
Security of Full-State Keyed and Duplex Sponge:
Applications to Authenticated Encryption

Bart Mennink1 Reza Reyhanitabar2 Damian Vizár2

1 Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium
bart.mennink@esat.kuleuven.be

2 EPFL, Lausanne, Switzerland {reza.reyhanitabar,damian.vizar}@epfl.ch

Abstract. We provide a security analysis for full-state keyed Sponge
and full-state Duplex constructions. Our results can be used for making
a large class of Sponge-based authenticated encryption schemes more ef-
ficient by concurrent absorption of associated data and message blocks.
In particular, we introduce and analyze a new variant of SpongeWrap
with almost free authentication of associated data. The idea of using
full-state message absorption for higher efficiency was first made explicit
in the Donkey Sponge MAC construction, but without any formal secu-
rity proof. Recently, Gaži, Pietrzak and Tessaro (CRYPTO 2015) have
provided a proof for the fixed-output-length variant of Donkey Sponge.
Yasuda and Sasaki (CT-RSA 2015) have considered partially full-state
Sponge-based authenticated encryption schemes for efficient incorpora-
tion of associated data. In this work, we unify, simplify, and general-
ize these results about the security and applicability of full-state keyed
Sponge and Duplex constructions; in particular, for designing more effi-
cient authenticated encryption schemes. Compared to the proof of Gaži
et al., our analysis directly targets the original Donkey Sponge construc-
tion as an arbitrary-output-length function. Our treatment is also more
general than that of Yasuda and Sasaki, while yielding a more efficient
authenticated encryption mode for the case that associated data might
be longer than messages.

Keywords: Sponge construction, Duplex construction, full-state ab-
sorption, authenticated encryption, associated data.

1 Introduction

Since its introduction, the Sponge construction by Bertoni, Daemen, Peeters and
Van Assche [4] has faced an immense increase in popularity. As “simple” hash
function mode, it is the fundament of the SHA-3 standard Keccak [5], but also its
keyed variants have become very popular modes of operation for a permutation
to build a wide spectrum of symmetric-key primitives: reseedable pseudoran-
dom number generators [7], pseudorandom functions and message authentica-
tion codes (PRFs/MACs) [9, 11], Extendable-Output Functions (“XOFs”) [22]
and authenticated encryption (AE) modes [10, 11]. The keyed Sponge principle

also got adopted in Spritz, a new RC4-like stream cipher [24], and in 10 out of 57
submissions to the currently running CAESAR competition on authenticated en-
cryption [1,3]. These use cases reinforce the fact that Sponge-based constructions
will continue to play an important role, not only in the new hashing standard
SHA-3, but in various next-generation cryptographic algorithms.

The classical Sponge construction consists of a sequential application of a
permutation 𝑝 on a state of 𝑏 bits. This state is partitioned into an 𝑟-bit rate or
outer part and a 𝑐-bit capacity or inner part, where 𝑏 = 𝑟 + 𝑐. In the absorption
phase, message blocks of size 𝑟 bits are absorbed by the outer part and the
state is transformed using 𝑝, while in the squeezing phase, digests are extracted
from the outer part 𝑟 bits at a time. In the indifferentiability framework of
Maurer, Renner and Holenstein [19], Bertoni et al. [6] proved that the Sponge
construction is secure up to the 𝑂(2𝑐/2) birthday-type bound. The capacity
part is left untouched throughout the evaluation of the Sponge construction: a
violation of this paradigm would make the indifferentiability security result void.

In this work, we strive for optimality, and investigate the most efficient ways
of using Sponges for message authentication and authenticated encryption in a
provably secure manner. In both directions, we consider a generalization of the
currently known schemes to full-state absorption, the most efficient usage of the
underlying permutation, and we show that these schemes are secure. Due to the
full-state absorption, we cannot anymore rely on the classical indifferentiability
result of the Sponge (as was for instance done in [2, 10]), and a new security
analysis is required. We will elaborate on both directions in the following.

Message Authentication. Bertoni et al. [9] introduced the keyed Sponge
as a simple evaluation of the Sponge function on the key and the message,
Sponge(𝐾‖𝑀), and proved security beyond 𝑂(2𝑐/2). Chang et al. considered
a slight variant of the keyed Sponge where the key is processed in the inner
part of the Sponge, and observed that it can be seen as the Sponge based on
an Even-Mansour blockcipher. At FSE 2015, Andreeva, Daemen, Mennink and
Van Assche [2] considered a generic and improved analysis of both the outer-
and inner-keyed Sponge. So far, however, these constructions have only been
considered with the classical 𝑟-bit absorption.

The idea of using full-state message absorption for achieving higher efficiency
was first made explicit in the Donkey Sponge MAC construction [11], but with-
out any formal security proof. The recently introduced Donkey-inspired MAC
function Chaskey [20] did get a formal security analysis, but its proof is thwarted
towards Chaskey and does not apply to the Donkey Sponge.

A thorough analysis of the full-state message absorption keyed Sponge had
to wait for Gaži, Pietrzak and Tessaro [17], who prove nearly tight security up
to 𝑂(ℓ𝑞(𝑞 + 𝑁)/2𝑏 + 𝑞(𝑞 + ℓ + 𝑁)/2𝑐), where the adversary makes 𝑞 queries of
maximal length ℓ, and makes 𝑁 primitive calls. However, their analysis only
applies to the fixed-output-length variant, and the proof does not directly seem
to extend to the original arbitrary-output-length keyed Sponge. In this work, we
provide a direct proof for this more general case.

2

In more detail, we present a generalized scheme, dubbed Full-state Keyed
Sponge (FKS), that generalizes the Donkey Sponge construction, and prove that
it is secure up to approximately 2(𝑞ℓ)2

2𝑏 + 2𝑞2ℓ
2𝑐 + 𝜇𝑁

2𝑘 , where 𝑘 is the size of the key,
and 𝜇 is a parameter called the “multiplicity”. We note that usage of the outer-
keyed Sponge makes no longer any difference from the usage of the inner-keyed
variant in the presence of full-state absorption (see also Sect. 8). Our proof of
FKS follows the modular approach of Andreeva et al., but due to the full-state
absorption, we cannot rely on the indifferentiability result of [6], and present a
new and more detailed analysis.

Authenticated Encryption. Encryption via the Sponge can be done (and
is implicitly done) via the Duplex construction [10], a stateful construction con-
sisting of an initialization interface and a duplexing interface. The initialization
interface can be called to initialize an all-zero state; the duplexing interface ab-
sorbs a message of size < 𝑟 bits and squeezes ≤ 𝑟 bits of the outer part. The
security of the Duplex Sponge traces back to the indifferentiability of the classical
Sponge, yielding a 𝑂(2𝑐/2) security bound.

Bertoni et al. [10] showed that the Duplex, in turn, allows for authenticated
encryption in the form of SpongeWrap. This mode is, de facto, the basis of the
majority of Sponge-based submissions to the CAESAR competition. Jovanovic et
al. [18] re-investigated Sponge-based authenticated encryption schemes, starring
NORX, and derived beyond birthday-bound security. These results are, however,
all for the usual 𝑟-bit absorption. Yasuda and Sasaki [25] have considered several
full-state and partially full-state Sponge-based authenticated encryption schemes
for efficient incorporation of associated data, directly lifting Jovanovic et al.’s
security proofs. The concurrent absorption mode proposed by Yasuda and Sasaki
(Fig. 3 in [25]) fails to utilize the full-state absorption when the associated data
becomes longer than the message, forcing the mode switch from a full-state
mode to the classical 𝑟-bit absorbing Sponge mode; hence, we refer to this as
a partially full-state AE mode. Full-state data absorption was also proposed by
Reyhanitabar, Vaudenay and Vizár [23] in their compression function based AE
mode p-OMD.

We generically aim to optimize the efficiency in Sponge-based authenticated
encryption. To this end, we first formalize the Full-state Duplex Sponge (FDS)
construction. It differs from the original Duplex in the fact that (i) the key is
explicitly used to initialize the state, and (ii) the absorption is performed on
the entire state. Note that the possibility to absorb in the entire state enforces
the explicit usage of the key. Next, we prove that FDS is provably secure, i.e.,
indistinguishable from a random oracle with the same interfaces. As before, we
cannot rely on the classical indifferentiability proof due to the full-state absorp-
tion; however, we show how to adapt the FKS proof to a special case directly
related to the security of FDS.

We exemplify the better absorption capabilities of FDS by the introduction
of a Full-state SpongeWrap (FSW). The FSW construction is more general than
that of Yasuda and Sasaki, who only considered specific AE constructions, and
interestingly, our approach also yields a more efficient (truly full-state) authenti-

3

cated encryption mode irrespective of the relative lengths of messages and their
associated data.

Organization of the Paper. Notations and preliminary concepts are pre-
sented in Sect. 2. We present the Full-state Keyed Sponge and Full-state Duplex
Sponge in Sect. 3. The security model is discussed in Sect. 4. In Sect. 5 we
prove security of FKS and in Sect. 6 of FDS. The introduction of the Full-state
SpongeWrap, and the application of FDS to this construction is given in Sect. 7.
Sect. 8 provides a brief discussion on related-key security and our security mod-
els.

2 Notations and Conventions

The set of all strings of length 𝑏 is denoted as {0, 1}𝑏 for any 𝑏 ≥ 1 and the set
of all finite strings of arbitrary length is denoted as {0, 1}*. We will denote the
empty string of length 0 as 𝜀. For any positive 𝑏, we let {0, 1}<𝑏 =

⋃︀𝑏−1
𝑖=0{0, 1}𝑖

denote set of all strings of length less than 𝑏 including 𝜀. For two strings 𝑋, 𝑌 ∈
{0, 1}* we let 𝑋 ‖ 𝑌 denote the string obtained by concatenation of 𝑋 and 𝑌 .
For a string 𝑋 ∈ {0, 1}𝑥 we let leftℓ (𝑋) denote the ℓ leftmost bits of 𝑋 and
right𝑟 (𝑋) the 𝑟 rightmost bits of 𝑋 such that 𝑋 = left𝜒 (𝑋) ‖ right𝑥−𝜒 (𝑋) for
any 0 ≤ 𝜒 ≤ 𝑥. For integral 𝑏, 𝑟, 𝑐 such that 𝑏 = 𝑟 + 𝑐, and for 𝑡 ∈ {0, 1}𝑏, we let
outer (𝑡) = left𝑟 (𝑡) and inner (𝑡) = right𝑐 (𝑡).

For a non-empty finite set 𝒮 let 𝑎
$←− 𝒮 denote sampling an element 𝑎 from

𝒮 uniformly at random. We let |𝑍| denote the cardinality if 𝑍 is a set and the
length if 𝑍 is a string. We let Perm (𝑏) denote the set of all permutations of 𝑏-bit
strings and Func (𝑏) the set of all functions over 𝑏-bit strings.

Given two strings 𝑋, 𝑌 , let

llcp𝑏 (𝑋, 𝑌) = max
𝑖≥0
{𝑖 : left𝑖𝑏 (𝑋) = left𝑖𝑏 (𝑌)}

denote the length of the longest common prefix between 𝑋 and 𝑌 in 𝑏-bit blocks.
For a string 𝑋 and a non-empty set of strings {𝑌1, . . . , 𝑌𝑛} let

llcp𝑏 (𝑋; 𝑌1, . . . , 𝑌𝑛) = max {llcp𝑏 (𝑋, 𝑌1) , . . . , llcp𝑏 (𝑋, 𝑌𝑛)} .

For any two pairs of integers (𝑖, 𝑗), (𝑖′, 𝑗′), we say that (𝑖′, 𝑗′) < (𝑖, 𝑗) if either
𝑖′ < 𝑖 or if 𝑖′ = 𝑖 and 𝑗′ < 𝑗. We say that (𝑖′, 𝑗′) ≤ (𝑖, 𝑗) if (𝑖′, 𝑗′) < (𝑖, 𝑗) or
if (𝑖′, 𝑗′) = (𝑖, 𝑗). In other words, we use lexicographical ordering to determine
ordering of integer-tuples.

