
PUA – Privacy and Unforgeability for Aggregation

Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

EURECOM, Sophia Antipolis, France
{firstname.lastname}@eurecom.fr

Abstract. Existing work on data collection and analysis for aggregation is mainly
focused on confidentiality issues. That is, the untrusted Aggregator learns only
the aggregation result without divulging individual data inputs. In this paper we
extend the existing models with stronger security requirements. Apart from the
privacy requirements with respect to the individual inputs we ask for unforge-
ability for the aggregate result. We first define the new security requirements of
the model. We also instantiate a protocol for private and unforgeable aggregation
for a non-interactive multi-party environment. I.e, multiple unsynchronized users
owing to personal sensitive information without interacting with each other con-
tribute their values in a secure way: The Aggregator learns the result of a function
without learning individual values and moreover it constructs a proof that is for-
warded to a verifier that will let the latter be convinced for the correctness of the
computation. The verifier is restricted to not communicate with the users. Our
protocol is provably secure in the random oracle model.

1 Introduction

With the advent of the Big Data era, research on privacy preserving data collection
and analysis is culminating. Users continuously produce data that can be considered as
valuable whenever they are aggregated. We therefore consider a scenario whereby an
Aggregator collects individual data from multiple users who do not interact with each
other and executes a function which outputs an aggregate value. This result is further
forwarded to the Data Analyzer who can finally extract useful information about the
entire population. Various motivating examples under the predefined model exist in the
real-world:

– The analysis of different user profiles and the derivation of statistics can help rec-
ommendation engines provide targeted advertisements. In such scenarios a service
provider would collect data from each individual user (i.e: on-line purchases), thus
acting as an Aggregator, and compute an on-demand aggregate value upon receiv-
ing a request from the advertisement company. The latter will further infer some
statistics acting as a Data Analyzer, in order to send the appropriate advertisements
to each category of users.

– Data aggregation is a promising tool in the field of healthcare research. Different
types of data sensed by body sensors (eg. blood pressure) are collected in large
scale in data enclaves who can be considered as Aggregators. Health scientists who
act as Data Analyzers are interested in inferring some statistical information from

2 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

these data without having access to each individual data (for privacy and perfor-
mance reasons). An aggregate value computed over a large population would give
very useful information for deriving statistical models for evaluating therapeutic
performance or for learning the likelihood of upcoming patients’ diseases.

Unfortunately, existing solutions only focus on the problem of data confidentiality
and consider the Aggregator as being honest-but-curious: the aggregator is curious in
discovering the content of each individual data but performs the aggregation operation
correctly. In this paper we consider a more powerful security model and assume the
existence of an untrusted Aggregator: The Aggregator may provide a bogus aggregate
value to the data analyzer. In order to protect against such a malicious behavior, we
propose that along with the aggregate value, the Aggregator provides a proof on the
correctness of the computation of the aggregate result.

The underlying idea of our solution is that each user encrypts its data according
to Shi et al. [17] scheme, and sends it to the untrusted Aggregator, using their secret
encryption key. They also homomorphically tag their data by using two layers of ran-
domness with two different keys and similarly the tags are forwarded to the Aggregator.
The latter computes the sum by applying operations on the ciphertexts and it also com-
putes a proof for the correctness of the result from the tags. The Aggregator finally
sends the result and the proof to the Data Analyzer who verifies the correctness of the
computation. We also require the Data Analyzer not to be able to communicate with
each user and the result to be publicly verifiable. Moreover, similarly to the existing
solutions, the proposed protocol assures obliviousness against the Aggregator and the
data analyzer in the multi-user setting; meaning that neither the data analyzer nor the
aggregator learns individual data inputs.

To the best of our knowledge we are the first who define a model for Privacy and
Unforgeability for Aggregation (PUA). We also instantiate a PUA scheme which
mainly pursues in three objectives:

– Multi-user setting where multiple users produce personal sensitive data without
interacting with each other.

– Public verifiability of the aggregate value without holding/receiving the original
data input.

– Privacy of individual data for all participants.

2 Problem Statement

We are envisioning a scenario whereby a set of users U = {Ui}ni=1 are producing sen-
sitive data inputs xi,t at each time interval t. These individual data are first encrypted
into ciphertexts ci,t and further forwarded to an untrusted aggregator A. Aggregator A
aggregates all the received ciphertexts, decrypts the aggregate and forwards the result-
ing plaintext to a data analyzer DA together with a cryptographic proof that assures the
correctness of the aggregation operation, which in this paper corresponds to the sum of
the users’ individual data. An important criterion that we aim to fulfill in this paper is
to ensure that data analyzer DA verifies the corretness of the aggregator’s output with-
out compromising users’ privacy. Namely, at the end of the verification operation, both

PUA – Privacy and Unforgeability for Aggregation 3

aggregator A and data analyzer learn nothing but the value of the aggregation. While
homomorphic signatures proposed in [6, 13] seem to answer to the verifiability require-
ment, authors in those papers only consider scenarios where a single user generates
data.

In the aim of assuring both individual user’s privacy and unforgeable aggregation,
we first come up with a generic model for privacy preserving and unforgeable aggre-
gation that identifies the algorithms necessary to implement such functionalities and
defines the corresponding privacy and security models. Furthermore, we propose a
concrete solution which combines an already existing privacy preserving aggregation
scheme [17] with an additively homomorphic tag designed for bilinear groups.

Notably, a scheme that allows a malicious aggregator to compute the sum of users’
data in privacy preserving manner and to produce a proof of correct aggregation will
start by first running a setup phase. During setup, each user receives a secret key that
will be used to encrypt the user’s private input and to generate the corresponding au-
thentication tag; the aggregator A and the data analyzer DA on the other hand, are
provided with a secret decryption key and a public verification key respectively. After
the key distribution, each user sends its data encrypted and authenticated to aggrega-
tor A, while making sure that the computed ciphertext and the matching authentication
tag leak no information about its private input. On receiving users’ data, aggregator A
first aggregates the received ciphertexts and decrypts the sum using its decryption key,
then uses the received authentication tags to produce a proof that demonstrates the cor-
rectness of the decrypted sum. Finally, data analyzer DA verifies the corretness of the
aggregation thanks to the public verification key.

2.1 PUA Model

A PUA scheme consists of the following algorithms:

– Setup(1κ) → (P, skA, {SKi}Ui∈U,VK): It is a randomized algorithm run by a
trusted dealer which on input of a security parameter κ outputs the public param-
eters P that will be used by subsequent algorithms, the aggregator A’s secret key
skA, the secret keys SKi of users Ui and the public verification key VK.

