
Actively Secure OT Extension with
Optimal Overhead

Marcel Keller, Emmanuela Orsini, and Peter Scholl

Department of Computer Science, University of Bristol
{m.keller,emmanuela.orsini,peter.scholl}@bristol.ac.uk

Abstract. We describe an actively secure OT extension protocol in the
random oracle model with efficiency very close to the passively secure
IKNP protocol of Ishai et al. (Crypto 2003). For computational security
parameter κ, our protocol requires κ base OTs, and is the first practical,
actively secure protocol to match the cost of the passive IKNP extension
in this regard. The added communication cost is only additive in O(κ),
independent of the number of OTs being created, while the computation
cost is essentially two finite field operations per extended OT. We present
implementation results that show our protocol takes no more than 5%
more time than the passively secure IKNP extension, in both LAN and
WAN environments, and thus is essentially optimal with respect to the
passive protocol.

1 Introduction

Oblivious transfer (OT) is a fundamental primitive in cryptography, used in the
construction of a range of protocols. In particular, OT is sufficient and necessary
for secure multi-party computation [25,10,15], and is also often used in special-
purpose protocols for tasks such as private set intersection [22]. Due to a result
of Impagliazzo and Rudich [11] it is very unlikely that OT is possible without
the use of public-key cryptography, so all OT constructions have quite a high
cost when used in a practical context.

OT Extension. Since OT requires public key machinery, it is natural to wonder
whether OT can be efficiently ‘extended’. That is, starting with a small number
of ‘base OTs’, create many more OTs with only symmetric primitives, some-
what analogous to the use of hybrid encryption to extend public key encryption.
Beaver [3] first showed how, starting with κ base OTs, one could create poly(κ)
additional OTs using only symmetric primitives, with computational security κ.
Beaver’s protocol is very elegant, but requires evaluation of pseudo-random gen-
erators within Yao’s garbled circuits; therefore it is highly impractical. In 2003,

c©IACR 2015. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on 4 June 2015. The version published by Springer-Verlag is
available at DOI:TBD.

Ishai, Kilian, Nissim and Petrank [12] presented a very efficient protocol for ex-
tending OTs, requiring only black-box use of symmetric primitives and κ base
OTs. Concretely, the main cost of their basic protocol is computing and sending
just two hash function values per OT. Asharov et al. [1] gave several algorithmic
optimizations to the IKNP protocol, reducing the communication down to one
hash value for the random OT variant, where the sender’s messages are sam-
pled at random, and using a cache-oblivious algorithm for matrix transposition,
which turned out to be the computational bottleneck when implemented naively.
By analysing an implementation, they suggest that the actual bottleneck of the
IKNP protocol is communication, particularly in wide area networks (WANs)
with high latency and low bandwidth.

The above protocols are only secure against passive adversaries, who are
trusted to strictly follow the protocol. For the case of actively secure protocols,
which remain secure against arbitrary deviations from the protocol, typically
most cryptographic protocols have a much greater cost than their passive coun-
terparts. The actively secure OT extension of Ishai et al. [12] uses an expensive
cut-and-choose technique, where s runs of the protocol are done in parallel to
achieve O(s) bits of statistical security. In recent years, the cost of actively se-
cure OT extension has improved greatly, down to just constant overhead. The
TinyOT protocol for secure two-party computation [20] is based on a very effi-
cient OT extension where the total cost is roughly 8

3 times the passively secure
IKNP extension – this applies to communication and computation, as well as
the number of base OTs required to run the protocol. Very recently, in an in-
dependent and concurrent work, Asharov et al. [2] gave a protocol reducing the
overhead even further: their protocol requires roughly κ+ s base OTs for com-
putational security κ and statistical security s, which in practice reduces the
constant from 8

3 ≈ 2.7 down to ≈ 1.4, plus an additive overhead in O(κ).
Applications of OT extension. As we mentioned before, OT extension has

been getting a lot of attention recently, because the efficiency of this procedure
plays a decisive role in the overall efficiency of a number of protocols for secure
computations where the number of OTs needed is very large, for example in the
two-party and multiparty TinyOT protocols [20,18,5], in the MiniMAC protocol
of Damgard et al. [7] and in private set intersection protocols [8,22].

Our Contributions. In this paper we give the first practical, actively secure
OT extension protocol requiring only κ base OTs, matching the efficiency of the
passively secure IKNP extension in this respect. For communication and compu-
tation costs, the overhead on top of IKNP is negligible: our protocol requires 2
finite field (of size κ) operations per extended OT, plus a small communication
overhead of O(κ) bits in a constant number of rounds, independent of the num-
ber of OTs being performed, which amortizes away when creating many OTs.
We give extensive benchmarks (in both LAN and WAN settings) showing that
the practical cost of our protocol for performing 10 million OTs is less than 6%
more than the IKNP extension, and so is almost optimal. In contrast, the proto-
col of Asharov et al. [2] takes at least 80% more time than the passive protocol in

2

the WAN setting and over 20% more in the LAN setting for 223 OTs, according
to their implementation figures.

The comparison table below shows the concrete efficiency of various other
OT extension protocols, in terms of the number of base OTs required and the
total communication and computation cost for creating ` OTs. Our protocol is
more efficient than all previous protocols in all of these measures. Note that
these comparisons are for OT extensions on strings of length at least κ bits. For
shorter strings, the passively secure protocol of Kolesnikov and Kumaresan [16]
is more efficient, but it does not seem straightforward to apply our techniques to
obtain an actively secure protocol in that setting. We also omit the protocol of
Ishai et al. [13], since although asymptotically this has only a constant overhead,
the protocol is based on the ‘MPC-in-the-head’ technique, which has not been
shown to be practical.

