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Abstract. Leakage detection usually refers to the task of identifying
data-dependent information in side-channel measurements, independent
of whether this information can be exploited. Detecting Points-Of-Interest
(POIs) in leakage traces is a complementary task that is a necessary first
step in most side-channel attacks, where the adversary wants to turn this
information into (e.g.) a key recovery. In this paper, we discuss the differ-
ences between these tasks, by investigating a popular solution to leakage
detection based on a t-test, and an alternative method exploiting Pear-
son’s correlation coefficient. We first show that the simpler t-test has
better sampling complexity, and that its gain over the correlation-based
test can be predicted by looking at the Signal-to-Noise Ratio (SNR) of
the leakage partitions used in these tests. This implies that the sampling
complexity of both tests relates more to their implicit leakage assump-
tions than to the actual statistics exploited. We also put forward that this
gain comes at the cost of some intuition loss regarding the localization
of the exploitable leakage samples in the traces, and their informative-
ness. Next, and more importantly, we highlight that our reasoning based
on the SNR allows defining an improved t-test with significanly faster
detection speed (with approximately 5 times less measurements in our
experiments), which is therefore highly relevant for evaluation laborato-
ries. We finally conclude that whereas t-tests are the method of choice for
leakage detection only, correlation-based tests exploiting larger partitions
are preferable for detecting POIs, and confirm the latter intuition by in-
tegrating a correlation-based leakage detection test in recent automated
tools for the detection of POIs in the leakage measurements of a masked
implementation, in a black box manner and without key knowledge.

1 Introduction

Leakage detection tests have recently emerged as a convenient solution to per-
form preliminary (black box) evaluations of resistance against side-channel anal-
ysis. Cryptography Research (CRI)’s non specific (fixed vs. random) t-test is
a popular example of this trend [4, 9]. It works by comparing the leakages of a
cryptographic (e.g. block cipher) implementation with fixed plaintexts (and key)
to the leakages of the same implementation with random plaintexts (and fixed
key)1, thanks to Welch’s t-test [27]. Besides their conceptual simplicity, the main

1 The Test Vector Leakage Assessment methodology in [4, 9] includes other options,
e.g. non specific semi-fixed vs. random tests and specific tests – we focus on this non
specific fixed vs. random test that is the most popular in the literature [2, 16].



advantage of such tests, that were carefully discussed in [16], is their low sam-
pling complexity. That is, by comparing only two (fixed vs. random) classes of
leakages, one reduces the detection problem to a simpler estimation task. In this
paper, we want to push the understanding of leakage detection one step further,
by underlining more precisely its pros and cons, and clarifying its difference with
the problem of detecting Points-Of-Interest (POIs) in leakage traces. As clear
from [8], those two problems are indeed related, and one can also exploit t-tests
for the detection of POIs in leakage traces. So as for any side-channel analysis,
the main factor influencing the intuitions that one can extract from leakage de-
tection is the implicit assumptions that we make about the partitioning of the
leakages (aka leakage model). Our contributions in this respect are threefold.

First, we notice that CRI’s fixed vs. random t-test is one extreme in this
direction (since it relies on a partitioning in two classes), which is reminiscent of
Kocher’s single-bit Differential Power Analysis (DPA) [12]. For comparison pur-
poses, we therefore start by specifying an alternative leakage detection test based
on the popular Correlation Power Analysis (CPA) distinguisher [3]. The result-
ing ρ-test directly derives from the hypothesis tests for CPA provided in [14], and
relies on a partitioning into 2s classes, where s is the bitsize of the fixed portion of
plaintext in the test. We then compare the t-test and ρ-test approaches, both in
terms of sampling complexity and based on their exploitability.2 That is, does a
positive answer to leakage detection imply exploitable leakage, and does a nega-
tive answer to leakage detection imply no exploitable leakage? Our experimental
analysis based on real and simulated data leads to the following observations:

- First, the sampling complexity of the t-test is (on average) lower than the
one of the ρ-test, as previously hinted [9, 16]. Interestingly, we show that the
sampling complexity ratio between the two tests can be simply approximated
as a function of a Signal-to-Noise Ratio (SNR) for the leakage partition used in
these tests. This underlines that the difference between the tests is mainly due
to their different leakage assumptions, i.e. is independent of the statistical test
used (backing up the conclusions of [15] for “standard DPA attacks”).
- Second, the exploitability of the tests is quite different. On the one hand,
leakages that are informative (and therefore can be detected with the ρ-test) but
cannot be detected with the t-test are easy to produce (resp. can be observed
in practice). Take for example a fixed class of which the mean leakage is the
same as (resp. close to) the mean leakage of the random class. On the other
hand, the fixed vs. random t-test leads to the detection of many time samples
spread around the complete leakage traces. Hence, not all of these samples can
be exploited in a standard DPA (because of the diffusion within the cipher).