– EncTag(t,SKi, xi,t) → (ci,t, σi,t): It is a randomized algorithm which on inputs
of time interval t, secret key SKi of user Ui and data xi,t, encrypts xi,t to get a
ciphertext ci,t and computes a tag σi,t authenticating xi,t.

– Aggregate(skA, {ci,t}Ui∈U, {σi,t}Ui∈U) → (sumt, σt): It is a deterministic algo-
rithm run by the aggregator A. It takes as inputs aggregator A’s secret key skA,
ciphertexts {ci,t}Ui∈U and authentication tags {σi,t}Ui∈U, and outputs in cleart-
ext the sum sumt of the values {xi,t}Ui∈U and computes a proof σt assessing the
correctness of sumt using the authentication tags {σi,t}Ui∈U.

– Verify(VK, sumt, σt) → {0, 1}: It is a deterministic algorithm that is executed by
the data analyzer DA. It outputs 1 if data analyzer DA is convinced that the sum
sumt =

∑
Ui∈U{xi,t}; and 0 otherwise.

4 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

2.2 Security Model

In this paper, we only focus on the adversarial behavior of aggregator A. The rationale
behind this is that aggregator A is the only party in the protocol that sees all the mes-
sages exchanged during the protocol execution: Namely, aggregator A has access to
users’ ciphertexts and it is the party that interacts directly with the data analyzer. It fol-
lows that by ensuring security properties against the aggregator, one by the same token
ensures these security properties against both data analyzer DA and external parties.

In accordance with previous work [14, 17], we formalize the property of aggrega-
tor obliviousness. Aggregator obliviousness ensures that at the end of a protocol execu-
tion, aggregator A only learns the sum of users’ inputs xi,t and nothing else. Also, we
enhance the security definitions of data aggregation with the notion of aggregate un-
forgeability. As the name implies, aggregate unforgeability guarantees that aggregator
A cannot forge a valid proof σt for a sum sumt that was not computed correctly from
users’ inputs (i.e. cannot generate a proof for sumt 6=

∑
xi,t).

Aggregator Obliviousness Aggregator obliviousness ensures that when users Ui pro-
vide aggregator A with ciphertexts ci,t and authentication tags σi,t, they do not reveal
any information about their individual inputs xi,t, other than the sum value

∑
xi,t. We

extend the existing definition of Aggregator Obliviousness (cf. [14, 15, 17]) so as to
capture the fact that aggregator A not only has access to ciphertexts ci,t, but also has
access to the authentication tags σi,t that enable aggregator A to generate proofs of
correct aggregation.

Similarly to the work of [14, 17], we formalize aggregator obliviousness using an
indistinguishability-based game in which aggregator A accesses the following oracles:

– OSetup: When called by aggregatorA, this oracle initializes the system parameters;
it then gives the public parameters P , the aggregator’s secret key skA and public
verification key VK to A.

– OCorrupt: When queried by aggregatorA with a user Ui’ s identifier uidi, this oracle
provides aggregator A with Ui’s secret key denoted SKi.

– OEncTag: When queried with time t, user Ui’s identifier uidi and a data point xi,t,
this oracle outputs the ciphertext ci,t and the authentication tag σi,t of xi,t com-
puted using Ui’s secret key SKi.

– OAO: When called with a subset of users S ⊂ U and with two time-series
(Ui, t, x0i,t)Ui∈S and (Ui, t, x1i,t)Ui∈S such that

∑
x0i,t =

∑
x1i,t, this oracle flips a

random coin b ∈ {0, 1} and returns an encryption of the time-serie (Ui, t, xbi,t)Ui∈S
(that is the tuple of ciphertexts {cbi,t}Ui∈S) and the corresponding authentication
tags {σbi,t}Ui∈S.

Aggregator A is accessing the aforementioned oracles during a learning phase (cf.
Algorithm 1) and a challenge phase (cf. Algorithm 2). In the learning phase, A calls
oracle OSetup which in turn returns the public parameters P , the public verification key
VK and the aggregator’s secret key skA. It also interacts with oracle OCorrupt to learn
the secret keys SKi of users Ui, and oracle OEncTag to get a set of ciphertexts ci,t and
authentication tags σi,t.

PUA – Privacy and Unforgeability for Aggregation 5

In the challenge phase, aggregator A chooses a subset S∗ of users that were not
corrupted in the learning phase, and a challenge time interval t∗ for which it did
not make an encryption query. Oracle OAO then receives two time-series X 0

t∗ =
(Ui, t∗, x0i,t∗)Ui∈S∗ and X 1

t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ from A, such that
∑
x0i,t∗ =∑

x1i,t∗ . Then oracle OAO flips a random coin b $←{0, 1} and returns to A the cipher-
texts {cbi,t∗}Ui∈S∗ and the matching authentication tags {σbi,t∗}Ui∈S∗ .

At the end of the challenge phase, aggregator A outputs a guess b∗ for the bit b.
We say that aggregatorA succeeds in the aggregator obliviousness game, if its guess

b∗ equals b.

Algorithm 1: Learning phase of the obliviousness game

(P,SKA,VK)← OSetup(1
κ);

// A executes the following a polynomial number of
// times
SKi ← OCorrupt(uidi);
// A is allowed to call OEncTag for all users Ui
(ci,t, σi,t)← OEncTag(t, uidi, xi,t);

Algorithm 2: Challenge phase of the obliviousness game
A → t∗, S∗;
A → X 0

t∗ ,X 1
t∗ ;

(cbi,t∗ , σ
b
i,t∗)Ui∈S∗ ← OAO(X 0

t∗ ,X 1
t∗);

A → b∗ ;

Definition 1 (Aggregator Obliviousness). An aggregation protocol is said to ensure
aggregator obliviousness if for any polynomially bounded adversary A the probability
Pr(b = b∗) 6 1

2 +ε(κ), where ε is a negligible function and κ is the security parameter.

Aggregate Unforgeability We augment the security requirements of data aggregation
with the requirement of Aggregate Unforgeability. More precisely, we assume that ag-
gregator A is not only interested in compromising the privacy of users participating in
the data aggregation protocol, but also interested in tampering with the sum of users’
inputs. That is, aggregatorAmay sometimes has an incentive to feed data analyzerDA
with erroneous sums sumt). Along these lines, we define Aggregate Unforgeability as
the security feature that ensures that aggregator A cannot convince data anlyzer DA
to accept a bogus sum, and assume that users Ui in the system are honest1. (i.e. they
always submit their correct input and do not collude with the aggregator A).

