse of a nonce.

0 1 2 3
Flags Source Long Addr g
% Addr (cont’d) g
8 9 10 11
Add
(Cont’g) FrameCounter g
12 13 14 15
(CFor'ltC,a) SecLevel AES Counter

Fig. 9. The following data is used as the input to AES-128 when a frame is decrypted
by an IEEE 802.15.4 stack. The FrameCounter can be controlled by the attacker.

A typical secure IEEE 802.15.4 wireless packet adds a message authentica-
tion code (MAC)E which ensures both the integrity and authenticity of this

3 The name message integrity code (MIC) is used in place of message authentica-
tion code (MAC) within the IEEE 802.15.4 standard, as the acronym MAC already

14

message. The MAC and payload can optionally be encrypted. Although the
MAC is optional, configuring nodes to require a MAC is generally recommended,
since accepting encrypted but unauthenticated packets presents a serious secu-
rity risk [37].

The address and header information are never encrypted. This is mostly
because it significantly simplifies message filtering: otherwise nodes would need
to decrypt every message to determine the address information.

On receiving a packet, the IEEE 802.15.4 layer first returns an acknowledg-
ment to the sender. If the packet has security enabled (it is encrypted or simply
has a MAC appended) the following operations are performed on the received
packet, where processing stops if a step fails:

1. Validate headers and security options.

o

Check that the received frame counter is numerically greater than the last
stored frame count.

Look up the secret key based on message address and/or key index.
Decrypt the payload (and MAC if present).

Validate the MAC (if present).

Store the frame counter.

S Ok W

For our side-channel attack we only care that step 4 is performed; this means
our packet must successfully pass through steps 1-3. This requires that the
packet is properly addressed and has an acceptable security configuration, such
as using a valid key identifier and address. Generating such a message is discussed
next.

3.1 Detailed Message Format

As mentioned, we need to ensure our 802.15.4 message is decrypted by the target
device. Specific requirements vary depending on the network configuration, but
as an example the frame used in our experiments was:

09 d8 01 ff ff ff ff ba ad 01 02 03 04 05 06 07 08 0d FC FC FC FC 01
AA 00 0O

Where details of each portion of the frame are described as follows:

refers to the medium access control layer. This paper uses MAC to mean message
authentication code, and medium access control is spelled out when required.

15

09 48 Frame header

01 Sequence number
ff ff ff ff Broadcast frame
ba ad Source network ID
01 02 --- 08 Source address

0d Security level

FC FC FC FC FrameCounter wused as
part of the AES nonce

01 Key ID

AA AA --- AA 16 bytes of encrypted data
and 4 bytes of MAC

00 00 Replace with CRC-16

The encrypted data and MAC are not used in the attack; only the value of
the FrameCounter is used. The attacker can send a frame with random values
inserted into the FrameCounter; they only need to ensure the random values are
larger than the last valid received value.

Since the attacker’s packets will be rejected as invalid once decrypted, the
attacker will not update the internal frame counter field. An attacker could dis-
cover the approximate current FrameCounter value through sniffing valid packets
sent to the device, since the frame counter is sent unencrypted.

Alternatively, an attacker can simply send very high values — the attacker
could ensure the highest two bits are always 10, 01, or 11. Provided the node
has received fewer than a billion messages using the same key, this frame counter
will be accepted.

The example message used here is sent as a broadcast frame, which ensures it
will be received and processed by the target node. Using a broadcast message also
hides the target of the attack, and someone sniffing the airwaves might simply
assume that a device on a separate network is sending encrypted messages.
They might assume either this node is malfunctioning, or the node is using some
proprietary protocol that sends encrypted broadcast messagesﬂ

3.2 Brute-Force Search

In Section 2.1} the side-channel attack is described as not always fully recovering
the encryption key. This necessitates a key search, which requires a comparison
function such as having a plaintext/ciphertext pair.

For IEEE 802.15.4, any message with a MAC present can be used as this
plaintext /ciphertext pair. It is sufficient for the attacker to sniff a single wireless
message secured with a MAC using the target key; the attacker can then use
a given hypothetical key to calculate the hypothetical MAC, and compare the
resulting MACs to determine if the hypothetical key matches the true key.

4 Sending a data message that is broadcast across both the network ID and device
address is unusual. However, it would work, and it is not unusual for devices to be
deployed in the field after only basic testing, leaving in place bad practices such as
flooding the network with encrypted messages.