Concretely, these observations refine the analysis in [16], where it was argued
that leakage detection is a useful preliminary to white box (worst-case) security

2 One could also compare the computational complexity of the tests. Since they are
based on simple statistics, we will assume that both the t-test and ρ-test can be
implemented efficiently. Besides, a minor advantage of the ρ-test is that it can be
implemented in a known-plaintexts scenario (vs. chosen-plaintext for the t-test).



evaluations such as advertized in [25]. This is indeed the case. Yet, certain leakage
detection tests are more connected with the actual security level of a leaking
implementation. In this respect, the fixed vs. random t-test is a more efficient
way to perform leakage detection only. And the minor drawback regarding its
unability to detect certain leakages (e.g. our example with identical means) is
easily mitigated in practice, by running the test on large enough traces, or for
a couple of keys (as suggested in [4, 9]). By contrast, the main price to pay for
this efficiency is a loss of intuition regarding (i) the localisation of the leakage
samples that are exploitable by standard DPA, and (ii) the complexity of a side-
channel attack taking advantage of the leakage samples for which the detection
test is positive. As a result, the ρ-test can be viewed as a perfect complement,
since it provides these intuitions (at the cost of higher sampling complexity).

Second, we show that our reasoning based on the SNR not only allows a better
statistical understanding of leakage detection, but can also lead to more efficient
t-tests. Namely, it directly suggests that if the evaluator’s goal is to minimize the
number of samples needed to detect data-dependent information in side-channel
measurements, considering a partitioning based on two fixed plaintexts (rather
than one fixed and one random plaintext) leads to significantly faster detection
speeds. This is both due to an improved signal (since when integrated over large
execution times, samples with large differences between the two fixed classes
will inevitably occur) and a reduced noise (since the random class in CRI’s t-
test implies a larger algorithmic noise that is cancelled in our proposal). We also
confirm these intuitions experimentally, with two representative AES implemen-
tations: an 8-bit software one and a 128-bit hardware one. In both cases, we
exhibit detections with roughly 5 times less measurements than when using the
previous fixed vs. random non specific t-test. We believe these results are highly
relevant to evaluation laboratories since (i) they lead to reductions of the mea-
surement cost of a leakage detection by a large factor (whereas improvements
of a couple of percents are usually considered as significant in the side-channel
literature), and (ii) they imply that a device for which no leakages have been
detected with one million measurements using a fixed vs. random t-test could in
fact have detectable leakages with 200,000 (or even less) measurements.

These observations lead to the last contribution of the paper. That is, when
extending leakage detection towards the detection of POIs, the ρ-test natu-
rally gains additional interest, since it provides more intuitions regarding the
exploitable samples in side-channel traces. More precisely, it allows a better se-
lection of POIs based on the criteria that these POIs depend on an enumerable
part of the key. It also maximizes the SNR metric that can be easily connected
to the worst-case complexity of standard DPA attacks [5]. Therefore, and more
concretely, our results directly imply that the automated tools for the detec-
tion of POIs recently proposed in [7] are also applicable in a fully black box
setting, without any key knowledge, by simply adapting the objective function
used in their optimization (i.e. replacing it by the ρ-test in this paper). We
finally confirm this claim by an additional experimental evaluation, in the con-
text of first-order secure masked implementations. We also put forward that the



detection of a threshold for which an improvement of the objective function is
considered as significative in the optimizations of [7] is made easier when using
the ρ-test (and suggest a minor improvement of the latter methods, by taking
advantage of cross-validation when evaluating this objective function).

2 Background

2.1 Measurement setups

Most of our experiments are based on measurements of an AES Furious imple-
mentation (http://point-at-infinity.org/avraes/) run by an 8-bit Atmel
ATMega644P microcontroller, at a 20 MHz clock frequency. We monitored the
voltage variations across a 22 Ω resistor introduced in the supply circuit of our
target chip. Acquisitions were performed using a Lecroy HRO66ZI oscilloscope
running at 200 MHz and providing 8-bit samples. In each of ourevaluations, the
128-bit AES master key remains the same for all the measurements and is de-
noted as κ = s0||s1|| . . . ||s15, where the si’s represent the 16 key bytes. When
evaluating the fixed vs. random t-test, we built sets of 2000 traces divided in two
subsets of 1000 traces each, one corresponding to a fixed plaintext and key, the
other corresponding to random plaintexts and a fixed key, next denoted as Lf
and Lr respectively. When evaluating the correlation-based test, we built a single
set of 2000 traces L, corresponding to random plaintexts and a fixed key. In the
following, we denote the encryption traces obtained from a plaintext p including
the target byte x under a key κ including the subkey s as: AESκs(px) ly (with
y = x ⊕ s). Whenever accessing the points of these traces, we use the notation
ly(τ) (with τ ∈ [1; 20 000], typically). These different subscripts and indexes
will be omitted when not necessary. In Section 5, we additionally consider a
hardware implementation of the AES of which the design is described in [11].
The same amount of measurement as for the previous Atmel case were taken,
based on a prototype chip embedding an AES core with a 128-bit architecture
requiring 11 cycles per encryption, implemented in a 65-nanometer low power
technology, running at 60 MHz and sampled at 2 GHz. Eventually, Section 6
considered masked implementation of the AES in our Atmel microcontroller,
based on precomputed table lookups [19, 22]. For every pair of input/output
masks (m, q), it-precomutes an S-box S∗ such that S∗(x⊕ s⊕m) = S(x⊕ s)⊕ q.
This pre-computation is part of the adversary’s measurements, which leads to
quite large traces with 30, 000 samples. In this last case, we used an evaluation
set with 256× 50 traces in total, i.e. 50 per fixed value of the target key byte.