1 A scheme with dishonest users that will try produce tags on behalf of other users can be
constructed with an existential unforgeable signature scheme Σ in which each user signs the
tag with its secret signing key Σ.sski

6 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

Algorithm 3: Learning phase of the Aggregate Unforgeability game
P,VK← OSetup(1

κ);
// A executes the following a polynomial number of
//times
// A is allowed to call OTag for all users Ui
(ci,t, σi,t)← OEncTag(t, uidi, xi,t);

Algorithm 4: Challenge phase of the Aggregate Unforgeability game
(t∗, sumt∗ , σt∗)← A

In compliance with previous work [10, 13], we formalize Aggregate Unforgeability
via a game in which aggregatorA accesses as oraclesOSetup andOEncTag. Furthermore,
given the property that anyone holding the public verification key VK can execute the
algorithm Verify, we assume that aggregator A during the unforgeability game can run
the algorithm Verify for itself.

As shown in Algorithm 3, Aggregator A enters the Aggregate Unforgeability game
by querying the oracle OSetup with a security parameter. Oracle OSetup accordingly
returns public parameters P , verification key VK and the secret key skA of aggregator
A. Moreover, aggregator A calls oracle OEncTag with tuples (t, uidi, xi,t) in order to
receive the ciphertext ci,t encrypting xi,t and the matching authenticating tag σi,t, both
computed using user Ui’s secret key SKi. Note that for each time interval t, aggregator
A is allowed to query oracle OEncTag for user Ui only once. In other words, aggregator
A cannot submit two distinct queries to oracle OEncTag with the same time interval t
and the same user identifier uidi. Without loss of generality, we suppose that for each
time interval t, aggregator A invokes oracle OEncTag for all users Ui in the system.

At the end of Aggregate Unforgeability game (see Algorithm 4), aggregator A out-
puts a tuple (t∗, sumt∗ , σt∗).

Accordingly, we say that aggregator A wins the Aggregate Unforgeability game if
the one of following statements holds:

1. Verify(sumt∗ , σt∗) → 1 and aggregator A never made a query to oracle OEncTag

that comprises time interval t∗. In the remainder of this paper, we denote this type
of forgery Type I Forgery.

2. Verify(sumt∗ , σt∗) → 1 and aggregator A has made a query to oracle OEncTag for
time t∗, however the sum sumt∗ 6=

∑
Ui xi,t∗ . In what follows, we call this type of

forgery Type II Forgery.

Definition 2 (Aggregate Unforgeability). Let Pr[AAU] denote the probability that ag-
gregate A wins the Aggregate Unforgeability game, that is, the probability that ag-
gregator A outputs a Type I Forgery or Type II Forgery that will be accepted by
algorithm Verify.

An aggregation protocol is said to ensure Aggregate Unforgeability if for any poly-
nomially bounded adversary A, Pr[AAU] 6 ε(κ), where ε is a negligible function in
the security parameter κ.

PUA – Privacy and Unforgeability for Aggregation 7

3 Idea of our PUA protocol

In an extended model with an untrusted Aggregator it is of utmost importance to de-
sign a solution in which the untrusted aggregator cannot provide bogus results to the
data analyzer. Such a solution will use a proof system that enable the data analyzer to
verify the correctness of the computation. Yet verifiability should be achieved without
sacrificing privacy. Towards this end, we propose a protocol that rely on the following
techniques to allow privacy preserving aggregation that also supports verifiabilty:

– A homomorphic encryption algorithm that allows the aggregator to compute the
sum without divulging individual data.

– A homomorphic tag that allows each user to authenticate the data input xi,t, in
such a way that the aggregator can use the collected tags to construct a proof that
demonstrates to the data analyzer DA the correctness of the aggregate sum.

Concisely, a set of non-interacting users are connected to personal services and de-
vices that produce personal data. Without any coordination, each user chooses a random
tag key tki and sends an encoding thereof, t̄ki to the dealer. The dealer after collecting
all encoded keys t̄ki by users, publishes the public verification key VK of this group of
users. This verification key is computed as a function of the encodings t̄ki. Later, the
dealer gives to each user in the system an encryption key eki that will be used to com-
pute the user’s ciphertexts. Accordingly, the secret key of each user SKi is defined as the
pair of tag key tki and encryption key eki. Finally, the dealer provides the aggregator
with secret key SKA computed as the sum of encryption keys eki and goes offline.

Now at each time interval t, each user employs its secret key SKi to compute a
ciphertext based on the encryption algorithm of Shi et al. [17] and a homomorphic
tag on its sensitive data input. When the aggregator collects the ciphertexts and the
tags from all users, it computes the sum sumt of users’ data and a proof σ of correct
aggregation, and forwards the sum and the proof to the data analyzer. At the final step
of the protocol, the data analyzer verifies with the verification key VK and proof σ
the validity of the result sumt. Although the modification seems straightforward the
unforgeability proof for Type II Forgery turns out to be challening.

Thanks to the homomorphic encryption algorithm of Shi et al. [17] and the way in
which we construct our homomorphic tags, we show that our protocol ensures aggre-
gator obliviousness. Moreover, we show that the aggregator cannot forge bogus results.
Finally, we note that the data analyzer does not keep any state with respect to users
transcripts be it ciphertexts or tags, but only the public verification key, the sum sumt

and the proof σt.

4 PUA Instantiation

Let G1,G2,GT be cyclic groups of safe prime order p and g1, g2 generators of G1,G2

accordingly. We say that e is a bilinear map, if the following properties are satisfied:

1. bilinearity: e(ga1 , g
b
2) = e(g1, g2)ab, where g1, g2 ∈ G1 ×G2 and a, b ∈ Zp.

2. Computability: there exists an efficient algorithm that computes e(ga1 , g
b
2) where

g1, g2 ∈ G1 ×G2 and a, b ∈ Zp.

8 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

3. Non-degeneracy: e(g1, g2) 6= 1.

For encryption and result computation (Aggregate algorithm) we employ the dis-
crete logarithm based encryption scheme originated from Shi et al. scheme [17]:

4.1 Shi-Chan-Rieffel-Chow-Song Scheme

– Setup(1κ): Let G1 a subgroup of Zp of safe prime order p. A trusted key dealer
KD selects a hash functionH : {0, 1}∗ → G1 . Furthermore,KD selects uniformly
at random, secret encryption keys eki ∈ Zp. It distributes them to each user Ui and
it also sends to the Aggregator the secret key skA = −

∑n
i=1 eki.

