
Sanctum: Minimal RISC Extensions for Isolated Execution
Victor Costan, Ilia Lebedev, and Srinivas Devadas

MIT CSAIL

June 8, 2015

ABSTRACT

Sanctum is a set of minimal extensions to a standard
RISC architecture that offers strong provable isolation
of software modules running concurrently and sharing
resources. Sanctum is similar to SGX in its API, but
protects against an important class of additional soft-
ware attacks, including cache timing and memory access
pattern attacks. It does so via a principled approach to
eliminating entire attack surfaces through isolation rather
than plugging attack-specific privacy leaks.

Sanctum’s hardware changes over a standard RISC
architecture do not impact the cycle time, as they do not
extend critical execution paths. Sanctum does not change
any major CPU building block (e.g., ALU, MMU, cache),
and only requires additional hardware at the interfaces
between these building blocks corresponding to less than
two percent chip area overhead. Over a set of bench-
marks, Sanctum’s worst observed overhead for isolated
execution is 14.6% over an idealized insecure baseline.

1 MOTIVATION

Between the Snowden revelations and the seemingly
unending series of high-profile hacks of the past few
years, the public’s confidence in software systems has
decreased considerably. At the same time, key initiatives
such as cloud computing and the IoT (Internet of Things)
require users to trust the systems providing these services.
We must therefore develop capabilities to build software
systems with better security, and gain back our users’
trust.

1.1 The Case for Hardware-Assisted Isolation
Formal software verification produces provably bug-free
software, but carries a prohibitively large cost. For ex-
ample, the seL4 formal verification effort [1], spent 20
man-years to cover 9,000 lines of code. For comparison,
the Linux 3.10 kernel has over 17 million lines of code
[2], while the Xen hypervisor has around 150,000 lines
of code [3].

The amount of code that requires formal verification
in a system can be reduced by modularizing the system

and applying information flow control techniques that
reduce the number of modules that can be impacted by
a compromised module. For example, Quark [4] is a se-
cure browser whose security argument relies on a small
formally verified kernel, and information flow control
between modules. Quark was able to avoid formally ver-
ifying its rendering engine (WebKit), which has millions
of lines of code.

Fundamentally, all information flow control assumes
a trusted method for isolating modules in a system, such
as the process abstraction enforced by the OS kernel.
This assumption breaks down when an attacker com-
promises privileged software such as the kernel or hy-
pervisor. Unfortunately, in each of the last three years
(2012-2014), over 100 security vulnerabilities were dis-
covered in Linux [5, 6], and over 40 in Xen [7]. Given
the dire prospects for applying formal verification to soft-
ware like Linux and Xen, we must design systems with
the expectation that the hypervisor and kernel can and
will be compromised by motivated attackers.

SecureBlue++ [8] and Intel Software Guard Exten-
sions (SGX) [9, 10] have shown that we can avoid trust-
ing a hypervisor or OS kernel, as long as we’re willing to
trust the hardware support for isolation built into a CPU.

1.2 A Call for Trustworthy Trusted Hardware
Relying on hardware (such as an SGX-enabled proces-
sor) for isolation eliminates the hypervisor and OS kernel
from a system’s trusted code base (TCB), but includes
into the TCB the hardware and microcode that imple-
ments the CPU’s isolation mechanism. A vulnerability
in this complex hardware may trivially undermine the
security of the entire system. Thus, a rigorous security
analysis of a system must account for both the software
and the hardware in the TCB. Unfortunately, a system
whose TCB includes black-box hardware with opaque
microcode precludes any security analysis.

For example, while SGX provides some isolation from
a malicious OS or hypervisor, it does not aim to pro-
tect the enclave software’s memory access patterns [11].
Cache timing attacks (§ 3.1) are summarily bundled and

1

dismissed together with other side-channel attacks, such
as power consumption analysis, which require physical
access to the computer running the victim software.

Alarmingly, cache timing attacks require only unpriv-
ileged software running on the victim’s host computer,
and do not rely on any physical access to the machine.
This is particularly concerning in a cloud computing sce-
nario, where gaining software access to the victim’s com-
puter only requires a credit card [12], whereas physical
access is a harder prospect, requiring tresspass, coercion,
or social engineering on the cloud provider’s employees.

If the SGX successor claimed to protect against cache
timing attacks, substantiating such a claim would require
an analysis of its hardware and microcode, and ensur-
ing that no implementation detail is vulnerable to cache
timing attacks. Barring a highly unlikely shift to open-
source hardware from Intel, such analysis will simply
never happen.

Fortunately, the architecture research community has
also produced open processor designs. For example, the
Rocket Chip generator [13] is completely open-source,
and implements the RISC V [14, 15] open ISA. Extend-
ing a Rocket Chip with hardware support for software
module isolation yields a system whose entire TCB is
public and can be freely scrutinized by the research com-
munity.