Protocol Seed OTs Comms. Comp. Security

[12] 128 ` · 128 bits 2` hashes passive, CRF
[12] > 5000 O(` · κ · s) O(` · s) hashing active, CRF
[17] 323 O(` · κ2) O(` · κ2) XOR active, CRF
[20] 342 `·342 bits + 43KB O(`) hashing active, RO
[2] 170 `·175 bits + 22KB O(`) hashing active, CRF
This work 128 `·128 bits + 10KB 2`+ 336 hashes active, RO

Table 1. Concrete cost of OT extension protocols for producing ` OTs of 128-bit
strings with 128-bit computational and 40-bit statistical security parameters.

Our protocol is similar in structure to previous protocols [20,2], in that we
carry out one run of the passively secure IKNP extension, and then use a cor-
relation check to enforce correct behaviour. As in the previous protocols, it is
possible that a cheating receiver may pass our check, in which case some infor-
mation on the sender’s secret is leaked. However, the leakage is such that we
still only need κ base OTs, and then must sacrifice κ + s of the extended OTs
produced from the IKNP extension, where s is a statistical security parame-
ter, to ensure security. The check itself is extremely simple and only requires a
constant number of hash computations on a fixed input length, unlike previous
checks where the amount of data being hashed increases with the number of
extended OTs.

Random Oracle Usage. We prove our OT extension protocol secure in the
random oracle model, used for a functionality FRand, which securely generates
random values, and the hash function H used to randomize the correlated OT
outputs. For the function H, Ishai et al. [12] prove security of their protocol
in the standard model, under the assumption that H is a correlation robust
function. The protocol of Asharov et al. [2] is proven secure with the additional

3

requirement that H satisfies some kind of leakage resilience, and it is conjectured
that the protocol of Nielsen et al. [20] is also secure in this model.

Note that in the case of random OT, where the sender’s outputs are defined
as randomly chosen by the functionality, the security of the protocol (using
the optimization of Asharov et al. [1], which cuts the communication in half)
has only ever been proven in the random oracle model, because of the need
for the simulator to program the receiver’s outputs from H to be as defined
by the functionality. Random OT can be used for an offline/online scenario
where random OTs are generated in advance of the inputs being known, and
is also often used in practical protocols (e.g. [22,20]), so we take the pragmatic
approach of using random oracles for our security proofs, which also simplifies the
exposition. However, due to the similarities between our protocol and previous
ones [2,20], we believe it is likely that our (non-random) OT extension protocol
can also be proven secure under a form of correlation robustness for H.

2 Preliminaries

2.1 Notation

We denote by κ the computational security parameter and by s the statistical
security parameter. We let negl(κ) denote some unspecified function f(κ), such
that f = o(κ−c) for every fixed constant c, saying that such a function is negligible
in κ. We say that a probability is overwhelming in κ if it is 1−negl(κ). We denote

by a $← A the random sampling of a from a distribution A, and by [d] the set of
elements {1, . . . d}.

Throughout the proofs we will often identify Fκ2 with the finite field F2κ .
Addition is the same in both; we will use “ · ” for multiplication in F2κ and
“ ∗ ” for the componentwise product in Fκ2 . We use lower case letters to denote
elements in F2 and bold lower case letters for vectors in Fκ2 and elements in F2κ .
We will use the notation v[i] to denote the i-th entry of v.
Given a matrix A, we denote its rows by subindices ai and its columns by
superindices ak. Given a vector v ∈ Fκ2 , we denote by v̄ the vector in Fκ2 such
that v + v̄ = 1. We say that a vector v ∈ Fκ2 is monochrome if v[i] = v[j], for
each i, j ∈ [κ]; otherwise we say it is polychrome.

In our proofs we often use the notion of affine space. We recall that an affine
space is a set X that admits a free transitive action of a vector space V .

2.2 Oblivious Transfer and OT extension

Oblivious transfer (OT) [24,23,9,4] is a two-party protocol between a sender S
and a receiver R. The sender transmits part of its input to R, in such a way
that S remains oblivious as what part of its input was transmitted and R does
not obtain more information than it is entitled.

We use three main oblivious transfer functionalities. We denote by FOT the
standard

(
2
1

)
-OT functionality, where the sender S inputs two messages v0,v1 ∈

4

Fκ2 , and the receiver inputs a choice bit x, and at the end of the protocol R
learns only the selected message vx. We use the notation Fκ,`OT to denote the
functionality that provides `

(
2
1

)
-OTs of messages in Fκ2 (see Fig. 1 for a formal

definition). Another variant of OT is correlated OT, where the sender’s messages
are correlated, i.e. v0 + v1 = ∆ for a fixed ∆ ∈ Fκ2 ; in Fig. 3 we give a version of
this functionality which allows “errors”. Finally, in the random OT functionality ,
FROT, the messages v0,v1 are sampled uniformly at random by the functionality
(Fig. 7).

Functionality Fκ,`OT

F running with R,S and an adversary S proceeds as follows:

- The functionality waits for input (v0,i,v1,i) ∈ Fκ2 × Fκ2 , i ∈ [`], from S and
x1, . . . , x`, with xi ∈ F2, from R.

