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Abstract. A secure reverse firewall, as recently defined by Mironov and Stephens-Davidowitz, is a
third party that “sits between a user and the outside world” and modifies the user’s sent and received
messages so that even if the user’s machine has been corrupted, her security is still guaranteed. In
other words, reverse firewalls allow us to provide meaningful (and, indeed, very strong) security guar-
antees against powerful adversaries that may have tampered with the user’s hardware or software (or
adversaries that are aware of bugs in the user’s protocol implementation). A long list of recent revela-
tions shows that such threats are extremely common in practice, and they present a serious, arguably
existential, threat to cryptography. Importantly, reverse firewalls defend against such threats without
sharing any secrets with the user, and in general we expect the user to place essentially no trust in the
firewall.

While Mironov and Stephens-Davidowitz demonstrated that reverse firewalls can be constructed for
very strong cryptographic primitives (which are of mostly theoretical interest), we study reverse fire-
walls for perhaps the most natural cryptographic task: secure message transmission. We find a rich
structure of solutions that vary in efficiency, security, and setup assumptions, in close analogy with
message transmission in the classical setting. Our strongest and most important result shows a proto-
col that achieves interactive, concurrent CCA-secure message transmission with a reverse firewall—i.e.,
CCA-secure message transmission on a possibly compromised machine! Surprisingly, this protocol is
quite efficient and simple, requiring only a small constant number of public-key operations. It could
easily be used in practice. Behind this result is a technical composition theorem that shows how key
agreement with a sufficiently secure reverse firewall can be used to construct a message-transmission
protocol with its own secure reverse firewall.

1 Introduction

In the past few years, the cryptographic community has learned of a disturbingly wide array of new security
vulnerabilities. The revelations of Edward Snowden show that the United States National Security Agency
successfully gained access to secret information by extraordinary means, including subverting cryptographic
standards [PLS13,BBG13] and intercepting and tampering with hardware on its way to users [Gre14]. Mean-
while, many (apparently accidental) security flaws have been found in widely deployed pieces of cryptographic
software, leaving users completely exposed [LHA+12,CVE14b,CVE14a,CVE14c]. Due to the complexity of
modern cryptographic software, such vulnerabilities are extremely hard to detect in practice, and, ironically,
cryptographic modules are often the easiest to attack, as attackers can often use cryptographic mechanisms
to mask their activities or opportunistically hide their communications within encrypted traffic (as in the
case of the Heartbleed vulnerability). This leads to cryptography’s current existential crisis, summarized
by the following (terrifying) question: “How can we provide any meaningful security guarantees when the
adversary may have arbitrarily tampered with its victim’s computer?”

Motivated by these concerns, Mironov and Stephens-Davidowitz recently proposed the novel concept of
(cryptographic) reverse firewalls, designed to protect machines from insider attacks [MS15]. Reverse firewalls
are autonomous (untrusted) intermediaries that intercept and “sanitize” transit traffic to backstop security of
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network clients. A cryptographic protocol equipped with a reverse firewall has the desirable guarantee that
its security is preserved even if it is run on a compromised machine. In other words, a correctly implemented
reverse firewall ensures the security of a cryptographic protocol even if the user’s own implementation of the
protocol is buggy, or even maliciously compromised. Such a tool is a natural and powerful solution to the
problems discussed above. We stress that the firewall is untrusted and shares no secrets with the user.

More concretely, Mironov and Stephens-Davidowitz start by considering an arbitrary cryptographic pro-
tocol that satisfies some notions of security and functionality (i.e., correctness). For example, perhaps the
simplest non-trivial case is semantically secure message transmission from Alice to Bob, which has the func-
tionality requirement that Bob should receive Alice’s plaintext message and the security requirement that
a computationally bounded adversary “should not learn anything about Alice’s plaintext message” from the
transcript of a run of the protocol. Formally, we can model this functionality by providing Alice with an
arbitrary input plaintext and requiring that Bob’s output match this input,1 and we can model semantic
security by a standard indistinguishability security game. A reverse firewall for Alice in such a protocol is
a party that “sits between” Alice and the outside world and modifies the messages that Alice sends and
receives. Such a firewall maintains functionality if the resulting protocol achieves the same functionality as
the original. E.g., in the case of message transmission, Bob’s output should still match Alice’s input plain-
text. More interestingly, the firewall preserves security if the protocol remains secure when we replace Alice’s
computer with some arbitrarily corrupted party “composed with” the firewall. For example, a reverse fire-
wall for Alice preserves semantic security of message transmission if a computationally bounded adversary
“learns nothing about Alice’s plaintext message” from the transcript of messages sent between the firewall
and Bob, regardless of how Alice behaves. (E.g., the firewall may rerandomize the messages that Alice sends
in a way that makes them indistinguishable from random from the adversary’s perspective, regardless of
Alice’s original message. We analyze such protocols in a stronger setting in Section 3.1.) Finally, the reverse
firewall resists exfiltration if a compromised implementation “cannot leak any information to the outside
world” beyond the functionality of the protocol.2 (See Section 2.1 for the formal definitions and [MS14] for
a thorough discussion.)

It is convenient to identify a class of functionality-maintaining adversaries: compromised implementations
that are “technically legal” in the sense that they don’t break the protocol but otherwise can deviate arbitrar-
ily. Some of our reverse firewalls are only secure against this type of corruption. (This model is introduced
by [MS15], and the authors call security against unrestricted compromise strong security.) We emphasize
that this restricted class of compromised implementations is still quite large. In particular, all of the real-
world compromises mentioned above fall into this category [PLS13,BBG13,Gre14,Sup15,LHA+12,CVE14b,
CVE14a,CVE14c], as do essentially all other forms of compromise considered in prior work, such as faulty
or backdoored PRNGs [DGG+15], Algorithm Substitution Attacks [BPR14a], subliminal channels [Sim84],
etc. (See [MS14] for a detailed comparison of the reverse firewall framework with prior work.)

Mironov and Stephens-Davidowitz demonstrate feasibility of the framework by constructing reverse fire-
walls for parties participating in Oblivious Transfer and Secure Function Evaluation protocols—very strong
cryptographic primitives. However, these protocols are very inefficient and mostly of theoretical interest. To
fulfill the promise of reverse firewalls, we need to consider protocols of practical importance, which is the
focus of the present work. We demonstrate efficient (i.e., using a small constant number of public-key oper-
ations) reverse firewalls for perhaps the most natural cryptographic task: secure message transmission. Our
strongest protocols provide security guarantees in the reverse firewall setting comparable to the strongest
guarantees obtained in the classical setting (e.g., security against adaptive chosen ciphertext attacks with
forward secrecy). Surprisingly, our protocols are also relatively efficient, requiring only a few rounds and a
small constant number of public-key operations. To achieve this, we also provide key-agreement protocols
with efficient, secure reverse firewalls, which may be of independent interest. We group our solutions accord-

1 Note that Mironov and Stephens-Davidowitz’s notion of functionality is quite simple. Formally, they define a
functionality requirement as any condition on the output of the parties that may depend on the input, and in
practice, these requirements are straightforward. The reader should not confuse this with the more complicated
definition of functionality used in the universal composability framework.

2 Often, exfiltration resistance is implied by security preservation, but not always. For example, a reverse firewall
for Alice in a message transmission protocol preserves semantic security if and only if it is exfiltration resistant.
However, semantic security does not guarantee that Bob will not leak any information, but it still may be desirable
for Bob to have a reverse firewall in such a protocol that resists exfiltration.
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ing to a variety of setup assumptions: the parties share a secret key; there is no public-key infrastructure;
both parties have a public-key/private-key pair; and only the recipient has a public-key/private-key pair.
Non-trivial levels of security are achievable in almost all cases, and the various schemes mirror closely those
that appear in the classical setting.

1.1 Related work

Message transmission in the classical setting (i.e., without reverse firewalls) is extremely well-studied, and
a summary of such work is beyond the scope of this paper. (We note, however, that our notions of security
of interactive message transmission protocols follow closely Dodis and Fiore [DF14].) Similarly, there have
been many different approaches to cryptography in the presence of compromise. We therefore provide only
a limited discussion of related work. (Both [BPR14a] and [MS15] contain a more thorough discussion of
alternative approaches to security in the presence of a compromise.)

Bellare, Paterson, and Rogaway consider the problem of securely encrypting a message when the parties
may be compromised [BPR14a]. However, they do not allow for reverse firewalls (as their work predates the
RF framework). As a result, they necessarily restrict themselves to the case in which the parties share a
secret key and the compromised party maintains functionality. (I.e., a tampered encryption algorithm must
produce ciphertexts that decrypt to the correct plaintext.) Their main result is a lower bound, showing
roughly that even a relatively weak adversary can break any scheme that “non-trivially uses randomness” in
this setting. (Of course, this lower bound no longer applies in the reverse firewalls framework, as our results
demonstrate.) They also provide a positive result that is more relevant to our work, in which they show
how to build a CCA-secure deterministic stateful scheme. The main idea behind their positive result is the
observation that, if an encryption scheme is deterministic and has a unique ciphertext that decrypts to each
plaintext, then a tampered implementation of the encryption algorithm can only maintain functionality if its
behavior is identical to the honest encryption algorithm. In short, they show that “randomness is dangerous”
in this setting.

Our work can be viewed as a generalization of [BPR14a] in a number of directions. We consider multi-
round protocols in which the parties may not share secret keys, and we consider arbitrarily compromised
adversaries. In order to do this, we use the reverse firewalls framework of [MS15]. While Bellare et al.’s
work stresses the danger of randomness in secure message transmission, our work highlights the benefits of
randomness. In particular, our schemes rely heavily on “rerandomization” by the reverse firewall. However,
we do use the deterministic encryption scheme of Bellare et al. as part of two of our protocols.

Recently, Ateniese, Magri, and Venturi studied reverse firewalls for signature schemes [AMV15]. Their
work can be considered as complementary to ours, as we are concerned with privacy, while they consider
authentication. We also note that our more advanced key-agreement scheme uses unique signatures, and we
implicitly rely on the fact that unique signatures have a reverse firewall, as [AMV15] prove. Indeed, the more
general primitive of rerandomizable signatures that they consider would also suffice for our purposes.

Finally, we note that some of our study of key agreement is similar to work on key-agreement protocols
secure against active insiders, and the study of key control (e.g., [PW03, KS05, DPSW06]). These works
consider key-agreement protocols involving at least three parties, in which one or more of the participants
wishes to maliciously fix the key or otherwise subvert the security of the protocol. Some of the technical
challenges that we encounter are similar to those encountered in the key control literature, and indeed,
the simple toy protocol that we present in Section 3.3 can be viewed as a simple instantiation of some of
the known solutions to the key-control problem (e.g., [DPSW06]). However, since prior work approached
this problem from a different perspective—with three or more parties and without reverse firewalls—our
more technical solutions presented in Section 4.2 are quite different. In particular, the key-control literature
typically focuses on creating protocols that produce “non-malleable” keys, whereas our protocols are designed
specifically to allow the firewall to maul the keys (without sacrificing security).

1.2 Our results

Secure transmission of a message between two parties is arguably the most basic and essential cryptographic
task. In this section, we walk through several common setup assumptions for this problem and outline our
solutions for secure message-transmission protocols with reverse firewalls against end-point compromises. In
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what follows, Alice is always the sender and Bob is always the receiver of the message. All of our security
notions apply to the concurrent setting, with potentially many runs of the protocol running simultaneously.

Symmetric-key setting. In the first and simplest scenario, Alice and Bob have a shared secret key. (See
Appendix A.) Quite naturally, Alice may want to use a symmetric-key encryption scheme to communicate
with Bob. Using a standard scheme (e.g., CBC-AES) would, however, expose her to a number of algorithm-
substitution attacks (ASA) described by Bellare, Paterson, and Rogaway [BPR14a], such as IV-replacement
or biased-ciphertext attacks. To defend against ASA Bellare et al. propose using a stateful, deterministic
encryption scheme based on either a counter or a nonce, as we described above. We briefly consider this
case, observing that their solution corresponds to a one-round protocol in our model (in which the firewall
simply lets messages pass unaltered). We also show that strong security (when Alice’s implementation is not
necessarily functionality-maintaining) is not achievable within this framework without using (less efficient)
public-key primitives.

Unkeyed setting. In the next scenario, Alice and Bob have no shared secret keys and no pre-existing
public-key infrastructure. (See Section 3.) This is the first setting in which reverse firewalls meaningfully
improve security. Since neither the sender nor the receiver can be authenticated in this setting, the strongest
guarantee achievable in this scenario is security against passive adversaries, i.e. security against chosen-
plaintext attacks (CPA). While this level of security is typically considered to be insufficient in practice, the
ideas that we develop here will be useful for solving the harder problems that we discuss below. As such, we
present two solutions in this setting.

First, we consider a simple two-round protocol in which Bob sends a (freshly generated) public key
and Alice responds with an encryption of her message under Bob’s key. Of course, if Bob’s computer is
compromised, then the key that he sends can be used as a channel to leak his secrets—either to Alice or
an eavesdropper. Bob’s reverse firewall “plugs” this channel by rerandomizing the public key and undoing
the transformation when it receives Alice’s response. Similarly, if Alice’s computer is compromised, then her
ciphertext can be a vulnerability—it may be used as a channel to leak a secret, or it may be encrypted using
“bad randomness” or otherwise improperly, allowing an eavesdropper to read her plaintext message. Alice’s
reverse firewall plugs this hole by rerandomizing her ciphertext. (We note that both the keys and ciphertexts
used in ElGamal encryption can easily be rerandomized in the way that we require here.) Indeed, both
reverse firewalls guarantee strong security for Alice and Bob—even if the players’ implementations produce
malformed messages or just refuse to cooperate, their respective firewalls can still guarantee security.