2 OVERVIEW

This paper presents Sanctum, a minimal set of architec-
tural extensions that can be used to implement isolated
execution containers that provide meaningful security
guarantees against software attacks. We call our contain-
ers enclaves, to reflect the similarity with SGX’s isolated
execution containers.

Sanctum aims to present the same model as SGX to
software developers. Programmers are expected to sep-
arate applications into sensitive modules, decrypting a
patient’s X-ray and executing an image processing al-
gorithm, for example, and non-sensitive modules, such
as receiving encrypted X-ray images over the network
and storing the encrypted images in a database. An ap-
plication’s sensitive modules must be executed within
enclaves to have guarantees of isolation from the rest of
the software running on the machine.

An enclave has the same memory access privileges
as its host application, and is therefore confined by the
isolation barriers set up by the OS kernel. Enclaves
cannot make direct system calls; enclave code must be
linked against a Sanctum-aware standard library (akin to

User

Supervisor

Hypervisor

Machine

Hypervisor

Host Application
Enclave

Security Monitor
Measurement Root

Enclave multiplexing

Operating System

Enclave management

Enclave syscall shims Sanctum-aware runtime
Non-sensitive code and data Sensitive code and data

Enclave setup

Figure 1: The software stack in a Sanctum environment

libc for C programs) that relies on the host application
to proxy operating system calls such as filesystem and
network I/O requests.

Figure 1 shows how enclaves fit in a computer’s soft-
ware stack. Sanctum replaces SGX’s undocumented
microcode with a trusted software security monitor that
can be read, and even replaced, by the machine owner.
The monitor enforces software isolation in Sanctum, and
runs at the highest privilege level, so that it cannot be
attacked by a compromised OS or hypervisor.

Our design preserves the operating system’s role as
the manager of computer resources. The OS makes mem-
ory and CPU core allocation decisions, and the security
monitor confines enclaves to the resources assigned to
them by the OS.

Sanctum is compatible with hypervisors, which are
expected to multiplex the enclave-related API calls made
by their guest OSes. Furthermore, hypervisors can use
Sanctum’s cache isolation primitive, the DRAM region,
to protect against cross-VM cache timing attacks [16].

For simplicity, the rest of this paper uses the term
operating system to refer to the system software that
manages the computer’s resources, whether it is an OS
kernel or a hypervisor.

2.1 Protection Boundaries
Sanctum’s isolation protects the privacy and integrity of
an enclave’s software, even in the face of a malicious
operating system. We improve upon SGX by isolating
the cache sets and page tables used to access an enclave’s
private memory. The improved isolation defeats attacks
that exploit the memory access pattern information leaks
that result from cache and page table sharing.

Our isolation is also stronger than SGX’s with respect
to fault handling. While SGX sanitizes the information
that an OS receives during a fault, we achieve full isola-

2

tion by having the security monitor route the faults that
occur inside an enclave to that enclave’s fault handler.
This removes all information leaks via the fault timing
channel.

Strong isolation in Sanctum allows us to give software
developers a simple model for reasoning about applica-
tions: all computation that executes inside an enclave,
and only accesses data inside the enclave, is protected
from any attack mounted by software outside the enclave.
All communication with the outside world, including
accesses to non-enclave memory, is subject to attacks.

We assume that the Sanctum-aware standard library
linked with an enclave implements the security measures
needed to protect the enclave’s communication with other
software modules. For example, any algorithm’s memory
access patterns can be protected by ensuring that the
algorithm only operates on enclave data. The library can
implement this protection simply by copying any input
buffer from non-enclave memory into the enclave before
computing on it.

2.2 Threat Model

Sanctum protects the integrity and privacy of the code
and data inside an enclave against an adversary that can
carry out any practical software attack. We assume that
an attacker can compromise the operating system and
hypervisor (if present) on the computer executing the
enclave, and can launch rogue enclaves. We assume
that the attacker has access to all the architectural and
micro-architectural implementation details of the target
computer. Our attacker can use this knowledge to both
analyze passively collected data, such as the information
provided when a fault occurs, and mount active attacks,
such direct memory probing, memory probing via DMA
transfers, and cache timing attacks.

Sanctum also protects the operating system against an
attacker who can compromise an application and cause it
to ask the OS to execute malicious code inside an enclave.
This should alleviate current concerns that malware will
become unstoppable once it finds it way inside an enclave
[17, 18].