- It outputs vxi,i, i ∈ [`], to R.

Fig. 1. The OT functionality

Functionality Fκ,`COTe

The functionality is parametrized by the number ` of resulting OTs and by the key
length κ.
Running with parties S, R, and an ideal adversary S it operates as follows.

Initialize: Upon receiving ∆ from S, where ∆ ∈ F2κ , the functionality stores ∆.
Extend:

- Upon receiving (x1, . . . ,x`) from R, where xi ∈ F2κ , sample tj ∈ F2κ ,
j = 1, . . . , `, and output them to R. Compute qj = tj+xj ∗∆, j = 1, . . . , `,
and output them to S.

- If R is corrupt, wait for S to input tj and output as before.

Fig. 2. Correlated OT with errors functionality FCOTe

IKNP Protocol Augmented with Errors. In Fig. 2, we model the IKNP
extension as a separate functionality, FCOTe that incorporates a cheating re-
ceiver’s behavior, and call this correlated OT with errors. Fig. 3 gives the im-
plementation of this functionality: after the first phase and the local expan-
sion of the seeds through a pseudorandom generator PRG, R holds two ` × κ
matrices {ti0}i∈[κ], {ti1}i∈[κ], while S holds the vector ∆ ∈ Fκ2 and the matrix
{ti∆i}i∈[κ]. In the extension phase, we allow a cheating receiver R to input vectors

5

x1, . . . ,x` ∈ Fκ2 , instead of inputting bits x1, . . . , x`. To better understand this
situation we can imagine R inputting an `×κ matrix X, having x1, . . . ,x` ∈ Fκ2
as rows and x1, . . . ,xκ ∈ F`2 as columns. If R is honest then x1 = · · · = xκ and
the rows xj are “monochrome” vectors, i.e. consisting either of all 0’s or all 1’s.
At this point the receiver computes ui = ti0 + ti1 + xi, for each i ∈ [κ]. Clearly, if
R is honest, they send the same vector xi for each i. After this step S computes
qi = ti∆i + ui + ui ·∆i = ti0 + xi ·∆i, obtaining the `×κ matrix Q, having qi as
columns and qj = t0,j+xj∗∆ as rows. If xj is monochrome, i.e xj = xj ·(1, . . . , 1),
then qj = t0,j +xj ·∆, otherwise, rewriting xj as xj = xj · (1, . . . , 1)+ej , we get
qj = t0,j + xj ·∆ + ej ∗∆, where ej is an “error” vector counting the number
of positions in which R cheated.

Notice that, compared with the original IKNP protocol, the protocol COTe
stops before hashing the output with the random oracle to break the correlation
and performing the final round of communication. It is easy to see (and was
shown e.g. by Nielsen [19]) that the protocol for COTe (given in Fig. 3) securely
implements this functionality.

3 Our Actively Secure OT Extension Protocol

In this section we describe our protocol for actively secure OT extension based
on the passive IKNP functionality, FCOTe. We recall that to deal with mali-
cious adversaries, all the known actively secure OT extension protocols add a
consistency check to the passive secure IKNP protocol to ensure that R inputs
consistent values.

For example, in previous works [20,2] this check is added before the “ex-
tension” phase, i.e. before the sender S “reverses” the base OTs and breaks
the correlation, effectively checking on the OT seeds. In our construction we
check the correlation for consistency after the extension step, precisely after the
execution of COTe, actually checking the extended OTs.

The high level idea of our protocol in Fig. 7 is to perform a simple correlation
check to ensure that the receiver used the same vector xi for each ui sent in Step
3 of the IKNP extension. If the check passes, then the correlated OTs are hashed
to obtain random OTs. This check requires sacrificing κ + s extended OTs to
ensure security, so we obtain a reduction from Fκ,`ROT to Fκ,`

′

COTe, with `′ = `+(κ+s).
The intuition in this reduction is that, if the check passes, the adversary can

only learn few bits of the correlation vector ∆, and hence the values H(qj +∆)
are actually random except with negligible probability. Finally, if required, the
random OTs obtained from ROT can be derandomized with an additional set of
messages from the sender, using the standard reduction from Fκ,`OT to Fκ,`ROT.

The relationship between all the functionalities used are described in Fig. 4.
The first stage to FCOTe essentially consists of the IKNP OT extension protocol
(with some modifications from the protocol by Asharov et al. [1]) that we have
seen in the previous section.

6

Protocol for COTeκ,`

Initialize: This is independent of inputs and only needs to be done once.
1. R samples κ pairs of κ-bit seeds, {(ki0,ki1)}κi=1.
2. S samples a random κ-bit string ∆.
3. The parties call κ× OTκ with inputs ∆ and k0,k1.
4. S receives ki∆i for i = 1, . . . , κ.

Extend: This creates ` extended C-OTs. Note that this phase can be iterated,
as done by Asharov et al. [1].

1. R inputs monochrome vectors x1, . . . ,x`. Let x1, . . . , x` be the bits of the
vectors for the case when R is honest.

2. Expand k0
i and k1

i using a pseudo random generator (PRG), letting

ti0 = PRG(k0
i) ∈ F`2 and ti1 = PRG(k1

i) ∈ F`2, i = 1, . . . , κ.

so R knows (t0
i , t

1
i) and S knows ti∆i for i = 1, . . . , κ.