2.2 CPA distinguisher

Our correlation-based leakage detection test will be based on the Correlation
Power Analysis (CPA) distinguisher [3], extended to a profiled setting. In this
case, and for each time sample τ , the evaluator starts by estimating a model for
his target intermediate variable Y from Np profiling traces: ˆmodelτ (Y ) ← Lp.



This model corresponds to the mean leakages associated with the different values
of Y . He then estimates the correlation between measured leakages and modeled
leakages. In our AES example, it would lead to ρ̂(LY (τ), ˆmodelτ (Y )). In practice,
this estimation is performed by sampling (i.e. measuring) a set of Nt test traces
from the leakage distribution, that we denote as Lt (with Lp ⊥⊥ Lt).

2.3 Fixed vs. random leakage detection test

CRI’s fixed vs. random t-test essentially works by comparing the leakages corre-
sponding to the fixed and random sets of traces defined in Section 2.1. For this
purpose, and for each sample, one simply has to estimate and compare two mean
values. The first one, denoted as µ̂f (τ), corresponds to the samples in the fixed
set of traces Lf . The second one, denoted as µ̂r(τ), corresponds to the samples
in the random set of traces Lf . Intuitively, being able to distinguish these two
mean values indicates the presence of data-dependencies in the leakages. For this
purpose, and in order to determine whether some difference observed in practice
is meaningful, Welch’s t-test is applied (which is a variant of Student’s t-test
that considers different variances and sample size for the sets Lf and Lr). The
statistic to be tested is defined as:

∆(τ) =
µ̂f (τ)− µ̂r(τ)√
σ̂2
f (τ)

Nf
+

σ̂2
r(τ)
Nr

,

where σ̂2
f (τ) (resp. σ̂2

r(τ)) is the estimated variance over the Nf (resp. Nr) sam-
ples of Lf (resp. Lr). Its p-value, i.e. the probability of the null hypothesis which
assumes ∆(τ) = 0, can be computed as follows:

p = 2× (1− CDFt(|∆(τ)|, ν)),

where CDFt is the cumulative function of a Student’s t distribution, and ν is
its number of freedom degrees, which is derived from the previous means and
variances as: ν = (σ̂2

f/Nf +σ̂2
r/Nr)/[(σ̂

2
f/Nf )/(Nf−1)+(σ̂2

r/Nr)/(Nr−1)]. Intu-
itively, the value of ν is proportional to the number of samples Nf and Nr. When
increasing, Student’s t distribution gets closer to a normal distribution N (0, 1).

3 A correlation-based leakage detection test

We start by describing an alternative leakage detection test based on the CPA
distinguisher, inspired from the hypothesis test described in [14], and further
taking advantage of the cross-validation techniques recently introduced in [6].
For k-fold cross–validation, the set of acquired traces L is first split into k (non
overlapping) sets L(i) of approximately the same size. We then define the pro-

filing sets L(j)
p =

⋃
i 6=j L(i) and the test sets L(j)

t = L \ L(j)
p . Based on these

notations, our ρ-test is defined as follows, for a target plaintext byte variable



X. First, and for each cross-validation set j with 1 ≤ j ≤ k, a model is esti-

mated: ˆmodel
(j)

τ (X) ← L(j)
p . For s-bit plaintext bytes, this model corresponds

to the sample means of the leakage sample τ corresponding to each value of the

plaintext byte, i.e. µ̂
(j)
x (τ).3 Next, the correlation between this model and and

the leakage samples in the test sets L(j)
t is computed as follows:

r̂(j)(τ) = ρ̂(L
(j)
X (τ), ˆmodel

(j)

τ (X)).

The k cross-validation results r̂(j)(τ) can then be averaged in order to get a single
(unbiased) result r̂(τ) obtained from the full measurement set L. Following, and
as in [14], Fisher’s z-transformation is applied to obtain:

r̂z(τ) =
1

2
× ln

(
1 + r̂(τ)

1− r̂(τ)

)
.

By normalizing this value with the standard deviation 1√
N−3 , where N is the

size of the evaluation set L, we obtain a sample that can be (approximately)
interpreted according to a normal distributionN (0, 1). This allows us to compute
the following p-value for a null hypothesis assuming no correlation:

p = 2× (1− CDFN (0,1)(|r̂z(τ)|)),

where CDFN (0,1) is the cumulative function of a standard normal distribution.
Besides exploiting cross-validation (which allows us to obtain unbiased estimates
for Pearson’s correlation coefficient), the main difference between this test and
the hypothesis test in [14] is that our model is built based on a plaintext byte
rather than a key-dependent intermediate value. This allows us to implement it
in a black box manner and without key knowledge, just as the previous t-test.

4 Experimental results

In order to discuss the pros and cons of the two previous leakage detection test,
we now consider various experimental results. We start with a simulated setting
which allows us to control all the parameters of the leakages to detect, in order
to discuss the sampling complexity of both methods. Next, we analyze actual
leakage traces obtained from the measurement setup described in Section 2.1,
which allows us to put forward the intuitions provided by the t-test and ρ-test
regarding the time localization of the informative samples in our traces.