The above solution is simple and elegant, but such protocols are of little practical value because they
require the computation of public-key operations on the entire plaintext. Since plaintexts are often quite
long and public-key operations tend to be much slower than symmetric-key operations, this can be quite
inefficient. In practice, it is much faster to use public-key operations to transmit a (relatively short) key for a
symmetric-key encryption scheme and then send the message encrypted under this symmetric key. There are
two general methods for transmitting this key in the classical setting: hybrid encryption and key agreement.

Before we describe our solution based on key agreement, it will be instructive to consider why hybrid
encryption cannot work in this setting. Recall that in a hybrid encryption scheme, Bob sends a public key to
Alice (as above), Alice selects a uniformly random key rk for a symmetric-key scheme and sends rk encrypted
under Bob’s public key together with the encryption of her message under rk. Such a scheme fails in our
setting because a corrupted implementation of Alice can “choose a bad key” rk∗ with which to encrypt the
message. The “bad key” rk∗ may be known to an adversary; may be chosen so that the ciphertext takes
a specific form that leaks some information; or may itself be used to leak additional information to Bob.
Intuitively, a firewall cannot hope to fix this problem (without resorting to slow public-key primitives).

Luckily, key agreement can be combined with symmetric-key encryption to securely and efficiently trans-
mit a message in the setting of reverse firewalls. A key-agreement protocol allows Alice and Bob to exchange
a secret key over an insecure channel. Such a protocol is often used in conjunction with symmetric-key
encryption in the classical setting, where it is justified by composition theorems relating the security of
the message-transmission protocol to the underlying key-agreement protocol. Indeed, we give an analogous
result (Theorem 2) that works in our setting, showing that a key-agreement protocol with sufficiently se-
cure reverse firewalls can be combined with symmetric-key encryption to produce an efficient CPA-secure
message-transmission protocol with secure reverse firewalls. This motivates the study of key agreement in the

4



setting of reverse firewalls, and in Section 3.3, we show how to construct a relatively simple key-agreement
protocol with reverse firewalls that suffices. (Intuitively, the reason that this solution does not suffer the
same fate as hybrid encryption in this setting is because it uses interaction, which crucially happens through
the reverse firewall, to “prevent either party from controlling the value of the key.”)

Publicly keyed setting. In the stronger setting in which we have a public-key infrastructure, with a
public-key/private-key pair for each party (considered in Section 4), we can hope to achieve interactive CCA
security (i.e., the adversary may interact with the parties arbitrarily and may view Bob’s output). Perhaps
surprisingly, we prove a generic composition theorem in this setting, which shows that it suffices to construct
a key-agreement protocol with reverse firewalls that satisfy certain security properties. In analogy with the
unkeyed setting, after agreeing to a key with Bob, Alice uses symmetric-key encryption to send the actual
plaintext message. The resulting protocol is CCA-secure, and Alice’s reverse firewall preserves this security.
(See Theorem 4.)

To instantiate this scheme, we then construct (in Section 4.2) a key-agreement protocol that satisfies
the necessary security properties. In particular, the scheme is secure against active adversaries, and each
party has a reverse firewall that preserves this security. This key-agreement protocol is significantly more
technical than our scheme in the unkeyed setting, and common techniques from classical key agreement do
not work. In particular, many key-agreement protocols achieve security against an active adversary by having
both parties sign the transcript at the end of the protocol; intuitively, this allows the parties to know if the
adversary has tampered with any messages, so that they will never agree to different keys or a key chosen
dishonestly. But in our setting, we actually want the firewall to be able to modify the parties’ messages! We
therefore need to find some unique information that the parties can use to confirm that they have agreed
to the same key without preventing the firewall from modifying with the parties’. Furthermore, we need the
firewall to be able to check signatures itself, so that it can block invalid messages. Therefore, our primary
technical challenge in this context is to find some piece of information that (1) uniquely identifies the key; (2)
respects the firewall’s changes to the parties’ messages; and (3) is efficiently computable from the transcript.
And, of course, the key itself must still be indistinguishable from random in the presence of this information.
Our solution uses hashed Diffie-Hellman (similar in spirit to [Kil07]) and bilinear maps. (We also use unique
signatures to prevent the signatures from becoming a channel themselves.)

Surprisingly, in spite of the challenges, our protocol only requires four rounds with relatively short mes-
sages, and the parties themselves (including the firewall) only need to perform a small constant number
of operations.3 This compares quite favorably with protocols that are currently implemented in practice
(which of course are not secure in our setting), and we therefore believe that this protocol can and should
be implemented and used in the real world.

We highlight an addition technical point. Observe that Bob’s (the receiver’s) reverse firewall is only able
to modify Bob’s messages, but not his output. (Indeed, since we place no trust in the firewall, it should not
have access to Bob’s private output.) In the CCA security game in our setting, in which an active adversary
is allowed to request output from a possibly corrupt implementation of Bob, this is a severe handicap.
Syntactically and conceptually, the reverse firewall processes Bob’s messages that reach “the wire” but not
its outputs, which are internal to Bob’s software stack and are therefore not available to the firewall. So,
consider a compromised implementation that, in response to some unrelated run of the protocol, spits out
the challenge message to its caller. The firewall may never see (nor should it see) how the output of the
message-transmission protocol is consumed. The adversary, on the other hand, may observe Bob’s behavior
and win the CCA game. As such, we are only interested in firewalls that maintain CCA security for Alice
or CPA-security for Bob. We note that this issue seems to be inherent.

Singly keyed setting. In the “intermediate” setting in which Bob has a public-key/private-key pair but
Alice does not, we show how to achieve CCA security in a single round using rerandomizable RCCA-secure
encryption [Gro04,PR07]. (See Section 5.) However, these schemes are not forward secret, and they require
relatively inefficient public-key primitives that must be applied to full plaintexts. We leave to future work
the question of whether CCA-secure and forward-secret message transmission is achievable in this regime.

3 For example, Bob only needs to perform one exponentiation over a group in which DDH is hard, compute a bilinear
map once, check the opening of a commitment, verify one (unique) signature, (uniquely) sign one string, and apply
a hash function once.
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We also do not know whether a composition theorem similar to Theorem 4 exists in this regime. (We discuss
some additional open questions in Section 6.)

2 Definitions

2.1 Reverse firewalls

We use the definition of a reverse firewalls from [MS14] (and we refer the reader to [MS14] for a longer
discussion of the reverse firewall framework). In particular, a reverse firewall W is just a stateful algorithm
that maps messages to messages. For a party A and reverse firewall W, we define W ◦ A as the “composed”
party in which W is applied to the messages that A receives before A “sees them” and the messages that A
sends before they “leave the local network of A.” W has access all public parameters, but not to the private
input of A or the output of A. We repeat all relevant definitions from [MS14] below, and we add two new
ones.

As in [MS14], we assume that protocols come with some functionality or correctness requirements F
and security requirements S. (For example, a functionality requirement F might require that Alice and Bob
output the same thing at the end of the protocol. A security requirement might ask that no efficient adversary
can distinguish between the transcript of the protocol and uniformly random strings.) Throughout, we use Ā

to represent arbitrary adversarial implementations of party A and Ã to represent functionality-maintaining
adversarial implementations of A (i.e., implementations of A that still satisfy the functionality requirements
of the protocol.) For a protocol P with party A, we write PA→Ã to represent the protocol in which the role
of party A is replaced by party Ã.

We are only interested in firewalls that themselves maintain functionality. In other words, the composed
party W ◦ A should not break the correctness of the protocol. (Equivalently, PA→W◦A should satisfy the
same functionality requirements as the underlying protocol P.) We follow [MS15] in requiring something
slightly stronger—reverse firewalls should be “stackable”, so that many reverse firewalls composed in series
W◦· · · ◦W ◦A still do not break correctness. All of our firewalls will trivially satisfy this notion. Note as well
that we are not interested in protocols whose functionality “depends on the reverse firewall,” so we require
that the protocol without the reverse firewall is also functional.

Definition 1 (Reverse firewall). A reverse firewall W maintains functionality F for party A in protocol
P if protocol P satisfies F , the protocol PA→W◦A satisfies F , and the protocol PA→W◦···◦W◦A also satisfies
F . (I.e., we can compose arbitrarily many reverse firewalls without breaking functionality.)

Of course, a firewall is not interesting unless it provides some benefit. The most natural reason to deploy
a reverse firewall is to preserve the security of a protocol, even in the presence of compromise. The below
definition (which again follows [MS14]) captures this notion by asking that the protocol obtained by replacing
party A with W ◦ Ã for an arbitrary corrupted party Ã still achieves some notion of security. For example,
when we consider message transmission, we will want the firewall to guarantee Alice’s privacy against some
adversary, even when Alice’s own computer has been corrupted.

Definition 2 (Security preservation). A reverse firewall strongly preserves security S for party A in
protocol P if protocol P satisfies S, and for any polynomial-time algorithm Ā, the protocol PA→W◦Ā satisfies
S. (I.e., the firewall can guarantee security even when an adversary has tampered with A.)

A reverse firewall preserves security S for party A in protocol P satisfying functionality requirements F
if protocol P satisfies S, and for any polynomial-time algorithm Ã such that PA→Ã satisfies F , the protocol
PA→W◦Ã satisfies S. (I.e., the firewall can guarantee security even when an adversary has tampered with A,
provided that the tampered implementation does not break the functionality of the protocol.)

For technical reasons, we will also need a new definition not present in [MS14]. We wish to show compo-
sition theorems, allowing us to construct message-transmission protocols with secure reverse firewalls from
key-agreement protocols with their own firewalls. In order to accomplish this, we will need the notion of de-
tectable failure, which essentially just asks for an efficient algorithm that can distinguish between a transcript
that could have been created by a valid run of the protocol and a transcript that must be invalid. We will
use such an algorithm to make sure that a firewall of some larger message-transmission protocol can always
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proc. LEAK(P,A,B,W, λ)

(Ā, B̄, I)← E(1λ)

b
$← {0, 1}

IF b = 1, A∗ ←W ◦ Ā
ELSE, A∗ ←W ◦ A
T ∗ ← PPj→A∗,J→B̄(I)

b∗ ← E(T ∗, SB̄)
OUTPUT (b = b∗)

Fig. 1: LEAK(P,A,B,W, λ), the exfiltration resistance security game for a reverse firewall W for party A in protocol
P against party B with input I. SB̄ is the state of B̄ after the run of the protocol, and I may be any valid input for
P.

detect if the key-agreement sub-protocol has failed in some way. We make this precise below. In order to do
so, we need to carefully consider what it means for a transcript to be valid. (The reader may wish to skip
these definitions on a first read.)

Definition 3 (Valid transcripts). A sequence of bits r generates transcript T in protocol P if there exists
valid private input I such that a run of the protocol P with input I in which the parties’ coin flips are taken
from r results in the transcript T . A transcript T is a valid transcript for protocol P if there is a sequence
r generating T and no party outputs ⊥ at the end of the protocol. (Here, we assume that the public input is
part of the transcript.)

Definition 4 (Detectable failure). A reverse firewall W fails detectably for party A in protocol P if

– if T is a valid transcript for PA→W◦A (i.e., if T could have been honestly generated by the protocol with
the reverse firewall in place), then there is no randomness r generating T such that some party outputs
⊥ at the end of the protocol run with coin flips r (i.e., a transcript’s validity does not depend on coin
flips or private input);

– the firewall W outputs the special symbol ⊥ when run on any transcript that is not valid for PA→W◦A;
and

– there is a polynomial-time deterministic algorithm that decides whether a transcript T is valid for W ◦A
in PA→W◦A.

We will also need the notion of exfiltration resistance, introduced in [MS14]. We refer the reader to
[MS14] for a much more thorough description of exfiltration resistance, but we provide a brief discussion
below. Intuitively, a reverse firewall is exfiltration resistant if “no corrupt implementation of Alice can leak
information through the firewall.” We say that it is exfiltration resistant for Alice against Bob if Alice cannot
leak information to Bob through the firewall, and we say that it is exfiltration resistant against eavesdroppers
(or just exfiltration resistant) if Alice cannot leak information through the firewall to an adversary that is
only given access to the protocol transcript.

The relationship between security preservation and exfiltration resistance depends on the security notion
of the cryptographic primitive in question. E.g., in a message-transmission protocol, a reverse firewall for
Alice resists exfiltration if and only if it preserves semantic security. However, it is possible to construct
a reverse firewall for a key-agreement protocol that preserves security but does not resist exfiltration (for
example, we can append an additional arbitrary message to the beginning of any key-agreement protocol
without changing its security properties, but clearly such a message can be used to leak information), and
it is also possible to construct such a firewall that resists exfiltration but does not preserve security. The
second definition below (which uses the notion of valid transcripts) is new to this paper and is necessary for
our composition theorems.