3. R computes
ui = ti0 + ti1 + xi ∈ F`2, i = 1, . . . , κ,

where xi = (x1, . . . , x`) ∈ F`2 and sends them to S. Here we are creating the
keys correlation that permits to extend OTs, inverting the role of sender
and receiver.

4. S computes
qi = ∆i · ui + ti∆i ∈ F`2.

Notice that qi = ti0 +∆i · xi, for i = 1, . . . , κ.
5. Let qj denote the j-th row of the ` × κ bit matrix Q = [q1| . . . |qκ], and

similarly let tj be the j-th row of [t1
0| . . . |tκ0]. Note that

qj = tj + xj ∗∆, j = 1, . . . , `.

Output: R outputs tj , S outputs qj and ∆.

Fig. 3. Protocol for correlated OT with errors between S and R.

Fκ,κOT

Figure 1
Fκ,`

′

COTe

Figure 2

Fκ,`ROT

Figure 6
Fκ,`OT

Figure 1

Πκ,`′

COTe Πκ,`
ROT Πκ,`

COT

Fig. 4. Relationship between the different functionalities used to go from Fκ,κOT to Fκ,`OT .

3.1 Protocol from COTe to ROT

Here we describe the protocol implementing the Fκ,`ROT functionality in Fig. 6.
The main idea of our construction is to use a variant of the MAC check protocol
from SPDZ [6], adapted for two parties where one party holds the MAC key,
to check the correlation is consistent. The correlation check is performed on the

7

Functionality FF
Rand

Random sample: Upon receiving (rand;u) from all parties, it samples a uniform
r ∈ F and outputs (rand, r) to all parties.

Fig. 5. Functionality FF
Rand

Functionality Fκ,`ROT

The functionality is parametrized by the number ` of resulting OTs and by the
length of the OT strings κ.
Running with parties S, R and an ideal adversary denoted by S, it operates as
follows.

- Upon receiving (R, (x1, . . . , x`)) from R, where xj ∈ F2, the functionality sam-
ples random (v0,j ,v1,j) ∈ F2

2κ , for j ∈ [`]. Then it sends (v0,j ,v1,j) to S and
vxj ,j to R.

- If R is corrupt: if S inputs Abort, F sends Abort to S and it halts. Otherwise
it waits for S to input xj for all j ∈ [`]. Then it samples random (v0,j ,v1,j),
j ∈ [`] and outputs them to S. It also sends vxj ,j to S for all j ∈ [`].

- If S is corrupt it waits for S to input (v0,j ,v1,j), j ∈ [`], and then outputs as
above using these values.

Fig. 6. Functionality Fκ,`ROT

`′ correlated OTs of length κ output by Fκ,`
′

COTe, i.e. after the vectors have been
transposed. Recall that after running FCOTe, the sender S has ∆,q1, . . . ,q`′ ∈ Fκ2
and the receiver R has x1, . . . ,x`′ , t1, . . . , t`′ ∈ Fκ2 such that qj = tj + xj ∗∆ for
j ∈ [`′]. If R was honest then every xj is monochrome, so qj = tj + xj ·∆ for
bits x1, . . . , x`′ .

To carry out the check, both parties first securely generate `′ random weights
χ1, . . . , χ`′ ∈ Fκ2 , and then compute weighted sums of their outputs from FCOTe.
Then R sends these values to S to check consistency with S’s output. So, R
computes x =

∑`′

j=1 xj · χj , t =
∑`′

j=1 tj · χj and S computes q =
∑`′

j=1 qj · χj ,
where the vectors tj ,qj , χj are viewed as elements of F2κ and multiplications
are performed in this finite field. S then checks that q = t+ x ·∆.

Clearly, by linearity of the correlated OT output, the check will always pass
for an honest receiver. If R is corrupted then it is possible they may pass the
check despite having used polychromatic xj vectors; in this case they will learn
some information about∆. We show that this leakage is optimal, in the sense that
a cheating receiver can learn c bits of information on ∆ with at most probability
2−c, and the possible errors in the resulting OTs do not provide the adversary
with any further useful information. Looking ahead to the proof, the success
probability of a receiver who passes the check in breaking the resulting OTs
with q = poly(κ) queries to H will therefore be q/2κ−c, giving an overall success

8

probability of q/2κ. This implies that κ base OTs suffice for computational
security κ.

On the other hand, if the sender is corrupted, our correlation check introduces
the possibility that the values of x and t could leak information about R’s input
bits x1, . . . , x`. However, we show that it suffices to perform κ+s additional OTs
with random choice bits to counter against this leakage, for statistical security
s. Overall, this means our protocol requires only κ base OTs, which is optimal
with respect to the IKNP extension, and an additive overhead of s+κ extended
OTs, regardless of the number ` of OTs required, as well as just O(κ) additional
communication in a constant number of rounds.

3.2 Analysis of the Correlation Check

Corrupt Sender. To ensure that the correlation check step is secure against
a corrupt sender we must carefully choose the parameter `′, which determines
the size of the batch each check is performed on. Recall that the elements in the
field F are κ bits long; if `′ ≤ κ then it is likely that the secret bits xj will be
uniquely determined given χj and x, so an adversary could attempt to solve the
corresponding knapsack problem to recover these. As we will see in the proof in
Theorem 1, to thwart this attack, we use a technical lemma giving a bound on
the rank of a random binary matrix. This is also the reason why we do not let
the sender sample {χj}`j=1.