Lastly, Sanctum protects against a malicious infras-
tructure owner who modifies a security monitor, loads
the modified version into a computer, and then attempts
to either obtain the attestation key for the original secu-
rity monitor, or attempts to convince a third party that
the computer runs the unmodified monitor via the attes-
tation process. The infrastructure owner is allowed to
run any combination of hypervisor, operating system,

applications and malicious enclaves.
We do not prevent timing attacks that exploit limited

cache coherence directory bandwidth or limited DRAM
bandwidth. We defer protection against these attacks to
future work.

Sanctum does not protect against denial-of-service
(DoS) attacks carried out by compromised system soft-
ware, as malicious system software may deny service
by refusing to allocate any resources to an enclave. We
do protect against DoS attacks carried out by malicious
enclaves against an uncompromised OS, as the operating
system is always able to take away all CPU cores from
an enclave, and then delete the enclave.

We assume a correct implementation of the underlying
hardware, so we do not protect against software attacks
that exploit hardware bugs, such as rowhammer [19, 20]
and other fault-injection attacks.

Sanctum’s isolation mechanisms exclusively target
software attacks. In Section 3, we note related work
that can harden a Sanctum implementation against some
types of physical attacks. Furthermore, we consider soft-
ware attacks that rely on access to sensor readings as
physical attacks. For example, we are not concerned
with information leakage due to power consumption vari-
ations, because software would require a temperature or
current sensor to carry out such an attack.

2.3 Security Primitives

Sanctum uses strong isolation to defeat information leaks.
Enclaves that execute concurrently on different cores are
isolated in the last-level cache (LLC) using a simple par-
titioning scheme (§ 4.1). Page table sharing is removed
by having each enclave map its physical memory with
its own page tables (§ 4.2). We achieve isolation in pri-
vate caches, such as TLBs and the L1 caches, by having
the security monitor flush these caches on each context
switch that involves an enclave.

Our hardware modifications target the DMA master
(§ 4.4) and the interfaces to the last-level cache (LLC)
(shown in Figure 2), as well as the interfaces between
the memory management unit’s (MMU) page walker, the
translation lookaside buffers (TLBs), and the L1 data
cache (shown in Figure 3). The changes are so small that
we present the corresponding circuits, in their entirety, in
Figures 7 and 8 .

We interpose on the interface between the LLC and
the core-private caches to tweak the mapping between
physical addresses and LLC sets, so that the computer’s
DRAM is split into many equal-sized regions, and the

3

CPU Die
Tile

Core

L1 Cache

LLC
LLC Cache

Slice
LLC Cache

Slice
LLC Cache

Slice
LLC Cache

Slice

Coherence
Manager

Coherence
Manager

TileLinkIO Network

Coherence
Manager

Coherence
Manager

Cache
Address
Shifter

Tile

Core

L1 Cache

Cache
Address
Shifter

Tile

Core

L1 Cache

Cache
Address
Shifter

Tile

Core

L1 Cache

Cache
Address
Shifter

TileLinkIO to MemIO Converter

Cache
Address

Un-Shifter

Cache
Address

Un-Shifter

Cache
Address

Un-Shifter

Cache
Address

Un-Shifter

DMA
Transfer

Filter

Cached
TileLinkIO

Device

Cache
Address
Shifter

Memory Controller DRAM

Figure 2: Sanctum’s cache address shifter and DMA transfer filter
logic in the context of a RISC V Rocket uncore

addresses in each DRAM region use distinct LLC sets
(§ 4.1). We augment the interface between the TLBs
and the MMU page walker with registers supporting per-
enclave page tables (§ 4.2), and we add some logic to the
interface between the page walker and the L1 cache to
provide a method for constraining a page table to a set
of DRAM regions (§ 4.3). We modify the DMA master
to reject DMA transfers that fall outside a safe range of
memory addresses set by the security monitor (§ 4.4).

We authenticate enclaves using the same principles as
earlier secure processors such as Aegis [21] and SGX.
Each Sanctum processor has an asymmetric key pair,
and a certificate from the manufacturer for its public key.
After an enclave is started, it can obtain an attestation
intended to convince a remote party that it is communi-
cating to that specific enclave running in a trusted envi-
ronment. The attestation is a signature chain that starts
at the manufacturer’s trusted root key, and ends with a
signature that covers the remote party’s challenge nonce,
the enclave’s measurement (a cryptographic hash of the
enclave’s initial state), and a value produced by the en-
clave, which is generally used to start a key exchange
protocol such as Diffie-Hellman [22].