3 Sponge Constructions

3.1 Full-State Keyed Sponge

We consider the Full-state Keyed Sponge (FKS) construction that is using a
public permutation 𝑝 : {0, 1}𝑏 → {0, 1}𝑏. It is furthermore parameterized with

4

K

f f ff f b b b

M1 M2 Mm

b

Z⌈z/r⌉−1

b

Z1

b

Z⌈z/r⌉

b b b

b b b

0
b−

k

b b bpad
b leftz

b b b

M Z

b

r

c

r

c

Fig. 1: The FKS construction.

𝑟, 𝑘, which are required to satisfy 𝑟 < 𝑏 and 𝑘 ≤ 𝑏− 𝑟 =: 𝑐. The parametrization
is sometimes left implicit if it is clear from the context. FKS gets as input a key
𝐾 ∈ {0, 1}𝑘, a message 𝑀 ∈ {0, 1}*, and a natural number 𝑧, and it outputs a
string 𝑍 ∈ {0, 1}𝑧:

FKS𝑝(𝐾, 𝑀, 𝑧) = FKS𝑝
𝐾(𝑀, 𝑧) = 𝑍 .

It operates on a state 𝑡 ∈ {0, 1}𝑏, which is initialized using the key 𝐾. The
message 𝑀 is first padded to a length a multiple of 𝑏 bits, using pad𝑏(𝑀) =
𝑀‖10𝑏−1−|𝑀 | mod 𝑏, which is then viewed as 𝑚 𝑏-bit message blocks 𝑀1‖...‖𝑀𝑚.3
These message blocks are processed one-by-one, interleaved with evaluations of
𝑝. After the absorption of 𝑀 , the outer 𝑟 bits of the state are output and the
state is processed via 𝑝 until a sufficient amount of output bits are obtained.
FKS is depicted in Fig. 1, and Algo. 1 provides a formal specification of FKS.

Algorithm 1 FKS[𝑝, 𝑟, 𝑘](𝐾, 𝑀, 𝑧)
1: 𝑡← 0𝑏−𝑘 ‖𝐾

2: 𝑀1 ‖ · · · ‖𝑀𝑚 𝑏←− pad𝑏(𝑀)
3: for 𝑖 = 1, . . . , 𝑚 do
4: 𝑠← 𝑡⊕𝑀 𝑖

5: 𝑡← 𝑝(𝑠)
6: 𝑍 ← left𝑟 (𝑡)
7: while |𝑍| < 𝑧 do
8: 𝑡← 𝑝(𝑡)
9: 𝑍 ← 𝑍 ‖ left𝑟 (𝑡)

10: return left𝑧 (𝑍)

Algorithm 2 FDS[𝑝, 𝑟, 𝑘]
1: Interface 𝐷.initialize(𝐾)
2: 𝑡← 0𝑏−𝑘 ‖𝐾

1: Interface 𝐷.duplexing(𝑀, 𝑧)
2: 𝑠← 𝑡⊕ pad𝑏(𝑀)
3: 𝑡← 𝑝(𝑠)
4: return left𝑧 (𝑡)

3 In fact, any injective padding function works, as long as the last block is always
non-zero.

5

K
0
b
−
kr

c

b

Z1

f

M1

b

Z2

f

M2

b

Zm

f

Mm

le
ft

z
1

p
a
d
b

le
ft

z
2

le
ft

z
m

p
a
d
b

p
a
d
b

b b b

initialiaze duplexing duplexing duplexing

∀i : zi ≤ r

Fig. 2: The FDS construction.

3.2 Full-State Duplex Sponge

We present the Full-state Duplex Sponge (FDS) construction, a generalization
of the duplex Sponge of Bertoni et al. [8, 10]. FDS is also parameterized by a
public permutation 𝑝 : {0, 1}𝑏 → {0, 1}𝑏 and values 𝑟, 𝑘, which are required to
satisfy 𝑟 < 𝑏 and 𝑘 ≤ 𝑏 − 𝑟 =: 𝑐. Again, the parametrization is sometimes left
implicit if clear from the context. An instance of FDS, denoted by 𝐷, consists
of two interfaces: 𝐷.initialize and 𝐷.duplexing. 𝐷.initialize gets as input a key
𝐾 ∈ {0, 1}𝑘 and outputs nothing, while 𝐷.duplexing gets as input a message
𝑀 ∈ {0, 1}<𝑏 and a natural number 𝑧 ≤ 𝑟, and it outputs a string 𝑍 ∈ {0, 1}𝑧.
FDS is depicted in Fig. 2, and the formal specification is given in Algo. 2. FDS
is a generalization of FKS where 𝐷.initialize is used to initialize the state, and
messages are absorbed into the state and/or digests are squeezed out of the state
using 𝐷.duplexing calls.

4 Security Models and Tools

Multiplicity. Let {(𝑥𝑖, 𝑦𝑖)}𝑁
𝑖=1 be a set of 𝑁 evaluations of a permutation

𝑝. Following Andreeva et al. [2], we define the total maximal multiplicity as
𝜇 = 𝜇fwd + 𝜇bwd, where

𝜇fwd = max
𝑎
|{𝑖 ∈ {1, . . . , 𝑁} : outer (𝑥𝑖) = 𝑎}|,

𝜇bwd = max
𝑎
|{𝑖 ∈ {1, . . . , 𝑁} : outer (𝑦𝑖) = 𝑎}|.

4.1 Adversaries and Patarin’s Coefficient-H Technique

We consider an information-theoretic adversary 𝐴 that has access to one or
more oracles 𝑋; this is denoted by𝐴𝑋 and the notation 𝐴𝑋 ⇒ 1 means that
𝐴, after interaction with 𝑋, returns 1. It is a classical fact (for a simple proof
see [14]) that in the information-theoretic setting, adversaries can be assumed
to be deterministic without loss of generality.

6

We use Patarin’s Coefficient-H technique [21]; more precisely, a revisited for-
mulation of it by Chen and Steinberger [14]. Consider a deterministic information-
theoretic adversary 𝐴 whose goal is to distinguish two oracles 𝑋 and 𝑌 :

𝛥𝐴 (𝑋; 𝑌) =
⃒⃒⃒
Pr

[︁
𝐴𝑋 ⇒ 1

]︁
− Pr

[︁
𝐴𝑌 ⇒ 1

]︁⃒⃒⃒
.

Here, 𝑋 and 𝑌 are randomized algorithms; the randomization depends on the
specific scenario and for now is left implicit. The interaction with any of the two
systems 𝑋 or 𝑌 is summarized in a transcript 𝜏 . Denote by 𝐷𝑋 the probability
distribution of transcripts when interacting with 𝑋, and similarly, 𝐷𝑌 the distri-
bution of transcripts when interacting with 𝑌 . A transcript 𝜏 is called attainable
if Pr [𝐷𝑌 = 𝜏] > 0, meaning that it can occur during interaction with 𝑌 . Denote
by 𝒯 the set of all attainable transcripts. The Coefficient-H technique states the
following, for the proof of which we refer to [14].

Lemma 1 (Coefficient-H Technique [14,21]). Consider a fixed determinis-
tic adversary 𝐴. Let 𝒯 = 𝒯good ∪𝒯bad be a partition into good transcripts 𝒯good
and bad transcripts 𝒯bad. If there exists an 𝜀 such that for all 𝜏 ∈ 𝒯good,

Pr [𝐷𝑋 = 𝜏]
Pr [𝐷𝑌 = 𝜏] ≥ 1− 𝜀,

then, 𝛥𝐴 (𝑋; 𝑌) ≤ 𝜀 + Pr [𝐷𝑌 ∈ 𝒯bad].

The two partitions of 𝒯 are labeled as 𝒯good and 𝒯bad to aid the intuitiveness
of the proof. The transcripts in 𝒯good are “good” in the sense that they give
us a high value of Pr [𝐷𝑋 = 𝜏]/Pr [𝐷𝑌 = 𝜏] and thus small 𝜀 while the “bad”
transcripts from 𝒯bad fail to do so.

4.2 Security Models for FKS and FDS

Let RO∞ : {0, 1}* → {0, 1}∞ be a random oracle which takes inputs of arbitrary
but finite length and returns random infinite strings, where each output bit is
selected uniformly and independently for every input 𝑀 .

Let 𝐹 be either FKS or FDS, which is based on a permutation 𝑝 : {0, 1}𝑏 →
{0, 1}𝑏 and a key 𝐾 ∈ {0, 1}𝑘. We will define the security of 𝐹 in two settings: the
public permutation setting, where the adversary has query access to the permu-
tation (security comes from the secrecy of 𝐾), and the secret permutation setting
(with no explicit key 𝐾), where the adversary has no access to the underlying
permutation and the security comes from the secrecy of the permutation.

We use the notations 𝐹 𝑝
𝐾 and 𝐹 𝜋

0 to refer to the public permutation and
secret permutation based schemes, respectively; where, 𝜋 is a secret random
permutation.

In both settings, we consider an adversary that aims to distinguish the real 𝐹
from an ideal (reference) primitive—an oracle RO with the same interface. For
𝐹 = FKS the corresponding ideal primitive RO is defined by ROFKS(𝑀, 𝑧) =
left𝑧 (RO∞(𝑀)). For 𝐹 = FDS the corresponding reference primitive ROFDS is

7

a stateful oracle with two interfaces: (1) RO𝑟
FDS.initialize() that initializes the

state of the oracle, St, to the empty string, and (2) RO𝑟
FDS.duplexing(𝑀, 𝑧)

that, on input 𝑀 ∈ {0, 1}<𝑏 and a natural number 𝑧, first updates the state as
St← St||𝑝𝑎𝑑𝑏(𝑀) and then outputs left𝑧 (RO∞(St)).

We define the distinguishing advantage of any adversary 𝐴 against 𝐹 based
on a public permutation by

Advind
𝐹 𝑝

𝐾
,𝑝(𝐴) =

⃒⃒⃒
Pr

[︁
𝐾

$←− {0, 1}𝑘, 𝑝
$←− Perm (𝑏) : 𝐴𝐹 𝑝

𝐾
,𝑝,𝑝−1

⇒ 1
]︁
−

Pr
[︁
𝑝

$←− Perm (𝑏) : 𝐴RO,𝑝,𝑝−1
⇒ 1

]︁⃒⃒⃒
.

The distinguishing advantage of 𝐴 against 𝐹 based on a secret permutation is
defined by

Advind
𝐹 𝜋

0
(𝐴) =

⃒⃒⃒
Pr

[︁
𝜋

$←− Perm (𝑏) : 𝐴𝐹 𝜋
0 ⇒ 1

]︁
− Pr

[︁
𝐴RO ⇒ 1

]︁⃒⃒⃒
.

The resource parameterized advantage functions are defined as usual. Let
Advind

𝐹 𝑝
𝐾

,𝑝(𝑞, ℓ, 𝜇, 𝑁) = max𝐴 Advind
𝐹 𝑝

𝐾
,𝑝(𝐴) be the maximum advantage over all

adversaries that make 𝑞 queries to the left oracle, all of maximal length ℓ per-
mutation calls if 𝐹 = FKS or that make at most 𝑞 initialize() calls to the left
oracle and issue at most ℓ duplexing queries after each initialization if 𝐹 = FDS
with total maximal multiplicity 𝜇 in both cases, and that make 𝑁 direct queries
to the public permutation. To simplify the analysis, we assume that each of the
𝑞 oracle queries in fact consists of exactly ℓ permutation (or that the adversary
indeed makes ℓ duplexing calls after each initialization). This is without loss of
generality, it can simply be achieved by giving extra squeezing outputs to the
adversary. Similarly, we define Advind

𝐹 𝜋
0

(𝑞, ℓ, 𝜇) = max𝐴 Advind
𝐹 𝜋

0
(𝐴), noticing that

in this case 𝑁 = 0, thus it is omitted from the resources.