16

This attack is trivial in practice: most networks using 802.15.4 security have
message authentication enabled (i.e., messages have MACs) [37], so the attacker
can simply capture a packet directed at or sent from the target. As the MAC
may be shorter than the key, they may wish to capture several packets to confirm
the true key was found, and not a collision for this particular message.

4 Application to AES-CCM* Mode

For a standard CPA attack, we require the ability to cause a number of en-
cryption operations to occur with known plaintext or ciphertext material. In
addition, the data being encrypted must vary between operations, as otherwise
each trace will generate the same hypothetical intermediate values during the
search operation of the CPA attack.

From Section [3] and Fig. [0 we know that a number of the bytes are fixed
during the AES encryption operation. Practically all the bytes except for the
FrameCounter are considered fixed in this attack. The Flags and SecLevel bytes
will have constant (and known) values. Initially it would appear that the Source
Long Address and AES Counter fields may vary, but as we discuss next, this is
not the case.

The Source Long Address field comes from internal tables in the 802.15.4
stack containing keying material, and is not simply copied blindly from the
incoming packet address. This field can be considered effectively fixed. The AES
Counter field changes during operation, as it increases for each 16-byte block
encrypted in AES-CCM* mode. But as the IEEE 802.15.4 packet is limited to
a total of 128 bytes, the AES Counter field could never exceed 0x0007. Thus,
between these 10 bytes, at most 3 bits vary during operation.

We instead rely on the ability of the attacker to control the FrameCounter
field to mount a successful attack on an IEEE 802.15.4 wireless node.

For our work we will assume an attack on the first encryption operation when
a packet is received, i.e. we do not take advantage of the fact that each received
packet causes more than one encryption operation. Practically this means that
when our work refers to requiring N encryption traces, we only need to send a
smaller number (in the range N/4) packets to the wireless node.

4.1 Previous AES-CTR Attacks

The AES-CCM* mode used by IEEE 802.15.4 is a combination of CBC-MAC
and CTR modes of operation. Our attack is on the AES-CTR portion of the
algorithm, with some modifications to reflect the use of a frame counter for the
nonce material.

Previous work on AES-CTR mode has focused on the assumption that we
can cause a number of encryptions to occur in sequence (i.e., with increasing
counter number), but with unknown but constant nonce material [19]. Our work
uses many of the constructs developed by Jaffe in [19], but with different assump-
tions of inputs on the AES block and a different leakage model. These differences

17

necessitate the development of new techniques to recover partial keying infor-
mation, and we cannot simply apply the previous attack directly.

In this case, we have the ability to change 4 bytes of the input plaintext
(bytes 9, 10, 11, and 12). The CPA attack only allows us to recover these four
bytes of the key, so we push the attack into later AES rounds to recover the
entire encryption key.

Initially, we can assume that the keying material associated with bytes 9-12
can be recovered by a standard CPA attack, as was shown in Section [2} The
remaining bytes cannot be recovered, as the input data is constant.

Consider the steps in the AES-ECB encryption algorithm: AddRoundKey(),
SubBytes(), ShiftRows(), and MixColumns(). All four functions can be as-
sumed to operate on a 16-byte AES state matrix. The first three operate in a
byte-wise manner — that is, a single-byte change of the state matrix before the op-
eration results in a single-byte change after the operation. The MizColumns()
operation introduces diffusion, which operates on a column of the AES state
— a single-byte change in the AES state results in 4 bytes changing after the
MixzColumns() operation.

For the MixColumns() operation, we can represent the four input bytes
— one column of the state matrix — with Sp,--- ,S3, and the resulting output
bytes with S§,---,S%. The MizColumns() operation uses multiplication over
the Galois field GF(2®), where we represent this multiplication operation with
the symbol “o". The MizColumns() operation then becomes:

H~

Sy =1(20S50) ®(3051)® 52 @ Ss
S1 =5 ®(2051)® (3052)®Ss
S5 =S & S @ (20852) @ (3053)
S5 =(30Sp) @S ® Sy ®(2055)

Ut

N N NN
(=2}
~— — — ~—

Where the input state to the MixColumns() operation was the AES state
after the ShiftRows() operation. The output of the MizColumns() operation
is used as the input state for the next round.

Constant Inputs For the MizColumns() operation, we can lump all fixed
input bytes into a single constant. As described in [19], if bytes S, Sa, S5 of the
input were fixed, we could rewrite f as:

So=(2050) ® Ey (8)
ST =S & Ep 9)
S5 =Sy @ Eo (10)
S = (3050) & ()

Note that these bytes are constant but unknown. This occurs because al-
though we do know the fixed plaintext input bytes (i.e., the nonce), we do not

18

know the keying material used for those bytes. These outputs will become the
inputs to the next round of the AES algorithm.