Sanctum’s attestation chain starts with the asymmetric
key pair built into the processor. The next link in the
chain is the measurement root (§ 5.1), a piece of trusted
software that is burned into the processor’s ROM. The

Enclave
Page Table
Registers

L1
I-Cache

ALU

Decode, Arbitration,
Stall Detection

Register
File

L1
I-TLB

PC Generation

Instruction Queue

Branch
Target Buffer

Program Counter

Page
Walker

Scoreboard

Sign ExtendControl
Registers

Bypass Bypass Bypass

IDIVIMUL

Data Queue

Branch

Exception
Generator

L1
D-Cache

L1
D-TLB

Replay
Decision Crossbar

Sign extension

Page
Entry

Transform

Figure 3: Sanctum’s page entry transformation logic in the context
of a RISC V Rocket core

measurement root contains the first instructions executed
by a processor after it is powered on or reset, and its main
job is to compute a measurement of the security monitor
(a cryptographic hash) and add it to the attestation chain.
The monitor produces enclave attestations.

3 RELATED WORK

3.1 Cache Timing Attacks
We are particularly concerned with a powerful class of
software attacks, called cache timing attacks [23], which
can be mounted entirely by unprivileged software that
measures the latency of its memory accesses and deter-
mines whether the accesses caused misses in a cache that
is shared with a victim program. The attacker carefully
plans memory accesses to reveal the victim’s memory
access pattern.

Cache timing attacks break the software module iso-
lation assumption in information flow control systems.
The attacks do not access the victim’s memory directly,
so they are not prevented by the software isolation mech-
anisms implemented in today’s kernels and hypervisors.
Therefore, protecting against these attacks requires a
stronger notion of isolation than virtual memory.

4

Cache timing attacks are known to retrieve cryp-
tographic keys used by AES [24], RSA [25], Diffie-
Hellman [26], and elliptic-curve cryptography [27].
Early attacks required access to the victim’s CPU core,
but more sophisticated recent attacks [28, 29] target the
last-level cache (LLC), which is shared by all cores on
the same chip package. Recently, [30] demonstrated a
cache timing attack that uses JavaScript code in a page
visited by a Web browser.

Given this pattern of vulnerabilities, ignoring cache
timing attacks is dangerously akin to ignoring the string
of demonstrated attacks which led to the deprecation of
SHA-1 [31–33]. We must also recognize the imminent
threat, and remove the root cause of resource sharing
between mutually distrustful processes.

3.2 Secure Processors
We draw inspiration from a long line of secure architec-
tures. XOM [34] introduced the idea of having sensitive
code and data execute in isolated containers, and sug-
gested that the operating system should be in charge of
resource allocation, but cannot be trusted. Aegis [21]
relies on a trusted security kernel, and identifies the soft-
ware in a container by computing a cryptographic hash
over the initial contents of the container. Aegis also
computes a hash of the security kernel at boot time and
uses it, together with the container’s hash, to attest a
container’s identity to a third party, and to derive con-
tainer keys. Unlike XOM and Aegis, Sanctum protects
the memory access patterns of the software executing
inside the isolation containers.

Sanctum only considers software attacks in its threat
model. If resilience against hardware attacks is desirable,
a Sanctum processor can be augmented with the counter-
measures described in other secure architectures. Aegis
protects a container’s data when the DRAM is untrusted,
and Ascend [35] uses Oblivious RAM [36] to protect a
container’s memory access patterns against adversaries
that can observe the addresses on the memory bus.

3.3 Attempts to Secure Existing Designs
We also learned from the pitfalls experienced by var-
ious industry attempts to add security features to x86
processors.

The Trusted Platform Module (TPM) [37] proved that
software attestation with CPU hardware changes is im-
practical, as the attestation hash covers too much soft-
ware.

Intel’s Trusted Execution Technology (TXT) [38]
proved the impact of leaving trusted software out of

the measurement hash, as it navigated the patching of
security vulnerabilities [39] in the software used to reset
the computer to a known state before entering a protected
VM. TXT demonstrated the need for a trusted mechanism
for blocking DMA transfers from/to isolated containers,
as it fell to attacks [40, 41] where a malicious OS di-
rected a network card to access data in the protected VM.
TXT’s System Management Mode (SMM) vulnerabili-
ties [42–46] showed the dangers of incomplete isolation,
and the difficulty of implementing meaningful isolation
in a complex system.

SGX avoids the fallacies described above, and tackles
many of the issues brought by multi-core processors with
a shared, coherent last-level cache. SGX introduces a
method for verifying an OS-conducted TLB shoot-down,
and a clever scheme for having an authenticated tree
whose structure is managed by an untrusted OS. SGX
avoids changes on critical execution paths by gating the
TLBs and only performing access controls at address
translation time. Unfortunately, the SGX papers do not
describe any of these innovations in great detail, and we
had to re-construct them from various hints.