– Encrypt(eki, xi,t): Each user Ui encrypts the value xi,t by using its secret encryp-
tion key eki in order to compute the ciphertext ci,t = H(t)ekig

xi,t

1 ∈ G1.
– Aggregate({ci,t}Ui∈U, {σi,t}Ui∈U, skA): The Aggregator upon receiving all

the ciphertexts {ci,t}ni=1 computes: V = (
∏n
i=1 ci,t) · H(t)skA =

H(t)
∑n

i=1 ekig
∑n

i=1 xi,t

1 · H(t)−
∑n

i=1 eki = g
∑n

i=1 xi,t

1 ∈ G1. Finally A learns the
sum sumt =

∑n
i=1 xi,t ∈ Zp by computing the discrete logarithm of V on the

base g1:sumt = logg1 V =
∑n
i=1 xi,t. The result computation is correct as long as∑n

i=1 xi,t < p.

4.2 PUA scheme

In what follows we describe our PUA protocol:

– Setup(1κ):KD outputs (p, g1, g2,G1,G2,GT) for an efficient computable bilinear
map e : G1 × G2 → GT , where g1 and g2 are two random generators for the
multiplicative groups G1 and G2 respectively and p is a safe prime number that
denotes the order of all the groups G1,G2 and GT . Moreover a secret key a is
selected by the KD. Each Ui selects and a random tag key tki ∈ Zp independently
and forwards gtki2 toKD.KD also publishes the verification key VK = (vk1, vk2) =

(g
∑n

i=1 tki
2 , ga2) and distributes to each user Ui ∈ U the secret key ga1 ∈ G1 through

a secure channel. Thus the secret keys of the scheme are SKi = (eki, tki, g
a
1).

After publishing the public parameters P = (H, p, g1, g2,G1,G2,GT) and the
verification key VK, KD goes off-line and it does not further participate in any
protocol phase.

– EncTag(t,SKi = (eki, tki, g
a
1), xi,t): At each time interval t each user Ui encrypts

the data value xi,t using its secret encryption key eki, with the encryption algorithm
as shown in subsection 4.1, that results in a ciphertext ci,t = H(t)ekig

xi,t

1 ∈ G1.
Ui also constructs a tag in G1 with its secret tag key (tki, g

a
1):

σi,t = H(t)tki(ga1)xi,t ∈ G1

and sends ci,t, σi,t to A.
– Aggregate(skA, {ci,t}Ui∈U, {σi,t}Ui∈U): The Aggregator computes the sum
sumt =

∑n
i=1 xi,t by using the Aggregate function as presented in subsection 4.1.

PUA – Privacy and Unforgeability for Aggregation 9

Moreover aggregates tags by computing:

σt =

n∏
i=1

σi,t =

n∏
i=1

H(t)tki(ga1)xi,t = H(t)
∑

tki(ga1)
∑
xi,t

It finally forwards to the data analyzer DA sumt and σt.
– Verify(VK = (vk1 = g

∑
tki

2 , vk2 = ga2), sumt, σt): During the verification phase
the DA verifies the correctness of the computation by checking:

e(σt, g2)
?
= e(H(t), vk1)e(gsumt

1 , vk2)

Verification correctness follows from bilinear pairing properties:

e(σt, g2) = e(

n∏
i=1

σi,t, g2) = e(

n∏
i=1

H(t)tkig
axi,t

1 , g2) =

e(H(t)
∑n

i=1 tkig
a
∑n

i=1 xi,t

1 , g2) = e(H(t)
∑n

i=1 tki , g2)e(g
a
∑n

i=1 xi,t

1 , g2) =

e(H(t), g2)
∑n

i=1 tkie(g1, g2)a
∑n

i=1 xi,t = e(H(t), g
∑n

i=1 tki
2)e(g

∑n
i=1 xi,t

1 , ga2) =

e(H(t), g
∑n

i=1 tki
2)e(gsumt

1 , ga2) = e(H(t), vk1)e(gsumt
1 , vk2)

5 Analysis

5.1 Obliviousness

Theorem 1. The proposed solution achieves obliviousness in the random oracle model
under the decisional Diffie-Hellman (DDH) assumption in G1.

Due to space limitations the proof of Theorem 1 can be found in Appendix A section.

5.2 Aggregate Unforgeability

We first introduce a new assumption that is used during the security analysis of our
PUA instantiation. Our new assumption named hereafter as LEMO is a variant of the
LRSW assumption which is proven secure in the generic model [18] and it used for
the construction of the CL signatures [8]. Intuitively we follow the generic model [18]
that has been used for other constructions also [5]. The new LEMO assumption extends
the LRSW assumption by incorporating another public key that is used to annihilate the
randomness in the second part of the authentication tag c. Moreover we introduce a sec-
ond index t that is used in order to control the randomness. I.e: the randomness βt that
is employed by the oracle OLEMO is reused for a message m queried with index t that
has already been queried. The purpose of this is to allow the homomorphic evaluation
of the sum in the exponent. At each query (i, t, x), if the index ind = (i, t) already
exists in the dictionary I− Dic: (i, t) ∈ I− Dic then OLEMO aborts. Otherwise when
(i, t) 3 I− Dic, there are three cases for the new index:

(i, t) =

(i′, t) : ctrt = ctrt + 1, I− Dic[i′, t], (α, βt, β

γi
t α

δx)

(i′, t′) : ctrt = 1, βt
$← Zp, (α, βt, βγit αδx), I− Dic.append((i′, t′) : βt)

(i, t′) : ctrt = 1, βt
$← Zp, (α, βt, βγit αδx), I− Dic.append((i, t′) : βt)

10 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

In the first case there is an index in I− Dic with i′ 6= i and t = t. The oracle increases
the counter ctrt by 1, fetches βt from the dictionary and responds with (α, βt, β

γi
t α

δx).
In the other two cases the query includes a t that was not part of any query before. The
oracle in both cases initializes the counter ctrt with 1, choses a random βt and stores
((i′, t′) : βt) for the second case and ((i, t′) : βt) for the third case to the dictionary.

Theorem 2. (LEMO Assumption) Let G be an algorithm that on input the security pa-
rameter κ outputs the parameters of a bilinear group as G=(G1,G2, g1, g2, p, e). For
a set of {U}ni=1 let X = gδ2, Y = g

∑n
i=1 γi

2 ∈ G2
2 for δ, γi ∈ Zp. Consider an oracle

OLEMO that on input a tuple (i, t, x) responds with (α, βt, β
γi
t α

xδ) for a uniformly at
random element α, βt ∈ Zp.