Definition 5 (Exfiltration resistance). A reverse firewall is exfiltration resistant for party A against
party B in protocol P satisfying functionality F if no PPT algorithm E with output circuits Ã and B̃ such
that PA→Ã and PB→B̃ satisfy F has non-negligible advantage in LEAK(P,A,B,W, λ). If B is empty, then we
simply say that the firewall is exfiltration resistant.
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A reverse firewall is exfiltration resistant for party A against party B in protocol P with valid transcripts
if no PPT algorithm E with output circuits Ã and B̃ such that PA→Ã and PB→B̃ produce valid transcripts for
P has non-negligible advantage in LEAK(P,A,B,W, λ). If B is empty, then we simply say that the firewall
is exfiltration resistant with valid transcripts.

A reverse firewall is strongly exfiltration resistant for party A against party B in protocol P if no PPT
adversary E has non-negligible advantage in LEAK(P,A,B,W, λ). If B is empty, then we simply say that the
protocol is strongly exfiltration resistant.

For simplicity, we assume that honest parties always output ⊥ when they receive a malformed message
(e.g., when a message that should be a pair of group elements is not a pair of group elements).

2.2 Message-transmission protocols

A message-transmission protocol is a two-party protocol in which one party, Alice, is able to communicate
a plaintext message to the other party, Bob. (For simplicity, we only formally model the case in which
Alice wishes to send a single plaintext to Bob per run of the protocol, but this of course naturally extends
to a more general case in which Alice and Bob wish to exchange many plaintext messages.) We consider
two notions of security for such messages. First, we consider CPA security, in which the adversary must
distinguish between the transcript of a run of the protocol in which Alice communicates the plaintext m0 to
Bob and the transcript with which Alice communicatesm1 to Bob, wherem0 andm1 are adversarially chosen
plaintexts. (Even in this setting, we allow the adversary to start many concurrent runs of the protocol with
adaptively chosen plaintexts.) Our stronger notion of security is CCA security in which the adversary may
“feed” the parties any messages and has access to a decryption oracle. Our security definitions are similar in
spirit to [DF14], but adapted for our setting.
Session ids. Throughout this paper, we consider protocols that may be run concurrently many times
between the same two parties. In order to distinguish one run of a protocol from another, we therefore
“label” each run with a unique session id, denoted sid. We view sid as an implicit part of every message,
and we often ignore sid when it is not important. Our parties and firewalls are stateful, and we assume that
the parties and the firewall maintain a list of the relevant session ids, together with any information that is
relevant to continue the run of the protocol corresponding to sid (such as the number of messages sent so far,
any values that need to be used later in the protocol, etc.). We typically suppress explicit reference to these
states. In our security games, the adversary may choose the value sid for each run of the protocol, provided
that each party has a unique run for each session sid. (In fact, it does not even make sense for the adversary
to use the same sid for two different runs of the protocol with the same party, as this party will necessarily
view any calls with the same sid as corresponding to a single run of the protocol. However, as is clear from
our security games, an active adversary may maintain two separate runs of a protocol with two different
parties but the same sid.) In practice, sid can be a simple counter or any other nonce (perhaps together with
any information necessary for communication, such as IP addresses). We note in passing that, in the setting
of reverse firewalls, a counter is preferable to, e.g., a random nonce to avoid providing a channel through sid,
but such concerns are outside the scope of this paper.

The definition below makes the above formal and provides some vocabulary.

Definition 6 (Message transmission protocol). A message-transmission protocol is a two-party protocol
in which one party, Alice, receives as input a plaintext m from some plaintext spaceM. The protocol is correct
if for any input m ∈M, Bob’s output is always m.

We represent the protocol by four algorithms P = (setup, nextA, nextB, returnB). setup takes as input 1λ,
where λ is the security parameter and returns the starting states for each party, SA, SB, which consist of both
private input, σA and σB respectively, and public input π. Each party’s next procedure is a stateful algorithm
that takes as input sid and an incoming message; updates the party’s state; and returns an outgoing message.
The returnB procedure takes as input Bob’s state SB and sid and returns Bob’s final output.

We say that a message-transmission protocol is

– unkeyed if setup does not return any private input σA or σB;
– singly keyed if setup returns private input σB for Bob but none for Alice;
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– publicly keyed if setup returns private input for both parties σA and σB, but these private inputs are
independently distributed; and

– privately keyed if setup returns private input for both parties whose distributions are dependent.

When we present protocols, we omit this formality, preferring instead to use diagrams as in Figure 4. But,
this formulation is convenient for our security definitions. In particular, we present the relevant subprocedures
for our security games in Figure 2. An adversary plays the game depicted in Figure 2 by first calling initialize
(receiving as output π) and then making various calls to the other subprocedures. Each time it calls a
subprocedure, it receives any output from the procedure. The game ends when the adversary calls finalize,
and the adversary wins if and only if the output of finalize is 1.

proc. initialize(1λ)

(σA, σB, π)
$← setup(1λ)

SA ← (σA, π); SB ← (σB, π)
sid∗ ← ⊥; compromised← false

b
$← {0, 1}

OUTPUT π

proc. finalize(b∗)
IF b = b∗, RETURN 1
ELSE, RETURN 0

proc. start-run(sid,m)
IF sid /∈ SA, SA.add(sid,m)

proc. start-challenge(sid,m0,m1)
IF sid /∈ SA AND sid∗ = ⊥,

sid∗ ← sid
SA.add(sid,mb)

proc. get-nextA(sid,M)
IF compromised,

OUTPUT ⊥
OUTPUT nextA(SA, sid,M)

proc. get-nextB(sid,M)
IF compromised,

OUTPUT ⊥
OUTPUT nextB(SB, sid,M)

proc. get-outputB(sid)
IF sid = sid∗ OR compromised,

OUTPUT ⊥
OUTPUT returnB(SB, sid)

proc. get-secrets
compromised← true
OUTPUT (σA, σB)

Fig. 2: Procedures used to define security for message-transmission protocol P = (setup, nextA, nextB). An adversary
plays this game by first calling initialize and then making various oracle calls. The game ends when the adversary
calls finalize, and the output of finalize is one if the adversary wins and zero otherwise.

The below definitions capture formally the intuitive notions of security that we presented above. In
particular, the CPA security definition allows the adversary to start arbitrarily many concurrent runs of the
protocol with adversarial input, but it does not allow the adversary to change the messages sent by the two
parties or to send its own messages. We also define forward secrecy, which requires that security hold even
if the parties’ secret keys may be leaked to the adversary.

Definition 7 (Message-transmission security). A message-transmission protocol is called

– chosen-plaintext secure (CPA-secure) if no PPT adversary has non-negligible advantage in the game
presented in Figure 2 when get-nextA(sid,M) and get-nextB(sid,M) output ⊥ unless this is the first
get-next call with this sid or M is the output from the previous get-nextA call with the same sid or the
previous get-nextB with the same sid respectively (i.e., the adversary is passive); and

– chosen-ciphertext secure (CCA-secure) if no PPT adversary has non-negligible advantage in the game
presented in Figure 2 with access to all oracles.

We say that the protocol is chosen-plaintext (resp. chosen-ciphertext) secure without forward secrecy if the
above holds without access to the get-secrets oracle.

We note that it does not make sense to consider chosen-ciphertext security when Bob may be corrupted.
In this case, the output of get-outputB could be arbitrary. (Note that the firewall can potentially “sanitize”
Bob’s messages, but not his output.) We therefore only consider firewalls that preserve CPA security for
Bob.

2.3 Key agreement

Key-agreement protocols will play a central role in our constructions, so we now provide a definition of key
agreement that suffices for our purposes. Our notion of key agreement closely mirrors the definitions from
the previous section.
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Definition 8 (Key agreement). A key-agreement protocol is represented by five algorithms, P = (setup,
nextA, nextB, returnA, returnB). setup takes as input 1λ, where λ is the security parameter and returns the
starting states for each party, SA, SB, which consists of public input π and the private input for each party σA
and σB. Each party’s next procedure is a stateful algorithm that takes as input sid and an incoming message;
updates the party’s state; and returns an outgoing message. Each party’s return procedure takes as input the
relevant party’s state and sid and returns the party’s final output from some key space K or ⊥. We also allow
auxiliary input aux to be added to Alice’s state before the first message of a protocol is sent.

The protocol is correct if Alice and Bob always output the same thing at the end of the run of a protocol
for any random coins and auxiliary input aux.

We say that a key-agreement protocol is

– unkeyed if setup does not return any private input σA or σB;
– singly keyed if setup returns private input σB for Bob but no private input σA for Alice; and
– publicly keyed if setup returns private input for both parties σA and σB.

proc. initialize(1λ)

(σA, σB, π)
$← setup(1λ)

SA ← (σA, π)
SB ← (σB, π)
sid∗ ← ⊥
compromised← false

b
$← {0, 1}

OUTPUT π

proc. finalize(b∗)
IF b = b∗,

RETURN 1
ELSE, RETURN 0

proc. start-run(sid, aux)
IF sid /∈ SA,
SA.add(sid, aux)

proc. start-challenge(sid, aux)
IF sid∗ = ⊥ AND sid /∈ SA,

sid∗ ← sid

Rsid∗
$← K

SA.add(sid, aux)

proc. get-nextA(sid,M)
IF NOT compromised,

OUTPUT nextA(SA, sid,M)

proc. get-nextB(sid,M)
IF NOT compromised,

OUTPUT nextB(SB, sid,M)

proc. get-outputA(sid)
IF compromised, OUTPUT ⊥
IF sid = sid∗ AND b = 0,

IF returnA(SA, sid) = ⊥, OUTPUT ⊥
ELSE, OUTPUT Rsid

ELSE, OUTPUT returnA(SA, sid)

proc. get-outputB(sid)
IF compromised, OUTPUT ⊥
IF sid = sid∗ AND b = 0,

IF returnB(SB, sid) = ⊥, OUTPUT ⊥
ELSE, OUTPUT Rsid

ELSE, OUTPUT returnB(SB, sid)

proc. get-secrets
compromised← true
OUTPUT (σA, σB)

Fig. 3: Procedures used to define security for key-agreement protocol P = (setup, nextA, nextB, returnA, returnB). An
adversary plays this game by first calling initialize and then making various oracle calls. The game ends when the
adversary calls finalize, and the output of finalize is one if the adversary wins and zero otherwise. We suppress the
auxiliary input aux when it is irrelevant.

Definition 9 (Key-agreement security). A key-agreement protocol is

– secure against passive adversaries if no probabilistic polynomial-time adversary has non-negligible advan-
tage in the game presented in Figure 3 when get-nextA(sid,M) and get-nextB(sid,M) output ⊥ unless
this is the first get-next call with this sid or M is the output from the previous get-nextB call with the
same sid or the previous get-nextA call with the same sid respectively (i.e., the adversary is passive);

– secure against active adversaries for Alice if no probabilistic polynomial-time algorithm has non-negligible
advantage in the game presented in Figure 3 without access to the get-outputA oracle;

– secure against active adversaries for Bob if no probabilistic polynomial-time algorithm has non-negligible
advantage in the game presented in Figure 3 without access to the get-outputB oracle; and

– secure against active adversaries if it is secure against active adversaries for both Bob and Alice; and
– authenticated for Bob if no probabilistic polynomial-time algorithm playing the game presented in Fig-

ure 3 can output a valid transcript with corresponding session id sid unless returnB(SB, sid) 6= ⊥ or
compromised = true. (I.e., it is hard to find a valid transcript unless Bob returns a key.) Furthermore,
if the transcript is valid and get-outputA(sid) 6= ⊥ then get-outputA(sid) = returnB(sid). (I.e., if the
transcript is valid and Alice outputs a key, then Bob outputs the same key.)
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Note that these definitions are far from standard. In particular, in the case of active adversaries, we
define security for Alice in terms of the keys that Bob outputs and security for Bob in terms of the keys that
Alice outputs. This may seem quite counterintuitive. But, in our setting, we are worried that Alice may be
corrupted. In this case, we cannot hope to restrict Alice’s output after she receives invalid messages. (The
firewall can modify Alice’s messages, but not her output.) So, the best we can hope for is that the firewall
prevents a tampered implementation of Alice (together with an active adversary) from “tricking” Bob into
returning an insecure key.

3 The unkeyed setting

In this section we investigate the scenario in which Alice and Bob have neither a shared secret key nor each
other’s public keys. Note that we of course can only achieve CPA security here because neither Alice nor Bob
can be authenticated. As such, this section’s primary purpose is to illustrate core concepts and to act as a
useful stepping stone toward the more complicated and stronger protocols that we present in Section 4. Two
approaches are feasible: a simple two-round solution in which Bob (the receiver) generates a public-private
key pair and sends the public key to Alice, and a more flexible and efficient protocol based on key agreement.

3.1 A two-round protocol from rerandomizable encryption

We first consider the simple case of CPA-secure two-round schemes in which the first message is a public
key chosen randomly by Bob and the second message is an encryption of Alice’s plaintext under this public
key. Figure 4 shows the protocol.

Alice Bob

(pk, sk)
$← KeyGen

pk

C−−−−−−−−−−−−−−−−−−−−−−−−−−
c := Encpk(m)

−−−−−−−−−−−−−−−−−−−−−−−−−−B
OUTPUT Decsk(c)

Fig. 4: Two round message-transmission protocol using the public-key encryption scheme (KeyGen,Enc,Dec).

In order to provide a reverse firewall for Alice in this protocol, the encryption scheme must be reran-
domizable. In order to provide a reverse firewall for Bob, the scheme must be key malleable. Intuitively, a
scheme is key malleable if a third party can “rerandomize” a public key and map ciphertexts under the
“rerandomized” public key to ciphertexts under the original public key. We provide formal definitions below.