SGX’s memory management scheme exposes page-
level memory access patterns to the OS. Furthermore,
SGX enclaves are vulnerable to cache timing attacks
that can be performed by unprivileged software running
on the same chip. This places a huge burden on soft-
ware developers, as they have to limit their code to data-
independent memory accesses. For example, the EPID
[47] signature scheme used by the SGX attestation pro-
cess is implemented in a signing enclave. If the EPID
implementation makes data-dependent memory accesses,
an attacker could potentially compromise SGX by ex-
tracting the processor’s EPID signing key.

Because SGX was proposed by Intel, it gained a lot
of attention from the industry and academia. In order to
capitalize on that, Sanctum reuses SGX’s terminology
and enclave API whenever possible.

3.4 Defenses Against Cache Timing Attacks

The research community has brought forward various
defenses against cache timing attacks. PLcache [48, 49]
and the Random Fill Cache Architecture [50] were de-
signed and analyzed in the context of a small region of
sensitive data, and scaling them to protect a potentially
large enclave without compromising performance is not
straightforward. RPcache [48, 49] relies on a trusted
operating system to assign different hardware process
IDs to mutually mistrusting entities, and uses a mech-

5

anism that does not directly scale to large LLCs. The
non-monopolizable cache [51] uses a well-principled par-
titioning scheme to protect against timing attacks, but is
not zero leakage and also trusts the operating system to
assign hardware process IDs.

Prior work does not address the general problem of
protecting any software placed inside an enclave against
timing attacks when the OS is untrusted. We introduce
a simple partitioning scheme that isolates the software
inside each enclave from all other software on the com-
puter. The rest of the Sanctum design does not hinge on
the details of the partitioning scheme. It is likely that so-
phisticated schemes like ZCache [52] and Vantage [53]
can be combined with Sanctum’s framework to yield
better performance.

3.5 Software Defect Mitigation
Sanctum relies on trusted software, consisting of a mea-
surement root and a security monitor. While non-trivial,
the software is smaller (at <5kloc) than seL4 [1], which
was formally verified.

We assume that enclave software will not willingly
disclose its secrets. This can be impractical, given the
inevitable presence of bugs. Fortunately, the approach of
Native Client [54] can be used to guarantee that enclave
software only interacts with the outside through a small
trusted runtime.

4 HARDWARE DESIGN

Sanctum introduces a cache partitioning scheme that
splits up the memory into DRAM ”regions” that use dis-
joint last level cache (LLC) sets. While the mapping is
static, the operating system allocates the cache dynam-
ically by allocating regions to software modules. Our
cache partitioning scheme requires changes to the cache
set indexing computation (§ 4.1) and to the circuitry that
translates addresses at each TLB miss (commonly re-
ferred to as the page walker, § 4.3).

Sanctum enclaves have private page tables, as dirty and
accessed bits in page tables reveal the enclave’s memory
access patterns to the operating system (at page granu-
larity). Per-enclave page tables require a small set of
modifications to the page walker (§ 4.2).

Lastly, we trust the DMA bus master to reject DMA
transfers pointing into DRAM regions allocated to en-
claves, to protect against attacks where a malicious OS
programs a peripheral to access enclave data. This re-
quires changes similar to the modifications done by SGX
and later revisions of TXT to the integrated memory con-

DRAM Region
Index Line Offset

5 0612

Page Offset

1318

Cache Set Index

DRAM Stripe
Index

192933 3063 34

Cache Tag

Address bits used by 1GB of DRAM

Address bits covering the maximum addressable physical space of 16GB

Address bits impacted by page tables (address translation)

Figure 4: An annotated example of a physical address in a 64-bit
computer with a typical set-associative LLC

troller on recent Intel chips (§ 4.4). These changes are
documented in detail in the following sections.

4.1 Cache Set Indexing
Traditionally, direct-mapped and set-associative caches
have used the low-order bits of a physical memory ad-
dress to compute the possible locations in the cache a
line can occupy. The left-most bits make up the line
offset, denoting a byte in a cache line, preceded by the
set index. A piece of data can be stored in any way in
the set identified by the set index. For example, in a
cache with 8,192 sets and 64-byte lines, bits [5 . . . 0] in
a physical address make up the line offset (64 = 26) and
bits [18 . . . 6] make up the set index (8192 = 213).

Figure 4 illustrates the relevant sections of a physical
address. Address translation generally uses a tree-like
data structure (page tables), to map virtual addresses to
physical memory addresses. Address translation ignores
the low-order bits of an address (page offset), and ad-
dresses differing only in the page offset bits belong to the
same page. In the 64-bit RISC V architecture, pages are
8KB, so bits [12 . . . 0] of a virtual address are not trans-
lated. Privileged software that controls the page tables
can therefore influence the placement of data in the cache,
as page tables influence some of the bits that serve as
the cache set index. In the example above, address trans-
lation sets bits [18 . . . 13] of a physical address, which
double as cache set index bits.