Again using the method from [19], our objective is now to recover the next-
round key. Consider that we have gone through one round of AES, and our
objective is to recover the second-round key. We do not know the actual input
data for this round, which is the output of the MizColumns() step from the
previous round. For example, to recover the first key byte ky, we would need
to know the output Sy from MizColumns(). If some of the input bytes to
MizColumns() are fixed but unknown, we would instead recover the modified
output Sj).

Performing the CPA attack, we could recover instead a version of this key (we
will refer to it as k() XOR’d with the unknown constant Ey, that is k{, = ko ® Eo.
We can use this modified key as one input to the AddRoundKey() function,
where the other input is our modified input to this round Sj. Note that the
output of AddRoundKey() will be equivalent to the case where we had both the
true key and true input:

AddRoundKey(k(, Sy) = ki & S},
= (ko © Eo) @ (So @ Eo)
=ko® 5o

This is sufficient information to perform the attack on the next round of the
AES algorithm. If the entire modified version of a key can be recovered for a
given encryption round, we can recover the entire unmodified key by attacking
the next encryption round. This unmodified key can then be rolled backwards
using the AES key schedule.

This fundamental idea is used to attack AES-CCM* as used in IEEE 802.15.4,
where many of the input bytes are fixed. By pushing the attack into later rounds,
we can recover fixed bytes with a regular CPA attack.

Description of Attack We describe the attack by working through a symbolic
example, using the following variables:

Pl “text" input to the AddRoundKey()

kT : “round key" input to the AddRoundKey()
ET : a constant, see Section

n; : the modified round key, k] & E]

sT : the output of the SubBytes() function

vl : the output of the ShiftRows() function

19

: the output of the MixzColumns() function
: variable and known input plaintext values
: variable and known intermediate values

: variable and known intermediate values

: known modified round-key values (n])
: known key or round-key values (k])

: constant values (may be known or unknown)
: variable and unknown values

: group of variables which has a small set of

possible candidates for the correct value

SR

00 2N A S

b4
*

Initially, we have the known input plaintext, where 12 of the bytes are con-
stant, and the 4 variable bytes are under attacker control (FrameCounter):

pt=[cccccccccXXXXceccl

From this, we can perform a CPA attack to recover 4 bytes of the key. Note
that in practice the byte ki cannot be recovered because ki is unknown. Instead
we use the technique detailed in Section to generate 256 candidate keys for
k$,-++ ki, and test them at a later step. This means we can assume the fol-
lowing is the state of our initial-round key:

rl = [ccccccececcKeKrKeK¥ ¢ ¢ c]

This can be used to calculate the output of the SubBytes() and ShiftRows()
functions, where the majority of bytes are constant (but unknown):

sl =[ccc ccc ccc YFY*¥Y*Y*¥ c c ¢]

vi=[ccYcccYsccccececYrxcec VY]

At this point we need to symbolically deal with the MizColumns(v') out-
put, as we will be working with the modified output that has been XOR’d
with the constant E described in Section As in [19], this is accomplished in
practice by setting unknown constants c to zero, and calculating the output of
the MixColumns(v') function. The unknown constants are all pushed into the
variable F, which we never need to determine the true value of. This means our
output of round r» = 1 becomes:

ml = [Z*Z*Z*Z*Z*Z*Z*Z* C C C C Z*Z*Z*Zx]
Note that 4 bytes of this output are constant. We again set these constant
bytes to zero to simplify our further manipulation of them. This means our input

to the next round becomes:

P2 = [Z*ZHZHZkZ*Z*Z*Z*x O O 0 O ZxZ*kZ*Z*]

20

We are not able to recover n3,--- ,n3; yet, as the inputs associated with
those key bytes are constant.

We first attempt to recover n3, which is performed for all 256 candidates for
k§, -+, kiy. As mentioned in Section [2.5] the highest correlation peak determines
both kg, .-+, kl, and ng. This means we no longer have a group of candidates
for the input, but a single value:

p2=1[22222222000027Z7Z7]

We can then proceed with the CPA attack on the remaining bytes of n2. Bytes
n?,---,n2 can be recovered by application of the CPA attack from Section

Recovery of n? using the same process is not possible, as MizColumns(v?)
interacts with the leakage model. The inputs to this round p2 and p2, which are
generated by @ and respectively as the previous-round MizColumns(v?l)
outputs m§ and m{. When attacking n2, we apply to @ and . This means
our leakage is:

HW ((ng ® (@) @ (n7 @ (@)) (12)

The XOR cancels common terms in (6) and (7), and in this case that term
is S;. Here S; is the variable and known input to the MizColumns(v?l), the
result being that the leakage appears constant and the attack fails.