Then for all probabilistic polynomial time adversaries A the probability:

Pr[G← G(1κ); δ, γi ∈ Zp; (X = gδ2, Y = g
∑n

i=1 γi
2); (a, b, c)← AO(i,t,x) :

((i, t) 3 I− Dic)∧(x 6=
n∑
i=1

xi, t)∧(ctrt ≤ n)∧a = α∧b = βt∧c = βγit α
xδ] ≤ ε2(κ)

We first show in our analysis that a Type I Forgery implies a break of the BLS
signatures and next that a Type II Forgery implies a break of the LEMO assumption.

Theorem 3. Our scheme achieves Aggregate Unforgeability for a Type I Forgery un-
der co− CHD assumption in the random oracle model.

Theorem 4. Our scheme guarantees Aggregate Unforgeability for a Type II Forgery
under the LEMO assumption in the random oracle model.

Due to space limitations the secutity evidence of the LEMO assumption and proofs for
Theorem 2, 3 are deferred in Appendix B and C.

5.3 Performance Evaluation

In this section we analyze the extra overhead that is occured for the aggregate unforge-
ability property of our PUA instantiation scheme with respect to Shi et al. scheme [17]
which is used for encryption. First we consider a theoretical evaluation with respect to
the mathematical operations a participant of the protocol be it user, Aggregator or Data
Analyzer has to perform with respect to the verifiability transcripts. That is, the com-
putation of the tag by each user, the proof by the Aggregator and the verification of the
proof by the Data Analyzer. We also present an experimental evaluation that shows the
practicality of out scheme.

To allow the Data analyzer to verify the correctness of computations performed
by an untrusted Aggregator each user selects uniformly and at random a secret key
tki ∈ Zp. The key dealer distributes to each user ga1 ∈ G1 and publishes ga2 ∈ G2,
which calls for two exponentiations: one in G1 and one in G2. At each time interval
t each user computes σi,t = H(t)tki(ga1)xi,t ∈ G1, which entails one hash evaluation
, two exponentiations and one multiplication in G1. For the computation of the σt the

PUA – Privacy and Unforgeability for Aggregation 11

Participant Computation Com.

User 2 EXP+1MUL+1HASH 2 · l
Aggregator (n− 1)MUL 2 · l
Data Analyzer 3PAIR+1 EXP+1MUL+1HASH -

Table 1: Performance of tag computation, proof construction and verification operations. l denotes the bit-size of the prime
number p.

XXXXXXXOperation
Pairings

MNT159 MNT201 MNT224

Tag 1.2ms 1.8ms 2.2ms
Verify 28.3ms 42.7ms 53.5ms

Table 2: Computational cost of PUA operations with re-
spect to different pairings.

XXXXXXXOperation
Curve

MNT159 MNT201 MNT224

HASH in G1 0.139ms 0.346ms 0.296ms
HASH in G2 25.667ms 41.628ms 48.305ms
MUL in G1 0.004ms 0.0006ms 0.006ms
MUL in G2 0.040ms 0.051ms 0.054ms
MUL in GT 0.012ms 0.015ms 0.016ms
EXP in G1 0.072ms 0.092ms 0.099ms
EXP in G2 0.615ms 0.757ms 0.784ms
PAIR 7.077ms 10.674ms 13.105ms

Table 3: Average computation overhead of the underlying
mathematical group operations for different type of curves.

Aggregator is involved in n − 1 multiplications in G1 :
∏n
i=1 σi,t. Finally the data an-

alyzer verifies by checking the equality: e(σt, g2)
?
= e(H(t), vk1)e(gsumt

1 , vk2), which
asks for three pairing evaluations, one hash in G1, one exponentiation in G1 and one
multiplication in GT (see table 1). The efficiency of PUA stems from the constant time
verification with respect to the size of the users. This is of crucial importance since the
Data Analyzer may not own computational power. In contrast the Aggregator’s proof
is linear on the number users n, but since the Aggregator is modeled as a powerful
machine this does not entails efficiency barriers.

We implemented the verification functionalities of PUA with the Charm cryp-
tographic framework [1, 2]. For pairing computations it inherits the PBC [16] library
which is also written in C. All of our benchmarks are executed on Intel Core i5 CPU M
560 @ 2.67GHz× 4 with 8GB of memory, running Ubuntu 12.04 32bit. Charm uses 3
types of asymmetric pairings: MNT159, MNT201, MNT224. We run our benchmarks with
these three different types of asymmetric pairings. The timings for all the underlying
mathematical group operations are summarized in table 3. There is a vast difference on
the computation time of operations between G1 and G2 for all the different curves. The
reason is the fact that the bit-length of elements in G2 is much larger than in G1.

As shown in table 2 the tag σi,t computation implies a computation overhead at a
scale of milliseconds with a gradual increase as the bit size of the underlying elliptic
curve increases. The data analyzer is involved in pairing evaluations and computations
at the target group independent of the size of the data-users.

6 Related Work

In [9], authors proposed a solution which is based on homomorphic message authen-
ticators in order to verify the computation of generic functions on outsourced data.
Each data input is authenticated with an authentication tag. A composition of the tags

12 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

is being computed by the cloud in order to evaluate a program which takes as input
a function f and a set of tags. Thanks to the homomorphic properties of the tags
the user can verify the correctness of the program. The main drawback of the solu-
tion is that the user in order to verify the correctness of the computation has to be
involved in computations that take exactly the same time as the computation of the
function f . Backes et al. [3] proposed a generic solution for efficient verification of
bounded degree polynomials in time less than the evaluation of f . The solution is
based on closed form efficient pseudorandom function PRF . In a nutshell the idea of
closed form efficient PRF which has been first introduced in [4] is the following: as-
sume that the computation of a function f(r1, . . . , rn, d1, . . . , dn) takes computational
time t proportional to n. Then the knowledge of a key K for a pseudorandom function
FK can evaluates f(r1 = FK(L1), . . . , rn = FK(Ln), d1, . . . , dn) in time less than t. Con-
trary to our solution both solutions do not provide individual privacy. In the multi-user
setting, Choi et al. [12] proposed a protocol in which multiple users are outsourcing
their inputs to an untrusted server along with the definition of a functionality f . The
server computes the result in a privacy preserving manner without learning the result
and the computation is verified by a user that has contributed to the function input. The
users are forced to operate in a non-interactive model, whereby they cannot communi-
cate with each other. The underlying machinery entails a novel proxy based oblivious
transfer protocol, which along with a fully homomorphic scheme and garbled circuits
allows for verifiability and privacy.

Catalano et al. [11] employed a nifty technique to allow single users to verify com-
putations on encrypted data. The idea is to re-randomize the ciphertext and sign it with
a homomorphic signature. Computations then are performed on the randomized cipher-
text and the original one. However the aggregate value is not allowed to be learnt in
cleartext by the untrusted aggregator since the protocols are geared for cloud based
scenarios.