4.1 Simulated experiments

We define a standard simulated setting for the leakages of a block cipher, where
an intermediate computation z = S(y = x ⊕ s) is performed, with S an 8-bit
S-box. It gives rise to a (multivariate) leakage variable of the form:

LX = [HW(X) +R1, HW(Y ) +R2, HW(Z) +R3],
3 If there is no available trace for a given value of x, which happens when the evaluation

set is small, the model takes the mean leakage taken over all the traces in L(j)
p .



where HW is the Hamming weight function, R1, R2 and R3 are Gaussian dis-
tributed random noises with mean 0 and variance σ2

n, and the index X recalls
that in our detection setup, the evaluator only varies the plaintext. For t-tests,
the set Lf contains leakages corresponding to fixed values of x, y or z, denoted
as xf , yf , zf , while the set Lr corresponds uniformly random x’s, y’s or z’s. For
ρ-tests, the leakages all correspond to uniformly random x’s, y’s or z’s.

Concretely, we analyzed the t-test based on the third sample of LX (which
corresponds to the target intermediate value z), and for different fixed values
of this intermediate value. This choice is naturally motivated by the counter-
example given in introduction. That is, since the average leakage of the random
class equals 4 in our simulation setting, a fixed class such that HW(zf ) = 4
should not lead to any detection. And extending this example, the bigger the
difference between HW(zf ) and 4, the easier the detection should be.

In parallel, we investigated the ρ-test in two different scenarios. First the re-
alistic case, where the model estimation using k-fold cross-validation described
in Section 3 is applied (using a standard k = 10). Second, a theoretical simpli-
fication where we assume that the evaluator knows the perfect (here Hamming
weight) model, which implies that all the samples in the set L are directly used
to compute a single estimate for the correlation r̂(τ) = ρ̂(LX(τ),modelτ (X)).

The results of our experiments are given in Figure 1, where the upper part
corresponds to a noise variance σ2

n = 50 and the lower part to a noise variance
σ2
n = 100. In both cases, we set the detection threshold to 5, which is the value

suggested in [2]. They allow the following relevant observations.

(1) On the impact of the noise. As doubling the noise variance generally doubles
the measurement complexity of a side-channel attack, it has the same impact
on the sample complexity of a leakage detection test. For example, detecting a
difference between a fixed class such that HW(zf ) = 2 and a random class with
the t-test requires ≈ 1300 traces in the upper part of the figure and ≈ 2600
traces in its lower part. Similar observations hold for all the tests.

(2) On the impact of the fixed value for the t-test. As expected, for both σ2
n,

a fixed class such that HW(zf ) = 4 cannot be distinguished at all from the
random class (since they have the same mean). By contrast, a fixed class such
that HW(zf ) = 0 is extremely fast to distinguish from the random class.

(3) The ρ-test can have (much) larger sampling complexity. This naturally de-
pends on the fixed value for the t-test. But assuming that several samples from
a trace are used in a the leakage detection (which is usually the case, as will be
shown in our following measured experiments), there should be some of them
that lead to faster leakage detection with the t-test than with the ρ-test.

(4) It’s all in the SNR. Most importantly, and just as in standard DPA, the
sampling complexity of a detection test essentially depends on the SNR of its
leakage partitioning. For the ρ-test, we can directly exploit Mangard’s definition
from CT-RSA 2004 for this purpose [13]. That is, the signal corresponds to the
variance of the random variable HW(Z) with Z uniform, which equals 2 for 8-
bit values, and the noise variance equals to σ2

n. As for the t-test, we need to
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Fig. 1. Leakage detection on simulated traces, Hamming weight leakage function.



define an binary random variable B that is worth HW(zf ) with probability 1/2
and HW = 4 with probability 1/2. For each value of the fixed zf , the signal then
corresponds to the variance of B, and the noise variance equals to σ2

n for the fixed
class, and σ2

n + 2 for the random class (since in this case, the noise comes both
from the variable Z and from the noise R). For example, this means a signal 0 for
the fixed class HW(zf ) = 4, a signal 0.25 for the fixed class HW(zf ) = 3, a signal
1 for the fixed class HW(zf ) = 2, a signal 2.25 for the fixed class HW(zf ) = 1,
and a signal 4 for the fixed class HW(zf ) = 0. Ignoring the small noise differences
between the tests, it means that the sampling complexity for detecting leakages
with the t-test and a fixed class HW(zf ) = 1 should be close to (and slightly
smaller than) the sampling complexity for detecting leakages with the ρ-test.
And this is exactly what we observe on the figure, for the ρ-test with a perfect
model. The same reasoning can be used to explain the sampling complexities of
the t-test for different fixed values. For example, the case HW(zf ) = 3 requires
four times more traces than the case HW(zf ) = 2 on the figure.

A consequence of this observation is that, as for standard DPA attacks, the
choice of statistic (here the t-test or ρ-test) has limited impact on the sampling
complexity of the detection. For example, one could totally design a ρ-test based
on a partition in two (fixed and random) classes, that would then lead to very
similar results as the t-test (up to statistical artifacts, as discussed in [15]).