Corrupt Receiver. The case of a corrupt receiver is much more involved. We
now investigate a cheating receiver’s success probability in the correlation check
stage of the ROT protocol in Fig. 7. Let x1, . . . ,x`′ be the vectors in Fκ2 input
by R during the protocol. Taking these to be the rows of a `′ × κ matrix, let
x1, . . . ,xκ be the columns of the same matrix, in F`′2 . If R was honest then
{xj}j∈[`′] are all monochrome and {xi}i∈[κ] are all equal. The following Lemma
gives the main properties needed from our correlation check.

Lemma 1. Let S∆ ⊆ Fκ2 be the set of all ∆ for which the correlation check
passes, given the view of the receiver. Except with probability 2−κ, there exists
k ∈ N such that

1. |S∆| = 2k.
2. For every s ∈ {xi}i∈[κ], let Hs = {i ∈ [κ] | s = xi}. Then one of the following

holds:
- For all i ∈ Hs and any ∆(1), ∆(2) ∈ S∆, ∆(1)

i = ∆
(2)
i .

- k ≤ |Hs|, and |{∆Hs}∆∈S∆ | = 2k, where ∆Hs denotes the vector con-
sisting of the bits {∆i}i∈Hs . In other words, S∆ restricted to the bits
corresponding to Hs has entropy at least k.

Furthermore, there exists ŝ such that k ≤ |Hŝ|.

Proof. See full version [14].

9

Protocol for ROTκ,`

Let `′ = `+ (κ+ s). Fκ,`
′

COTe, henceforth denoted as FCOTe.

Initialize: The parties call FCOTe.Initialize where S inputs ∆ ∈ Fκ2 .
Extend: The parties call FCOTe.Extend, where R inputs monochrome vectors

x1, . . . ,x`′ ∈ Fκ2 such that xj = xj · (1, . . . , 1) for j ∈ [`] and xj = xj · (1, . . . , 1)
for random xj ∈ F2 for j ∈ [`+ 1, `′].
S receives qj ∈ Fκ2 and R receives tj ∈ Fκ2 for j = 1, . . . , `′ such that:

tj = qj + xj ∗∆

Check correlation: We check that the vectors input by R during the C-OT were
monochrome, by checking a random linear combination. If R cheated earlier
she could learn a few bits of ∆ here, causing some leakage.

- Sample (χ1, . . . , χ`′)← FRand(F`
′

2κ).
- R computes

x =

`′X
j=1

xj · χj and t =

`′X
j=1

tj · χj

and sends these to S.
- S computes

q =

`′X
j=1

qj · χj

and checks that t = q + x ·∆. If the check fails, output Abort, otherwise S
outputs ∆, {qj}j∈[`] and R outputs {tj , xj}j∈[`].

Randomize: Now break the correlation and remove any leaking bits of ∆.
- R sets

vxj ,j = H(j‖tj),
and outputs xj ,vxj ,j , j ∈ [`].

- S outputs

v0,j = H(j‖qj) and v1,j = H(j‖qj +∆), j ∈ [`].

Fig. 7. Random OT extension protocol from correlated OT with errors.

We now give some intuition about the meaning of this statement. The set
S∆ is the set of all possible values of ∆ with which the correlation check could
pass – note that since ∆ is uniformly random to the receiver, their probability
of passing the check is therefore |S∆|/2κ. For some vector s ∈ {xi}i∈[κ], the
set Hs represents indices of all of the vectors equal to s. Clearly, for an honest
receiver, Hs is always just the set {1, . . . , κ}, and so the size of Hs measures the
amount of deviation in the protocol for a given s. The precise indices in Hs are
also important, as they correspond to a subset of the bits of the secret ∆, which
could be learnt using 2|Hs| queries to the hash function (causing the simulation
to abort in our security proof).

10

The second part of the lemma implies that for any s, either the bits of ∆
corresponding to the indices in Hs are constant for all possible ∆ ∈ S∆, or, the
size of Hs is at least k, which means the corresponding abort in the simulation
occurs with probability at least 1−2−k+κ. Clearly in the first case, the adversary
gains no new information, but in the second case we have a bound on the amount
of information an adversary can learn, which directly corresponds to the size of
the set S∆, and hence also the success probability in the correlation check. The
final part of the Lemma, concerning ŝ, simply states that there is always a vector
s that satisfies the second condition, so at least one block of k bits of ∆ remains
hidden. A careful analysis of these possible deviations allows us to show that κ
base OTs suffice for our protocol.

3.3 Proof of Security

Theorem 1. The protocol in Fig. 7 securely implements the Fκ,`ROT functionality
in the (FCOTe,FRand,FRO)-hybrid model with computational security parameter
κ.

The computational security parameter κ manifests itself in that the adversary
is only allowed poly(κ) calls of the random oracle in the proof. Other than that,
the simulation is statistically indistinguishable.

Proof. We construct a simulator S that has access to FROT, and show that no
environment Z can distinguish between an interaction with S and FROT and
an interaction with the real adversary A and the real parties. To simulate a
real world execution of the protocol, S starts an internal copy of A and runs an
internal copy of the protocol with dummy parties πS and πR, as shown in Figure
8.

First we deal with the (simpler) case of a corrupt sender. Since the simulator
gets the sender’s secret ∆, it is straightforward to construct x and t that will
pass the check. All we need to do is argue indistinguishability from the real world
execution. We need the following lemma.