Instead, we can recover this value using a CPA attack on the next round,
which is described later.

Returning to our CPA attack on the modified round key, we are unable to
recover nZ,--- ,n?, as the associated inputs are constant.

As n?, is unknown, we cannot directly recover n3,, - - - ,n?,. Instead we again
use the method of Section to generate 256 candidates for n3,, -+, niy.

At this point we assume the CPA attack has succeeded, meaning we have
recovered the following bytes of the modified round key, where the final 4 bytes
are partially known — we have 256 candidates for this group, as we know the re-
lationship between each byte, but simply don’t know the starting byte to define
the group:

n2 = [NNNNNDNN c ccc c NxNkxNxN*]

Remember, once we apply AddRoundK ey(n?, p?), the constant E will be re-
moved — E is included in both the output of MixColumns(v') and the modified
key — meaning we can determine the true value of the input to this round.

The outputs 8, - - - , 11 of MizColumns(v') from the first round are constant,
so we also know these inputs are constant, and the four unknown modified bytes
nZ,--+,n?, can be ignored at this point. The result of AddRoundK ey(n?,p?)
for these bytes will be another constant.

The unknown byte n? is associated with variable input data, meaning this
output will be unknown and variable. At this point we can represent the known

21

outputs of SubBytes() and ShiftRows():

s2=[YYYY YYY 7cc cc Y& YrVV*]
vZ=[YYcY*YcY*YcYfY?Y+xYY c]

As before, we can set unknown constant values to zero to determine the
modified output m? = MizColumns(v?). The unknown variable byte means
4 bytes of the MizColumns(v?) output are currently unknown. In addition,
we have 256 candidates for the remaining known values, since the four modified
bytes n?,, - -+ ,n?5 have been mixed into all output bytes by ShiftRows(p?) and
MizColumns(v?):

m? = [ZkZKkZKkZKZKZKZ*kZ*k 7 7 7 7 ZxIxZxZ]
This becomes the input to the next round:
p3 = [Z¥ZHZKZHTZHKZ*T*kZx 7 7 7 7 Z*kZ*xZ*Z]

We again apply the CPA attack on nj across all values for n3 and the 256
candidates for the previous modified round key (a total of 2'¢ guesses), the peak
telling us the value of n and n?,, - - ,n?;. We now know which of the candidates
to select for further processing:

p3 =[222222Z22Z7Z777%7212Z22Z1Z]

We can apply a CPA attack to discover the modified key values n3,-- -, n3.
The unknown plaintext byte ? represents a changing value. We cannot ignore it
as we can constant values in the MizColumns(v?), and thus cannot apply the
CPA attack on the remaining bytes.

Instead we enumerate all possibilities for nZ, and apply a CPA attack against
n3, similarly to previously described attacks from Section We verified exper-
imentally that the correlation value with the highest peak for n3 resulted only
when n? was the correct value, as in Fig. This means we now have the entire
modified output of MizColumns(v?), and thus the complete modified input
plaintext to round 3:

p?=1[2222222222722777Z7]

With nZ and nd now known, we can continue with the CPA attack against
ng, -+ ,n3s. At this point we have an entire modified key:

n® = [NNNNNNNNNDNNNNNN N]

We can again apply the modified key n® to the modified output of the previ-
ous round m? to recover the complete output of round » = 3, which will be the

22

010 Determination of n?

CPA Attack Output

Sample Number

Fig. 10. Determining n? means generating 256 candidate keys, which are tested by
attacking a byte in the next round. This figure shows the correlation output of the
CPA attack when attacking ng for the correct value of n2 and ng in red. The incorrect
values are displayed in green.

actual input to round r = 4. This allows us to perform a CPA attack and recover
the true round key k*. This round key can then be rolled backwards using the
AES key schedule to determine the original encryption key.

We have now attacked an AES-CCM* implementation as specified in the
IEEE 802.15.4 standard. This attack requires only the control of the four FrameCounter
bytes, which are sent as plaintext over the air, as detailed in Section [3.1

The computational load of the attack is minimal: performing these steps on
an Intel 15-2540M laptop using a single thread program written in C++ takes
under ten minutes with the 20 000 traces, using only the subset of points in each
trace from Table 2] Note when performing the hypothetical value calculation for
later rounds, the calculation was accelerated using the Intel AES-NI instruction
set for performing the SubBytes(), ShiftRows(), and MizColumns() opera-
tions, which form part of a single AES round executed by this instruction [16].