(5) Estimating a model can only make it worse. Besides the potentially lower
signal, another drawback of the 256-class ρ-test from the sampling complexity
point-of-view is that it requires the estimation of a model made of 256 mean
values. This further increases its overheads compared to the t-test, as illustrated
in Figure 1 (see the r̂z curve with k = 10-fold cross-validation). In this respect, we
first note that considering larger k’s only leads to very marginal improvements
of the detection (at the cost of significant computational overheads). Besides,
we insist that this estimation is unavoidable. For example, ignoring the cross-
validation and testing a model with the same set as its profiling set would lead
to overfitting and poor detection performances. In other words, it is the size of
the partition used in the ρ-test that fixes its SNR (as previously discussed) and
estimation cost, and both determine the final sampling complexity of the test.

Note that the above conclusions are independent of the leakage function
considered (we repeated experiments with identity rather than Hamming weight
leakages, and reached the same conclusions). Therefore, these simulated results
confirm our introduction claim that for leakage detection only, a non specific
t-test is the method of choice, and that its gains over a ρ-test can be easily
predicted from a leakage function/partition and its resulting SNR metric.

4.2 Measured experiments

We now extend the previous simulated analysis to the practically-relevant case of
actual AES measurements, obtained from the setup described in Section 2.1. We
will divide our investigations in two parts. First, a global analysis will consider



the leakage traces of the full AES executions, in order to discuss the sampling
complexity and intuitions regarding the POIs for our two detection tests. Next,
a local analysis will be used in order to discuss possible false negatives in the
t-test, and intuitions regarding the informativeness of the detected samples.

Global analysis. The results of a fixed vs. random t-test and a ρ-test for
leakage traces corresponding to an entire AES Furious execution are provided in
Figure 2, from which two main observations can be extracted.

(1) The t-test has lower sampling complexity on average. This is essentially the
concrete counterpart of observation (3) in the previous section. That is, we al-
ready know that for some fixed values of the plaintext, the t-test should have
a lower sampling complexity. Figure 2 confirms that when looking at complete
AES traces, those “easy-to-detect” fixed values are indeed observed (which is
natural since the AES Furious implementation accounts for a bit more than
3000 clock cycles, and the intermediate values within such a block cipher execu-
tion should be uniformly distributed after a couple of rounds). Concretely, this
means that the sampling complexity for detecting leakages with a similar confi-
dence increases from ≈ 200 traces for the t-test to ≈ 2000 traces for the ρ-test,
ie. a factor ≈ 10 which is consistent with the previous simulations. Note that
even in the context of a hardware implementation with a reduced cycle count
(e.g. 11 cycles per AES execution), finding fixed values that are easy-to-detect
for the t-test is feasible by trying a couple of fixed plaintexts and keys.
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Fig. 2. Leakage detection on real traces, entire AES execution.

(2) The ρ-test (resp. t-test) does (resp. not) provide intuitions regarding ex-
ploitable leakage samples. This is easily seen from the figure as well. Whereas
the t-test detects information leakage everywhere in the trace, the ρ-test is much



more localized, and points towards the samples that depend on the single plain-
text byte that is varying. Since the key is fixed in leakage detection, it implies
that peaks are observed whenever this (useless) plaintext byte and the (useful)
intermediate values that bijectively depend on it are manipulated, e.g. the key
addition and S-box outputs in Figure 2. In other words, the ρ-test is mostly
relevant for the detection of POIs that are exploitable in a standard DPA attack
(i.e. excluding the false positives corresponding to plaintext manipulations).

Local analysis. The results of a fixed vs. random t-test and a ρ-test for leak-
age traces corresponding to the beginning of the first AES round execution are
provided in Figure 3, from which two main observations can be extracted.4
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Fig. 3. Leakage detection on real traces, first-round AES key addition and S-box.

(1) Hard-to-detect leakage samples for the t-test can be observed. More precisely,
the lower part of Figure 3 exhibits three peaks which exactly correspond to
the the manipulation of a plaintext byte (first peak), the key addition (second
peak) and the S-box execution (third peak), just as the three samples of our
simulated setting in Section 4.1. Knowing that our Atmel implementation of
the AES has leakages that can be efficiently exploited with a Hamming weight
model (as in our simulations) [24], we selected the fixed plaintext byte of the
t-test such that HW(zf ) = 4. As illustrated in the upper part of the figure, the
leakages of this fixed intermediate value are indeed difficult to tell apart from
the one of its random counterpart. More precisely, the ρ-test clearly exhibits a
peak for this intermediate value after 2000 traces, which does not exist in the t-
test experiment using a similar sampling complexity. Whereas we cannot exclude

4 Exceptionally for this experiment, we considered a single varying byte for the t-test,
in order to better exhibit intuitions regarding the detected samples for a single S-box.



that such a peak would appear for a larger number of traces (since the chip does
not exactly follow the Hamming weight leakage model), this confirms that not
all leakage samples are easier to detect with the t-test than with the ρ-test.

(2) The ρ-test does provide intuitions regarding the informativeness of the leakage
samples. Eventually, a straightforward advantage of the ρ-test is that the value
of its correlation coefficient estimates brings some intuition regarding the com-
plexity of a side-channel attack exploiting this sample, which is only provided up
to a limited extent by the t-test. Indeed, a side-channel attack exploiting an s-bit
intermediate value is most efficient if it relies on an s-bit model, as considered by
the ρ-test (otherwise s−1 bits out of s will produce “algorithmic noise”). In this
context, we can take advantage of the connection between Pearson’s correlation
coefficient and the information theoretic metrics in [25] (see [15]), themselves
related to the worst-case complexity of standard DPA attacks [5].