7 Concluding Remarks

In this paper we designed and analyzed a protocol for private and unforgeable aggre-
gation. First we modeled its security and privacy requirements. In this setting a set of
trustworthy users submits data coupled with unforgeable tags. The purpose of the pro-
tocol is to allow a data analyzer to verify the correctness of computation performed
by a malicious Aggregator, without being able to discover the underlying data. The
challenge of the verification in aggregation protocols that we tackled with the PUA
protocol is the fact that the privacy from the authentication tags is guaranteed in a non-
interactive multi-user setting. Our PUA instantiation allows for public verifiability in
constant time and is provable secure under the DDH, co− CHD and the new LEMO
assumption in bilinear pairing groups in the random oracle model.

Bibliography

[1] J. A. Akinyele, M. Green, and A. D. Rubin. Charm: A tool for rapid cryptographic
prototyping. http://www.charm-crypto.com/Main.html.

PUA – Privacy and Unforgeability for Aggregation 13

[2] J. A. Akinyele, M. Green, and A. D. Rubin. Charm: A framework for rapidly
prototyping cryptosystems. IACR Cryptology ePrint Archive, 2011:617, 2011.
http://eprint.iacr.org/2011/617.pdf.

[3] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In ACM Conference on Computer and Communications Security,
pages 863–874, 2013.

[4] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In CRYPTO, pages 111–131, 2011.

[5] D. Boneh and X. Boyen. Short signatures without random oracles and the sdh
assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

[7] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’01,
pages 514–532, London, UK, UK, 2001. Springer-Verlag.

[8] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August 15-
19, 2004, Proceedings, pages 56–72, 2004.

[9] D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In
EUROCRYPT, pages 336–352, 2013.

[10] D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient
verification for polynomial functions. In Advances in Cryptology–CRYPTO 2014,
pages 371–389. Springer Berlin Heidelberg, 2014.

[11] D. Catalano, A. Marcedone, and O. Puglisi. Authenticating computation on
groups: New homomorphic primitives and applications. In Advances in Cryp-
tology - ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, pages 193–212, 2014.

[12] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifi-
able computation. In Proceedings of the 10th Theory of Cryptography Conference
on Theory of Cryptography, TCC’13, pages 499–518, Berlin, Heidelberg, 2013.
Springer-Verlag.

[13] D. M. Freeman. Improved security for linearly homomorphic signatures: A
generic framework. In Public Key Cryptography - PKC 2012 - 15th International
Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Ger-
many, May 21-23, 2012. Proceedings, pages 697–714, 2012.

[14] M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of
time-series data. In Financial Cryptography, 2013.

[15] I. Leontiadis, K. Elkhiyaoui, and R. Molva. Private and dynamic time-series data
aggregation with trust relaxation. In Cryptology and Network Security - 13th
International Conference, CANS 2014, Heraklion, Crete, Greece, October 22-24,
2014. Proceedings, pages 305–320, 2014.

[16] B. Lynn. The stanford pairing based crypto library. http://crypto.
stanford.edu/pbc.

14 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

[17] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving
aggregation of time-series data. In NDSS, 2011.

[18] V. Shoup. Lower bounds for discrete logarithms and related problems. In Ad-
vances in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, pages 256–266, 1997.

A Obliviousness

Theorem 1. The proposed solution achieves obliviousness in the random oracle model
under the decisional Diffie-Hellman (DDH) assumption in G1.

Proof. Assume there is an aggregator A which breaks the obliviousness of the PUA
scheme with a non-negligible advantage ε. We build in what follows an adversaryB who
uses A as a subroutine to break the aggregator obliviousness of the private streaming
aggregation (PSA) protocol presented in [17], which is guaranteed under DDH. Without
loss of generality we call the oracles that the adversary B has access to from the PSA
scheme as follows: OPSA

Setup, OPSA
Corrupt, OPSA

Encrypt, and OPSA
AO .

We consider in PSA as in PUA that there are n users Ui and each one of these users
possesses a secret encryption key eki. In the following, we show how an adversary
B simulates the aggregator obliviousness game presented in Algorithms 1 and 2 to
aggregator A and how therewith breaks the aggregator obliviousness of PSA.
Learning phase: In the learning phase, adversary B proceeds as following: Whenever
A calls oracle OSetup with a security parameter κ, B queries oracle OPSA

Setup with the
same security parameter. Oracle OPSA

Setup in turn outputs the public parameters that are
composed of a hash function H : {0, 1}∗ → G1, a generator g1 of the group G1 of
safe prime order p, and the aggregator’s secret key SKA = −

∑n
i=1 eki. B then selects

the parameters of a bilinear pairing e : (g1, g2,G1,G2,GT). B chooses uniformly at
random a, {ri}Ui∈U such and defines the verification key VK as follows:

VK = (g
aSKA+

∑n
i=1 ri

2 , ga2) = (g
a
∑n

i=1 eki+
∑n

i=1 ri
2 , ga2) = (g

∑n
i=1 aeki+ri

2 , ga2)

This entails that tki is defined as: aeki + ri. Finally B forwards to A the public
parameters:P = (H, p, g1, g2,G1,G2,GT), the verification keys VK = (g

∑n
i=1 tki

2 , ga2)
and the secret key of the Aggregator skA.

Whenever A calls oracle OCorrupt with a user’s identifier uidi, B relays the query
uidi to OPSA

Corrupt of the PSA scheme which in turns outputs the secret encryption key eki
of user Ui. B then returns secret key SKi = (eki, tki) = (eki, aeki + ri).

Whenever A calls oracle OEncTag with query (t, uidi, xi,t), B forwards
the query to the OPSA

Encrypt oracle which returns the appropriate ciphertext
ci,t = H(t)ekig

xi,t

1 . B computes then the tag associated with ciphertext ci,t as
σi,t = (ci,t)

aH(t)ri = H(t)aeki+rig
axi,t

1 = H(t)tkig
axi,t

1 and transmits toA ciphertext
ci,t and tag σi,t.

PUA – Privacy and Unforgeability for Aggregation 15

Challenge phase: In the challenge phaseA chooses a set of users S∗ that have not been
corrupted during the learning phase and a time interval t∗ for which A did not make a
query to oracle OEncTag. A then submits two time-series X ∗0 = (Ui, t∗, x0i,t∗)Ui∈S∗ and
X ∗1 = (Ui, t∗, x1i,t∗)Ui∈S∗ such that

∑
x0i,t∗ =

∑
x1i,t∗ to OAO oracle. B simulates this

oracle as follows:

It forwards the series X ∗0 and X ∗1 to OPSA
AO which chooses uniformly at random a

bit b $←{0, 1} and returns to B the ciphertexts {cbi,t∗}Ui∈S∗ encrypting time-serie X ∗b .