5 Attacking Wireless Nodes

In the previous sections, we demonstrated the vulnerability of an IEEE 802.15.4
SoC device to power analysis, and how the AES-CCM* mode used during recep-
tion of an encrypted IEEE 802.15.4 packet can be attacked when the underlying
hardware is vulnerable to power analysis. The last two aspects of this attack
are to (1) demonstrate how we can trigger that encryption operation, and (2)
determine where in the power signature the encryption occurred. This section

23

demonstrates the ability of an attacker to perform these operations, and thus
gives a complete attack against an IEEE 802.15.4 wireless node.

In Section [3.1] we detailed the message format that would cause an IEEE
802.15.4 wireless node to automatically decrypt the message on receipt. To val-
idate this we used the same Dresden Elektronik RCB128RFA1 V6.3.1 board as
in Section [2, programmed with Atmel’s IEEE 802.15.4 stack version 2.8.0. We
used the “Secure Star Network" example application for this, which initializes a
standard IEEE 802.15.4 networking using security.

In order for the side-channel attack to be successful, the attacker needs to de-
termine when the AES encryption is occurring. As a starting point, the attacker
can use information on when the frame should have been received by the target
node. Practically, this would be either the attacker’s transmitter node toggling
an 10 line when the packet goes over the air, or the attacker could use another
node that also receives the transmitted messages to toggle an 10 line.

To determine the reliability of such a trigger, we measured the time between
the frame being received and the actual start of AES encryption on the target
node. Over 100 transmitted frames the delay varied between 311 and 338 us.
The mean value of the delay was 325 us, with a standard deviation of 7 us.

The jitter in the delay is assumed to be due to the software architecture,
which uses an event queue process the frames. Practically, the issue of aligning or
resynchronizing power traces before applying power analysis is well known, and a
number of solutions have been proposed, such as comb filtering or windowing [7],
differential frequency analysis [15], dynamic time warping [44], and principal
component analysis [4].

To test the ability of an attacker to realign captured power traces, we used
a simple normalized cross-correlation algorithm [22] to match a feature across
multiple power traces for realignment, using the scikit-image implementation
of this feature matching. This is an example of a static alignment method [23].

The selected feature was a window at 9.2-29.2 us after the start of the AES
encryption in one reference trace, meaning the matched feature extended slightly
beyond the actual AES encryption. A plot of the output of the cross-correlation
for different offsets of the template against another trace is shown in Fig.[11] We
confirmed that a high correlation peak was generated only for a single sample
around the AES algorithm with many sample power traces. A threshold of 0.965
on the correlation output (determined empirically) was used; if a power trace had
no correlation peak higher than this level, the trace was dropped. This eliminates
problems with a particularly noisy trace being matched incorrectly.

The successful realignment of traces is an important step when attacking
real systems. As an example of trace realignment on another platform, see the
attack on DESFire [33] which demonstrated how differential frequency analysis
was used as a preprocessing step for CPA attack.

In a similar manner, it was demonstrated in [9] that it was possible to detect
the location of software AES encryption based on the transmitter output of a
wireless node coupled with further signal processing.

24

Future work on this IEEE 802.15.4 attack can include applying more ad-
vanced preprocessing techniques (such as differential frequency analysis or prin-
cipal component analysis). But such preprocessing techniques are not required to
fundamentally prove that (a) the AES core is leaking, and (b) the AES operation
has some unique signature allowing realignment to succeed.

10 Qorrelgtion Match?ng foF AES PetecFion

Correlation Output

_400 350 —300 —250 —200 150 100 =50 _ O
Time from start of AES (uS)

Fig. 11. Correlation can be used to match a template from the power signature to align
traces in the time domain, here the correct match should be at 9.2 us, the location of
the largest correlation peak.

6 Conclusions

The IEEE 802.15.4 wireless standard is a popular lower layer for many protocols
being used in or marketed for the coming “Internet of Things" (see Section for
an enumeration of some of these). Such protocols often use the same underlying
AES primitive as the IEEE 802.15.4 layer for security purposes.