4.3 Security Model for Even-Mansour
Our proof relies on a reduction to the security of a low-entropy single-key Even-
Mansour construction [15, 16]. In more detail, let 𝑝 : {0, 1}𝑏 → {0, 1}𝑏 be a
permutation and 𝐾 ∈ {0, 1}𝑘 be a key. The Even-Mansour blockcipher is defined
as

𝐸𝑝
𝐾(𝑀) = 𝑝(𝑀 ⊕ (0𝑏−𝑘 ‖𝐾))⊕ (0𝑏−𝑘 ‖𝐾).

We define the distinguishing advantage of any adversary 𝐴 against 𝐸 based on
a public permutation 𝑝 as

Advprp
𝐸𝑝

𝐾
,𝑝

(𝐴) =
⃒⃒⃒
Pr

[︁
𝐾

$←− {0, 1}𝑘, 𝑝
$←− Perm (𝑏) : 𝐴𝐸𝑝

𝐾
,𝑝,𝑝−1

⇒ 1
]︁
−

Pr
[︁
𝜋, 𝑝

$←− Perm (𝑏) : 𝐴𝜋,𝑝,𝑝−1
⇒ 1

]︁⃒⃒⃒
.

Let Advprp
𝐸𝑝

𝐾
,𝑝

(𝑞, 𝜇, 𝑁) = max𝐴 Advprp
𝐸𝑝

𝐾
,𝑝

(𝐴) be the maximum advantage over all
adversaries that make 𝑞 queries to the left oracle, with total maximal multiplicity
𝜇, and that make 𝑁 direct queries to the public permutation.

8

5 Security Analysis of FKS

We prove the following result for FKS:

Theorem 1. Let 𝑏, 𝑟, 𝑐, 𝑘 > 0 be such that 𝑏 = 𝑟 + 𝑐 and 𝑘 ≤ 𝑐. Let FKS be the
scheme of Sect. 3.1. Then,

Advind
FKS𝑝

𝐾
,𝑝(𝑞, ℓ, 𝜇, 𝑁) ≤ 2(𝑞ℓ)2

2𝑏
+ 2𝑞2ℓ

2𝑐
+ 𝜇𝑁

2𝑘
.

The proof follows to a certain extent the modular approach of [2], and in par-
ticular also uses the observation that FKS𝑝

𝐾 can alternatively be considered as
FKS𝐸𝑝

𝐾
0 , a clever observation used before by Chang et al. [13]. Note that this

observation only works for 𝑘 ≤ 𝑐: it consists of xoring two dummy keys 𝐾 ⊕𝐾
in-between every two adjacent permutation calls, and if 𝑘 > 𝑐 this would en-
tail a difference in the squeezing blocks of FKS. This trick splits the security
of FKS𝑝

𝐾 into the security of the Even-Mansour blockcipher and the security of
FKS with secret primitive. Looking back at [2], the security of IKS/OKS with
secret permutations was simply reverted to the classical indifferentiability result
of [6]. Because this is a rather loose approach, and additionally because the in-
differentiability bound cannot be used for FKS due to its full-state absorption,
we consider the security of FKS with secret primitive in more detail and derive
an improved bound.

Proof (Proof of Theorem 1). Consider any adversary 𝐴 with resources (𝑞, ℓ, 𝜇, 𝑁).
Note that FKS𝑝

𝐾 = FKS𝐸𝑝
𝐾

0 . Therefore, by a modular argument,

Advind
FKS𝑝

𝐾
,𝑝(𝐴) = 𝛥𝐴

(︁
FKS𝐸𝑝

𝐾
0 , 𝑝; ROFKS, 𝑝

)︁
≤ 𝛥𝐵 (FKS𝜋

0 , 𝑝; ROFKS, 𝑝) + 𝛥𝐶 (𝐸𝑝
𝐾 , 𝑝; 𝜋, 𝑝)

= Advind
FKS𝜋

0
(𝐵) + Advprp

𝐸𝑝
𝐾

,𝑝
(𝐶)

for some adversary 𝐵 with resources (𝑞, ℓ, 𝜇) and adversary 𝐶 with resources
(𝑞ℓ, 𝜇, 𝑁). Note that 𝐵 also has access to 𝑝, but queries to this oracle are mean-
ingless as its left oracle (FKS𝜋

0 or ROFKS) is independent of 𝑝.
In [2], it is proven that Advprp

𝐸𝑝
𝐾

,𝑝
(𝐶) ≤ 𝜇𝑁

2𝑘 for any 𝐶. In Lem. 2, we prove

that Advind
FKS𝜋

0
(𝐵) ≤ 2(𝑞ℓ)2

2𝑏 + 2𝑞2ℓ
2𝑐 for any adversary 𝐵. ⊓⊔

Lemma 2. Let 𝑏, 𝑟, 𝑐 > 0 be such that 𝑏 = 𝑟 + 𝑐. Let FKS be the scheme of
Sect. 3.1. Then,

Advind
FKS𝜋

0
(𝑞, ℓ, 𝜇) ≤ 2(𝑞ℓ)2

2𝑏
+ 2𝑞2ℓ

2𝑐
.

Proof. Given that the padding is publicly known and injective, we can generalize
the setting, and assume that the 𝑖th query 𝑀𝑖 has length divisible by 𝑏 and
that 𝑀𝑚𝑖

𝑖 ̸= 0𝑏. More detailed, for 1 ≤ 𝑖 ≤ 𝑞, we let 𝑚𝑖 = |𝑀𝑖|/𝑏 and 𝑀𝑖 =

9

𝑀1
𝑖 ‖𝑀2

𝑖 ‖ . . . ‖𝑀𝑚𝑖
𝑖 s.t. |𝑀 𝑗

𝑖 | = 𝑏 for 1 ≤ 𝑗 ≤ 𝑚𝑖. We further assume, that
the adversary always asks for output of length divisible by 𝑟 and that every
query induces exactly ℓ primitive calls. This is without loss of generality: we can
simply output “free bits” to the adversary. We will denote the 𝑏-bit state of FKS
just before the 𝑗th application of 𝜋 is made when processing the 𝑖th query as 𝑠𝑗

𝑖

for 1 ≤ 𝑗 ≤ ℓ. Similarly, we will denote the 𝑏-bit state of FKS just after the
𝑗th application of 𝜋 in 𝑖th query as 𝑡𝑗

𝑖 for 1 ≤ 𝑗 ≤ ℓ. We will call the former
in-states and the latter out-states. Note that every in-state 𝑠𝑗

𝑖 is determined by
the out-state 𝑡𝑗−1

𝑖 and the block of query 𝑀 𝑗
𝑖 as 𝑠𝑗

𝑖 = 𝑡𝑗−1
𝑖 ⊕𝑀 𝑗

𝑖 in the absorbing
phase or just by 𝑡𝑗

𝑖 in the squeezing phase as depicted in Fig. 3.

π0
b

π π ππ π
b b b

M
1
i

M
2
i

M
mi−1

i
M

mi

i

b

s
1
i

b

s
2
i

b

s
mi−1

i

b

s
mi

i

b

s
mi+1

i

b

s
ℓ
i

b b

b

Z
2
i

b

Z
1
i

b

Z
ℓ−mi+1

i

b b b

b b b

t
1
i

b

t
2
i

b

t
mi−1

i

b

t
mi

i
t
mi+1

i

b

b b

b

t
ℓ
i

b

b

b

s
ℓ+1

i

b

Fig. 3: Processing the 𝑖th query.

To aid the simplicity of further analysis we additionally define initial dummy
out-states 𝑡0

𝑖 = 0𝑏 and extended queries �̄�𝑖 = 𝑀𝑖 ‖ 0(ℓ−𝑚𝑖)𝑏 for 1 ≤ 𝑖 ≤ 𝑞. Now
we can express every in-state, be it absorbing or squeezing, as 𝑠𝑗

𝑖 = 𝑡𝑗−1
𝑖 ⊕ �̄� 𝑗

𝑖 .
We will group the out-states of 𝑖th query as 𝑇𝑖 = {𝑡0

𝑖 , 𝑡1
𝑖 , . . . , 𝑡ℓ

𝑖}. Because each
query induces exactly ℓ calls to 𝜋, we know that a query 𝑀𝑖 will be answered
by a string 𝑍𝑖 = 𝑍1

𝑖 ‖ . . . ‖𝑍𝑧𝑖
𝑖 with 𝑧𝑖 = ℓ−𝑚𝑖 + 1 and |𝑍𝑗

𝑖 | = 𝑟 for 1 ≤ 𝑗 ≤ 𝑧𝑖.
In particular, we have that 𝑍𝑗

𝑖 = outer
(︁

𝑡𝑚𝑖+𝑗−1
𝑖

)︁
.

The RP-RF Switch. We start by replacing the random permutation 𝜋
$←−

Perm (𝑏) by a random function 𝑓
$←− Func (𝑏) in the experiment. This will con-

tribute the term (𝑞ℓ)2/2𝑏 to the final bound by a standard hybrid argument so
we have Advind

FKS𝜋
0
(𝑞, ℓ, 𝜇) ≤ Advind

FKS𝑓
0
(𝑞, ℓ, 𝜇) + (𝑞ℓ)2/2𝑏.

Patarin’s Coefficient-H Technique. We will use the coefficient-H tech-
nique to show that Advind

FKS𝑓
0
(𝑞, ℓ, 𝜇) ≤ (𝑞ℓ)2/2𝑏 + 2𝑞2ℓ/2𝑐. The two systems an

adversary is trying to distinguish are FKS𝑓
0 and ROFKS. We will refer to the

former as 𝑋 and to the latter as 𝑌 . In either of the worlds, the adversary makes
𝑞 queries 𝑀1, . . . , 𝑀𝑞 and learns the responses 𝑍1, . . . , 𝑍𝑞. The transition from
queries 𝑀𝑖 to �̄�𝑖 is injective, and additionally the length 𝑚𝑖 of 𝑀𝑖 is implicit

10

from �̄�𝑖. Therefore, we can summarize the interaction of the adversary with its
oracle (𝑋 or 𝑌) with a transcript (�̄�1, . . . , �̄�𝑞, 𝑍1, . . . , 𝑍𝑞).

To facilitate the analysis, we will disclose additional information 𝑇1, . . . , 𝑇𝑞

to the adversary at the end of the experiment. In the real world, these are the
out-states 𝑇𝑖 = {𝑡0

𝑖 , 𝑡1
𝑖 , . . . , 𝑡ℓ

𝑖} as discussed in the beginning of the proof. In
the ideal world, these are dummy variables that satisfy the following intrinsic
properties of the Sponge construction:

1. 𝑡0
𝑖 = 0𝑏 for 1 ≤ 𝑖 ≤ 𝑞,

2. if llcp𝑏

(︀
�̄�𝑖, �̄�𝑖′

)︀
= 𝑛 for 1 ≤ 𝑖, 𝑖′ ≤ 𝑞 then 𝑡𝑗

𝑖 = 𝑡𝑗
𝑖′ for 1 ≤ 𝑗 ≤ 𝑛,

3. outer
(︁

𝑡𝑗+𝑚𝑖−1
𝑖

)︁
= 𝑍𝑗

𝑖 for 1 ≤ 𝑖 ≤ 𝑞 and 1 ≤ 𝑗 ≤ 𝑧𝑖,

but are perfectly random otherwise. Note that in both worlds, 𝑍1, . . . , 𝑍𝑞 are fully
determined by 𝑇1, . . . , 𝑇𝑞, so we can drop them from the transcript. Thus a tran-
script of adversary’s interaction with FKS will be 𝜏 = (�̄�1, . . . , �̄�𝑞, 𝑇1, . . . , 𝑇𝑞).

With respect to Lem. 1, we will show that there exists a definition of bad
transcripts 𝒯bad, such that Pr [𝐷𝑋 = 𝜏] / Pr [𝐷𝑌 = 𝜏] = 1 for any 𝜏 ∈ 𝒯good =
𝒯 ∖𝒯bad, and thus Advind

FKS𝑓
0
(𝑞, ℓ, 𝜇) ≤ Pr [𝐷𝑌 ∈ 𝒯bad].