Lemma 2. Let A be a random (κ+m)×κ matrix over F2, where m > 0. Then
A has rank κ except with probability less than 2−m.

Proof. See full version [14].

Recall that in the real world the sender receives

x =
`′∑
j=1

xj · χj =
∑̀
j=1

xj · χj +
`′∑

j=`+1

xj · χj .

The second summation corresponds to the image of a linear map from F`
′−`

2 =
Fκ+s2 to Fκ2 . From Lemma 2, it follows that this map has full rank with probability
1− 2−s. In this case, the second summation is uniformly random in F2κ because
(x`+1, . . . , x`′) were chosen uniformly at random by R, and so indistinguishable

11

Simulator for ROT`,κ

Initialize: If S is corrupt, receive ∆ ∈ F2κ from A and store ∆.
OT extension: For the sake of simplicity we describe separately the case when R

is corrupt and the case when S is corrupt.
Corrupt R:
1. Receive vectors x1, . . . ,x`′ and t1, . . . , t`′ ∈ F2κ from A.
2. Emulating FCOTe with a dummy sender, sample a random ∆ ∈ F2κ .
3. Sample random χ1, . . . , χ`′ ∈ F2κ and send these values to A.
4. S receives x, t from A and carries out the correlation check. If the check

fails, the S sends Abort to FROT and it halts.
5. Let ŝ and Hŝ be as in Lemma 1, that is, k ≤ |Hŝ|, and xi = xi

′
for all

i, i′ ∈ Hŝ. This implies that xj [i] = xj [i
′] for all i, i′ ∈ Hŝ and j ∈ [`]. For

each j ∈ [`], set xj = xj [i] for some i ∈ Hŝ.
6. Send xj to Fκ,`ROT and receive vxj ,j for all j ∈ [`].
7. Emulate the random oracle queries as follows:

- If the input is (j‖tj + xj ∗∆+ xj ·∆), return vxj ,j .
- If the input is (j‖tj + xj ∗∆+ xj ·∆), abort.
- Otherwise, return a random value from Fκ2 (consistent with previous

queries).

Corrupt S:
1. Receive q1, . . . ,q`′ from A.
2. Sample random χ1, . . . , χ`′ ∈ F2κ and send these to A.

3. Compute q =
P`′

j=1 qj · χj , sample random x ∈ F2κ and compute t =
q + x ·∆.

4. Output whatever A outputs and halt.

Fig. 8. Simulator for random OT extension

from the simulated random x. Finally, t has the same distribution in both worlds
because there is only one t fulfilling the equation q = t+ x ·∆.

We now consider the case of R being corrupted. In steps 1-4, S simply em-
ulates FCOTe and the correlation check, choosing random values for the dummy
sender’s input. Lemma 1 states that (except with negligible probability) |S∆| =
2k for some k ∈ N. For every s ∈ {xi}i∈[κ], let Hs = {i ∈ [κ] | s = xi} and ŝ as in
Lemma 1. Recall that the adversary knows (tj ,xj) such that tj = qj +xj ∗∆. If
x1, . . . , x` are the bits of ŝ then this can be expressed as tj = qj +xj ·∆+ej ∗∆,
where ej = (xj , . . . , xj)+xj is an adversarially chosen error vector. By definition,
ej [i] = ej [i′] for all i, i′ ∈ Hs, for any s ∈ {xi}i∈[κ] and j ∈ [`].

In step 7, the simulator responds to the adversary’s random oracle queries.
Notice that it is the queries qj = tj + xj ∗ ∆ and qj + ∆ = tj + xj ∗ ∆ that
require the reply conforming to the output of Fκ,`ROT. The simulator knows vxj ,j ,
which is the output of H(j‖qj +xj ·∆) in the real-world protocol. On the other
hand, if the adversary queries (j‖qj+xj ·∆), the simulator cannot give the right
output and thus aborts.

12

We now investigate the probability that this happens, given that the corre-
lation check has passed. It holds that

qj + xj ·∆ = tj + xj ∗∆+ xj ·∆ = tj + (xj + (xj , . . . , xj)) ∗∆.

For i ∈ Hŝ, xj [i] = xj and thus (xj + (xj , . . . , xj)[i] = 1. By Lemma 1, there are
|S∆| = 2k possibilities for (xj + (xj , . . . , xj)) ∗ ∆ and hence qj + xj · ∆, given
∆ ∈ S∆. Therefore, the probability of one such query is 2−k.

However, we must also show that the environment cannot learn any addi-
tional information from previous queries. For example, when R queries qj+xj ·∆
to get their correct OT output, the environment (who sees the honest sender out-
put so can verify this has occurred) can learn ej ∗∆ by computing qj+xj ·∆+tj .
By definition, the bits of ej corresponding to any index set Hs are constant. Fur-
thermore, Lemma 1 states that either ∆(1)

i = ∆
(2)
i for all ∆(1), ∆(2) ∈ S∆ and

i ∈ Hs or |Hs| ≥ k. In the first case, ej [i] ·∆i is known by the fact that ∆ ∈ S∆.
In the second case, consider that ej [i] is the same for all i ∈ Hs. If ej [i] = 0 for
all i ∈ Hs, then ej [i] ·∆i = 0 for all i ∈ Hs. On the other hand, if ej [i] = 1, there
are 2k possibilities for ej ∗∆ (given ∆ ∈ S∆ as above) and thus for qj + xj ·∆.
Hence, either the latter is known to the adversary already or the probability of
querying it is 2−k per query.