5 Improved leakage detection test

One central conclusion of the previous section is that the sampling complexity
of leakage detection tests highly depends on the SNR of the leakage partition on
which they are based. Interestingly, this observation directly suggests a natural
improvement of CRI’s non specific (fixed vs. random) t-test. Namely, rather than
performing the test based on a fixed and a random class, a more efficient solution
is to perform a similar test based on two fixed classes (i.e. two fixed plaintexts).
On the one hand, this directly reduces the detection noise from 2σ2

n + σ2
alg to

2σ2
n, since it cancels the algorithmic noise due to the variations of the random

class. Taking the example of Hamming weight leakages, this algorithmic noise
corresponds to σ2

alg = 2 for 8-bit values, but it increases for larger parallel imple-

mentations (e.g. it is worth σ2
alg = 32 for 128-bit implementations). On the other

hand, and when applied to large traces, such a partitioning also increases the
signal with high probability, for the same argument as used to avoid false posi-
tives in CRI’s t-test (i.e. by applying the detection to large enough traces, large
differences between the two fixed classes will inevitably occur). Taking the ex-
ample of Hamming weight leakages again, we can easily compute the probability
(over random inputs) that a certain leakage difference is obtained for both types
of partitions (i.e. fixed vs. random and fixed vs. fixed), and the resulting signal
variance, as illustrated in Figure 4. We conclude from this figure that (i) the
fixed vs. fixed partitioning allows reaching larger differences (so larger signals)
and (ii) the fixed vs. fixed partitioning allows doubling the average signal (i.e.
the dot product of the probabilities and variances in the figure). So both from
the noise variance and the (best-case and average case) signal points-of-views, it
should improve the sampling complexity of the detection test.5 In other words, a
leakage detection based on a fixed vs. fixed leakage partition should theoretically
have better sampling complexity than with a fixed vs. random one.

5 A similar conclusion can be obtained for other leakage functions, though the binomial
distribution of the Hamming weight leakages naturally make computations easier.



Fig. 4. Fixed vs. random and fixed vs. fixed leakage detection signal.

Quite naturally, the exact gains of this new detection test depend on the ac-
tual leakages. So as in the previous section, we confirmed our expectations with
two case studies. First, we compared the fixed vs. random and fixed vs. fixed t-
tests based on our software AES implementation. The results of this experiment
are in Figure 5 where we observe that data-dependent leakages are detected with
similar confidence with approximately 5 times less traces thanks to our new par-
titioning. Next, we investigated the context of the hardware implementation of
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Fig. 5. Improved leakage detection on real traces (Atmel implementation).

the AES described in Section 2.1. As illustrated in Figure 6, similar gains are
obtained. Note however that despite we gain an approximate factor 5 in both
cases, the reasons of this gain are different. Indeed, the software implementation
case is dominated by an increase of signal (due to its large cycle count) and
has limited algorithmic noise. By contrast, the hardware implementation has



larger algorithmic noise (corresponding to 128-bit random values) but less im-
provements of the signal (because its traces are only 11-cycle long). Even larger
gains could be obtained by combining both the signal and noise effects (e.g. by
considering multiple keys for the hardware implementation). Based on these the-
oretical arguments and experimental confirmation, we expect our fixed vs. fixed
partitioning to lead to faster leakage detections in most practical scenarios.
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Fig. 6. Improved leakage detection on real traces (ASIC implementation).

6 From leakage detection to POI detection

The previous sections lead to the natural conclusion that non specific tests are
a method of choice for leakage detection. In particular, their application to full
leakage traces (or multiple keys) allows overcoming the issue of false positives
mentioned in Section 4.1. By contrast, the correlation-based test is better suited
to the detection of POIs because it provides useful intuitions regarding the ex-
ploitable samples in side-channel traces and their informativeness. As a result, it
is a good candidate for the more specific task of detecting POIs for mounting an
attack. In this section, we conclude the paper by putting forward that a ρ-test is
in fact perfectly suited for integration in (an improvement of) a recent POI de-
tection tool proposed by Durvaux et al. at COSADE 2015 [7]. For this purpose,
we first briefly recall how this tool works, then describe our improvements based
on our proposed ρ-test, and provide experimental confirmation of our claims.

Note that in general, the problem of detecting POIs is relatively easy in the
context of unprotected implementations. Indeed, exhaustive analysis is usually
feasible in this case, and it is even possible to look for optimal transforms that



project the samples towards small (hence easier-to-evaluate) subspaces such that
most of their informativeness is preserved, e.g. using Principal Component Anal-
ysis (PCA) [1], which maximizes the side-channel signal, or Linear Discriminant
Analysis (LDA) [23], which maximizes the side-channel SNR. In fact, in this
context, any criteria can be easily optimized using local search [7, 18], and most
criteria are essentially equivalent anyway (i.e. correlation, SNR, mutual informa-
tion and success rate [5, 15]). Therefore, our focus will be on the more challenging
case of masked implementation, which requires a specialized local search.