This paper has demonstrated significant vulnerabilities in a real IEEE 802.15.4
wireless node. A successful attack against the AES peripheral in the ATMegal28RFA1
device was demonstrated. This attack was demonstrated against AES-ECB; as
electronic code book (ECB) is not the operating mode of AES used in the net-
work, we extended a previous attack on AES-CTR mode [19] to work against the
AES-CCM* mode used in IEEE 802.15.4. This demonstrated that it is possible
to recover the encryption key of a wireless node using side-channel power attacks
and valid IEEE 802.15.4 messages sent to the node.

25

While this attack targeted a specific IEEE 802.15.4 SoC from Atmel, we
believe similar attacks would be successful against AES peripherals on other
devices. Users of IEEE 802.15.4 wireless networks, including users of protocols
running on top of IEEE 802.15.4, need to seriously consider their security re-
quirements in light of these attacks.

References

1. AgrawaL, D., Rao, J., aND Ronarci, P. Multi-channel Attacks. In Crypto-
graphic Hardware and Embedded Systems — CHES 2003, C. Walter, . Kog, and
C. Paar, Eds., vol. 2779 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pp. 2-16.

2. ATrMEL CORPORATION. ATmegal28RFA1 Datasheet, 2014.

3. BAaLAscH, J., GIErRLICHS, B., VERDULT, R., BATINA, L., AND VERBAUWHEDE,
I. Power Analysis of Atmel CryptoMemory — Recovering Keys from Secure EEP-
ROMs. In Topics in Cryptology, CT-RSA 2012, O. Dunkelman, Ed., vol. 7178 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 19-34.

4. BariNa, L., HoGENBOOM, J., AND VAN WOUDENBERG, J. Getting More from
PCA: First Results of Using Principal Component Analysis for Extensive Power
Analysis. In Topics in Cryptology — CT-RSA 2012, O. Dunkelman, Ed., vol. 7178 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 383—-397.

5. BRIER, E., CrLAVIER, C., AND OLIVIER, F. Correlation Power Analysis with a
Leakage Model. In Cryptographic Hardware and Embedded Systems — CHES 200/,
M. Joye and J.-J. Quisquater, Eds., vol. 3156 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, pp. 16—29.

6. CHARI, S., Rao, J., aND RoHAatrGI, P. Template Attacks. In Cryptographic
Hardware and Embedded Systems — CHES 2002, B. Kaliski, . Kocg, and C. Paar,
Eds., vol. 2523 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, pp. 13-28.

7. CLAVIER, C., CORON, J.-S., AND DaBBOUS, N. Differential Power Analysis in the
Presence of Hardware Countermeasures. In Cryptographic Hardware and Embedded
Systems — CHES 2000, C. Kog and C. Paar, Eds., vol. 1965 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2000, pp. 252-263.

8. Cravier, C., DANGER, J.-L., Duc, G., ErLaaBiD, M., GERARD, B., GuIiL-
LEY, S., HEUSER, A., KasPEr, M., L1, Y., LoMNE, V., NakaTsu, D., OHTA,
K., Sakivama, K., SAUVAGE, L., SCHINDLER, W., STOTTINGER, M., VEYRAT-
CHARVILLON, N.; WaLLE, M., AND WURCKER, A. Practical improvements of
side-channel attacks on AES: feedback from the 2nd DPA contest. Journal of
Cryptographic Engineering 4, 4 (2014), 259-274.

9. DE MEULENAER, G., AND STANDAERT, F.-X. Stealthy Compromise of Wireless
Sensor Nodes with Power Analysis Attacks. In Mobile Lightweight Wireless Sys-
tems, P. Chatzimisios, C. Verikoukis, I. Santamaria, M. Laddomada, and O. Hoff-
mann, Eds., vol. 45 of Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering. Springer Berlin Heidelberg,
2010, pp. 229-242.

10. Duc, G., GUILLEY, S., SAUVAGE, L., FLAMENT, F., NASSAR, M., SELMANE, N.,
DANGER, J.-L., GRaBA, T., MATHIEU, Y., AND RENAUD, P. Results of the 2009-
2010 ‘DPA contest v2'. In International Workshop on Constructive Side-Channel
Analysis and Secure Design (COSADE) (February 2011).

26

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Dupa, R., AND HART, P. Pattern Classification and Scene Analysis. John Wiley
and Sons, 1973.

E1seENBARTH, T., KASPER, T., MORADI, A., PAAR, C., SALMASIZADEH, M., AND
SHALMANI, M. On the Power of Power Analysis in the Real World: A Complete
Break of the KeeLoq Code Hopping Scheme. In Advances in Cryptology - CRYPTO
2008, D. Wagner, Ed., vol. 5157 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008, pp. 203—-220.