It follows that the probability the simulation aborts after the correlation
check has passed is at most q · 2−k, where q is the number of queries made by
the environment. Now taking into account the fact that the check passes with
probability |S∆| · 2−κ + 2−κ = 2−κ · (2k + 1), the overall success probability of
distinguishing is at most q · 2−κ · (1 + 2−k), which is negligible in κ.

ut

3.4 From ROT to OT

Finally we show how to reduce Fκ,`OT to Fκ,`ROT.

Lemma 3. The protocol in Fig. 9 securely implements the Fκ,`OT functionality in
the Fκ,`ROT-hybrid model.

Proof. It is easy to describe a simulator for a corrupt R. S runs a copy of A
setting dummy parties πR and πS and then simulates for them a real execution
of DeROT, running an internal copy of FROT.

We just need to show indistinguishablity of the transcripts and of the outputs.
In both worlds, {dxi,i}i∈[`] and {vxi,i}i∈[`] are distributed uniformly subject to
the condition dxi,i + vxi,i = yxi,i for all i ∈ [`], as the pads v0,i and v1,i pro-
vided by FROT are random and independent of R’s view, except with negligible
probability.

13

Protocol DeROTκ,`

1. The parties run ROTκ,` with R inputting x = (x1, . . . ,x`′), xi ∈ Fκ2 , S receives
{(v0,i,v1,i)}i∈[`] ∈ Fκ2 × Fκ2 , and R receives {vxi,i}i∈[`].

2. S sends {(d0,i,d1,i)}i∈[`] = {(v0,i + y0,i,v1,i + y1,i)}i∈[`] ∈ Fκ2 × Fκ2 to R.
3. R outputs {yxi,i}i∈[`] = {vxi,i + dxi,i}i∈[`].

Fig. 9. Derandomization protocol for random OT.

4 Implementation

In this section, we evaluate the efficiency of our random OT extension protocol.
As was done in previous works [1,2], we tested the protocol in a standard LAN
setting and a simulated WAN environment, using the Linux tc tool to create
an average round-trip-time of 100 ms (with standard deviation 1 ms) and limit
bandwidth to 50 Mbps (comparable with the setting reported by Asharov et
al. [2]). We used computational security parameter κ = 128 and statistical se-
curity parameter s = 64 throughout, and instantiated the PRG with AES-128
in counter mode (using Intel AES-NI) and the random oracle H with SHA-1.
FRand is implemented using a standard hash-based commitment scheme, where
both parties commit to and then open a seed, then the XOR of the two values
is used to seed a PRG, which is UC-secure in the random oracle model.

Our implementation was written in C++ using the Miracl libary for elliptic
curve arithmetic in the base OTs, which were executed using the actively secure
protocol of Peikert et al. [21]. All benchmarks were taken as an average of 20 runs
on Intel Core i7-3770S 3.1 GHz processors with 8 cores and 32 GB of memory.

Implementation Optimizations. The correlation check stage of our protocol
requires computing values of the form

∑
i xi ·yi where xi, yi ∈ F2κ . We used Intel

PCLMUL instructions to efficiently compute carrlyess multiplications and then
performed summations and the check itself in the polynomial ring (of length
2κ− 1) to avoid having to do expensive reduction by the finite field polynomial.

As was done by Asharov et al. [1], we use Eklundh’s algorithm for transposing
the matrices T and Q during the COTe protocol in a cache-friendly manner,
which makes the time spent in this stage less than 3% of the total runtime.
Our implementation also supports multi-threading, making use of the 8 cores
available on our test machines.

4.1 Comparison of Protocols

Table 2 shows the time taken for our implementation to compute 10 million OT
extensions (excluding the base OTs) in a variety of settings. The one-directional
setting is a traditional OT between a sender and a receiver, whilst in the bi-
directional times, both parties perform both roles simultaneously (for a total

14

Protocol
Comms.

(MB)
LAN time (s) WAN time (s)

One-dir. Bi-dir. One-dir. Bi-dir.

Passive,
IKNP (1T) 160MB

9.1037 12.5148 36.2319 66.2692

Passive,
IKNP (8T)

3.3258 4.0827 28.4410 53.3977

Active, ours
(1T) 160MB

9.5589 12.9461 36.2653 66.6558

Active, ours
(8T)

3.3516 4.2020 28.4569 54.1157

Table 2. Random OT extension runtimes in seconds, using either 1 or 8 threads. The
one-directional time is for 10 million OTs between a sender and receiver, whilst for the
bi-directional time both parties are playing each role for a total of 20 million OTs.

of 20 million OTs). The bi-directional variant is often required for secure two-
party and multi-party computation protocols, and over a LAN is much more
efficient than performing the one-directional protocol twice, but less so in the
WAN setting where communication is the bottleneck.

The passive protocol is just the standard IKNP extension (with the random
OT communication optimization of Asharov et al. [1]), which is essentially our
protocol without the correlation check. In the LAN setting, the time difference
between the active and passive protocols is less than 5%. The WAN times for the
passive and active protocols are very similar, however it should be noted that
there was more variation in our WAN experiments – computing 95% confidence
intervals for these means in the table gives a variation of up to ±3%. This is
probably mostly due to network variation and can be taken as evidence that
our protocol has roughly the same performance as the passive IKNP extension.
The total amount of data sent (in all protocols) is almost identical, due to the
very low overhead of our correlation check. Compared with the reported timings
for the protocol of Asharov et al. [2], our runtimes are much improved: their
actively secure times are between 40% and 80% higher than their passive imple-
mentation, whilst ours almost match the efficiency of the passive protocol. (We
do not directly compare figures due to the different benchmarking environments
involved.)