Definition 10 (Public-key encryption). A public-key encryption scheme is a triple of algorithms (KeyGen,Enc,Dec).
KeyGen takes as input 1λ where λ is the security parameter and outputs a public-key/private-key pair, (pk, sk).
Enc takes as input the public key and a plaintext m from some plaintext spaceM with |M| = 2λ and outputs
a ciphertext c from some ciphertext space C. Dec takes as input a ciphertext and the private key and outputs
a plaintext or the special symbol ⊥. We sometimes omit the keys from the input to Enc and Dec. The scheme
is correct if Dec(Enc(m)) = m for all m ∈ M. The scheme is semantically secure if for any adversarially
chosen pair of plaintexts (m0,m1), Enc(m0) is computationally indistinguishable from Enc(m1).

Definition 11 (Rerandomizable encryption). A semantically secure public-key encryption scheme is
rerandomizable if there is an efficient algorithm Rerand (with access to the public key) such that for any
ciphertext c such that Dec(c) 6= ⊥, we have Rerand(Dec(c)) = Dec(c), and the pair (c,Rerand(c)) is com-
putationally indistinguishable from (c,Rerand(Enc(0))). We say that it is strongly rerandomizable if it is
rerandomizable and for any string c (not necessarily a valid ciphertext), (c,Rerand(c)) is computationally
indistinguishable from (c,Rerand(Enc(0))).
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Definition 12 (Key malleability). A public-key encryption scheme is key malleable if the output of
KeyGen is distributed uniformly over the space of valid keys, for each public key pk there is a unique associated
private key sk, and there is a pair of efficient algorithms KeyMaul and CKeyMaul that behave as follows.
KeyMaul is a randomized algorithm that takes as input a public key pk and returns a new public key pk′
whose distribution is uniformly random over the public key space and independent of pk. Let (sk, pk) be a
private key/public key pair. Let (sk′, pk′) be the unique pair associated with randomness r such that pk′ =
KeyMaul(pk; r). Then, CKeyMaul takes as input a ciphertext c and randomness r and returns c′ such that
Decsk′(c) = Decsk(c′). We suppress the input r when it is understood. Furthermore, we require that KeyMaul
outputs a uniformly random key pk′ if called on input that is not in the public-key space.

Example. It is well-known that ElGamal encryption [ElG85] is both key malleable and strongly rerandom-
izable. In particular, given an ElGamal public-key (g, h) over a group of order p, a ciphertext (u, v) can be
rerandomized by applying the operation (u, v) → (gru, hrv) where r $← Z∗p is chosen uniformly at random.

The public key can be mauled by applying the operation (g, h)→ (gα, hβ) where (α, β)
$← (Z∗p)2 are chosen

uniformly and independently at random. Finally, a ciphertext (u, v) under key (gα, hβ) can be converted into
a ciphertext under (g, h) by applying the operation (u, v)→ (uβ/α, v).

If the underlying encryption scheme in Figure 4 is rerandomizable, then we can build a reverse firewall
for Alice as in Figure 5. If it is key malleable, then we can build a reverse firewall for Bob as in Figure 6.
The following theorem shows that this protocol and its reverse firewalls are secure.

Alice Firewall for Alice Bob

pk

C−−−−−−−−−−−−−−−
pk

C−−−−−−−−−−−−−−−
c

−−−−−−−−−−−−−−−B

c′
$← Rerandpk(c)

c′

−−−−−−−−−−−−−−−B

Fig. 5: Reverse firewall for Alice for the protocol shown in Figure 5 that works if the encryption scheme is rerandom-
izable.

Theorem 1. The unkeyed message-transmission protocol shown in Figure 4 is CPA-secure if the underlying
encryption scheme is semantically secure. If the scheme is also rerandomizable, then the reverse firewall
shown in Figure 5 maintains functionality and preserves security for Alice and resists exfiltration for Alice.
If the scheme is strongly rerandomizable, then this reverse firewall strongly preserves security for Alice and
strongly resists exfiltration for Alice. If the scheme is key malleable, then the reverse firewall shown in Figure 6
maintains functionality for Bob, strongly preserves Bob’s security, and strongly resists exfiltration for Bob
against Alice.

Proof. It is a common folklore result that the underlying protocol (i.e., the protocol without reverse firewalls)
is CPA-secure. It is clear that the two firewalls maintain functionality.

Security and exfiltration resistance of Bob’s firewall follows from the definition of key malleability. In
particular, for any tampered implementation B̄ of Bob, after the post-processing by the reverse firewall,
the key pk′ is uniformly random by the definition of key malleability, regardless of the behavior of B̄. This
implies exfiltration resistance, and security then follows from the fact that the underlying protocol is secure
when the key is chosen legitimately.

Consider a tampered implementation of Alice Ã that maintains functionality, and let c be the output
of Alice. Since Alice maintains functionality, Dec(c) 6= ⊥. So, by the definition of rerandomizability, the
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Alice Firewall for Bob Bob

pk

C−−−−−−−−−−−−−−−

pk′
$← KeyMaul(pk)

pk′

C−−−−−−−−−−−−−−−
c

−−−−−−−−−−−−−−−B
c′ ← CKeyMaul(c)

c′

−−−−−−−−−−−−−−−B

Fig. 6: Reverse firewall for Bob for the protocol shown in Figure 4 that works if the encryption scheme is key
malleable. We suppress the randomness r used as input to KeyMaul and CKeyMaul.

output of Rerand(c) is indistinguishable from Encpk(0). The security preservation and exfiltration resistance
of Alice’s firewall follows. A similar argument shows that strong rerandomizability implies strong security
preservation and strong exfiltration resistance.

Hybrid encryption fails. A major drawback of the above scheme is that it requires public-key operations
of potentially very long plaintexts, which can be very inefficient in practice. A common solution is to use
hybrid encryption, in which Encpk(m) is replaced by (Encpk(rk),SEncrk(m)), where SEnc is some suitable
symmetric-key encryption scheme and rk is a freshly chosen uniformly random key for SEnc. However, if we
simply replace the public-key encryption in Figure 4 with the corresponding hybrid-key encryption scheme,
then this fails spectacularly. In one attack, a tampered version of Alice Ã can choose some fixed secret key
rk∗ and send the message (Encpk(rk∗),SEncrk∗(m)). If rk∗ is a valid key, then Ã maintains functionality,
but an adversary that knows rk∗ can of course read any messages that Alice sends.

3.2 A solution using key agreement

Recall that we are in the unkeyed setting, so we are still interested in CPA security. (We address CCA
security in the next section.) The protocol from the previous section works, but it requires a public-key
operation on the plaintext, which may be very long. In practice, this can be very inefficient. Above, we
show that one common solution to this problem in the classical setting, hybrid encryption, fails with reverse
firewalls because it allows Alice to choose a key rk that will be used to encrypt the plaintext—thus allowing
a tampered version of Alice to “choose a bad key.”

So, we instead consider an alternative common solution to this efficiency problem: key agreement followed
by symmetric-key encryption. (See Figure 7.) As in Appendix A, we use a nonce-based encryption scheme
with unique ciphertexts. We can view this as a modification of hybrid encryption in which “Alice and
Bob together choose the key rk” that will be used to encrypt the plaintext. More importantly from our
perspective, the messages that define the key will go through the firewall. As an added benefit, once a key
is established, Alice can use it to efficiently send multiple messages, not just one, without any additional
public-key operations (though we do not model this here). The composition theorem below shows that this
protocol can in fact have a reverse firewall for both parties, provided that the key-agreement protocol itself
has a reverse firewall that satisfies some suitable security requirements.4 See Appendix B for the proof. In
the next section, we construct such a protocol.

4 The conditions of our theorem actually suffice to provide security in the stronger model in which Alice may send
many messages per run of the protocol. To keep our definitions relatively simple, we do not model this formally
and prove the weaker statement. We note in passing that the weaker statement actually only requires semantically
secure symmetric-key encryption. The same is true of Theorem 4.
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Alice Bob

m1 := nextA(sid)

−−−−−−−−−−−−−−−−−−−−−−−−−−B

m2 := nextB(sid,m2)

C−−−−−−−−−−−−−−−−−−−−−−−−−−

...

m` := nextB(sid,m`−1)

C−−−−−−−−−−−−−−−−−−−−−−−−−−

skA ← returnA(sid)
c← EncskA(sid,m)

c
−−−−−−−−−−−−−−−−−−−−−−−−−−B

skB ← returnB(sid)
OUTPUT DecskB(sid, c)

Fig. 7: The message-transfer protocol obtained by combining a key-agreement scheme (setup, nextA, nextB, returnA,
returnB) and a nonce-based encryption scheme, (Enc,Dec).

Theorem 2 (Composition theorem for CPA security). Let WA and WB be reverse firewalls in the
underlying key-agreement protocol in Figure 7 for Alice and Bob respectively. Let W∗A be the firewall for Alice
in the full protocol in Figure 7 obtained by applying WA to the key-agreement messages and then letting the
last message through if WA does not output ⊥ and replacing the last message by ⊥ otherwise. Let W∗B be the
firewall for Bob in the full protocol in Figure 7 obtained by applying WB ot the key-agreement messages and
simply letting the last message through. Then,

1. the protocol in Figure 7 is CPA-secure if the underlying key-agreement protocol is secure against passive
adversaries and the underlying nonce-based encryption scheme is CPA-secure;

2. W∗B preserves CPA security if WB preserves security of the key-agreement protocol; and
3. W∗A preserves CPA security if the encryption scheme has unique ciphertexts and WA preserves semantic

security and is exfiltration resistant against Bob.

Finally, we note that strong security preservation is not possible for this protocol (at least for Alice).

Remark 1 (Informal). There is no reverse firewall for Alice in the protocol illustrated in Figure 7 that
maintains functionality and strongly preserves Alice’s security.

Proof. Consider the tampered implementation of Alice Ā that goes through the key-agreement protocol as
normal and then sends as its last message c := Encsk′(sid,m) for some fixed key sk′ chosen by the adversary
by simulating a run of the key-agreement protocol. Since the firewall maintains functionality, it must be
the case that the message sent by the firewall to Bob c′ satisfies Decsk′(sid, c′) = m. So, the adversary can
decrypt the message itself. Clearly, this protocol is not secure (by any reasonable definition).

3.3 Key agreement secure against passive adversaries

Theorem 2 motivates the study of unkeyed key-agreement protocols with reverse firewalls that preserve
security against passive adversaries. In the classical setting (i.e., without reverse firewalls), the canonical
example is the elegant key-agreement protocol of Diffie and Hellman [DH06], shown in Figure 8, whose
security follows immediately from the hardness of DDH over the base group G. We use this as an example
to illustrate the basic idea of a reverse firewall in the key-agreement setting.
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Alice Bob

a
$← Z∗p

A := ga

−−−−−−−−−−−−−−−−−−−−−−−−−−B

b
$← Z∗p

B := gb

C−−−−−−−−−−−−−−−−−−−−−−−−−−
OUTPUT Ba OUTPUT Ab

Fig. 8: Diffie-Hellman key agreement over a group G of prime order p with generator g.

Diffie-Hellman key agreement has a simple reverse firewall for Alice, which raises both messages to a
single random power, α ∈ Z∗p. We present this reverse firewall in Figure 9. Note that this firewall effectively
replaces Alice’s message with a uniformly random message. Security then follows from the security of the
underlying protocol, since the transcript and resulting key in the two cases are distributed identically. This
very basic idea of rerandomizing Diffie-Hellman key agreement is behind all of our protocols in this section.

Alice Alice’s Firewall Bob

A
−−−−−−−−−−−−−−−B

IF A /∈ G \ {1G},
A

$← Z∗p
α

$← Z∗p
Aα

−−−−−−−−−−−−−−−B
B

C−−−−−−−−−−−−−−−
Bα

C−−−−−−−−−−−−−−−

Fig. 9: Reverse firewall for Alice in the protocol from Figure 8.

But, this protocol cannot have a reverse firewall that maintains correctness and preserves security for
Bob. Consider the tampered implementation B̃ that repeatedly samples b $← Z∗p and computes Ab until
the first bit of the result is zero. B̃ then sends gb to Alice as normal. If the firewall maintains correctness,
then Alice’s output must be Ab, but this output is clearly distinguishable from random—its first bit is zero!
(Note that this attack is very similar to the attack on hybrid encryption that we discussed at the bottom
of Section 3.1.) This is a problem that we must overcome if we want to build protocols that have secure
firewalls for both parties. In particular, we run the risk that one party has the ability to “accept or reject”
any key.

To solve this problem, we add an additional message to the beginning of the protocol in which Bob
commits to the message that he will send later. Of course, in order to permit a secure firewall, the commitment
scheme itself must be both malleable (so that the firewall can rerandomize the underlying message that Bob
has committed to, mapping a commitment of B to a commitment of Bα) and rerandomizable (so that the
randomness used by Bob to commit and open will not leak any information about his message). To achieve
our strongest level of security, we also need the scheme to be statistically hiding and for each commitment
to have a unique opening for a given message. (These requirements are easily met in practice. For example,
a simple variant of the Pedersen commitment suffices [Ped92]. For completeness, we present such a scheme
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in Appendix C.) The protocol is shown in Figure 10. In Figure 11, we present a single reverse firewall for
this protocol that happens to work for either party. (Each party would need to deploy its own version of this
firewall to guarantee its own security. It just happens that each party’s firewall would have the same “code.”)