Sanctum defines the notion of DRAM regions - sub-
sets of the physical address space corresponding to the set
of all pages that share LLC sets with a given page. In the
example above, DRAM is divided into 64 regions, and
the DRAM region of a physical address is determined
by bits [18 . . . 13] (which we denote the DRAM region
index). In direct map and set associative LLCs, DRAM
regions are not contiguous, so we further define DRAM
stripes to be the contiguous sections of a DRAM Region
(in a typical cache, a stripe is one page long).

We are interested in DRAM regions because addresses
in a DRAM region do not collide in the LLC with ad-

6

dresses from any other DRAM region. If we were to
restrict the code and data of Alice’s program to a single
DRAM region, over which she has exclusive access, no
other program may interfere with the LLC behavior of
her program, rendering it immune to cache timing attacks
in the LLC.

In Sanctum, we ensure that all DRAM region index
bits are defined via address translation, allowing a trusted
entity to confine software modules to unique DRAM
regions by appropriately populating page table entries.
Most importantly, DRAM regions are transparent to ap-
plication software, which is presented with a contiguous
virtual address space.

Unfortunately, DRAM regions are discontinuous in
systems with a typical cache set indexing scheme: as
shown above, DRAM stripes are one page long in the
typical case. This prevents a software module from allo-
cating a multi-page contiguous data structure in physical
memory in one DRAM region, which is essential for effi-
cient DMA transfers as used by high performance device
drivers To address this shortcoming, we modify the cache
index translation and use higher-order bits to specify the
cache set index. This effectively increases the length of
DRAM stripes: Modifying our earlier example to use,
say, bits [21 . . . 16] as DRAM region results in 8-page
long DRAM stripes without affecting DRAM region
size. Such a change enables a device driver to allocate a
64KB contiguous buffer in physical memory, amenable
to DMA data transfer. A DRAM stripe would optimally
equal a DRAM region, obviating region discontinuity,
but the corresponding choice of DRAM region index bits
depends on the amount of DRAM in the system, which
is not always known a priori.

To solve the problem above, we propose adding a
shifter between the address translation unit and the cache
unit: cache set index is correctly computed using higher
order bits of a physical address, resulting in optimally
sized DRAM stripes for a variety of DRAM configura-
tions. Figure 5 shows how a shifter rotates the translated
bits of a physical address by 3 before the address is pro-
vided to the LLC. A computer with 512MB - 4GB of
DRAM must implement shift amounts from 4 to 7. Such
a shifter can be implemented via a 3-position variable
shifter circuit (series of 4-input MUXes), and a fixed shift
by 4 (no logic). Alternatively, in systems with known
DRAM configuration (embedded, SoC, etc.), the shift
amount can be fixed, and implemented with no logic.

DRAM Region
Index Line OffsetDRAM Stripe

Index

Address Translation Unit

Page OffsetTranslated bits in the virtual address

5 061213

15162133 22

63

34

Address bits covering the maximum addressable physical space of 16GB

Cache Tag

Virtual Address

Physical Address

Cache Address Shifter

1363

5 0612

DRAM Region
Index

DRAM Stripe
IndexS2

2930

S1

S2S1

1318192633 273031

Address bits used by 1GB of DRAM

Cache Unit
Input

Cache Set Index

Figure 5: Example addition of a cache address shifter that rotates
physical addresses to the right by 3 bits before they reach the LLC

EVRANGE Enclave’s DRAM Region

OS DRAM Regions

Other Enclave’s DRAM Region

OS DRAM Regions

Enclave Virtual
Address Space

Physical
Address Space

Figure 6: The virtual address space of an enclave: addresses inside
EVRANGE are mapped to DRAM regions owned by the enclave,
while addresses outside the range are mapped to DRAM regions
owned by the OS.

4.2 Page Walker Input
Both Sanctum and SGX enclaves can access unprivileged
non-enclave memory, which is used to pass data between
an enclave and the application hosting it. Enclaves may
not access privileged memory to preserve OS protection
against rogue enclaves. As shown in Figure 6, each
enclave has a contiguous region of its virtual address
space mapped to enclave memory, which is protected
from outside access (by a malicious OS, for example).
The rest of the address space is mapped to memory that
does not belong to any enclave, which we denote OS
memory.

SGX relies on the operating system to maintain the
page tables for enclave software, and uses clever tech-
niques to ensure that the page tables match the enclave
author’s expectations. The page tables, however, leak in-
formation about the enclave’s memory access patterns in
two ways: page faults directly inform the OS about some
enclave memory accesses, while the dirty and accessed
bits in the page table entries indirectly reveal page-level
access patterns. Page faults are necessary to allow an OS

7

to over-commit physical memory, presenting an abstrac-
tion of a large address space, while dirty and accessed
bits enable the OS to evict pages intelligently at page
faults. The information leaks above are not viably solved
by simply removing the features that cause them.