6.1 The COSADE 2015 POI detection tool

The COSADE 2015 POI detection aims at finding a projection vector α that
converts the Ns samples ly(τ) of a leakage trace into a single projected sample λy:

λy =

Ns∑
τ=1

α(τ) · ly(τ).

In the case of unprotected implementations, and as previously mentioned, it is
possible to find projections α that optimize the informativeness of the projected
sample (where the α(τ) coefficients are real numbers, typically). By contrast, in
the context of masking, the task is arguably more difficult since (i) single samples
may not contain information (e.g. in the context of software implementations
where the different shares are manipulated at different time samples), and (ii) the
information about the target intermediate variables lies in higher-order moments
of the leakage distribution. Therefore, Durvaux et al. focused on the simplified
problem of finding a projection such that α(τ) = 1 if the time sample ly(τ)
contains some information about a share, and α(τ) = 0 otherwise.

In this context, a naive solution would be to consider each possible combina-
tion of time samples, but this scales badly (i.e. exponentially) with the number
of shares to detect, and is rapidly prohibitive in practice, even for two shares
(since masked implementations generally imply traces with many samples). In
order to avoid this drawback, the algorithm proposed in [7] works by considering
d non-overlapping windows of length Wlen that set the covered weights to 1 (and
leaves to others stuck at 0). Algorithm 1 provides a succint description of this
method. Besides the previously mentioned window length, it mainly requires
defining an objective function fobj and a detection threshold Tdet , and works in
two steps. First, the find solution phase places the windows randomly at different
locations of the trace, until the returned value of the objective function crosses
the threshold. Then, the improve solution modifies the windows’ size in order to
best fit the informative time samples. As a result, we obtain the position and the
size of each window that maximizes fobj . By changing the number of windows
and objective function, this approach can easily be extended to masking schemes
of any order and number of shares. Intuitively, the Wlen parameter leads to a
natural tradeoff between the time complexity and sampling complexity of the



Algorithm 1 Local search algorithm for finding POIs in masked traces.

Local Search(d,Wlen, Tdet,@fobj)
α = find solution(d,Wlen, Tdet,@fobj);
if(α 6= null)

return improve solution(α,@fobj);
end

end

algorithm. Namely, small window lengths are more time intensive6, and large
ones more rapidly cover POIs, but imply an estimation of the objective function
for samples projected according to larger windows, which are potentially more
noisy. Eventually, the objective function proposed in the COSADE paper is the
Moments-Correlating Profiled DPA (MCP-DPA) introduced in [17], which can
be viewed as a classical higher-order DPA based on the CPA distinguisher given
in Section 2.2, where one correlates the leakages samples raised to a power d
with a model corresponding to the dth-order statistical moment of the leakage
distribution. We refer to the previous papers for the details on these tools.

6.2 Our contribution

We first recall that the COSADE 2015 POI detection tool is black box in the sense
that it does not require any knowledge of the target implementation. By contrast,
it does require key profiling, since the MCP-DPA distinguisher is a profiled one.
In this respect, our first contribution is the simple but useful observation that
one can easiliy apply such a black box POI detection without key profiling, by
simply profiling the MCP-DPA objective function based on plaintext knowledge,
just as the ρ-test in this paper. Indeed, when detecting POIs, it is sufficient to
know the leakage model up to a permutation corresponding to key knowledge (a
quite similar idea has been exploited in [21] for similar purposes). As previously
discussed, this solution will suffer from the (minor) risk of detecting plaintext
samples, but as will be detailed next, this can be easily mitigated in practice.

Based on these premises, our second contribution is the equally simple obser-
vation that our ρ-test can be used identically with the MCP-DPA distinguisher,
so is theoretically eligible for detecting leakages and POIs of any order. And this
observation leads to our third contribution, namely that by replacing the MCP-
DPA objective function in [7] by the ρ-test in this paper (based on CPA or MCP-
DPA), we obtain a very simple and rigorous way to set the detection threshold
in Algorithm 1. That is, one just has to use the same “five sigma rule” as used
in the leakage detections of Figures 2 and 3. Note by changing the objective
function and selection of a detection threshold in this way, we benefit from the
additional advantage of estimating the objective function with cross-validation,
which is another (minor) improvement over the COSADE 2015 method.

6 For example, Wlen = 1 is equivalent to testing all combinations of time samples.



6.3 Experimental validation

In order to confirm the previous claims, we tested Algorithm 1 using exactly
the previously described modifications, based on a target implementation and
measurement setup very similar to the one in [7]. That is, we analyzed the
leakages of the masked implementation described in Section 2.1 which leads to
large traces with Ns = 30, 000 samples (for which an exhaustive analysis of all
the pairs of samples is out of reach). As in the COSADE 2015 paper, we verified
that our implementation does not lead to any first-order leakages (this time with
the ρ-based test from Section 3). We further set the window length to 25 samples,
which corresponds to a bit more than two clock cycles at our clock frequency
and sampling rate. With these parameters, the local search was able to return a
solution within the same number of objective function calls, namely ≈ 12 000 on
average. And example of leakage trace together with windows obtained thanks to
Algorithm 1 in given in Figure 7. As clear from the zoomed plots at the bottom of
the figure, the selection of POIs corresponds to leakage samples that combine the
precomputation and masked S-box computation. Interestingly, we could expect
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Fig. 7. Non-profiled detection of POIs based on our ρ-test.