Next, B constructs for all Ui in S∗ the tag σbi,t∗ corresponding to ciphertext cbi,t∗
by computing:

σbi,t∗ = (cbi,t)
aH(t∗)ri = (H(t∗)ekig

xb
i,t∗

1)aH(t∗)ri = H(t∗)aeki+rig
axb

i,t∗

1 = H(t∗)tkig
axb

i,t∗

1

Note that σbi,t∗ corresponds to a correctly computed tag for input xbi,t∗ . Finally, B
forwards to A {(cbi,t∗ , σbi,t∗}Ui∈S∗ . At this point, the simulated view of aggregator A
is computationally indistinguishable to its view in an actual aggregator obliviousness
game as defined in Algorithms 1 and 2. This leads to correct verification of the sum
computed by A, more precisely:

e(
∏
i∈S∗

σbi,t∗ , g2) = e(

n∏
i=1

H(t∗)tkig
axb

i,t∗

1 , g2) =

e(H(t∗), g
a
∑n

i=1 eki+
∑n

i=1 ri
2)e(g

∑n
i=1 x

b
i,t∗

1 , ga2) = e(H(t∗), vk1)e(g
∑n

i=1 x
b
i,t∗

1 , vk2)

It follows that if aggregator A is able to output a correct guess b∗ for the bit b with
a non-negligible advantage ε (i.e. is able to break the aggregator obliviousness of our
scheme), then B will break the aggregator obliviousness of the PSA scheme with same
non-negligible advantage ε by outputting the guess b∗.

As such PSA scheme ensures aggregator obliviousness under the DDH assumption in
G1, we can conclude that our scheme also ensures aggregator obliviousness as long as
DDH holds in G1.

B Security evidence for the LEMO Assumption

In this section we provide security evidence for the hardness of the new LEMO assump-
tion by presenting bounds on the success probabilities of an adversary A who presum-
ably breaks the assumption. We follow the theoretical generic group model (GGM) as
presented in [18]. Namely under the GGM framework an adversary A has access to a
black box that conceptualizes the underlying mathematical group G that the assump-
tion takes place. A without knowing any details about the underlying group apart from
its order p is asking for encodings of its choice and the black box replies through a
random encoding function ξ that maps elements from to G → Ξ as random bit strings
of size dlog2 qe. Since our construction operates on asymmetric bilinear pairing groups
G1,G2,GT we make use of three random encoding functions ξc, c ∈ [1, 2, T] where
ξc : Gc → {0, 1}dlog2 qe.

16 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

Theorem 2. Suppose A is a polynomial probabilistic time adversary that solves the
LEMO assumption, making at most qG oracle queries for the underlying group opera-
tions on G1,G2,GT and the OLEMO(i, t, x) oracle, all counted together. All the encod-
ings ξc, c ∈ [1, 2, T] and δ, {γu}nu=1 ∈ Zp are chosen at random. Then the probability
ε2 that A on input (p, ξ1(1), ξ2(1), ξ1(a), ξ1(b), ξ1(c), ξ2(δ), ξ2(

∑n
i=1 γi)) to output a

tuple (ξ1(a), ξ1(b), ξ1(cf = ξ1(βt
∑n
u=1 γu+αδ

∑n
u=1 xu,t))) for which neither exists

a query for u′ = u, t′ = t ∧ xu′,t′ 6= xu,t nor A has made more than n distinct queries
for a fixed time interval t, is bounded as:

ε2 ≤
(qG + 12)2

p

.

Proof. We assume a polynomial time simulator B that interacts with adversary A and
simulates the black box for the underlying groups G1,G2,GT . B maintains 3 lists of
tuples:

– L1 = {(F1,i, ξ1,i) : i = 1, · · · , τ1}
– L2 = {(F2,i, ξ2,i) : i = 1, · · · , τ2}
– LT = {(FT,i, ξT,i) : i = 1, · · · , τT }

where F1,i, F2,i ∈ Zp[A,B, {Γu}nu=1, ∆,X] are multivariate polynomial on the in-
determinants A,B, {Γu}nu=1, ∆,X of degree 1 and FT,ia multivariate polynomial of
degree at most 2. The random encodings ξc,i, c ∈ [1, 2, T] of each list Lc, c ∈ [1, 2, T]
are provided to the adversary A at each step τ , where τ = τ1 + τ2 + τT + 4. The
lists are initialized at step τ = 0 by setting τ1 = 1, τ2 = 3, τT = 0 and assigning
F1,1 = 1, F2,1 = 2, F2,2 =

∑n
u=1 Γu, F2,3 = ∆ that corresponds to the generators

g1.g2 and the public information g
∑n

u=1 γu
2 , gδ2 . A has access to the random encodings

ξ1,1, ξ2,1, ξ2,2, ξ2,3 respectively.
In what follows we describe how B simulates the groups operations in G1,G2,GT

and the oracle responses to OLEMO. We first assume that before A queries the ora-
cle or asks for group operations it has already asked for the random encodings of
the involved elements of the operations. Consequently when A asks for operations in
Gc, c ∈ [1, 2, T] for some operands ξc, c ∈ [1, 2, T], B checks if ξc, c ∈ [1, 2, T] already
exists in Lc, c ∈ [1, 2, T] and aborts if this happens.

– Group operations: A provides B two operands ξc,1, ξc,2, c ∈ [1, 2, T] and a bit
defining multiplication or division. B starts by incrementing τc+ = 1, c ∈ [1, 2, T].
It the computes F1,τc = F1,i + F1,j , where 1 ≤ i, j ≤ τc if the operation bit is for
multiplication or Fc,τc = F1,i−F1,j , where 1 ≤ i, j ≤ τc if it is for division. If the
new polynomial Fc,τc is equal with another polynomial Fc,l for some l ≤ τc, c ∈
[1, 2, T] in list Lc, c ∈ [1, 2, T] then B fetches the corresponding ξc,l and forwards
it to A, otherwise it choses a fresh random ξc,τc ∈ {0, 1}log2 q and gives it to A. B
finally appends to Lc, c ∈ [1, 2, T] the pair (Fc,τc , ξc,τc), c ∈ [1, 2, T].