Sanctum enclaves have private page tables and service
their own page faults, obviating the leaks above. The
operating system manages system resources at DRAM
region granularity by allocating regions to enclaves. En-
claves are free to over-commit their physical memory by
implementing their own page fault handlers, and get the
information they need to evict pages by reading the dirty
and accessed bits in their private page tables.

Per-enclave page tables are implemented by adding
an enclave page table base register eptbr, which stores
the physical address of the currently running enclave’s
page tables, and has similar semantics to the page table
base register ptbr, which points to the operating system-
managed page tables. The registers can only be accessed
by the Sanctum security monitor, which provides an API
call for the OS to set up the ptbr, and ensures that
the eptbr always points to the current enclave’s page
tables.

In order to know when to use the ptbr and the
eptbr, the circuitry handling TLB misses also uses
two registers that indicate the range of virtual addresses
used by the current enclave, evbase (enclave virtual
address space base) and evmask (enclave virtual ad-
dress space mask). When a TLB miss occurs, a circuit
shown in Figure 7 selects the appropriate base register:
a masked faulting address is compared against the base
register, and the result determines whether to forward
eptbr or the ptbr to the page walker as the page table
base address.

4.3 Page Walker Memory Accesses

In performance-oriented processors, the page walker
module is a hardware finite-state machine (FSM). The
page walker FSM uses the page table base physical ad-
dress to issue series of DRAM accesses using physical
addresses. These memory accesses are cached, and are
suceptible to cache timing attacks without proper coun-
termeasures, which would reveal the enclave’s memory
access patterns at page granularity. Sanctum obviates this
by storing enclave page tables in the enclave’s DRAM re-
gions, isolating these sensitive data structures throughout
the memory hierarchy.

For complete isolation between enclaved software
modules, the page walker must only fetch addresses

0

1

0

1

0

1

0

1

0

1

EPTBR

PTBR

AND
EVMASK

TLB Miss
Virtual Address

EQ
EVBASE

FSM Input:
Page Table Base

EDRBMAP

DRBMAP FSM Input:
DRAM Region Bitmap

EPARBASE

PARBASE FSM Input:
Protected Address Base

EPARMASK

PARMASK FSM Input:
Protected Address Mask

EPANDMASK

PANDMASK FSM Input:
Protected Permission Mask

Figure 7: Hardware support for per-enclave page tables: page
walker inputs.

within a given entity’s (enclave or OS) DRAM regions.
Failing this, a malicious OS would build page tables ref-
erencing enclave DRAM regions, and observe private
accesses performed by the FSM.

Sanctum’s trusted security monitor controls the page
table base registers (ptbr and eptbr), so the initial
fetch by the FSM is safe. We sanitize the page table
entries before the page walker acts on them, preventing
fetches into other modules’ DRAM regions (by clearing
a page table entry’s valid bit, causing a page fault). The
monitor populates a DRAM region bitmap (drbmap)
register, where each set bit corresponds to an accessible
DRAM region. The leaf page table entry is likewise
sanitized, ensuring address translation always yields a
physical address in an accessible DRAM region.

Sanctum’s security monitor must maintain metadata
about each enclave, and does so in the enclave’s DRAM
regions. For security reasons, the metadata must not
be writable by the enclave. We extend the page ta-
ble entry transformation described above to implement
per-enclave read-only areas. A protected address range
base (parbase) register and a protected address range
mask (parmask) register denote this protected physi-
cal address range. We mask (bitwise AND) addresses
in the page table entry and compare it with the address
base, identifying protected addresses. If we encounter a
leaf page table entry with a protected address, we mask
its permission bits with a protected permissions mask
(parpmask) register. If we discover a protected address
in an intermediate page table entry, we clear its valid bit,

8

DRAM
Region
Bitmap

DRAM Region
Index Selector

64
bits

6-bit
Region Index

FSM Input:
Valid bit

DRAM Fetch Result:
Permission Bits

DRAM Fetch Result:
Valid Bit

DRAM Fetch Result:
Address Bits

FSM Input:
Address Bits

AND

ANDProtected
 Address Mask EQ

Protected
Address Base

Protected
Permission Mask

1 0

1 AND

AND

FSM Input:
Permission Bits

FSM Output:
Page Table Leaf NOT

NOR

Figure 8: Hardware support for per-enclave page tables: transform-
ing the page table entries fetched by the page walker.

forcing a page fault.
The above transformation allows the security monitor

to set up a read-only range by clearing permission bits
(write-enable, for example). Entry invalidation ensures
no page table entries are fetched from the protected range,
which prevents the page walker FSM from moodifying
the protected region by setting accessed and dirty bits.