some false positives due to the detection of plaintext bytes that is possible in
our non-profiled scenario. However, the improve solution of Algorithm 1 (where
the window size is adapated to be most informative) combined with the fact
that the most informative leakage samples in our traces correspond to memory
accesses (i.e. the S-box computations) prevented these to happen. Note that
even if the leakage of the plaintext manipulations was more informative, we
could easily “mark” the cycles that correspond to plaintext knowledge only, and
exclude them from our optimization. Since the number of POIs corresponding
to a single plaintext byte is usually limited, this would lead to the detection of



a valid pair of POIs after a couple of iterations of Algorithm 1. Besides, we note
that Simple Power Analysis, or DPA against the plaintext (before it is XORed
with the masks) are other simple ways to gain the minimum intuition about the
time localization of POIs to make non-profiled local search applicable.

To conclude, we insist that this last section has admittedly limited technical
novelty. However, we believe the connections made are important to raise aware-
ness that up to the selection of POIs in the leakage traces, side-channel security
evaluations can essentially be performed in a black box way, and without any
key profiling. In this respect, leakage detection and the detection of POIs are
indeed related tasks, with the significant difference that the latter has to take
the exploitability of the detected samples into account. And this is exactly the
difference between simple t-tests and more measurement-intensive ρ-tests based
on larger leakage partitions. Note that the non-profiled detection in this section
only applies to the first/last block cipher rounds (i.e. before diffusion is com-
plete), which captures many relevant practical scenarios but could be an issue,
e.g. in contexts where these extreme rounds are better protected than the central
ones. Besides, and more generally, we recall that as soon as the POIs are detected
and the evaluator has to build a model for these samples, key profiling becomes
strictly necessary if the worst-case security level has to be evaluated [28].

7 Summary & open problems

The discussion in this paper highlights that there are significant differences be-
tween current approaches to side-channel security evaluation. On the one hand,
CRI’s Test Vector Assessment Methodology (TVLA) aims at minimizing the
evaluator’s efforts. Very concretely, non specific t-tests as proposed in [4, 9] are
indeed good to detect univariate and first-order leakages. As we observed in Sec-
tion 5, slightly tweaking the selection of the classes (from fixed vs. random to
fixed vs. fixed) allows significantly improving the detection speed in this case.
In this respect, we note that our investigations focused on plaintext variations
(allowing non-profiled detections), but similar conclusions hold for other types of
dependencies (e.g. one could consider two fixed keys with the same plaintext, or
two different pairs of plaintext and key). Despite minor theoretical caveats (i.e.
the possibility of false positives and negatives), the application of such 2-class
t-tests turns out to be extremely efficient. On the other side of the spectrum,
complete (ideally worst-case) security evaluations such as discussed in [25] rather
aim at a precise rating of the security level, possibly considering the adversary’s
computing power [26], which is an arguably more expensive task. In this case,
the selection of POIs is a usually a necessary first step. As also discussed in
this paper, and when restriced to univariate and first-order leakages, the main
reason for the additional cost of this approach (including the selection of POIs)
is the larger number of classes for which the leakage distribution has to be well
estimated. In this context as well, our investigations focused on non-profiled POI
detection (which can be performed efficiently for the first/last cipher rounds).
But similar conclusions hold in the profiled evaluation setting, which allows find-
ing POIs in all the cipher rounds, and is necessary for worst-case analysis.



These different methodologies naturally raise the question of which one to
use in which context, and whether they can be connected to some extent, leading
to the following open problems. First, how to generalize (simple) detection tests
to capture more types of leakages? Moving from univariate first-order leakages to
univariate higher-order leakages appears reachable with existing tools. One op-
tion is to exploit more general statistical tests, e.g. the mutual information based
one in [16]. Another option is to work “by moments” and to test higher-order
moments of the leakage distributions (with t-test, F-tests,. . . , if 2 classes are
considered, with Moments-Correlating DPA or equivalent tools if more classes
are considered). Moving to multivariate leakage detection appears much more
difficult. At least, testing all pairs/triples/. . . of samples in a trace rapidly turns
out to be unfeasible as the size of the traces increase, which usually leads current
evaluations to be based on heuristics (e.g. the ones briefly discussed in Section 6).
Second, can we extrapolate or bound the worst-case security level of an imple-
mentation based on simple statistical tests? For example, the recent work in [5]
shows that one can (in certain well-defined conditions) bound the security level of
an implementation, measured with a success rate and in function of the number
of measurements and computing power of the adversary, based on information
theoretic metrics (such as the mutual information in general, and the SNR if
we only consider univariate attacks). But as discussed in this paper, evaluating
an SNR is still significantly more expensive than detecting leakages with non
specific tests. So of course, it would be interesting to investigate whether it is
possible to bound the security level based on simpler leakage detection tests.
In case of negative answer, it anyway remains that such leakage detection tests
can always be used as a prelimininary to more expensive approaches (detecting
POIs, security evaluations), e.g. to reduce the dimensionality of the traces.
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