Alice Bob

b
$← Z∗p; B ← gb

C ← Com(B)
C

C−−−−−−−−−−−−−−−−−−−−−−−−−−

a
$← Z∗p

A := ga

−−−−−−−−−−−−−−−−−−−−−−−−−−B
Open(C)

C−−−−−−−−−−−−−−−−−−−−−−−−−−
IF B = 1G,

OUTPUT ⊥
OUTPUT Ba OUTPUT Ab

Fig. 10: A variant of Diffie-Hellman key agreement over a group G of prime order p with public generator g.
(Com,Open) is a commitment scheme.

Theorem 3. The protocol in Figure 10 is secure against passive adversaries if DDH is hard in G. The reverse
firewall W in Figure 11 is functionality maintaining. If the commitment scheme is statistically hiding, then
W preserves security for Alice and is strongly exfiltration resistant against Bob. If the commitment scheme
is computationally binding, then W is exfiltration resistant for Bob against Alice and preserves security for
Bob. W also fails detectably for both parties.

Proof. It is clear that the underlying protocol is secure provided that DDH is hard in G. It is also clear that
W maintains functionality and fails detectably for both parties. (Here, we assume that the firewall outputs
⊥ if it ever receives a malformed message.)

Note that, after rerandomization and mauling, the commitment C ′ is a uniformly random commitment
of a uniformly random group element, independent of the original commitment C. Since Bob is functionality
maintaining, his second message is fixed unless he can find an alternative opening for the commitment, which
by assumption is computationally hard. It follows that W is exfiltration resistant for Bob against Alice and
preserves security for Bob.

To prove strong exfiltration resistance for Alice against Bob and security preservation, we again note
that Bob’s first message is a uniformly random commitment of a uniformly random group element. Since
the commitment is statistically binding, it is statistically close to independent from α, regardless of Bob’s
choice of C. Therefore, Alice’s message A is statistically close to independent from α, and Aα is statistically
close to uniform. The result follows.

4 The publicly keyed setting

We now consider the publicly keyed setting. I.e., we assume that both Bob and Alice have a public key and
a private key (though their private keys must be independent). In the setting of the previous section, with
no public-key infrastructure, it is trivially impossible to achieve CCA-security. (An adversary can simply
“pretend to be Bob” and read Alice’s plaintext.) In this section, we show that a CCA-secure message-
transmission protocol with reverse firewalls does in fact exist in the publicly keyed setting. In particular,
in Section 4.1, we give the CCA analogue of Theorem 2, showing that a key-agreement protocol that is
secure against active adversaries and has sufficiently secure reverse firewalls together with a symmetric-key
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Alice Firewall Bob

C
C−−−−−−−−−−−−−−−

α
$← Z∗p

C′ ← Maul(C,α)

C′
$← Rerand(C′)

C′

C−−−−−−−−−−−−−−−
A

−−−−−−−−−−−−−−−B
IF A /∈ G \ {1G},

A
$← Z∗p

Aα

−−−−−−−−−−−−−−−B
x

C−−−−−−−−−−−−−−−
Open(C′)

C−−−−−−−−−−−−−−−

Fig. 11: Reverse firewall for either Alice or Bob in the protocol from Figure 8. Maul(C,α) takes a commitment
C = Com(B) and converts it into a commitment of Bα. Rerand(C) takes a commitment C = Com(B) and converts it
into a uniformly random commitment of B. We assume that a rerandomized and mauled commitment can be opened
with access to an opening of the original commitment.

encryption scheme suffices. As in the previous section, this key-agreement-based protocol has the additional
benefit that it is efficient, in the sense that it does not apply public-key operations to the plaintext. In
Section 4.2, we construct a key-agreement protocol that suffices.

4.1 A solution using key agreement

The theorem below shows that we can build an efficient CCA-secure message-transmission protocol with
reverse firewalls in this setting, provided that we have a sufficiently secure key-agreement protocol with
reverse firewalls. (Recall that Bob’s reverse firewall can only preserve CPA security. Such a firewall is already
given by Theorem 2, so we do not repeat this here.) See Appendix D for the proof.

Theorem 4 (Composition theorem for CCA security). Define WA and W∗A as in Theorem 2. Then,

1. the protocol in Figure 7 is CCA-secure if the underlying key-agreement protocol is secure against active
adversaries for Alice and the underlying nonce-based encryption scheme is CCA-secure; and

2. W∗A preserves CCA-security if the encryption scheme has unique ciphertexts, the key-agreement protocol
is authenticated for Bob, and WA preserves security for Alice, is exfiltration resistant against Bob with
valid transcripts, and fails detectably.

4.2 Key agreement secure against active adversaries

Theorem 4 motivates the study of key-agreement protocols with reverse firewalls that preserve security
against active adversaries. In the classical setting, the common solution is essentially for each of the parties
to sign the transcript of this run of the protocol. Intuitively, this lets Alice know that she sees the same
transcript as Bob, and vice versa. However, this solution does not work in our setting. In particular, it
is important for us that messages can be altered without breaking functionality, so that the firewall can
rerandomize messages when necessary.

Of course, while we want to allow for the possibility that Alice and Bob disagree on the transcript but still
output a key, we do want them to agree on the key itself. This leads to the idea of signing some deterministic
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function of the key, so that the signatures can be used to verify that the parties share the same key without
necessarily requiring them to share the same transcript. This is the heart of our solution.

However, we also have to worry that the signatures themselves can provide channels, allowing tampered
versions of the parties to leak some information. We solve this by using a unique signature scheme, as
defined by [MRV99]. These guarantee that there is a unique signature that verifies for each plaintext, so
that functionality-maintaining implementations of Alice and Bob have only one option for their signature,
given a fixed key. (See [AMV15] for a thorough analysis of signatures in the context of reverse firewalls and
corrupted implementations, including alternative ways to implement signatures that would suffice for our
purposes.)

Furthermore, in order for our firewall to fail detectably, it has to be able to check the signature itself—
so that it can distinguish a valid transcript from an invalid one. So, we would like the parties to sign
a deterministic function of gab that is efficiently computable given only access to ga and gb. This leads
naturally to the use of a symmetric bilinear map e : G×G→ GT . The parties then sign e(ga, gb). Of course,
gab is no longer indistinguishable from random in the presence of a bilinear map. But, it can be hard to
compute. So, we apply a cryptographic hash function H to gab in order to extract the final key H(gab).

We now provide two definitions to make this precise.

Definition 13 (Unique Signatures). A unique signature scheme is a triple of algorithms (KeyGen,USig,Ver).
KeyGen takes as input 1λ where λ is the security parameter and outputs a public key pk and a private key
sk. Sig takes as input the secret key sk and a plaintext m and outputs a signature τ . Ver takes as input the
public key pk, a signature τ and a message m and outputs either true or false. A signature scheme is correct
if Verpk(USigsk(m),m) = true. It is unique if for each plaintext m and public key pk, there is a unique
signature τ such that Verpk(τ,m) = true.

A signature scheme is secure against adaptive chosen-message existential-forgery attacks if no adversary
with access to the public key and a signature oracle can produce a valid signature not returned by the oracle.

We will need to use a group with a symmetric bilinear map in which the following variant of the compu-
tational Diffie-Hellman assumption holds.

Definition 14 (Inverse CDH). For a group G of order p, we say that inverse CDH is hard in G if
no probabilistic polynomial-time adversary taking input (g, ga, gb) where g $← G and (a, b)

$← Z2
p has non-

negligible probability of returning (h, h1/a, h1/b) for some element h ∈ G \ {1G}.

Note that inverse CDH is stronger than the standard CDH assumption, as (gab, gb, ga) is a solution to
inverse CDH.

We now present our protocol in Figure 12 with a reverse firewall for both parties in Figure 13. It requires
a unique signature scheme (USig,Ver) with public keys pkA for Alice and pkB for Bob and corresponding
secret keys skA and skB respectively, a base group G with generator g in which inverse CDH is hard, a target
group GT , and a non-trivial bilinear map between the two groups e : G×G→ GT . We also need a function
H : G→ {0, 1}` for some polynomially large ` that extracts hardcore bits from CDH. Presumably a standard
cryptographic hash function will work. For simplicity, we model H as a random oracle, but we note that the
proof can be modified to apply to any function H such that (ga, gb, H(gab)) is indistinguishable from random
(see Kiltz for candidate hash functions [Kil07]). We stress again that this protocol is remarkably efficient,
and we think that it can and should be used in practice.

Theorem 5. The protocol shown in Figure 12 is authenticated for Bob and secure against active adversaries
if the signature scheme is secure and inverse CDH is hard in G. The reverse firewall W shown in Figure 13
preserves security against active adversaries for Alice, preserves authenticity, is exfiltration resistant for Alice
against Bob with valid transcripts, and fails detectably for Alice. W also preserves security against active
adversaries for Bob, is exfiltration resistant for Bob against Alice with valid transcripts, and fails detectably
for Bob.

Proof. The fact that the protocol is authenticated for Bob is clear. Informally, any valid transcript must
have a valid signature from Bob. By the security of the signature scheme, except with negligible probability,
the adversary cannot produce a signature with a given sid without Bob returning a key. The same proof
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Alice Bob

INPUT: skA INPUT: (pkA, pkB, sid) INPUT: skB

a
$← Z∗p; A← ga

C ← Com(A)
C

−−−−−−−−−−−−−−−−−−−−−−−−−−B

b
$← Z∗p

B := gb

C−−−−−−−−−−−−−−−−−−−−−−−−−−
IF B = 1G,

OUTPUT ⊥
k ← e(A,B)
τA ← USigskA(k, sid)

(Open(C), τA)

−−−−−−−−−−−−−−−−−−−−−−−−−−B
IF A = 1G,

OUTPUT ⊥
k ← e(A,B)
IF NOT Ver(τA, k, sid),

OUTPUT ⊥
τB ← USigskB(k, sid)

τB
C−−−−−−−−−−−−−−−−−−−−−−−−−−

IF NOT Ver(τB, k, sid),
OUTPUT ⊥

OUTPUT H(Ba) OUTPUT H(Ab)

Fig. 12: Authenticated key agreement with a firewall for both parties. USig is a unique signature.
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Alice Firewall Bob

C
−−−−−−−−−−−−−−−B

α
$← Z∗p

C′
$← Rerand(Maul(C,α))

C′

−−−−−−−−−−−−−−−B
B

C−−−−−−−−−−−−−−−
IF B /∈ G \ {1G},

OUTPUT ⊥
Bα

C−−−−−−−−−−−−−−−
x, τA

−−−−−−−−−−−−−−−B
IF A /∈ G \ {1G},

OUTPUT ⊥
k ← e(A,B)
IF NOT Ver(τA, k

α, sid)
OUTPUT ⊥

Open(C′), τA

−−−−−−−−−−−−−−−B
τB

C−−−−−−−−−−−−−−−
IF NOT Ver(τB, k

α, sid)
OUTPUT ⊥

Fig. 13: Reverse firewall for either Alice or Bob in the protocol from Figure 12. C is a commitment of the group
element A. Maul(C,α) takes a commitment C = Com(A) and converts it into a commitment of Aα. Rerand(C) takes a
commitment C = Com(A) and converts it into a uniformly random commitment of A. We assume that a rerandomized
and mauled commitment can be opened with access to an opening of the original commitment.

shows that the firewall preserves authenticity. The fact that the firewall fails detectably for both parties is
also clear.

We prove that W preserves security against active adversaries for Alice. Let Ã be a functionality-
maintaining tampered implementation of Alice. Consider the following sequence of games.

– Game 1 is the key-agreement security game against active adversaries for Alice in the protocol shown
in Figure 12 with A replaced by W ◦ Ã.

– Game 2 is Game 1 in which the adversary never provides a signature τA or τB unless it came from a
response from Alice or Bob respectively.

– Game 3 is Game 2 in which Alice’s commitment C is replaced by A (the value that her commitment
opens to), and the firewall’s commitment C ′ is replaced by Aα in all runs of the protocol. We also remove
Alice’s second message is simply removed and join Bob’s last two messages into a single message, (B, τB).

– Game 4 is Game 3 in which Alice’s message A is replaced by a uniformly random group element, and
the firewall takes α := 1 (i.e., the firewall leaves all messages alone, besides checking signatures) in all
runs of the protocol.

The following claim follows from the definition of adaptive chosen-message existential-forgery security.

Claim 5.1. If the signature scheme is secure, then for any PPT adversary E, |AdvGame 1(E)−AdvGame 2(E)|
is negligible.

It is trivial to take any adversary in Game 2 and convert it to an adversary in Game 3 with the same
advantage. Similarly, Game 4 only differs from Game 3 syntactically. Indeed, A′ := Aα is a uniformly
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random group element independent of everything else, and B′ := Bα is uniformly random and independent
of A′ and everything else. (Recall that Bob is honest.) So, since Alice’s next message is deterministic (because
the signature is unique and Alice maintains functionality) and no output from Alice is given to the adversary
other than these two messages (recall that the get-outputA oracle is not allowed in this game), this is merely
a change of variables.

Claim 5.2. No PPT adversary E has non-negligible advantage in Game 4 if inverse CDH is hard in G.