Definition of a Bad Transcript. Stated formally, a transcript 𝜏 is labeled
as bad if

∃(1, 1) ≤ (𝑖, 𝑗), (𝑖′, 𝑗′) ≤ (𝑞, ℓ) such that:
𝑗 ̸= 𝑗′ ∨ llcp𝑏

(︀
�̄�𝑖, �̄�𝑖′

)︀
< 𝑗 = 𝑗′ ≤ ℓ,

𝑡𝑗−1
𝑖 ⊕ �̄� 𝑗

𝑖 = 𝑡𝑗′−1
𝑖′ ⊕ �̄� 𝑗′

𝑖′ .

(1)

This formalization of a bad transcript comes with an intuitive, informal inter-
pretation; as long as all relevant inputs 𝑠𝑗

𝑖 = 𝑡𝑗−1
𝑖 ⊕ �̄� 𝑗

𝑖 to the random function
𝑓 induced by the Sponge function are distinct the output of the Sponge will
be distributed uniformly. We do not require uniqueness of all in-states because
the adversary can trivially force their repetition by issuing queries with common
prefixes, as we have argued earlier. However these collisions are not a problem
because uniqueness of the queries implies that llcp𝑏

(︀
�̄�𝑖, �̄�𝑖′

)︀
< max{𝑚𝑖, 𝑚𝑖′}

for any two queries �̄�𝑖, �̄�𝑖′ . Even if the adversary truncates an old query and
thus forces an old absorbing in-state 𝑠 to be squeezed for output, it is still not
a problem because the adversary has not seen the image 𝑓(𝑠) before. Note that
albeit in-states do not exist in the ideal world, they can be defined by the same
relation as in the real world, i.e. 𝑠𝑗

𝑖 = 𝑡𝑗−1
𝑖 ⊕ �̄� 𝑗

𝑖 .

Bounding the Ratio of Probabilities of Good Transcripts. In the
ideal world, the out-states {𝑡0

𝑖 }
𝑞
𝑖=0 are always assigned a value trivially. Beside

that, we will also trivially assign a single randomly sampled value to multiple
state variables, that are affected by the common prefixes of the queries. The
remaining out-states are sampled uniformly at random. It follows that there are
exactly 𝜂(𝜏) =

∑︀𝑞
𝑖=1 ℓ − llcp𝑏 (𝑀𝑖; 𝑀1, . . . , 𝑀𝑖−1) 𝑏-bit values in any transcript

𝜏 , that are sampled independently and uniformly. We thus have Pr [𝐷𝑌 = 𝜏] =
2−𝜂(𝜏)𝑏 for any 𝜏 .

11

Let 𝛺𝑋 be the set of all possible real-world oracles. We have that |𝛺𝑋 | = 2𝑏2𝑏 .
Let comp𝑋 (𝜏) ⊆ 𝛺𝑋 be the set of all oracles compatible with the transcript
𝜏 , i.e. number of the real-world oracles that are capable of producing 𝜏 in an
experiment. We will compute the probability of seeing 𝜏 in the real world as
Pr [𝐷𝑋 = 𝜏] = |comp𝑋 (𝜏) |/|𝛺𝑋 |. Note that a real-world oracle is completely
determined by the underlying function 𝑓 .

If 𝜏 ∈ 𝒯good, then every in-state 𝑠𝑗
𝑖 = 𝑡𝑗−1

𝑖 ⊕ �̄� 𝑗
𝑖 that does not trivially

collide with some other in-state 𝑠𝑗′

𝑖′ due to common prefix of �̄� 𝑗
𝑖 and �̄� 𝑗′

𝑖′ must
be distinct. The number of domain points of 𝑓 that have an image assigned by
𝜏 is easily seen to be 𝜂(𝜏) =

∑︀𝑞
𝑖=1 ℓ − llcp𝑏 (𝑀𝑖; 𝑀1, . . . , 𝑀𝑖−1). A compatible

function 𝑓 can therefore have arbitrary image values on the remaining 2𝑏− 𝜂(𝜏)
domain points. Thus we compute |comp𝑋 (𝜏) | = 2𝑏(2𝑏−𝜂(𝜏)) and

Pr [𝐷𝑋 = 𝜏] = |comp𝑋 (𝜏) |
|𝛺𝑋 |

= 2𝑏(2𝑏−𝜂(𝜏))

2𝑏2𝑏 = 2−𝜂(𝜏)𝑏 = Pr [𝐷𝑌 = 𝜏] .

Bounding the Probability of a Bad Transcript in the Ideal World.
We can bound the probability of 𝜏 being bad (cf. (1)) by first bounding the
collision probability of an arbitrary but fixed pair of in-states 𝑠𝑗

𝑖 , 𝑠𝑗′

𝑖′ (i.e. the
event 𝑠𝑗

𝑖 = 𝑠𝑗′

𝑖′ occurs) and then summing this probability for all possible values
of (𝑖, 𝑗), (𝑖′, 𝑗′) with (𝑖′, 𝑗′) ̸= (𝑖, 𝑗). Because this probability varies significantly,
we will split all in-states into three classes and bound probabilities of individual
collisions between these classes.

We will associate to each in-state 𝑠𝑗
𝑖 a label stamp𝑗

𝑖 . We set stamp𝑗
𝑖 = free

if 1 < 𝑗 = llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
+ 1 ≤ 𝑚𝑖 such that 𝑚𝑖* < 𝑗 for some

𝑖* < 𝑖. We will set stamp1
𝑖 = initial for 1 ≤ 𝑖 ≤ 𝑞 and stamp𝑗

𝑖 = fixed in
the remaining cases. Informally, we have stamp𝑗

𝑖 = free whenever the adver-
sary forces outer

(︁
𝑡𝑗−1
𝑖

)︁
= 𝑍𝑗−𝑚𝑖* −1

𝑖* by reusing exactly first 𝑗 − 1 blocks of a
previous query �̄�𝑖* in �̄�𝑖 and sets �̄� 𝑗

𝑖 ̸= �̄� 𝑗
𝑖* = 0𝑏. By doing this, it freely

but non-trivially chooses outer
(︁

𝑠𝑗
𝑖

)︁
= outer

(︁
𝑠𝑗

𝑖* ⊕ �̄� 𝑗
𝑖* ⊕ �̄� 𝑗

𝑖

)︁
. Note that if the

adversary puts �̄� 𝑗
𝑖 = �̄� 𝑗

𝑖* , this is not counted as a free state (the states will in
fact be the same). We have stamp𝑗

𝑖 = initial for the initial in-state of every
query.

As the condition (1) is symmetrical w.r.t. (𝑖, 𝑗) and (𝑖′, 𝑗′), and as it cannot
be satisfied if (𝑖, 𝑗) = (𝑖′, 𝑗′), it can be rephrased as

∃(1, 1) ≤ (𝑖′, 𝑗′) < (𝑖, 𝑗) ≤ (𝑞, ℓ) such that:

llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
< 𝑗 ≤ ℓ, 𝑠𝑗

𝑖 = 𝑠𝑗′

𝑖′ .
(2)

Doing so is without loss of generality, as each 𝑠𝑗
𝑖 with 𝑗 ≤ llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
is identical with some previous state that has already been checked for collisions
with 𝑠𝑗′

𝑖′ for every possible (𝑖′, 𝑗′). In the further analysis, we will be working
with (2) rather than with (1).

12

We will now bound the probability of collision of an arbitrary pair of in-
states (𝑠𝑗

𝑖 , 𝑠𝑗′

𝑖′) = (𝑡𝑗−1
𝑖 ⊕�̄� 𝑗

𝑖 , 𝑡𝑗′−1
𝑖′ ⊕�̄� 𝑗′

𝑖′) with stamp𝑗
𝑖 = fixed. We fix arbitrary

𝑖 and investigate the following three cases for 𝑗. In each case we treat every
(𝑖′, 𝑗′) < (𝑖, 𝑗).

Case 1: llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
+ 1 < 𝑗 ≤ 𝑚𝑖. In this case, 𝑡𝑗−1

𝑖 is unde-
termined when the adversary issues the query �̄�𝑖. This implies that it will
be independent from all 𝑡𝑗′−1

𝑖′ for any (𝑖′, 𝑗′) < (𝑖, 𝑗). The probability of the
collision 𝑡𝑗−1

𝑖 ⊕ �̄� 𝑗
𝑖 = 𝑡𝑗′−1

𝑖′ ⊕ �̄� 𝑗′

𝑖′ is easily seen to be 2−𝑏.
Case 2: max

{︀
llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
+ 1, 𝑚𝑖

}︀
< 𝑗 ≤ ℓ. Here 𝑡𝑗−1

𝑖 =
𝑍𝑗−𝑚𝑖

𝑖 ‖ inner
(︁

𝑡𝑗−1
𝑖

)︁
and �̄� 𝑗

𝑖 = 0𝑏. Although the adversary learns the

value of 𝑍𝑗−𝑚𝑖

𝑖 during the experiment, this is independent of all 𝑠𝑗′

𝑖′ with
(𝑖′, 𝑗′) < (𝑖, 𝑗) (because 𝑗 + 1 > llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
). Even if stamp𝑗′

𝑖′ ∈
{free, initial} and outer

(︁
𝑠𝑗′

𝑖′

)︁
= 𝛼 for some value 𝛼 chosen by the ad-

versary, the collision 𝑍𝑗−𝑚𝑖

𝑖 ‖ inner
(︁

𝑡𝑗−1
𝑖

)︁
= 𝛼 ‖ inner

(︁
𝑠𝑗′

𝑖′

)︁
happens with

probability 2−𝑏.
Case 3: 𝑗 = llcp𝑏

(︀
�̄�𝑖; �̄�1, . . . , �̄�𝑖−1

)︀
+ 1. If 𝑗 = llcp𝑏

(︀
�̄�𝑖, �̄�𝑖′

)︀
+ 1, the

in-state 𝑠𝑗′=𝑗
𝑖′ , call it a twin-state of 𝑠𝑗

𝑖 , cannot collide with 𝑠𝑗
𝑖 , as by the

second trivial property 𝑡𝑗−1
𝑖 = 𝑡𝑗−1

𝑖′ and by 𝑗 − 1 = llcp𝑏

(︀
�̄�𝑖, �̄�𝑖′

)︀
we have

�̄� 𝑗
𝑖 ̸= �̄� 𝑗

𝑖′ . Note that if there was an 𝑖* < 𝑖 with 𝑚𝑖* ≤ llcp𝑏

(︀
�̄�𝑖, �̄�𝑖*

)︀
= 𝑗−1

and 𝑗 ≤ 𝑚𝑖 then we would have stamp𝑗
𝑖 = free. However if we had the

same situation but with 𝑗 > 𝑚𝑖 then �̄�𝑖 and �̄�𝑖* would be identical. So
outer

(︁
𝑡𝑗−1
𝑖

)︁
has not been set and revealed to the adversary by any previous

output value and for any non-twin, fixed in-state 𝑠𝑗′

𝑖′ , the probability of
collision is at most 2−𝑏 by a similar argument as in Case 1.

There are no more than 𝑞ℓ choices for (𝑖, 𝑗) and no more than 𝑞ℓ possible (𝑖′, 𝑗′)
for every (𝑖, 𝑗) so the overall probability that the condition (2) will be evaluated
due to a pair of in-states with stamp𝑗

𝑖 = fixed is at most (𝑞ℓ)2/2𝑏.
If stamp𝑗

𝑖 = free then outer
(︁

𝑠𝑗
𝑖

)︁
is under adversary’s control. However the

value of inner
(︁

𝑡𝑗−1
𝑖

)︁
is always generated at the end of the experiment. By a

case analysis similar to the previous one we can verify that the probability of a
collision due to a pair of in-states with stamp𝑗

𝑖 = free is not bigger than 2−𝑐.
It is apparent from the definition of a free in-state that there is at most one
such in-state for each query. Having 𝑞ℓ in-states in total, there are at most 𝑞(𝑞ℓ)
pairs with stamp𝑗

𝑖 = free and the probability of 𝜏 ∈ 𝒯bad due to such a pair is
at most 𝑞2ℓ/2𝑐.