FrEEscALE. MC1323x Datasheet, 2011.

Ganporrl, K., MourTEL, C., AND OLIVIER, F. Electromagnetic Analysis: Con-
crete Results. In Cryptographic Hardware and Embedded Systems — CHES 2001,
C. Kog, D. Naccache, and C. Paar, Eds., vol. 2162 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2001, pp. 251-261.

GeBoTys, C., Ho, S., anp Tiu, C. EM Analysis of Rijndael and ECC on a
Wireless Java-Based PDA. In Cryptographic Hardware and Embedded Systems —
CHES 2005, J. Rao and B. Sunar, Eds., vol. 3659 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, pp. 250-264.

GUERON, S. Intel Advanced Encryption Standard (AES) New Instructions Set.
Whitepaper, 2012. Doc No. 323641-001.

GUTIERREZ, J., NAEVE, M., CALLAWAY, E., BOURGEOIS, M., MITTER, V., AND
HEeiLg, B. IEEE 802.15.4: a developing standard for low-power low-cost wireless
personal area networks. IEEE Network 15, 5 (Sept 2001), 12-19.

Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs). IEEE
Std. 802.15.4-2006 (2006).

JAFFE, J. A First-Order DPA Attack Against AES in Counter Mode with Un-
known Initial Counter. In Cryptographic Hardware and Embedded Systems — CHES
2007, P. Paillier and I. Verbauwhede, Eds., vol. 4727 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, pp. 1-13.

Kizuvarov, I. Side Channel Analysis of AVR XMEGA Crypto Engine. In Pro-
ceedings of the 4th Workshop on Embedded Systems Security (New York, NY, USA,
2009), WESS 09, ACM, pp. 8:1-8:7.

KoCHER, P., JA¥rE, J., AND JuN, B. Differential power analysis. In Advances
i Cryptology — CRYPTO’ 99 (1999), M. Wiener, Ed., vol. 1666 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 388-397.

Lewis, J. P. Fast Template Matching. In Canadian Conference on Vision Inter-
face — VI 1995 (1995), pp. 120-123.

MANGARD, S., OswaLD, E., aAND Poprp, T. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, New York, 2007.

Massey, J. Guessing and entropy. In IEEE International Symposium on Infor-
mation Theory, 199/ (1994), p. 204.

MoraDI, A., BARENGHI, A., KASPER, T., AND PaAR, C. On the Vulnerability
of FPGA Bitstream Encryption Against Power Analysis Attacks: Extracting Keys
from Xilinx Virtex-II FPGAs. In Proceedings of the 18th ACM Conference on
Computer and Communications Security — CCS ’11 (2011), ACM, pp. 111-124.
Morabi, A., KAsPER, M., aAND PaaRr, C. On the Portability of Side-Channel
Attacks — An Analysis of the Xilinx Virtex 4, Virtex 5, and Spartan 6 Bitstream
Encryption Mechanism. Cryptology ePrint Archive, Report 2011/391, 2011. http:
//eprint.iacr.org/|

Morapbi, A., KASPER, M., AND PaaRr, C. Black-Box Side-Channel Attacks High-
light the Importance of Countermeasures. In Topics in Cryptology — CT-RSA 2012,

27

http://eprint.iacr.org/
http://eprint.iacr.org/

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

O. Dunkelman, Ed., vol. 7178 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 1-18.

Morabi, A.; OswaLD, D., Paar, C., AND SWIERCZYNSKI, P. Side-channel
Attacks on the Bitstream Encryption Mechanism of Altera Stratix II: Facilitat-
ing Black-box Analysis Using Software Reverse-engineering. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays —
FPGA’13 (2013), ACM, pp. 91-100.

NortTH, D. An analysis of the factors which determine signal/noise discrimination
in pulsed-carrier systems. RCA Labs. (1943).

O’FLynN, C., AND CHEN, Z. A Case Study of Side-Channel Analysis Using De-
coupling Capacitor Power Measurement with the OpenADC. In Foundations and
Practice of Security, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, A. Miri,
and N. Tawbi, Eds., vol. 7743 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 341-356.

O’FLyNN, C., AND CHEN, Z. ChipWhisperer: An Open-Source Platform for Hard-
ware Embedded Security Research. In Constructive Side-Channel Analysis and
Secure Design, E. Prouff, Ed., vol. 8622 of Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 243-260.

OswALD, D. Implementation Attacks: From Theory to Practice. PhD thesis, Ruhr-
Universit at Bochum, 2013.