Proof. We assume without loss of generality that E makes no “trivial” oracle calls, whose output can be easily
predicted based on prior calls, such as calls to get-outputB before the relevant run of the protocol is finished.
We build an adversary E ′ in the inverse CDH game as follows. On input (g1, g2, g3), E ′ first generates the keys
for the signature scheme, (pkA, pkB, skA, skB), and passes (g1, pkA, pkB) to E . As E ′ will be simulating many
runs of the protocol defined by Game 4, for convenience, we assume that E “oracle” calls to the protocol as
in the key-agreement security game. E ′ simply passes the random oracle calls of E to its own random oracle
(or simulates a random oracle), keeping a list of all calls. Finally, E ′ responds to other oracle calls of E as
follows.

– When E calls start-run(sid), E ′ calls its own “oracle” start-run(sid).
– When E calls start-challenge(sid∗), E ′ stores sid∗.
– When E calls get-nextA(sid,M), if sid 6= sid∗, E ′ calls its own “oracle” get-nextA(sid,M) and passes the

response to E . Otherwise, it sets h1 ←M and passes (g3,Sigsk(e(h2, g3), sid) to E .
– When E calls get-nextB(sid,M), if sid 6= sid∗, E ′ calls its own “oracle” get-nextB(sid,M) and passes the

response to E . Otherwise, if this is the first message of the run, it passes g2 to E . Otherwise, it sets
(τ, h1)←M .

– When E calls get-outputB(sid), if sid 6= sid∗, E ′ calls its own “oracle” get-outputB(sid). If sid = sid∗, and
e(h1, g3) 6= e(g2, h2), then it returns ⊥. Otherwise, E ′ responds with a uniformly random string.

– When E calls get-secrets, E ′ responds with sk.
– When E calls finalize(b∗), E ′ stops simulating and proceeds as below.

Note that the view of E is identical to its view in Game 4 unless it calls the random oracle on the actual
key, h3 := DH(h1, g3) = DH(g2, h2). Note as well that, because a random oracle is extractable, if E has
non-negligible advantage, it must call the random oracle on the key. Therefore, E ′ can search through its
random oracle queries until it finds h3 satisfying e(g1, h3) = e(h1, g3). It then returns (h3, h2, h1). If it finds
nothing, it returns ⊥. The result follows from noting that (h3, h2, h1) is a valid solution to CDH. (5.2) �

It follows that W preserves security against active adversaries for Alice. The proof for Bob is essentially
identical. And, essentially the same proof shows exfiltration resistance.

5 The singly keyed setting

Finally, we consider the singly keyed setting, in which Bob has a public-key/private-key pair, but Alice does
not. As in the classical case, we show that there exist one-round singly keyed protocols that are not forward
secret. These are essentially the single-round analogue of the two-round protocol presented in Figure 4 in
Section 3.1. We show that the existence of such a protocol is equivalent to the existence of rerandomizable
encryption, and we show how to achieve CCA-security (though not forward secrecy).

5.1 One-round CPA-secure protocols

The next theorem shows that one-round CPA-secure protocols with reverse firewalls are equivalent to reran-
domizable public-key encryption.

Theorem 6. Any rerandomizable (resp. strongly rerandomizable) semantically secure public-key encryption
scheme implies a one-round CPA-secure singly keyed message-transmission protocol without forward security
with a reverse firewall that preserves security (resp. strongly preserves security) and resists exfiltration (resp.
strongly resists exfiltration). Conversely, any one-round CPA-secure message-transmission protocol with a
reverse firewall that preserves security (resp. strongly preserves security) implies a rerandomizable (resp.
strongly rerandomizable) semantically secure public-key encryption scheme.
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Proof. To prove the first statement, we consider the protocol in which Alice simply sends Bob an encryption of
the plaintext under Bob’s public key. Alice’s firewall applies the Rerand algorithm to the plaintext. (Bob does
not need a firewall, since he does not send any messages.) Security of this protocol follows immediately from
the security of the encryption scheme, and the fact that the firewall preserves security follows immediately
from the rerandomizability of the encryption scheme.

To prove the second statement, consider the following encryption scheme. The key generation algorithm
runs the setup algorithm of the underlying MTP protocol, receiving as output σA, σB, and π. The public key is
then π and σA, and the private key is σB. The encryption algorithm first uses σA and an arbitrarily chosen sid
to compute Alice’s single message in the protocol, given the plaintext. It then applies the reverse firewall to
this message; the result is the ciphertext. The rerandomization algorithm simply applies the reverse firewall
to this message. The security and rerandomizability of the scheme are immediate from the security of the
underlying MTP and the security of the firewall respectively.

5.2 A one-round CCA-secure protocol

To extend this idea to stronger notions of security, we need the underlying encryption scheme to satisfy
stronger notions of security. A natural candidate is CCA security. However, CCA-secure encryption schemes
cannot be rerandomizable, so we need a slightly weaker notion. RCCA security, as defined by [CKN03], suf-
fices, and rerandomizable RCCA-secure schemes do exist (see, e.g., [Gro04,PR07]), though they are relatively
inefficient. We present the RCCA security game in Figure 14. In addition, we need a rerandomized ciphertext
to be indistinguishable from a valid encryption “even with access to a decryption oracle.” Figure 15 and the
definition below makes this precise.

proc. IND-RCCA(λ)

(pk, sk)
$← KeyGen(1λ)

(m0,m1)← EO1(pk)

b
$← {0, 1}; C∗ $← Encpk(mb)

b∗ ← EO2(σ, c∗)
OUTPUT (b = b∗)

proc. O1(c)
OUTPUT Decsk(c)

proc. O2(c)
m← Decsk(c)
IF m = m0 OR m = m1,

OUTPUT Challenge
ELSE,

OUTPUT m

Fig. 14: The RCCA security game.

proc. IND-RCCA(λ)

(pk, sk)
$← KeyGen(1λ)

(c0, c1)← EO1(pk)

b
$← {0, 1}; c∗ $← Rerandpk(cb)

b∗ ← EO2(c∗)
OUTPUT (b = b∗)

proc. O1(c)
OUTPUT Decsk(c)

proc. O2(c)
m← Decsk(c)
IF m = Decsk(c0) OR m = Decsk(c1),

OUTPUT Challenge
ELSE,

OUTPUT m

Fig. 15: The RCCA rerandomization game.
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Definition 15. An encryption scheme is RCCA secure if no probabilistic polynomial-time adversary E
has non-negligible advantage in the game presented in Figure 14. It is RCCA rerandomizable if there ex-
ists an algorithm Rerand with access to the public key such that for any ciphertext c with Dec(c) 6= ⊥,
Dec(Rerand(c)) = Dec(c) and no probabilistic polynomial-time adversary E has non-negligible advantage in
the game presented in Figure 15 when we require that Dec(ci) 6= ⊥. It is strongly RCCA-rerandomizable if
the previous statement holds even if Dec(ci) = ⊥.

The below theorem is the CCA analogue of Theorem 6.

Theorem 7. Any RCCA-rerandomizable (resp. strongly rerandomizable), RCCA-secure encryption scheme
implies a one-round CCA-secure singly keyed message-transmission protocol without forward security with
a reverse firewall that preserves security (resp. strongly preserves security) and resists exfiltration (resp.
strongly resists exfiltration).

Proof. Consider the protocol in which Alice, given as input a plaintext m and a session id sid, simply sends
the message Encpk(sid,m). On input c, Bob’s return function computes (sid†,m)← Decsk(c). If sid† = sid, it
outputs m. Otherwise, it outputs ⊥. Alice’s firewall simply applies the Rerand algorithm to Alice’s message.

For any PPT adversary E in the CCA-security game against this message-transmission protocol (without
forward security), we construct E ′ in the RCCA-security game against the underlying encryption scheme
with Adv(E ′) = Adv(E). We assume without loss of generality that E never makes a “useless” oracle call.
I.e., E never calls start-run with an already used sid, never calls get-nextA with a never used sid, never calls
get-output on the challenge sid, etc. The adversary E ′ behaves as follows in response to the oracle calls of E .
– When E calls the start-run oracle with input (sid,m), E ′ sets csid,A ← Encpk(sid,m).
– When E calls start-challenge(sid,m0,m1), E ′ sets sid∗ ← sid. It then returns (sid∗,m∗0) and (sid∗,m∗1) as

its challenge plaintexts, receiving in response the challenge ciphertext c∗. It sets csid∗ = c∗.
– When E calls get-nextA(sid), E ′ replies with csid,A.
– When E calls get-nextB(sid, c), E ′ sets csid,B ← c.
– When E calls get-outputB(sid), E ′ calls O1(csid,B). If the output is not of the form (sid,m), E ′ responds

with ⊥. Otherwise, it responds with m.
– When E calls finalize(b∗), E ′ simply returns b∗.

Note that the view of E is identical to its view in the CCA-security game against the message-transmission
protocol. Furthermore, E ′ wins the RCCA-security game if and only if E wins its simulated game. The result
follows.

It follows that the protocol is CCA secure. The proof that the firewall preserves security is nearly identical
to the above proof.

5.3 Achieving forward secrecy and efficiency?

Note that the protocols described above suffer from two problems: they do not have forward secrecy, and
they are inefficient (i.e., they require public-key operations on the entire plaintext). Ideally, we would like a
composition theorem in this setting to match Theorems 2 and 4. Such a theorem would solve both problems,
allowing us to achieve an efficient CCA-secure and forward-secret message-transmission protocol in the singly
keyed setting. But, we are so far unable to prove such a theorem. So, we leave this as an open question.

As a potential alternative direction to achieving forward secrecy, we note that the protocol from Theorem 7
can be converted into a two-round CCA- secure and forward-secret protocol with a reverse firewall for Alice
but no reverse firewall for Bob. In particular, in the first round of the protocol, Bob generates a fresh pair of
keys (pk†, sk†) for an RCCA-secure RCCA-rerandomizable encryption scheme and sends Alice pk† together
with a signature τ of (sid, pk†), where the signature is under Bob’s signature key. Alice checks the signature
and, if it is valid, sends Bob an encryption of her plaintext under the secret key. This is essentially the CCA
analogue of the protocol in Section 3.1. As in that case, Alice’s reverse firewall can simply check the signature
and rerandomize the ciphertext. This protocol is in fact CCA secure, and Alice’s firewall does preserve this
security. However, we do not know how to construct a reverse firewall for Bob in this setting. In analogy
with Section 3.1, a possible method would be to find an RCCA-rerandomizable encryption scheme that is
also key malleable. We know of no such scheme, but even if such a scheme were constructed, the signature
scheme would have to be similarly malleable, while still achieving an appropriate notion of security. So, we
also leave this as an open question.
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6 Conclusion and open questions

We consider the problem of message-transmission protocols in the cryptographic reverse firewalls framework
of [MS15]. We show that this problem has a rich structure, in analogy with the classical setting, with a
variety of solutions that require different setup assumptions, achieve different levels of security, and provide
different levels of efficiency. Perhaps surprisingly, we show that it is possible to achieve concurrent, interactive
CCA security in the presence of compromise against functionality-maintaining adversaries and CPA security
against arbitrary adversaries. Many of our protocols (including those that provide the strongest notions of
security) are very efficient and relatively simple, so that they can (and should) be implemented in practice.

Therefore, the most important work that we leave open is the implementation of our protocols. The most
important theoretical question that we leave open is whether there is a non-trivial composition theorem in
the singly keyed case, in analogy with Theorem 4. Note that Theorem 2 naturally extends to the singly
keyed case, but we see no inherent reason why CCA-security should not be achievable from key agreement
followed by symmetric-key encryption in this setting.

In addition, our work brings new attention to the question of rerandomizable RCCA-secure schemes. In
particular, in Appendix 5, we show that such schemes give a one-round CCA-secure message-transmission
protocol with a reverse firewall (without forward security). However, we do not know of such schemes that are
“strongly rerandomizable” (as defined in Section 5). If such schemes existed, then we show that they would
immediately imply one-round CCA-secure message transmission with a strongly secure reverse firewall. This
would be the first such construction of this primitive. Similarly, our scheme in Section 3.1 shows the benefits of
key-malleability in the reverse firewalls setting. Together with the results of Appendix 5, this leads naturally
to the question of whether or not key-malleable rerandomizable RCCA-secure encryption exists.
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A The symmetric-key setting

As a warmup, we first consider the setting in which Alice and Bob share a private key. We observe that an
elegant one-round protocol due to Bellare, Paterson, and Rogaway provides a solution that does not even
need a reverse firewall [BPR14a]. We will also use this scheme in the sequel to build protocols that do not
rely on shared private keys. We first define nonce-based encryption.

Definition 16 (Nonce-based encryption). A nonce-based symmetric-key encryption scheme is a pair
of deterministic algorithms (Enc,Dec). Enc takes as input a key from a key space K, a nonce from a nonce
space N , and a plaintext from a plaintext space M and outputs a ciphertext from a ciphertext space C. Dec
takes as input a key, a nonce, and a ciphertext and returns a plaintext or the special symbol ⊥. The scheme
is correct if for any key sk, nonce r, and plaintext m, Dec(r,Encsk(r,m)) = m.

Such a scheme is CPA secure if no probabilistic polynomial-time adversary can distinguish between
Encsk(r∗,m0) and Encsk(r∗,m1) with non-negligible advantage where r∗, m0, and m1 are adversarially cho-
sen when given access to an encryption oracle that outputs ⊥ unless given a unique nonce r. It is CCA-secure
if no probabilistic polynomial-time has non-negligible advantage when also given access to a decryption oracle
that outputs ⊥ if r = r∗.