If stamp𝑗
𝑖 = initial then 𝑠𝑗

𝑖 cannot non-trivially collide with any other
initial in-state. A collision with a non-initial state 𝑠𝑗′

𝑖′ implies that 𝑡𝑗′−1
𝑖′ =

�̄� 𝑗′

𝑖′ ⊕�̄�1
𝑖 . If 𝑗′ > 𝑚𝑖′ or if there is some 𝑀𝑖* with 𝑚𝑖* < 𝑗′ <= llcp𝑏

(︀
𝑀𝑖′ , �̄�𝑖*

)︀
+

13

1, then outer
(︁

𝑡𝑗′−1
𝑖′

)︁
is known to the adversary. However inner

(︁
𝑡𝑗′−1
𝑖′

)︁
is always

generated at the end of the experiment. By a case analysis similar to the one we
carried out earlier, it can be verified that the collision 𝑠1

𝑖 = 𝑠𝑗′

𝑖′ occurs with proba-
bility no bigger than 2−𝑐. There is exactly one initial in-state in each query, so
similarly as with the free in-states, the overall probability of a transcript being
bad due to a pair with an initial in-state is at most 𝑞2ℓ/2𝑐. By summing all the
partial collision probabilities we obtain that Pr [𝐷𝑌 ∈ 𝒯𝑏𝑎𝑑] ≤ (𝑞ℓ)2/2𝑏+2𝑞2ℓ/2𝑐.

⊓⊔

6 Security Analysis of FDS

For FDS, we prove the following result:
Theorem 2. Let 𝑏, 𝑟, 𝑐, 𝑘 > 0 be such that 𝑏 = 𝑟 + 𝑐 and 𝑘 ≤ 𝑐. Let FDS be the
scheme of Sect. 3.2. Then,

Advind
FDS𝑝

𝐾
,𝑝(𝑞, ℓ, 𝜇, 𝑁) ≤ (𝑞ℓ)2

2𝑏
+ (𝑞ℓ)2

2𝑐
+ 𝜇𝑁

2𝑘
.

The proof uses Lem. 3 to transform a FDS adversary into an FKS adversary,
similarly to [8, 10]. While this would be sufficient to prove the security of the
Duplex construction, the bound induced solely by Lem. 3 suffers from a quantita-
tive degradation: we have that Advind

FDS𝑝
𝐾

,𝑝(𝑞, ℓ, 𝜇, 𝑁) ≤ Advind
FKS𝑝

𝐾
,𝑝(𝑞ℓ, ℓ, 𝜇, 𝑁),

resulting in a bound 2𝑞2ℓ4

2𝑏 + 2𝑞2ℓ3

2𝑐 + 𝜇𝑁
2𝑘 according to Thm. 1. In reality, there

will be a quantitative gap between the security of FDS construction and that of
FKS will be present, but it will be smaller. This is because an FKS adversary
constructed from an FDS adversary issues queries of a specific structure which
is far from general. In below proof for FDS, we use this property. In more detail,
we derive a specific class of “constrained adversaries” and generalize the proof
of Lem. 2 to these adversaries.
Proof (Proof of Theorem 2). Consider any adversary 𝐴 with resources (𝑞, ℓ, 𝜇, 𝑁).
We have that FDS𝑝

𝐾 = FDS𝐸𝑝
𝐾

0 . Therefore, by a modular argument,

Advind
FDS𝑝

𝐾
,𝑝(𝐴) = 𝛥𝐴

(︁
FDS𝐸𝑝

𝐾
0 , 𝑝; ROFDS, 𝑝

)︁
≤ 𝛥𝐵 (FDS𝜋

0 , 𝑝; ROFDS, 𝑝) + 𝛥𝐶 (𝐸𝑝
𝐾 , 𝑝; 𝜋, 𝑝)

≤ Advind
FDS𝜋

0
(𝐵) + Advsprp

𝐸𝑝
𝐾

,𝑝
(𝐶)

for some adversary 𝐵 with resources (𝑞, ℓ, 𝜇) and adversary 𝐶 with resources
(𝑞ℓ, 𝜇, 𝑁). Note that 𝐵 also has access to 𝑝, but these queries are meaningless
as its left oracle (FDS𝜋

0 or ROFDS) is independent of 𝑝.
In [2], it is proven that Advsprp

𝐸𝑝
𝐾

,𝑝
(𝐶) ≤ 𝜇𝑁/2𝑘. In Cor. 3 we show that

any FDS adversary 𝐵 can be turned into a special “constrained” adversary 𝐵′

against FKS with resources (𝑞ℓ, ℓ, 𝜇):

Advind
FDS𝜋

0
(𝐵) ≤ Advind

FKS𝜋
0
(𝐵′).

14

In Lem. 4, we prove that Advind
FKS𝜋

0
(𝐵′) ≤ (𝑞ℓ)2/2𝑏 + (𝑞ℓ)2/2𝑐 for any such

adversary 𝐵′. ⊓⊔

For the remainder of the proof, we introduce the mapping 𝑄FKS : ({0, 1}<𝑏)+ →
{0, 1}*. For any 𝑏 > 0 and for all 𝑋1, . . . , 𝑋𝑛 ∈ {0, 1}<𝑏 we let

𝑄FKS(𝑋1, . . . , 𝑋𝑛) = pad𝑏(𝑋1) ‖ . . . ‖ pad𝑏(𝑋𝑛−1) ‖𝑋𝑛.

Lemma 3. Let 𝑏, 𝑟, 𝑐, 𝑘 > 0 be such that 𝑏 = 𝑟 + 𝑐 and 𝑘 ≤ 𝑐. Let 𝐷 = FDS𝑝

as defined in Sect. 3.2. Then for the 𝑖th duplexing query (𝑀𝑖, 𝑧𝑖) made after the
last 𝐷.initialize(𝐾) we have

𝑍𝑖 = 𝐷.duplexing (𝑀𝑖, 𝑧𝑖) = FKS𝑝(𝐾, 𝑄FKS(𝑀1, . . . , 𝑀𝑖), 𝑧𝑖).

Moreover, the mapping 𝑄FKS : ({0, 1}<𝑏)+ → {0, 1}* is injective.

Proof. We will show the first claim by induction. For 𝑖 = 1, the internal state of
FDS is updated to 𝑡1 = 𝑝

(︀
(0𝑏−𝑘 ‖𝐾)⊕ pad𝑏(𝑀1)

)︀
, which is exactly the same

as the state of FKS evaluated on 𝑀1 only. Then both FDS and FKS output
the same value 𝑍1 = left𝑧1 (𝑡1). For every 𝑖 > 1, FDS updates its state to
𝑡𝑖 = 𝑝 (𝑡𝑖−1 ⊕ pad𝑏(𝑀𝑖)). By the induction argument, 𝑡𝑖−1 is also the state of
FKS after processing the first 𝑖− 1 padded blocks. Then the final state of FKS
is easily seen to be 𝑡𝑖 as well. The equality of outputs follows trivially.

To verify the injectivity of 𝑄FKS, we will show how to invert it. For any image
𝑋 = 𝑄FKS(𝑋1, . . . , 𝑋𝑛), we can start recovering the input arguments from the
left to right. Firstly, we have 𝑛 = ⌈|𝑋|/𝑏⌉. While |𝑋| > 𝑏, we keep removing the
leftmost 𝑏 bits of 𝑋 and applying the inverse of pad𝑏 to them to recover the next
component 𝑋𝑖. What remains is the unpadded block 𝑋𝑛. ⊓⊔

The result of Lem. 3 can be used to reduce any FDS adversary to a constrained
FKS adversary. More specifically, any adversary 𝐴 against FDS that makes 𝑞
initialize calls and duplexes ℓ blocks after each initialization can be reduced to a
constrained FKS adversary 𝐴′ = 𝑅FKS(𝐴). To answer the 𝑗th duplexing query
(𝑀 𝑗

𝑖 , 𝑧𝑗
𝑖) made by 𝐴 after the 𝑖th initialize call, 𝐴′ queries its own oracle with

(𝑄FKS(𝑀1
𝑖 , . . . , 𝑀 𝑗

𝑖), 𝑧𝑗
𝑖). 𝐴′ copies the output of 𝐴 at the end of the experiment.

Corollary 3. Let 𝐴 be an adversary against FDS that makes 𝑞 initialize calls
and duplexes ℓ blocks after each initialization and 𝑅FKS(𝐴) the constrained
FKS adversary as defined above. It follows from Lem. 3, that Advind

FDS𝜋
0
(𝐴) ≤

Advind
FKS𝜋

0
(𝑅FKS(𝐴)).

We denote by 𝒜′
𝑞,ℓ the set of constrained adversaries against FKS, that were

induced by some FDS adversary that makes 𝑞 initialize calls and duplexes ℓ
blocks after each initialization:

𝒜′
𝑞,ℓ = {𝑅FKS(𝐴) : 𝐴 an FDS adversary with resources (𝑞, ℓ)}.

15

Lemma 4. Let 𝑏, 𝑟, 𝑐 > 0 be such that 𝑏 = 𝑟 + 𝑐. Let FKS be the scheme of
Sect. 3.1. Then,

Advind
FKS𝜋

0
(𝐴′) ≤ (𝑞ℓ)2

2𝑏
+ (𝑞ℓ)2

2𝑐
,

for any constrained adversary 𝐴′ ∈ 𝒜′
𝑞,ℓ

Proof. We will to large extent follow the notation and conventions from the
proof of Lem. 2. We assume that every query is already padded and ends with a
non-zero final 𝑏-bit block with 𝑚𝑖 being the number of 𝑏-bit blocks in the query
𝑀𝑖. The structure of the queries and the number of squeezed bits will however
differ.

Any adversary 𝐴′ ∈ 𝒜′
𝑞,ℓ makes exactly 𝑞ℓ FKS queries but these queries

comprise at most 𝑞ℓ unique 𝑏-bit blocks. Moreover, these queries follow a certain
pattern. We have that for every 1 ≤ 𝑖 ≤ 𝑞 and every 2 ≤ 𝑗 ≤ ℓ:

𝑀ℓ(𝑖−1)+1 = 𝑀1
𝑖 and 𝑀ℓ(𝑖−1)+𝑗 = 𝑀ℓ(𝑖−1)+𝑗−1 ‖𝑀 𝑗

𝑖

where all 𝑀 𝑗
𝑖 ∈ {0, 1}𝑏 are non-zero (due to padding). Note that we have

𝑚ℓ(𝑖−1)+𝑗 = 𝑗. For every query, 𝐴′ asks for no more than 𝑟 output bits.
Because we know the specific structure of the adversarial queries made by

𝐴′, the extended queries are now identical with the original queries. Indeed we
have for 1 ≤ 𝑖 ≤ 𝑞 and 1 ≤ 𝑗 ≤ ℓ that �̄�ℓ(𝑖−1)+𝑗 = 𝑀ℓ(𝑖−1)+𝑗 . The internal
in-states 𝑠𝑗

𝑖 and out-states 𝑡𝑗
𝑖 are defined the same way as before.

The RP-RF Switch. We will replace the random permutation 𝜋
$←− Perm (𝑏)

by a random function 𝑓
$←− Func (𝑏) in the experiment. Although there are

𝑞
∑︀ℓ

𝑗=1 𝑗 = 𝑞ℓ(ℓ+1)/2 calls to 𝜋 made throughout the experiment, the structure
of the queries implies, that there will be at most 𝑞ℓ calls to 𝜋 with unique input.
Thus the switching will contribute the term (𝑞ℓ)2/2𝑏 to the final bound by a
standard hybrid argument. We have Advind

FKS𝜋
0
(𝐴′) ≤ Advind

FKS𝑓
0
(𝐴′) + (𝑞ℓ)2/2𝑏.