OswaLD, D.; AND Paar, C. Breaking Mifare DESFire MF3ICD40: Power Anal-
ysis and Templates in the Real World. In Cryptographic Hardware and Embedded
Systems — CHES 2011, B. Preneel and T. Takagi, Eds., vol. 6917 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2011, pp. 207-222.

OswALD, D., RICHTER, B., AND PAAR, C. Side-Channel Attacks on the Yubikey 2
One-Time Password Generator. In Research in Attacks, Intrusions, and Defenses,
S. Stolfo, A. Stavrou, and C. Wright, Eds., vol. 8145 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 204-222.

OswaALD, D., STROBEL, D., SCHELLENBERG, F., KASPER, T., AND PaAr, C.
When Reverse-Engineering Meets Side-Channel Analysis — Digital Lockpicking in
Practice. In Selected Areas in Cryptography — SAC ’13, T. Lange, K. Lauter, and
P. Lisonék, Eds., vol. 8282 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 571-588.

RivaiN, M. On the Exact Success Rate of Side Channel Analysis in the Gaussian
Model. In Selected Areas in Cryptography, R. Avanzi, L. Keliher, and F. Sica, Eds.,
vol. 5381 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,
pp. 165-183.

SASTRY, N., AND WAGNER, D. Security Considerations for IEEE 802.15.4 Net-
works. In Proceedings of the 3rd ACM Workshop on Wireless Security — WiSe 04
(2004), ACM, pp. 32-42.

SiLicoN LABRATORIES. E35x Datasheet, 2013.

SKOROBOGATOV, S., AND Woobs, C. Breakthrough silicon scanning discovers
backdoor in military chip. In Cryptographic Hardware and Embedded Systems —
CHES 2012, E. Prouff and P. Schaumont, Eds., vol. 7428 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 23—40.

STANDAERT, F.-X., MALKIN, T., AND YUNG, M. A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. In Advances in Cryptology -
EUROCRYPT 2009, A. Joux, Ed., vol. 5479 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, pp. 443-461.

STMICROELECTRONICS. STM32W108xx Datasheet, 2013.

28

42. SWIERCZYNSKI, P., MoraADI, A.; OswaLD, D., AND PaARr, C. Physical Security
Evaluation of the Bitstream Encryption Mechanism of Altera Stratix IT and Stratix
111 FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7, 4 (Dec. 2014), 7:1-7:23.

43. TExAs INsTRUMENTS. CC2530F Datasheet, 2015.

44. vAN WOUDENBERG, J. G. J., WITTEMAN, M. F., AND BAKKER, B. Improving
Differential Power Analysis by Elastic Alignment. In Proceedings of the 11th Inter-
national Conference on Topics in Cryptology: CT-RSA 2011 (Berlin, Heidelberg,
2011), CT-RSA’11, Springer-Verlag, pp. 104-119.

45. WHITING, D., FERGUSON, N., aAND HousLEy, R. Counter with CBC-MAC
(CCM). https://tools.ietf.org/html/rfc3610.

7 Appendix A: Meaning of PGE

The results of this work use the partial guessing entropy (PGE) as a metric of
the attack success. A brief description of this within the scope of the side-channel
analysis power attacks is presented here.

The “guessing entropy" is defined as the “average number of successive guesses
required with an optimum strategy to determine the true value of a random
variable X” [24]. The “optimum strategy" here is to rank the possible values of
the byte from most to least likely based on the value of the correlation attack
(higher correlation output is more likely).

The “partial" refers to the fact that we are finding the guessing entropy on
each byte. This gives us a PGE for each of the 16 bytes. A PGE of 0 indicates
the byte is perfectly known, and a PGE of 10 indicates that 10 guesses were
(incorrectly) ranked higher than the correct guess.

The attack algorithm is given access to 1,2,--- , N traces, and the PGE
for each byte is calculated. To improve consistency, the PGE for each byte is
averaged over several attacks (trials). Finally, we can average the PGE over all
16 bytes to generate a single “average PGE" for the attack.

The guessing entropy provides a simple measure of how a leakage reduces
the required key search space. It is sufficient for an attacker to reduce the key
search space to some reasonable size, compared to requiring the attacker to
entirely derive the key through side-channel attacks. The guessing entropy can
be related to the success rate, another frequently used metric in side-channel
attacks [36].

Details of PGE and additional metrics are given in [40], and further examples
of plots comparing different metrics are available as part of the DPAContest
results [8I10].

29

https://tools.ietf.org/html/rfc3610

	Power Analysis Attacks against IEEE 802.15.4 Nodes