Such a scheme scheme (Enc,Dec) has unique ciphertexts if for any key sk, message m, and nonce r,
there is exactly one ciphertext c such that Dec(r, c) = m.

Theorem 8. Let (Enc,Dec) be a nonce-based symmetric-key encryption scheme. Then, if the encryption
scheme is CPA-secure (resp. CCA-secure) the one-round protocol in which Alice sends Encsk(sid,m) and Bob
returns Decsk(sid,m) is a CPA-secure (resp. CCA-secure) one-round privately keyed message-transmission
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protocol without forward secrecy. If the encryption scheme has unique ciphertexts, then the “trivial” reverse
firewall that simply passes Alice’s messages to Bob unchanged preserves security and is exfiltration resistant
against Bob.

See, e.g., [BPR14a] for formal analysis and the construction of such a scheme. The key thing to note from
our perspective is that, as Bellare et al. observe, the fact that the encryption scheme has unique ciphertexts
implies that any tampered version of Alice that maintains functionality necessarily behaves identically to
honest Alice. The next theorem shows that we essentially cannot do any better for a one-round protocol
without using public-key primitives. The proof is in appendix E.

Theorem 9. There is a black-box reduction from semantically secure public-key encryption to CPA-secure
symmetric-key encryption with at least four possible plaintexts and a reverse firewall that strongly preserves
CPA security.

Of course, the primary drawbacks of this approach are that it requires Alice and Bob to share a secret
key and that it does not offer forward secrecy.

B Proof of Theorem 2

Proof. The security of the underlying protocol (i.e., without firewalls) follows by a folklore composition
theorem. We assume that the last message of the key-agreement protocol is sent by Bob. (This is without
loss of generality, as we can always add an empty message from Bob at the end of the protocol.) We prove
Item 2. The proof of Item 3 is a simplified version of the proof of Theorem 4.

Let B̃ be some functionality-maintaining tampered implementation of Bob. Let B̃∗ be the tampered
implementation of Bob in the key-agreement protocol obtained by simply “truncating” B̃. (This is merely a
syntactic change.) We assume without loss of generality that the adversary makes no “trivial” calls whose
output can be trivially predicted from its previous oracle calls. E.g., it makes no calls to get-output (which
always either returns ⊥ or the plaintext that the adversary provided for the corresponding sid in the CPA-
security game), no get-next calls with modified messages, etc. Consider the following sequence of games.

– Game 1 is the CPA-security game against the message-transfer protocol with Bob replaced by W∗B ◦ B̃.
– Game 2 is Game 1 in which the final message of the challenge run of the protocol is replaced by an

encryption of the challenge plaintext mb under a uniformly random key sk.
– Game 3 is Game 2 in which the final message of the challenge run is replaced by an encryption of 0

under a uniformly random key.

Note that no adversary can have non-zero advantage in the last game, as none of the messages depend
on the challenge bit.

Claim 2.1. If the encryption scheme has unique ciphertexts, the key-agreement protocol is secure against
passive adversaries, and WB preserves this security, then for any PPT adversary E, |AdvGame 1(E) −
AdvGame 2(E)| is negligible.

Proof. We construct a passive adversary E ′ in the security game against the key-agreement protocol with
Bob replaced by WB ◦ B̃∗ as follows. E ′ receives as input the public parameters π and passes them to E . E ′

then selects b† $← {0, 1} uniformly at random and sets S†A ← ∅. It responds to the (non-trivial) oracle calls
of E as follows.

– When E calls start-run(sid,m), E ′ adds (sid,m) to S†A and calls its own oracle start-run(sid).
– When E calls start-challenge(sid∗,m0,m1), E ′ adds (sid∗,mb†) to S

†
A and calls its own oracle start-challenge(sid∗).

– When E calls get-nextA(sid,M), E ′ calls its own oracle get-nextA(sid,M). If this is not the last message
of the protocol, E ′ then simply passes the resulting message to E . If it is the last message, it E ′ calls its
own oracle get-outputA(sid), receiving as output some key sk. It responds with Encsk(sid,m) where m
is the unique plaintext such that (sid,m) ∈ S†A. (Note that since the oracle calls of E are non-trivial, it
must have made a unique call to either start-run or start-challenge with this sid.)
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– When E calls get-nextB(sid,M), if this is not the last message of the protocol, E ′ calls its own oracle
get-nextB(sid,M) and passes the resulting message to E . Otherwise, E ′ does nothing.

– When E calls get-secrets, E ′ calls its own oracle get-secrets and passes the result to E .
– When E calls finalize(b∗), E ′ returns 1 if b† = b∗ and 0 otherwise.

Suppose the challenge bit b in the key-agreement security game is 0, so that the challenge key sk∗ corre-
sponding to the challenge session id sid∗ was selected uniformly at random. Then, clearly the view of E is
identical to its view in Game 2, and E ′ correctly outputs 0 if and only if E “loses” its simulated game by
returning b† = b∗. If, on the other hand, the challenge bit b is 1, then the view of E is identical to its view in
Game 1, and E ′ correctly outputs 1 if and only if E “wins” its simulated game. The result follows. (2.1) �

Claim 2.2. If the encryption scheme is CPA-secure, then for any PPT adversary E, |AdvGame 2(E) −
AdvGame 3(E)| is negligible.

Proof. We construct an adversary E ′ in the CPA-security game against the encryption scheme as follows. E ′
first runs the setup procedure of the key-agreement protocol, receiving as output σA, σB, and π. E ′ will simulate
many runs of the key-agreement protocol with Bob replaced byWB◦B̃∗ and input (σA, σB, π). For convenience,
we give E ′ an “oracle interface” to these simulated runs with “oracle” calls start-run, get-nextA, get-nextB, and
get-outputA as in the key-agreement security game (Figure 3). E′ sends π to E , selects b† $← {0, 1} uniformly
at random, and sets S†A ← ∅. It then responds to the oracle queries of E as follows.

– When E calls start-run(sid,m), E ′ adds (sid,m) to S†A. It calls its own “oracle” start-run(sid).
– When E calls start-challenge(sid∗,m0,m1), E ′, if b† = 0, it sends the challenge (sid∗,m0, 0) to its challenger.

Otherwise, it sends the challenge (sid∗, 0,m1). It stores the resulting challenge ciphertext c∗ and calls its
“oracle” start-run(sid).

– When E calls get-nextA(sid,M), E ′ calls its own “oracle” get-nextA(sid,M). If this call does not correspond
to the last message of the relevant run of the message-transfer protocol, E ′ simply passes the response to
E . If this is the last message and sid = sid∗, E ′ sends c∗ to E . Otherwise, E ′ sets sk ← get-outputA(sid),
finds the unique m such that (sid,m) ∈ S†A, and sends Encsk(sid,m) to E .

– When E calls get-nextB(sid,M), if this is not the last message of the protocol, E ′ calls its own “oracle”
get-nextB(sid,M) and passes the response to E . If this is the last message, E ′ does nothing.

– When E calls get-secrets, E ′ responds with (σA, σB).
– When E calls finalize(b∗), E ′ returns b∗.

Let b be the challenge bit of the CPA-security game. If b = b†, then the challenge ciphertext is an
encryption of mb, as in Game 2 and E ′ correctly outputs b if and only if E “wins” and b∗ = b†. Otherwise,
the challenge ciphertext is an encryption of 0 as in Game 3 and E ′ correctly outputs b if and only if E
“loses.” The result follows. (2.2) �

The result follows.

C A suitable malleable commitment scheme

We briefly describe a simple commitment scheme that is statistically hiding, computationally binding, and
malleable in the way that we need. It is a basic variant of the Pedersen commitment [Ped92]. We first provide
the relevant definitions. For our application, we require that the committed plaintext is a group element and
that the commitment can be mauled in such a way that a commitment to group element B can be converted
into a commitment to group element Bα. As such, we define a malleable commitment scheme in this specific
setting.

Definition 17 (Malleable and rerandomizable commitment). A group commitment scheme is a triple
of efficient algorithms, (KeyGen,Com,Open,Ver). KeyGen takes as input a description of an abelian group G
and outputs public parameters. Com takes as the public parameters, a group element B ∈ G, and randomness
r, and outputs a commitment C from some commitment space C. Open takes as input the public parameters, a
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commitment C and randomness r and outputs an opening x. Ver takes as input a commitment C and opening
x and outputs either a group element B ∈ G or the special symbol ⊥. We often omit explicit reference to the
public parameters and/or the randomness. (In the main body, we omit explicit reference to the Ver function
as well.)

The scheme is correct if a commitment opens to the committed message, i.e., Ver(C, x) = B whenever
x = Open(Com(B)) for all B ∈ G. The scheme is statistically hiding if for any group element B, the Com(B)
is distributed uniformly randomly over the commitment space. The scheme is computationally binding if no
efficient adversary can produce a commitment C and two openings x, x′ such that the two openings verify
to different group elements (and not ⊥). The scheme is tight if for each commitment C and group element
B ∈ G, there is a unique opening x such that Ver(C, x) = B.

Such a commitment scheme is rerandomizable if there exists a pair of efficient algorithms (Rerand,OpenRerand)
such that

1. for any commitment C and uniformly random r, Rerand(C, r) is uniformly random over the commitment
space; and

2. for any commitment C and opening x, if Ver(C, x) = B then Ver(C ′, x′) = B, where C ′ = Rerand(C, r)
and x′ = OpenRerand(x′, r).

Similarly, such a commitment scheme is malleable if there exists a pair of efficient algorithms (Maul,OpenMaul)
such that for any commitment C and opening x, if Ver(C, x) = B then Ver(C ′, x′) = B, where C ′ =
Maul(C,α) and x′ = OpenMaul(x′, α). In the main body, we omit explicit reference to the functions OpenRerand
and OpenMaul.

We now describe a commitment scheme that suffices for our purposes.

– KeyGen takes as input a group G of order p and returns two uniformly random non-identity group
elements g, h.

– Com takes as input a group element B ∈ G and randomness (r, s) ∈ Z2
p and returns C := (grhs, hsB).

– Open simply outputs the randomness (r, s).
– Ver takes as input C = (c1, c2) and (r, s). It first checks that c1 = grhs. If so, it returns h−sc2.
– Rerand takes as input C = (c1, c2) and randomness (r′, s′) and returns C ′ := (gr

′
hs
′
c1, h

s′c2).
– OpenRerand takes as input an opening (r, s) and randomness (r′, s′) and returns (r + r′, s+ s′).
– Maul takes as input C = (c1, c2) and α ∈ Zp and returns C ′ := (cα1 , c

α
2 ).

– OpenMaul takes as input (r, s) and α and returns (αr, αs).

The following proposition is immediate from inspection and the security of the standard Pedersen com-
mitment.

Proposition 1. The above commitment scheme is correct, statistically hiding, tight, rerandomizable, and
malleable. If the discrete log is hard over G, it is also computationally binding.

D Proof of Theorem 4

Proof. Item 1 (the security of the underlying protocol without reverse firewalls) follows by a folklore com-
position theorem. We assume that the last message of the key-agreement protocol is sent by Bob. (This is
without loss of generality, as we can always add an empty message from Bob at the end of the protocol.)

Let Ã be some functionality-maintaining tampered implementation of Alice in the protocol from Figure 7.
Let Ã∗ be the “truncation” of Ã to the key-agreement protocol. Note that Ã∗ produces valid transcripts
(though it may not preserve functionality). Let q be some polynomial bound on the number of oracle calls
made by the adversary in the CCA-security game. We assume without loss of generality that the adversary
makes no “trivial” calls whose output can be trivially predicted from its previous oracle calls. E.g., it makes no
calls to get-outputB(sid) where sid does not correspond to a completed run of the protocol, no get-nextA(sid, ·)
without first calling start-run(sid,m) or start-challenge(sid,m0,m1), etc. Consider the following sequence of
games.

– Game 1 is the CCA-security game against the message-transmission protocol with Alice replaced by
W∗A ◦ Ã.
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– Game 2 isGame 1 in which Alice never sends the final message in a run of the protocol unless Bob’s key
skB is well-defined. (I.e., a call to the returnB(sid) procedure of the underlying key-agreement protocol
for the relevant sid does not return ⊥.)

– For i = 1, . . . , q, Game i+ 2 is Game i+ 1 in which the final message of the ith run of the protocol is
replaced by an encryption of the relevant plaintext m under a uniformly random key.

– Game q+ 3 is Game q+ 2 in which the final message of the challenge run is replaced by an encryption
of 0 under a uniformly random key.

– Game q+ 4 is Game q+ 3 in which the final message is removed from each run of the protocol and the
oracle get-outputB is removed.

– For i = 1, . . . , q, Game q + 4 + i is Game q + 3 + i in which W∗A ◦ Ã is replaced by W∗A ◦ A (the honest
implementation of Alice composed with the firewall) in the ith run of the protocol.

Note that no adversary can have any advantage in the last game because none of the responses to any of
the adversary’s queries depend on the challenge bit.

Claim 4.1. If the encryption scheme has unique ciphertexts, the key-agreement protocol is authenticated for
Bob, and WA fails detectably and preserves authenticity, then for any PPT adversary E, |AdvGame 1(E) −
AdvGame 2(E)| is negligible.