– Pairing: A pairing operation in GT consists of two random encodings ξ1,i, ξ2,j with
1 ≤ i ≤ τ1 and 1 ≤ j ≤ τ2. B first increments the counter τT+ = 1. Afterwards it
computes the pairing as the multiplication of the appropriate polynomials: FT,τT =

PUA – Privacy and Unforgeability for Aggregation 17

F1,τ1 ·F2,τ2 . If the same polynomial already exists inLT : FT,τT = FT,l, 1 ≤ l ≤ τT
then B clones the random string ξT,l, otherwise it choses a fresh random ξT,τT ∈
{0, 1}log2 q and gives it to A. B finally appends to LT the pair (FT,τT , ξT,τT).

– OLEMO: B increments a counter τO by 1 and sets τ1+ = 3. A in-
puts (u, t, xu,t). B computes the polynomials F1,τ1−2

= At, F1,τ1−1
=

At(Y), F1,τ1 = (BΓu + A∆X) for the indeterminants B,Γu, A,∆,X . If any of
the F1,τ1−2 , F1,τ1−1 , F1,τ1 already exist in L1 then B clones the associated random
encodings ξ1,l for some l ∈ [1, · · · , τ1]. Otherwise it creates three random encod-
ings ξ1,τ1−2

, ξ1,τ1−1
, ξ1,τ1 ∈ {0, 1}log2 q and forwards them to A. It also stores the

pairs (F1,τ1−2
, ξ1,τ1−2

), (F1,τ1−1
, ξ1,τ1−1

), (F1,τ1 , ξ1,τ1) in L1 list.

Eventually A outputs a forgery (mf , ξ1,fa, ξ1,fy, ξ1,fxy).Let F1,fa, F1,fx, F1,fxy

be the corresponding polynomials in L1 list. If A’s forgery is valid then it must hold:

Ff =
∏

ct · F2,1 − βt · F2,2 − F1,1

∑
xu · F2,3 = 0 (1)

which corresponds to e(
∏
ct, g2) − e(βt, g

∑n
u=1 γu

2)e(a
∑n

u=1mu , gδ2) = 0 ∈ GT .
We show now that this does not happen always. Indeed w.l.g we have the following
form for each polynomial in the three lists:

– F1,i = z0,i + z1,ihΓu,i + z2,iA∆X
– F2,i = w0,i + w1,i∆+ w2,iE
– FT,i = y0,i + η1,i∆hΓu,i + η2,iEhΓu,i + ρ1,iA∆

2X + ρ2,iA∆XE

Equation (1) following the aforementioned presentation of each polynomial can be
rewritten as

Ff = FT,k − FT,lFT,o (2)

for indexes k, l, o. Simplifying the equation, since it is equal to 0, then the second part
consists of a polynomial with determinants (∆Γ)2, (EΓ)2, A∆4X2, (A∆XE)2 and
the first part with determinants (∆Γ,EΓ,A∆2X,A∆XE). Since there are no common
terms, then all are canceled out and we are left with y0,k = y0,ly0,o. As such Ff = 0
only when y0,k = y0,ly0,o.
B assigns random values (α, β, γ, δ, x) for the indeterminants A,B, Γ,∆,X and in

order for A to win in the game, it should find two identical polynomial in any of the
lists L1,L2,LT or Ff = 0. As such the success probability of A is bounded by the
probability that one at least of the following equations holds:

1. F1,i(α, β, γ, δ, x)− F1,j(α, β, γ, δ, x) = 0 : i 6= j
2. F2,i(α, β, γ, δ, x)− F2,j(α, β, γ, δ, x) = 0 : i 6= j
3. FT,i(α, β, γ, δ, x)− FT,j(α, β, γ, δ, x) = 0 : i 6= j
4. Ff,i(α, β, γ, δ, x)− Ff,j(α, β, γ, δ, x) = 0 : i 6= j

F1,i, F2,i are of degree 1 as such they vanishe with probability at most 1
p and FT,i of

degree 2, which respectively vanishes with probability at most 2
p from the Schwartz-

Zippel theorem. As such summing for all possible pairs i, j for each of the aforemen-
tioned polynomials the success probability of A is bounded by:

ε2 ≤
(
τ1
2

)
1

p
+

(
τ2
2

)
1

p
+

(
τT
2

)
2

p
+

4

p
≤ (τ1 + τ2 + τT + 8)2

p

18 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva, Melek Önen

As τ1 + τ2 + τT ≤ qG + 4 then ε2 ≤ (qG+12)2

p

C Aggregate Unforgeability

Theorem 3. Our scheme achieves Aggregate Unforgeability for a Type I Forgery un-
der co− CHD assumption as in BLS signatures [7] in the random oracle model.

Proof. (Sketch) The tag σi,t can be simulated with the BLS signatures for a Type I
Forgery in which A never queried the OAEncTag oracle. We only depict here the idea
of the reductionist proof since it is straightforward. We construct an adversary B, who
emulates the PUA oracles by communicating with the BLS challenger. In a nutshell,
when A submits a valid forgery, B can strip off the extra randomness of gasumt

′

1 and
responds to the BLS challenger with σt/gasumt

′

1 = H(t)tki which is a valid forgery
for the message t. B also chooses secret encryptions keys {eki}ni=1 and constructs the
ciphertext as ci,t = H(t)ekig

xi,t

1 . It also sends to A the secret decryption key skA =∑n
i=1 eki. As such the probability of A to output a Type I Forgery is Pr[AAU1] ≤ ε1

for a negligible function ε1.

Theorem 4. Our scheme guarantees Aggregate Unforgeability for a Type II Forgery
under the LEMO assumption in the random oracle model.

Proof. TheOAEncTag oracle behaves equivalently as the oracle in the LEMO assumption.
B chooses secret encryptions keys {eki}ni=1 and sends to A the secret decryption key
skA =

∑n
i=1 eki. For queries (i = uid, t, x) to the OAEncTag oracle the simulator B

returns the responses c = βγit α
xδ from the O(i, t, x) oracle for a random message x as

a tag and constructs the ciphertext as ci,t = H(t)ekig
xi,t

1 . For a random oracle query
H(t) the simulator B queries the OLEMO with input (j 3 U , t, x $← Zp) which replies
with (a = α∧ b = βt ∧ c = βγit α

xδ) and forwards toA b = βt. Thus the probability of
A to output a Type II Forgery is Pr[AAU2] ≤ ε2 for a negligible function ε2 and our
scheme guarantees Aggregate Unforgeability for a Type II Forgery under the LEMO
assumption in the random oracle model.

To conclude with the analysis the success probabilities for the Aggregate Unforgeability
game Pr[AAU], are taken over the union of the success probabilities for the two type
of forgeries. As such

Pr[AAU] = Pr[AAU1] + Pr[AAU2] ≤ ε1(κ) + ε2(κ)

where ε1 and ε2 are negligible functions.