Patarin’s Coefficient-H Technique. This part of the proof relies heavily on
the corresponding part of the proof of Lem. 2. We will show that Advind

FKS𝑓
0
(𝐴′) ≤

(𝑞ℓ)2/2𝑐.
The two systems an adversary is trying to distinguish are FKS𝑓

0 and ROFKS.
We will use the same definition of a transcript 𝜏 = (�̄�1, . . . , �̄�𝑞ℓ, 𝑇1, . . . , 𝑇𝑞ℓ)
where 𝑇ℓ(𝑖−1)+𝑗 holds all the 𝑗 + 1 out-states appearing due to �̄�ℓ(𝑖−1)+𝑗 (in-
cluding the dummy state 𝑡0

ℓ(𝑖−1)+𝑗). We will also use the same definition of a bad
state (q.v. (1)). This will immediately give us Pr [𝐷𝑋 = 𝜏] / Pr [𝐷𝑌 = 𝜏] = 1 for
any 𝜏 ∈ 𝒯good by a similar argument as in the proof of Lem. 2. The probability
Pr [𝐷𝑌 ∈ 𝒯𝑏𝑎𝑑] needs new investigation.

Bounding the Probability of a Bad Transcript in the Ideal World.
We define the three possible labels of in-states, free, initial and fixed in the
same way as before and we will work with the re-expressed definition of a bad
state (2). Since the definitions of free, initial and fixed states are unchanged,

16

the probabilities of collision due to a pair of in-states 𝑠𝑗
𝑖 , 𝑠𝑗′

𝑖′ with stamp𝑗
𝑖 = free,

stamp𝑗
𝑖 = initial and stamp𝑗

𝑖 = fixed do not change. The only thing that
really changes is the final counting.

For any 1 ≤ 𝑖 ≤ 𝑞, the query �̄�ℓ(𝑖−1)+1 = 𝑀1
𝑖 consists of a single block.

Thus it only induces a single in-state with stamp1
ℓ(𝑖−1)+1 = initial. Then for

any 2 ≤ 𝑗 ≤ ℓ, we have llcp𝑏

(︀
�̄�ℓ(𝑖−1)+𝑗 , �̄�ℓ(𝑖−1)+𝑗−1

)︀
= 𝑗−1, so there is at most

one new in-state induced by �̄�ℓ(𝑖−1)+𝑗 and unaffected by the common prefix with
previous queries. It is 𝑠ℓ(𝑖−1)+𝑗 and we always have stamp𝑗

ℓ(𝑖−1)+𝑗 = free.
We see that, w.r.t. (2), for every value of 𝑖, ℓ states need to be considered,

giving us a total amount of 𝑞ℓ possible tuples (𝑖, 𝑗). For any such state 𝑠ℓ(𝑖−1)+𝑗 ,
we need to count all other states (visited by (𝑖′, 𝑗′) in (2)) with which it can
collide. For any 𝑖′ < 𝑖, it suffices to check equality of 𝑠ℓ(𝑖−1)+𝑗 with all ℓ in-
states induced by �̄�ℓ(𝑖′−1)+ℓ, as every other query �̄�ℓ(𝑖′−1)+𝑗′ is its prefix. For
𝑖′ = 𝑖, it suffices to look at in-states induced by �̄�ℓ(𝑖−1)+𝑗−1. Thus for any state
𝑠ℓ(𝑖−1)+𝑗 , there are no more than 𝑞ℓ unique states, with which it can collide.
Using the collision probabilities from the proof of Lem. 2, we conclude that
Pr [𝐷𝑌 ∈ 𝒯𝑏𝑎𝑑] ≤ (𝑞ℓ)2/2𝑐. ⊓⊔

7 Full-State SpongeWrap and its Security

Our results from Sect. 6 can be used to prove security of modified, more effi-
cient versions of existing Sponge-based AE schemes. As an interesting instance,
we introduce Full-state SpongeWrap, a variant of the authenticated encryption
mode SpongeWrap [8,10], offering improved efficiency with respect to processing
of associated data (AD).

7.1 Authenticated Encryption for Sequences of Messages

We will focus on authenticated encryption schemes that act on sequences of AD-
message pairs. Following Bertoni et al. [8, 10]we will think of an authenticated
encryption scheme as an object 𝑊 surfacing three APIs:

– 𝑊.initialize(𝐾, 𝑁): calling this function will initialize 𝑊 with a secret key
from the set of keys 𝒦 and a nonce from the set of nonces 𝒩 .

– 𝑊.wrap(𝐴, 𝑀): this function inputs an AD-message pair (𝐴, 𝑀) and outputs
a ciphertext-tag pair (𝐶, 𝑇), where |𝐶| = |𝑀 | and 𝑇 is a 𝜏 -bit tag authenti-
cating (𝐴, 𝑀) and all the queries processed by 𝑊 so far (i.e. since the last
initialization call).

– 𝑊.unwrap(𝐴, 𝐶, 𝑇): this function accepts a triple of AD, ciphertext and tag,
and outputs a message 𝑀 if 𝐶 is an encryption of 𝑀 and 𝑇 is a valid tag
for (𝐴, 𝑀), and all the previous queries processed by 𝑊 so far; otherwise it
outputs an error symbol ⊥.

Here, the AD, messages and ciphertexts are finite strings and we have |𝐶| = |𝑀 |.
𝜏 is a positive integer and we call it the expansion of 𝑊 . We require that 𝑊

17

is initialized before making the first wrapping or unwrapping call. For a given
key 𝐾, we will use 𝑊𝐾 to refer to the corresponding keyed instance, omitting
𝐾 from the list of inputs; that is, 𝑊.initialize(𝐾, 𝑁) = 𝑊𝐾 .initialize(𝑁).

Security of Authenticated Encryption. We follow Bertoni et al. [8, 10]
for defining the security of AE. We split the twofold security goal of AE into two
separate requirements: privacy and authenticity.

Let 𝑊 be a scheme for authenticated encryption, as described above, that
internally makes calls to a public random permutation 𝑝. We formalize the pri-
vacy of 𝑊 by an experiment in which an adversary 𝐴 is given access to 𝑝, 𝑝−1

and an oracle 𝑂 that provides two interfaces: 𝑂.initialize(𝑁) and 𝑂.wrap(𝐴, 𝑀).
We have 𝑂 ∈ {𝑊𝐾 , RO𝑊 }, where 𝑊𝐾 is an instance of the real scheme with
the key 𝐾, and RO𝑊 is an ideal primitive that acts as follows: it keeps a list of
strings 𝑆𝑡 ∈ ({0, 1}*)* as its internal state. On calling RO𝑊 .initialize(𝑁) the list
𝑆𝑡 is set to the empty list and then the nonce 𝑁 is added to the list (denote this
operation by 𝑆𝑡← 𝑆𝑡||𝑁); now each call RO𝑊 .wrap(𝐴, 𝑀) will first update the
list as 𝑆𝑡← 𝑆𝑡||(𝐴, 𝑀) and then will output left|𝑀 |+𝜏 (RO∞(⟨𝑆𝑡⟩)), where ⟨𝑆𝑡⟩
denotes an injective encoding of the list 𝑆𝑡 into a string in {0, 1}*. (Note that
the list 𝑆𝑡 preserves the boundaries between 𝑁 and all the queried AD-message
pairs.)

The adversary must distinguish between the two worlds: the real world where
it is interacting 𝑊𝐾 and the ideal world where it is interacting with RO𝑊 . The
advantage of the adversary in doing so is defined as

Advpriv
𝑊 [𝑝](𝐴) =

⃒⃒⃒
Pr

[︁
𝐾

$←− 𝒦 : 𝐴𝑊𝐾 ,𝑝,𝑝−1
⇒ 1

]︁
− Pr

[︁
𝐴RO𝑊 ,𝑝,𝑝−1

⇒ 1
]︁⃒⃒⃒

.

It is assumed that the adversary meets the following nonce-requirement: if it
has queried the sequence (𝑁, (𝐴1, 𝑀1), . . . , (𝐴𝑛−1, 𝑀𝑛−1), (𝐴𝑛, 𝑀𝑛)) then it will
make no subsequent query of (𝑁, (𝐴1, 𝑀1), . . . , (𝐴𝑛−1, 𝑀𝑛−1), (𝐴′

𝑛, 𝑀 ′
𝑛)) with

(𝐴′
𝑛, 𝑀 ′

𝑛) ̸= (𝐴𝑛, 𝑀𝑛). Note that this nonce-requirement is more relaxed than
the traditional nonce-respecting requirement mandating that the nonce 𝑁 must
not be repeated for any individual AD-message pair. To put it another way, the
nonce-requirement here means that 𝑁 must not be repeated for a whole sequence
of AD-message pairs.

For the definition of authenticity property, consider an experiment where an
adversary 𝐴 is given access to the oracle 𝑊𝐾 and is allowed to ask the queries
𝑊𝐾 .initialize(𝑁) and 𝑊𝐾 .wrap(𝐴, 𝑀). It is assumed that 𝐴 respects the nonce-
requirement in the wrapping queries. 𝐴 is again allowed to query 𝑝. Adversary’s
goal is to forge; i.e. to output a sequence (𝑁, (𝐴1, 𝐶1, 𝑇1), . . . , (𝐴𝑛, 𝐶𝑛, 𝑇𝑛)) at
the end of the experiment such that after calling 𝑊.initialize(𝐾, 𝑁) and then
𝑊.unwrap(𝐴𝑖, 𝐶𝑖, 𝑇𝑖) for 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑊.unwrap(𝐴𝑛, 𝐶𝑛, 𝑇𝑛) does not re-
turn ⊥. The sequence (𝑁, (𝐴1, 𝐶1, 𝑇1), . . . , (𝐴𝑛, 𝐶𝑛, 𝑇𝑛)) must be such that the
adversary has not obtained (𝐶𝑛, 𝑇𝑛) from a wrapping query that followed an
initialization with 𝑁 and a series of wrapping queries (𝐴1, 𝑀1), . . . , (𝐴𝑛, 𝑀𝑛)
with some 𝑀1, . . . , 𝑀𝑛. Note that the adversary does not have to use a unique

18

nonce in the forgery. We define the advantage of 𝐴 as

Advauth
𝑊 [𝑝](𝐴) = Pr

[︁
𝐾

$←− 𝒦 : 𝐴𝑊𝐾 ,𝑝,𝑝−1
forges

]︁
.

We let Advpriv
𝑊 [𝑝](𝑞, ℓ, 𝜇, 𝑁) = max𝐴 Advpriv

𝑊 [𝑝](𝐴) be the maximum advantage
over all adversaries that make 𝑞 initialize queries to the left oracle, and af-
ter each initialization do wrapping queries that induce at most ℓ permuta-
tion calls (including the initialization) and with total maximal multiplicity 𝜇,
and that make 𝑁 direct queries to the public permutation. We similarly let
Advauth

𝑊 [𝑝](𝑞, ℓ, 𝜇, 𝑁) = max𝐴 Advauth
𝑊 [𝑝](𝐴).

7.2 Full-State SpongeWrap

The Full-State SpongeWrap (FSW) is a permutation mode for authenticated
encryption of AD-message sequences as described in Sect. 7.1. It is parameterized
by a 𝑏-bit permutation 𝑝, the maximal message block size 𝑟, the key size 𝑘, the
nonce size 𝑛, and the tag size 𝜏 > 0. We require that 𝑘 ≤ 𝑏− 𝑟 =: 𝑐 and 𝑛 < 𝑟.
The set of keys is 𝒦 = {0, 1}𝑘 and the set of nonces is 𝒩 = {0, 1}𝑛. The FSW
construction uses an instance of FDS internally to process the inputs block by
block. To ensure domain separation of different stages of processing a query, we
use three frame bits placed at the same position in each duplexing call to FDS
as explained in Table 1.