Proof. We construct an adversary E ′ in the authentication game against the key-agreement protocol with
Alice replaced by WA ◦ Ã∗ as follows. E ′ receives as input the public parameters π and passes them to E . E ′

then selects b† $← {0, 1} uniformly at random and sets S†A, S
†
B, keys ← ∅. E ′ then responds to oracle calls as

follows.

– When E calls start-run(sid,m), E ′ adds (sid,m) to S†A and calls its own oracle start-run(sid,m).
– When E calls start-challenge(sid,m0,m1), E ′ adds (sid,mb†) to S

†
A and calls its own oracle start-run(sid,mb†).

– When E calls get-nextA(sid,M), E ′ calls its own oracle get-nextA(sid,M). If this is not the last message of
this run of the protocol, E ′ then simply passes the resulting message to E . If it is the last message, it checks
if the transcript of the underlying key-agreement protocol is valid forWA◦A (using the efficient algorithm
guaranteed by detectable failure). If it is invalid, E ′ responds to E with the special symbol ⊥. If it is valid,
let m be the unique plaintext and index such that (sid,m) ∈ S†A and let sk ← get-outputB(sid). If sk = ⊥,
then E ′ returns the transcript of this run of the key-agreement protocol (and wins the authentication
game). Otherwise, it adds (sid, sk) to keys and responds with Encsk(sid,m).

– When E calls get-nextB(sid,M), if this is not the last message of the protocol, E ′ calls its own oracle
get-nextB(sid,M) and passes the resulting message to E . If this is the last message of the protocol, it
adds (sid,M) to S†B and sends nothing to E .

– When E calls get-outputB(sid), E ′ finds the uniqueM and sk such that (sid,M) ∈ SB and (sid, sk) ∈ keys.
It computes Decsk(sid,M) and responds with the result.

– When E calls get-secrets, E ′ calls its own oracle get-secrets and passes the result to E .
– When E calls finalize(b∗), E ′ simply terminates.

Note that the view of E is identical to its view in both Game 1 and Game 2 unless at some point it
constructs a valid transcript such that skB is not well-defined. If it does construct such a transcript, then E ′
wins the authentication game. The result follows. (4.1) �

Claim 4.2. If the key-agreement protocol is secure against active adversaries for Alice, the encryption scheme
has unique ciphertexts, and WA preserves Alice’s security and fails detectably, then for any PPT adversary
E, |AdvGame i+ 1(E)− AdvGame i+ 2(E)| is negligible.

Proof. We construct an adversary E ′ in the security game against the key-agreement protocol with Alice
replaced by WA ◦ Ã∗ as follows. E ′ receives as input the public parameters π and passes them to E . E ′ then
selects b† $← {0, 1} uniformly at random and sets S†A, S

†
B, keys← ∅ and j ← 0. It responds to the oracle calls

of E as follows.

– When E calls start-run(sid,m), E ′ adds (sid, j,m) to S†A. If j = i, it calls its own oracle start-challenge(sid∗,m);
otherwise it calls start-run(sid,m). Finally, it increments j.
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– When E calls start-challenge(sid,m0,m1), E ′ adds (sid,mb†) to S†A and (sid, j) to S†B. If j = i, it calls its
own oracle start-challenge(sid∗,mb†); otherwise it calls start-run(sid,mb†). Finally, it increments j.

– When E calls get-nextA(sid,M), E ′ calls its own oracle get-nextA(sid,M). if this is not the last message
of this run of the protocol, E ′ then simply passes the resulting message to E . If it is the last message, it
checks if the transcript of the underlying key-agreement protocol is valid for WA ◦ A (using the efficient
algorithm guaranteed by detectable failure). If it is invalid, E ′ responds to E with the special symbol ⊥.
If it is valid, let m, k be the unique plaintext and index such that (sid, k,m) ∈ S†A. If k < i, E ′ selects
sk

$← K. If k ≥ i, E ′ sets sk ← get-outputB(sid). Finally, it responds to E with the message Encsk(sid,m).
– When E calls get-nextB(sid,M), E ′ calls its own oracle get-nextB(sid,M) and passes the resulting message

to E . If this is the last message of the protocol, it also adds (sid,M) to S†B.
– When E calls get-outputB(sid), E ′ finds the uniqueM and sk such that (sid,M) ∈ S†B and (sid, sk) ∈ keys.

It computes Decsk(sid,M) and responds with the result.
– When E calls get-secrets, E ′ calls its own oracle get-secrets and passes the result to E .
– When E calls finalize(b∗), E ′ returns 1 if b† = b∗ and 0 otherwise.

Suppose the challenge bit b in the key-agreement security game is 0 so that the challenge key sk∗ corre-
sponding to the ith run of the protocol was selected uniformly at random or is the special symbol ⊥. Then,
clearly the view of E is identical to its view in Game i+ 2, and E ′ correctly outputs 0 if and only if E “loses”
its simulated game by returning b† = b∗. If, on the other hand, the challenge bit b is 1, then the view of E is
identical to its view in Game i + 1, and E ′ correctly outputs 1 if and only if E “wins” its simulated game.
The result follows.

(4.2) �

Claim 4.3. If the encryption scheme is CCA-secure, then for any PPT adversary E, |AdvGame q + 2(E) −
AdvGame q + 3(E)| is negligible.

Proof. We construct an adversary E ′ in the CCA-security game against the encryption scheme as follows.
E ′ first runs the setup procedure of the key-agreement protocol, receiving as output σA, σB, and π. E ′ will
simulate many runs of the key-agreement protocol with Alice replaced by WA ◦ Ã∗ and input (σA, σB, π). For
convenience, we give E ′ an “oracle interface” to these simulated runs with “oracle” calls start-run, get-nextA,
and get-nextB as in the key-agreement security game (Figure 3). E ′ sends π to E , selects b† $← {0, 1} uniformly
at random, and sets SA, SB, keys← ∅. It then responds to the oracle queries of E as follows.

– When E calls start-run(sid,m), E ′ adds (sid,m) to SA. It calls its own “oracle” start-run(sid,m).
– When E calls start-challenge(sid∗,m0,m1), if b† = 0, it E ′ sends the challenge (sid∗,m0, 0) to its challenger.

Otherwise, it sends the challenge (sid∗, 0,m1). It stores the resulting challenge ciphertext c∗. and calls
its “oracle” start-run(sid,mb†).

– When E calls get-nextA(sid,M), if this call does not correspond to the last message of the relevant run
of the message-transmission protocol, E ′ calls its own “oracle” get-nextA(sid,M) and passes the response
to E . If the transcript of the underlying key-agreement protocol is invalid, then E ′ sends ⊥ to E . If it is
valid and sid = sid∗, it sends c∗ to E . Otherwise, E ′ selects a key sk $← K uniformly at random, adds
(sid, sk) to keys, finds the unique m such that (sid,m) ∈ SA, and sends Encsk(sid,m) to E .

– When E calls get-nextB(sid,M), if this is not the last message of the protocol E ′ calls its own “oracle”
get-nextB(sid,M) and passes the response to E . If this is the last message of the protocol, it adds (sid,M)
to SB.

– When E calls get-outputB(sid), E ′ finds the uniqueM and sk such that (sid,M) ∈ SB and (sid, sk) ∈ keys.
It computes Decsk(sid,M) and responds with the result.

– When E calls get-secrets, E ′ responds with (σA, σB).
– When E calls finalize(b∗), E ′ returns b∗.

Let b be the challenge bit in the CPA-security game against E ′. If b† = b, the view of E is identical to
its view in Game 2. In this case, E ′ wins if and only if E wins the simulated Game 2. If b† 6= b, the view
of E is identical to its view in Game 3 and E ′ wins if and only if E loses the simulated game. The result
follows. (4.3) �
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It should be clear that any adversary in game Game q + 3 can be easily converted into an adversary in
Game q + 4 with same advantage.

Claim 4.4. If WA is exfiltration resistant against B with valid transcripts then for any PPT adversary E,
|AdvGame q + 3 + i(E)− AdvGame q + 4 + i(E)| is negligible.

Proof. Let Ã(m) be Ã∗ with input plaintext fixed to m.
We construct an adversary E ′ in LEAK (Figure 1) as follows. E ′ first runs the setup procedure of the

key-agreement protocol, receiving as output σA, σB, and π. As above, E ′ will simulate many runs of the
key-agreement protocol with Alice replaced by WA ◦A and input (σA, σB, π). So, for convenience, we give E ′
an “oracle interface” to these simulated runs with “oracle” calls start-run, get-nextA and get-nextB as in the
key-agreement security game (Figure 3). E ′ selects b† $← {0, 1} uniformly at random, sets j ← 1 and ids← ∅
, and simulates a run of E , responding to oracle calls as follows.

– When E calls start-run(sid,m), E ′ adds (sid, j) to ids. If j 6= i, it calls its own “oracle” start-run(sid,m)

and increments j. If j = i, E ′ increments j and constructs the circuit B̃ described below with sid∗,
(σA, σB, π), b†, j, ids, the state of E , and the state of the various “oracles” hard-coded into it. It then
returns (Ã(m

b† ), B̃, (σA, σB, π)).
– When E calls get-nextA(sid,M), E ′ calls its own “oracle” get-nextA(sid,M) and passes the response to E .
– When E calls get-nextB(sid,M), E ′ calls its own “oracle” get-nextB(sid,M) and passes the response to E .
– When E calls start-challenge(sid∗,m0,m1),
– When E calls get-secrets, E ′ responds with (σA, σB).

B̃ will play the role of Bob in the key-agreement protocol, and it has the state of E and the “oracles” hard-
coded into it. It can make “oracle” calls to simulated protocols with Alice replaced by WA ◦ A. It also starts
its own “oracle” simulations with Alice replaced by WA ◦ Ã∗ instead. To distinguish these oracles, we write,
e.g., get-nextWA◦Ã∗ and get-nextWA◦A. Note that B̃ is itself playing a game in which it exchanges its own
messages with the challenge party A∗ in LEAK (Figure 1). B̃ continues to simulate E from its current state,
responding to oracle calls as follows.

– When E calls start-run(sid,m), B̃ adds (sid, j) to ids, increments j, and calls its own “oracle” start-run(sid,m).
– When E calls get-nextA(sid,M), B̃ finds the unique k such that (sid, k) ∈ ids. If k < i, B̃ calls its “oracle”

get-nextWA◦A(sid,M) and passes the response to E . If k = i, then B̃ sends the messageM to the challenge
party A∗ and passes the response to E . If k > i, then B̃ calls its “oracle” get-nextWA◦Ã∗(sid,M) and passes
the response to E .

– When E calls get-nextB(sid,M), B̃ calls its own “oracle” get-nextB(sid,M) and passes the response to E .
– When E calls finalize(b∗), B̃ sets its state to 0 if b∗ = b† and to 1 otherwise.
– When E calls get-secrets, B̃ responds with (σA, σB).

Finally, E ′ receives the state of B̃ and simply returns its value.
Let b be the challenge bit in LEAK. Then, if b = 0 so that the challenge party is honest, the view of E is

identical to its view in Game q+ 5. Then, the final state of B̃ matches b if and only if E wins this simulated
game. If, on the other hand, b = 1, then the view of E is identical to its view in Game q + 4, and the final
state of B̃ matches b if and only if E loses this simulated game. The result follows. (4.4) �

E Proof of Theorem 9

Proof of Theorem 9. Let (KeyGen,Enc,Dec) be a CPA-secure encryption scheme with some reverse firewall
W. Note that we can view W as a map between ciphertexts.

We present a one-bit PKE scheme as follows. Let m0,m1 be distinct plaintexts. The public key is then
(e0 = W(Encsk(m0)), e1 = W(Encsk(m1))), and the secret key is just the secret key of the underlying
scheme. To encrypt a bit b, we compute W(eb). The decryption algorithm of the public-key scheme runs the
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decryption algorithm of the symmetric-key scheme Dec and outputs 0 if the result is m0, 1 if it is m1, and
⊥ otherwise.

Let E be a PPT adversary in the semantic-security game against the above scheme. We assume without
loss of generality that E never outputs a pair of identical challenge plaintexts. We construct an efficient
tampered encryption algorithm ¯Enc and an efficient adversary E ′ in the CPA-security game against W ◦ ¯Enc.
Choose m†0 and m†1 uniformly at random from the plaintext space. Simulate E polynomially many times and
let i such in at least polynomial many of these runs, the challenge plaintexts chosen by E differ in the ith
bit. Fix c0 = Encsk(m0) and c1 = Encsk(m1). Then, we define ¯Encsk(m†b) = cb and for all other plaintexts
m, ¯Enc(m) =W(cb) where b is the ith bit of m. Then, E ′ behaves as follows.

– It calls the encryption oracle on input m†0 and m†1. Call the results e0 and e1.
– It runs E with input pk = (e0, e1), receiving as output two challenge plaintexts, (m∗0,m

∗
1). E ′ then outputs

these as its own challenge plaintexts.
– On input c∗, a challenge ciphertext, E ′ passes c∗ to E , receiving as output a bit b.
– If m∗0 and m∗1 differ in their ith bit and are distinct from m†0 and m†1, output the bit corresponding to

the plaintext whose ith bit is b. Otherwise, return a uniformly random bit.

Note that the view of E is identical to its view in the semantic security game against the public-key
scheme. Furthermore, with non-negligible probability, we have that m†0, m

†
1, m

∗
0, and m∗1 are distinct and m∗0

and m∗1 differ in their ith bit. When both of these conditions are satisfied, E ′ guesses correctly if and only if
E guesses correctly. The result follows.
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