Fig. 10 illustrates the performance of our protocol as the number of OTs com-
puted varies, in both the WAN and LAN settings, tested in the one-directional
and bi-directional modes of OT operation.

4.2 Profiling

Fig.11 presents profiling results for the main components of our protocol, run
in a single thread creating 10 million OTs. It clearly demonstrates that the

15

26 210 214 218 222 226
10−3

10−2

10−1

100

101

102

No. OTs

R
u
n

ti
m

e
(s

)

LAN, bi-directional

LAN, one-directional

WAN, bi-directional

WAN, one-directional

Fig. 10. Performance of our OT extension protocol for various numbers of OTs. Times
exclude the base OTs.

WAN LAN
0

10

20

30

40

2.55

2.55

0.66

0.45

3.33

3.33

29.37

2.88
1.44 1.02

T
im

e
(s

)

Other

Correlation check

Hashing

Comms (OT ext.)

Base OTs

Fig. 11. Profiling results for running 10 million OTs in a single thread.

bottleneck of our protocol is communication from the IKNP extension phase, as
was reported for the passive secure implementation of Asharov et al. [1]. The
correlation check that we require for active security has a negligible impact on
the runtime; the best way to further optimize our implementation in the LAN
setting would be to target the hash function computations. The ‘Other’ section
includes overhead from PRG computations, matrix transposition and allocating
memory, which could also potentially be reduced a small amount.

16

5 Acknowledgements

We would like to thank Claudio Orlandi and Morten Bech for pointing out minor
errors in the proof of Theorem 1, and the anonymous reviewers whose comments
helped to improve the paper. This work has been supported in part by EPSRC
via grant EP/I03126X.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 535–
548. ACM, 2013.

2. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer extensions with security for malicious adversaries. In Advances in Cryp-
tology – EUROCRYPT 2015, pages 673–701, 2015.

3. D. Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 479–488. ACM, 1996.

4. G. Brassard, C. Crepeau, and J.-M. Robert. All-or-nothing disclosure of secrets. In
A. Odlyzko, editor, Advances in Cryptology CRYPTO 86, volume 263 of Lecture
Notes in Computer Science, pages 234–238. Springer Berlin Heidelberg, 1987.

5. S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini,
P. Scholl, and N. P. Smart. High performance multi-party computation for binary
circuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472,
2015. http://eprint.iacr.org/.

6. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In
J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2013.

7. I. Damg̊ard, R. Lauritsen, and T. Toft. An empirical study and some improvements
of the minimac protocol for secure computation. In Security and Cryptography for
Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings, pages 398–415, 2014.

8. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an
efficient and scalable protocol. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 789–800, 2013.

9. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, June 1985.

10. O. Goldreich and R. Vainish. How to solve any protocol problem - an efficiency
improvement. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, CRYPTO ’87, pages 73–86, 1988.

11. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, pages 44–61. ACM, 1989.

12. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers ef-
ficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Pro-
ceedings, pages 145–161, 2003.

17

http://eprint.iacr.org/

13. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer – efficiently. In Advances in Cryptology – CRYPTO 2008, pages 572–591.
Springer, 2008.

14. M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal
overhead. Cryptology ePrint Archive (to appear), 2015. http://eprint.iacr.

org/.
15. J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the

20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 20–31, 1988.

16. V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short
secrets. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
pages 54–70, 2013.

17. E. Larraia. Extending Oblivious Transfer Efficiently or - How to get active security
with constant cryptographic overhead. In LATINCRYPT 2014 – Third Interna-
tional Conference on Cryptology and Information Security in Latin America, 2014.

18. E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computa-
tion for binary circuits. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part II, pages 495–512, 2014.

19. J. B. Nielsen. Extending oblivious transfers efficiently - how to get robustness
almost for free. IACR Cryptology ePrint Archive, 2007:215, 2007.

20. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to prac-
tical active-secure two-party computation. In Advances in Cryptology–CRYPTO
2012, pages 681–700. Springer, 2012.

21. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings, pages 554–571, 2008.

22. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based
on OT extension. In Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014., pages 797–812, 2014.

23. M. O. Rabin. How to exchange secrets with oblivious transfer, 1981. Harvard
University Technical Report 81.

24. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, Jan. 1983.
25. A. C. Yao. How to generate and exchange secrets (extended abstract). In 27th

Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167, 1986.

18

http://eprint.iacr.org/
http://eprint.iacr.org/

	Actively Secure OT Extension with Optimal Overhead
	Introduction
	Preliminaries
	Notation
	Oblivious Transfer and OT extension

	Our Actively Secure OT Extension Protocol
	Protocol from COTe to ROT
	Analysis of the Correlation Check
	Proof of Security
	From ROT to OT

	Security in the Standard Model
	Removing FRand
	Correlation Robustness for H

	Implementation
	Comparison of Protocols
	Profiling

	Acknowledgements
	UC Security
	Security Proof
	Proof of Lemma 2
	Proof of the Correlation Check