To keep the description of FSW compact, we introduce the following nota-
tions. For any 𝐿 ∈ {0, 1}≤𝑟, 𝑅 ∈ {0, 1}≤𝑐−5 and 𝐹 ∈ {0, 1}3, we let

𝑄(𝐿, 𝐹, 𝑅) = pad𝑟+1(𝐿) ‖ 𝐹 ‖𝑅. (3)

Note that 𝑟+4 ≤ |𝑄(𝐿, 𝐹, 𝑅)| ≤ 𝑏−1 for any 𝐿, 𝐹, 𝑅. We let (𝐿, 𝑅) = lsplit(𝑋, 𝑛)
for any 𝑋 ∈ {0, 1}* such that 𝐿 = leftmin(|𝑋|,𝑛) (𝑋) and right|𝑋|−|𝐿| (𝑋). We will
use the abbreviation 𝐷.dpx(𝑀, 𝑧) for the interface 𝐷.duplexing (𝑀, 𝑧) of an FDS
𝐷. The interfaces of FSW[𝑝, 𝑟, 𝑘, 𝑛, 𝜏] are defined in Algo. 3.

label value usage

𝐹N 000 process nonce, derive initial mask of a query
𝐹AM 001 block of 𝐴 and 𝑀 inside query
𝐹M 010 block of 𝑀 inside query
𝐹A 011 block of 𝐴 inside query
𝐹AM| 100 last block of 𝐴 and 𝑀 inside query
𝐹AM 101 last block of 𝐴 and 𝑀 , query ends, produces tag
𝐹M 110 last block of 𝑀 , query ends, produces tag
𝐹A 111 last block of 𝐴, query ends, produces tag

Table 1: Labeling and usage of the frame bits in FSW.

19

Algorithm 3 FSW[𝑝, 𝑟, 𝑘, 𝑛, 𝜏]

1: Interface 𝑊.initialize(𝐾, 𝑁)
2: 𝐷.initialize(𝐾)
3: 𝑆 ← pad𝑟(𝑁) ‖ 0 ‖ 𝐹N ‖ 0𝑐−5

4: 𝑍 ← 𝐷.dpx(𝑆, 𝑟)

1: Interface 𝑊.wrap(𝐴, 𝑀)
2: 𝑀1 ‖ . . . ‖𝑀𝑚

𝑟←−𝑀
3: (𝐴′, 𝐴*)← lsplit(𝐴, 𝑚(𝑐− 5))
4: 𝐴′

1 ‖ . . . ‖𝐴′
𝑎′

𝑐−5←−−𝐴′

5: 𝐴*
1 ‖ . . . ‖𝐴*

𝑎*
𝑏−5←−−𝐴*

6: if 𝑚 = 𝑎′ = 𝑎* = 0 then
7: 𝑇 ← 𝜀
8: 𝐹 ← 𝐹A

9: for 𝑖← 1 to 𝑎′ − 1 do
10: 𝐶𝑖 ←𝑀𝑖 ⊕ 𝑍
11: 𝑍 ← 𝐷.dpx(𝑄(𝑀𝑖, 𝐹AM, 𝐴′

𝑖), 𝑟)
12: if 0 < 𝑎′ < 𝑚 or 0 < 𝑎′, 𝑎* then
13: 𝐶𝑎′ ←𝑀𝑎′ ⊕ left|𝑀𝑎′ | (𝑍)
14: 𝑍 ← 𝐷.dpx(𝑄(𝑀𝑎′ , 𝐹AM|, 𝐴′

𝑎′), 𝑟)
15: else if 0 < 𝑚 = 𝑎′ and 𝑎* = 0 then
16: 𝐶𝑎′ ←𝑀𝑎′ ⊕ left|𝑀𝑎′ | (𝑍)
17: 𝑇 ← 𝐷.dpx(𝑄(𝑀𝑎′ , 𝐹AM, 𝐴′

𝑎′), 𝑟)
18: 𝐹 ← 𝐹AM

19: for 𝑖← 𝑎′ + 1 to 𝑚− 1 do
20: 𝐶𝑖 ←𝑀𝑖 ⊕ 𝑍
21: 𝑍 ← 𝐷.dpx(𝑄(𝑀𝑖, 𝐹M, 𝜀), 𝑟)
22: if 𝑎′ < 𝑚 then
23: 𝐶𝑚 ←𝑀𝑚 ⊕ left|𝑀𝑚| (𝑍)
24: 𝑇 ← 𝐷.dpx(𝑄(𝑀𝑚, 𝐹M, 𝜀), 𝑟)
25: 𝐹 ← 𝐹M

26: for 𝑖← 1 to 𝑎* − 1 do
27: (𝐿, 𝑅)← lsplit(𝐴*

𝑖 , 𝑟)
28: 𝐷.dpx(𝑄(𝐿, 𝐹A, 𝑅), 0)
29: if 𝑎* > 0 then
30: (𝐿, 𝑅)← lsplit(𝐴*

𝑎* , 𝑟)
31: 𝑇 ← 𝐷.dpx(𝑄(𝐿, 𝐹A, 𝑅), 𝑟)
32: 𝐹 ← 𝐹A

33: while |𝑇 | < 𝜏 do
34: 𝑇 ← 𝑇 ‖𝐷.dpx(𝑄(𝜀, 𝐹, 𝜀), 𝑟)
35: 𝑍 ← 𝐷.dpx(𝑄(𝜀, 𝐹N, 𝜀), 𝑟)
36: 𝐶 ← 𝐶1 ‖ . . . ‖ 𝐶𝑚

37: return 𝐶, left𝜏 (𝑇)

1: Interface 𝑊.unwrap(𝐴, 𝐶, 𝑇)
2: 𝐶1 ‖ . . . ‖ 𝐶𝑚

𝑟←−𝐶
3: (𝐴′, 𝐴*)← lsplit(𝐴, 𝑚(𝑐− 5))
4: 𝐴′

1 ‖ . . . ‖𝐴′
𝑎′

𝑐−5←−−𝐴′

5: 𝐴*
1 ‖ . . . ‖𝐴*

𝑎*
𝑏−5←−−𝐴*

6: if 𝑚 = 𝑎′ = 𝑎* = 0 then
7: 𝑇 ′ ← 𝜀
8: 𝐹 ← 𝐹A

9: for 𝑖← 1 to 𝑎′ − 1 do
10: 𝑀𝑖 ← 𝐶𝑖 ⊕ 𝑍
11: 𝑍 ← 𝐷.dpx(𝑄(𝑀𝑖, 𝐹AM, 𝐴′

𝑖), 𝑟)
12: if 0 < 𝑎′ < 𝑚 or 0 < 𝑎′, 𝑎* then
13: 𝑀𝑎′ ← 𝐶𝑎′ ⊕ left|𝐶𝑎′ | (𝑍)
14: 𝑍 ← 𝐷.dpx(𝑄(𝑀𝑎′ , 𝐹AM|, 𝐴′

𝑎′), 𝑟)
15: else if 0 < 𝑚 = 𝑎′ and 𝑎* = 0 then
16: 𝑀𝑎′ ← 𝐶𝑎′ ⊕ left|𝐶𝑎′ | (𝑍)
17: 𝑇 ′ ← 𝐷.dpx(𝑄(𝑀𝑎′ , 𝐹AM, 𝐴′

𝑎′), 𝑟)
18: 𝐹 ← 𝐹AM

19: for 𝑖← 𝑎′ + 1 to 𝑚− 1 do
20: 𝑀𝑖 ← 𝐶𝑖 ⊕ 𝑍
21: 𝑍 ← 𝐷.dpx(𝑄(𝑀𝑖, 𝐹M, 𝜀), 𝑟)
22: if 𝑎′ < 𝑚 then
23: 𝑀𝑚 ← 𝐶𝑚 ⊕ left|𝐶𝑚| (𝑍)
24: 𝑇 ′ ← 𝐷.dpx(𝑄(𝑀𝑚, 𝐹M, 𝜀), 𝑟)
25: 𝐹 ← 𝐹M

26: for 𝑖← 1 to 𝑎* − 1 do
27: (𝐿, 𝑅)← lsplit(𝐴*

𝑖 , 𝑟)
28: 𝐷.dpx(𝑄(𝐿, 𝐹A, 𝑅), 0)
29: if 𝑎* > 0 then
30: (𝐿, 𝑅)← lsplit(𝐴*

𝑎* , 𝑟)
31: 𝑇 ′ ← 𝐷.dpx(𝑄(𝐿, 𝐹A, 𝑅), 𝑟)
32: 𝐹 ← 𝐹A

33: while |𝑇 ′| < 𝜏 do
34: 𝑇 ′ ← 𝑇 ′ ‖𝐷.dpx(𝑄(𝜀, 𝐹, 𝜀), 𝑟)
35: 𝑍 ← 𝐷.dpx(𝑄(𝜀, 𝐹N, 𝜀), 𝑟)
36: 𝑀 ←𝑀1 ‖ . . . ‖𝑀𝑚

37: if 𝑇 = left𝜏 (𝑇 ′) then
38: return 𝑀
39: else
40: return ⊥

20

7.3 Security of FSW

The security of FSW is relatively easy to analyze, thanks to the result from
Sect. 6.

Lemma 5. Let 𝑊 = FSW[𝑝, 𝑟, 𝑘, 𝑛, 𝜏] be an instance of FSW as described in
Sect. 7.2. Denote any query to 𝑊.initialize and a list of subsequent queries to
𝑊.wrap by (𝑁, (𝐴1, 𝑀1), . . . , (𝐴𝑛, 𝑀𝑛)). Then, FSW injectively maps this se-
quence to a sequence of corresponding FDS duplexing queries (𝑄1, . . . , 𝑄𝑑).

FN

FAM

FM

FA

b

FAM

FM

FA

F̄AM

0 ≤ times

0 ≤ times

0 ≤ times

b
FAM|

F̄AM FN

⌈τ/r⌉ times

b
FM FM

0 ≤ times

F̄M F̄M FN

⌈τ/r⌉ times

F̄M F̄M FN

⌈τ/r⌉ times

F̄A F̄A FN

⌈τ/r⌉ times

FA FA

0 ≤ times

F̄A F̄A FN

⌈τ/r⌉ times

A

B

C

D

A.1

A.2

F̄A F̄A FN

⌈τ/r⌉ times

A.21

A.22

Li

Fi

Ri

r + 1

3

≤ c − 5

Qi

Fig. 4: The tree of all possible frame bits sequences for a single AD-message pair
(top-left). The composition of an FDS query 𝑄𝑖 (bottom-right).

Proof. We prove the injectivity of the mapping by showing how it can be in-
verted. We refer to the mapping 𝑄 of (3) to argue that every 𝑄𝑖 can be split
into three strings 𝐿𝑖, 𝐹𝑖, 𝑅𝑖 with |𝐿𝑖| = 𝑟 + 1, |𝐹𝑖| = 3 and |𝑅𝑖| ≤ 𝑐 − 5 just
as depicted in Fig. 4. The main trick is to use the frame bits used in FSW to
determine boundaries of wrapping queries and their logical parts. We will refer
to the FDS queries as “frames”.

We can recover the AD-message pairs (in the following just “pair”) from
Q = (𝑄1, . . . , 𝑄𝑑) in a left-to-right fashion. Any pair (𝐴, 𝑀) is encoded in a
subsequence of Q that starts by a frame with frame bits 𝐹N and ends by a frame
just before the next frame with frame bits 𝐹N. Depending on the lengths of 𝐴
and 𝑀 , the pattern of frame bits between these boundary frames can differ as
depicted in Fig. 4.

If both 𝐴 and 𝑀 are non-empty, we follow the edge marked as A. If there is
the same number of 𝑟-bit blocks in 𝑀 as there is of 𝑐− 5 bit blocks in 𝐴, then

21

we follow the path A.1. Otherwise we follow the path A.2 and then A.21 if there
were fewer blocks in 𝐴 than in 𝑀 and the path A.22 if there were in turn more
blocks in 𝐴 than in 𝑀 .

If 𝑀 ̸= 𝐴 = 𝜀, then we follow the path B; if 𝐴 ̸= 𝑀 = 𝜀 we follow the path
C. In a special case, where both 𝐴 = 𝑀 = 𝜀, we follow path D. We can see, that
every possible case of lengths of 𝑀 and 𝐴 in terms of blocks yields a distinct
pattern of frame bit sequences.

Having identified which path in Fig. 4 we are following, we can recover 𝐴
and 𝑀 . Every frame 𝑄𝑖 with 𝐹𝑖 ∈ {𝐹AM, 𝐹AM|} holds a padded block of 𝑀 in
𝐿𝑖 and an unpadded block of 𝐴 in 𝑅𝑖. If 𝐹𝑖 = 𝐹M, then there is a padded block
of 𝑀 in 𝐿𝑖 and 𝑅𝑖 = 𝜀. If 𝐹𝑖 = 𝐹A, then there is a padded block of 𝐴 in 𝐿𝑖

and another unpadded block of 𝐴 in 𝑅𝑖. The frames with 𝐹𝑖 ∈ {𝐹AM, 𝐹M, 𝐹A}
are used to produce the tag and are thus treated specially. The first frame with
𝐹𝜒 holds data blocks and the following ones do not. If 𝜒 = AM, then there is
a padded block of 𝑀 in 𝐿𝑖 and an unpadded block of 𝐴 in 𝑅𝑖. If 𝜒 = M, then
there is only a padded block of 𝑀 in 𝐿𝑖. If 𝜒 = A and we are not on path D
then there is a padded block of 𝐴 in 𝐿𝑖 and a following unpadded block of 𝐴 in
𝑅𝑖. If we are on path D then none of the frames holds any data, since both 𝐴
and 𝑀 are empty.

Once we extract all the blocks of 𝐴 and 𝑀 , we concatenate them all in the
order in which they were extracted to obtain 𝐴 and 𝑀 . We note that the nonce
is contained in the very first frame with 𝐹1 = 𝐹N as 𝐿1 = pad𝑟(𝑁) ‖ 0. ⊓⊔

Theorem 3. Let 𝑏, 𝑟, 𝑐, 𝑘, 𝑛, 𝜏 > 0 be such that 𝑏 = 𝑟 + 𝑐, 𝑘 ≤ 𝑐 and 𝑛 < 𝑟. Let
FSW be the scheme of Sect. 7.2. Then,

Advpriv
FSW(𝑞, ℓ, 𝜇, 𝑁) ≤ (𝑞ℓ)2

2𝑏
+ (𝑞ℓ)2

2𝑐
+ 𝜇𝑁

2𝑘
,

Advauth
FSW(𝑞, ℓ, 𝜇, 𝑁) ≤ (𝑞ℓ)2

2𝑏
+ (𝑞ℓ)2

2𝑐
+ 𝜇𝑁

2𝑘
+ 1

2𝜏
.

Proof. We start by defining the 𝑅𝑂FSW—an idealized FSW that internally uses
the RO𝑟

FDS instead of FDS (and thus does not use 𝑝 at all). By Thm. 2 we have
that

Advpriv
FSW(𝑞, ℓ, 𝜇, 𝑁) ≤Advpriv

𝑅𝑂FSW(𝑞, ℓ, 𝜇) + (𝑞ℓ)2

2𝑏
+ (𝑞ℓ)2

2𝑐
+ 𝜇𝑁

2𝑘
,

Advauth
FSW(𝑞, ℓ, 𝜇, 𝑁) ≤Advauth

𝑅𝑂FSW(𝑞, ℓ, 𝜇) + (𝑞ℓ)2

2𝑏
+ (𝑞ℓ)2

2𝑐
+ 𝜇𝑁

2𝑘
.

By Lem. 5, we know that a unique sequence of a nonce and AD-message pairs
yields unique sequence of RO𝑟

FDS queries. We have that Advpriv
𝑅𝑂FSW(𝑞, ℓ, 𝜇) = 0.

This is because the nonce requirement implies that every 𝑅𝑂FSW.wrap(𝐴, 𝑀)
query is either processed using RO𝑟

FDS with a unique internal state, or the pre-
vious query processed with RO𝑟

FDS with the same state was (𝐴, 𝑀).
In order to forge, the adversary must produce a sequence, which ends by a

triplet (𝐴, 𝐶, 𝑇) that did not appear in the experiment before and that passes the

22

authentication check. Uniqueness of the triplet implies that either 𝐶 or 𝐴 or 𝑇
is different from a triplet that appeared in the experiment. If only 𝑇 is modified,
then it cannot be correct. In any other case, the tag is compared to outputs of
RO𝑟

FDS evaluated with a fresh combination of internal state and inputs. We have
Advauth

𝑅𝑂FSW(𝑞, ℓ, 𝜇) ≤ 2−𝜏 . ⊓⊔

8 Discussion

Related-Key Security. Our treatment of the security of the full-state con-
structions is in the traditional model where the adversary has no control over
selection of the secret keys or relations among different keys. If one considers the
stronger model of related-key attack security then care must be taken in utilizing
these schemes. Indeed, if an adversary has access to two instances 𝐹1 = FKS𝑝

𝐾1
and 𝐹2 = FKS𝑝

𝐾2
, and it knows the relation 𝛥 = 𝐾1 ⊕ 𝐾2, then it can make

the outputs of 𝐹1 and 𝐹2 collide trivially by asking two 𝑏-bit queries 𝐹1(𝑀) and
𝐹2(𝑀 ⊕𝛥).

Although it is outside the scope of this paper to treat related-key security
thoroughly, we informally propose some easy solutions to prevent trivial related-
key attacks like the one mentioned before. We start by noticing that the inner-
keyed Sponge construction [2] is not susceptible to this problem, as the secret key
and the adversarial data blocks never overlap; hence, a simple way of thwarting
such trivial related-key attacks is to always prepend the input data with a block
of 𝑏 zeroes. Thus the adversary can no longer xor an arbitrary value directly to
the key prior to the application of the permutation. If the original adversarial
resources were (𝑞, ℓ, 𝜇, 𝑁), we can without any further argumentation use the
bound with the resources (𝑞, ℓ + 1, 𝜇, 𝑁) for this new construction.

Another possibility would be to slightly modify the constructions and parti-
tion the input data into an 𝑟-bit starting block and 𝑏-bit blocks afterward. The
initial block would be xored to the outer 𝑟 bits of the initial state. Our security
analysis would carry over to this construction with minimal modifications.

Generalized Security Model. The security analyses of FKS and FDS cover
those of the original Sponge and Duplex constructions as special cases. Beyond
that, for the security analysis of FDS itself, we have generalized the security
model of the original Duplex construction from Bertoni et al. [9, 10]. In more
detail, Bertoni et al. assume that the Duplex is initialized only once and then
the adversary can only do duplexing queries, while we allow the adversary to
force FDS to be reinitialized up to 𝑞 times and then allow it to duplex up to ℓ
blocks after each initialization.

This generalized setting seems more closely matching the use of the Duplex
construction in several AE schemes which do not require sessions and new session
keys, where one would initialize the Duplex (or FDS) construction for every
query. This is well demonstrated by the example of FSW. More precisely, the
way we design and analyze the security of FSW allows for a very versatile use.
FSW can be used to secure AD-message pairs in a single session [12], i.e. using

23

a single initialize call during the lifetime of the key or alternatively every AD-
message pair can be preceded by an initialize call with a unique nonce. In fact,
FSW can be used for anything between these two extremes; for example, a
setting where every AD-message pair is processed with a unique nonce, but can
get fragmented into smaller sub-pairs. The security analysis of FSW covers each
of these use cases.

On the Keying of the Sponge. As we have claimed in the introduction, the
difference in the security of the outer-keyed and inner-keyed Sponges vanishes
in presence of the full state absorption. On one hand, using a key of more than 𝑐
bits does not increase the security level, as the extra bits cannot be used by the
low-entropy Even-Mansour construction. On the other hand, absorbing several
𝑏-bit blocks of the key only results into a derived key of effective length of 𝑐
bits. We remark that both the outer- and inner-keyed Sponges can be seen as
special cases of FKS, by using more restrictive padding rules that only place the
message blocks in the outer part of the state.

Boosting Sponge-based AE. Out of 57 CAESAR candidates, 10 are using
a Sponge-based design. The method we used to enhance SpongeWrap can be
straightforwardly adjusted to boost the performance of five of these 10 schemes:
Keyak, Ketje, STRIBOB, CBEAM and ICEPOLE [3]. This is because all the
said designs are using frame bits for domain separation. The other designs cannot
benefit from our modifications, either due to a domain separation method relying
on intangibility of the inner part of the state (NORX) or due to producing tag
from the inner part of the state (Ascon, Primates) [3].

Acknowledgments. This work was partially supported by Microsoft Research
under MRL Contract No. 2014-006 (DP1061305). This work was supported
in part by the Research Council KU Leuven: GOA TENSE (GOA/11/007).
Bart Mennink is a Postdoctoral Fellow of the Research Foundation – Flanders
(FWO).

References

1. Abed, F., Forler, C., Lucks, S.: Classification of the CAESAR candidates. IACR
Cryptology ePrint Archive 2014, 792 (2014), http://eprint.iacr.org/2014/792

2. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of Keyed Sponge
Constructions Using a Modular Proof Approach. In: Leander, G. (ed.) FSE 2015.
LNCS (To appear), Springer (2015)

3. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.
cr.yp.to

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Func-
tions. ECRYPT Hash Workshop 2007, http://csrc.nist.gov/groups/ST/hash/
documents/JoanDaemen.pdf

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Specifications.
NIST SHA-3 Submission (2008), http://keccak.noekeon.org/

24

http://eprint.iacr.org/2014/792
http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://csrc.nist.gov/groups/ST/hash/documents/JoanDaemen.pdf
http://csrc.nist.gov/groups/ST/hash/documents/JoanDaemen.pdf
http://keccak.noekeon.org/

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer (2008)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-Based Pseudo-
Random Number Generators. In: Mangard, S., Standaert, F. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 33–47. Springer (2010)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. IACR Cryptology ePrint
Archive 2011, 499 (2011), http://eprint.iacr.org/2011/499

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Security of the Keyed
Sponge Construction. In: Symmetric Key Encryption Workshop 2011 (2011)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer (2012)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-Based En-
cryption, Authentication and Authenticated Encryption. In: Workshop Records of
DIAC 2012. pp. 159–170 (2012)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAE-
SAR submission: Keyak v1 (Mar 2014), http://competitions.cr.yp.to/round1/
keyakv1.pdf

13. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A Keyed Sponge Con-
struction with Pseudorandomness in the Standard Model. NIST SHA-3 2012
Workshop, http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/
documents/papers/CHANG_paper.pdf

14. Chen, S., Steinberger, J.P.: Tight Security Bounds for Key-Alternating Ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
327–350. Springer (2014)

15. Even, S., Mansour, Y.: A Construction of a Cipher From a Single Pseudorandom
Permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT ’91.
LNCS, vol. 739, pp. 210–224. Springer (1993)

16. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptology 10(3), 151–162 (1997)

17. Gaži, P., Pietrzak, K., Tessaro, S.: The Exact PRF Security of Truncation: Tight
Bounds for Keyed Sponges and Truncated CBC. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS (To appear), Springer (2015)

18. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2𝑐/2 Security in Sponge-Based
Authenticated Encryption Modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014 - Part I. LNCS, vol. 8873, pp. 85–104. Springer (2014)

19. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer (2004)

20. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers. In:
Joux, A., Youssef, A.M. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer
(2014)

21. Patarin, J.: The "Coefficients H" Technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer (2009)

22. Perlner, R.: Extendable-Output Functions (XOFs). NIST SHA-3 2014 Workshop,
http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/documents/perlner_
XOFs.pdf

25

http://eprint.iacr.org/2011/499
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/CHANG_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/CHANG_paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/documents/perlner_XOFs.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/documents/perlner_XOFs.pdf

23. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Boosting OMD for Almost Free Authen-
tication of Associated Data. In: Leander, G. (ed.) FSE 2015. LNCS (To appear),
Springer (2015)

24. Rivest, R.L., Schuldt, J.C.N.: Spritz – a Spongy RC4-like Stream Cipher and Hash
Function (2014), https://people.csail.mit.edu/rivest/pubs/RS14.pdf

25. Sasaki, Y., Yasuda, K.: How to Incorporate Associated Data in Sponge-Based
Authenticated Encryption. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048,
pp. 353–370. Springer (2015)

26

https://people.csail.mit.edu/rivest/pubs/RS14.pdf

	Security of Full-State Keyed and Duplex Sponge:Applications to Authenticated Encryption