All registers mentioned above come in pairs, as we
maintain separate OS and enclave page tables. The se-
curity monitor sets up a protected range in the OS page
tables to isolate its own code and data structures (most
importantly its private attestation key) from a malicious
OS.

Figure 8 shows Sanctum’s logic inserted between the
page walker and the cache unit that fetches page table
entries.

4.4 DMA Transfer Filtering
Like SGX, we assume DMA regions targeting enclave
memory are filtered, preventing software attacks that
rely on a compromised operating system that instructs
a device (such as a NIC) to launch DMA transfers on
enclave private memory.

Unlike SGX, we whitelist a DMA-safe DRAM re-
gion instead of using a blacklist. Specifically, Sanctum
implements two registers (a base, dmarbase and an
AND mask, dmarmask) in a DMA arbiter (memory
controller) for the security monitor to configure the range
of physical memory usable for DMA transfers. The mon-
itor allows the OS to set the range register, and ensures
it falls within the OS-owned DRAM regions. For each
DMA request, a circuit illustrated in Figure 7 checks
the transfer start and end addresses against the range
registers (each address is ANDed with dmarmask and

the result is compared with dmarbase). The transfer
dropped if either end of the DMA transfer’s range falls
outside the (contiguous) allowed DMA range.

5 SOFTWARE DESIGN

Sanctum has two pieces of trusted software: the mea-
surement root (§ 5.1), which is shipped via an on-chip
ROM, and the security monitor (§ 5.2), which is stored
alongside the computer’s firmware (usually flash mem-
ory). Together, the trusted software in Sanctum fulfills
the same functions as the extended microcode in the
implementation of SGX.

5.1 Measurement Root

The measurement root (mroot) is stored in a ROM at
the top of the physical address space, and covers the reset
vector. Its main responsibility is to compute a crypto-
graphic hash of the security monitor, and generate an
attestation key pair and certificate based on the moni-
tor’s hash. This allows the machine owner to patch or
customize the security monitor, while preserving the at-
testation mechanism needed to convince a third party that
it is talking to a specific enclave built in a well-defined
environment.

The security monitor is expected to be stored in non-
volatile memory (such as a SPI flash chip) that can re-
spond to memory I/O requests from the CPU, perhaps
via a special mapping in the computer’s chipset. When
mroot starts executing, it computes a cryptographic
hash over the security monitor. mroot then reads the
processor’s key derivation secret, and derives a sym-
metric key based on the monitor’s hash. mroot will
eventually hand down the key to the monitor.

The security monitor contains a header that includes
the location of an attestation key existence flag. If the flag
is not set, the measurement root generates an attestation
key pair for the monitor, and produces an attestation
certificate by signing the monitor’s public attestation key
with the processor’s private key. The certificate includes
the monitor’s hash.

The security monitor is expected to encrypt its pri-
vate attestation key with the symmetric key produced
earlier, and store the encrypted key in its flash memory.
When writing the key, the monitor is expected to set the
asymmetric key existence flag, instructing future boot
sequences not to re-generate a key. The public attesta-
tion key and certificate can be stored unencrypted in any
untrusted memory.

9

OWNED BLOCKED FREE
block
DRAM
region

free
DRAM
region

assign DRAM region

Figure 9: DRAM region management state transition diagram.
The transitions are API calls issued by enclaves or by the operating
system.

Before handing control to the monitor, mroot sets a
lock that blocks any software from reading the proces-
sor’s symmetric key derivation seed and private key until
a reset occurs.

5.2 Security Monitor

The security monitor receives control after mroot fin-
ishes setting up the attestation measurement chain. The
monitor provides APIs to the operating system and en-
claves for DRAM region management and enclave
management. The monitor also guards sensitive reg-
isters, such as the page table base register (ptbr) and
the allowed DMA range (dmarbase and dmarmask).
The monitor allows the OS to set these registers via APIs
only, and sanitizes the values against current DRAM
region allocation.

Figure 9 shows the DRAM region management state
transition diagram. After the system boots up, all DRAM
regions are allocated to the operating system, which can
assign free DRAM regions to itself or to enclaves. In
order for a DRAM region to become free, it must be
first blocked by its owner, which can be the OS or an
enclave. While a DRAM region is blocked, any address
translations mapping to it result in page faults, so no TLB
entries can be created for that region, and no entity may
access the region via stale TLB entries. Before the OS
issues a free DRAM region API call, it must flush all
relevant TLB entries, as this is verified by the security
monitor.

Monitor checks rely on a global block clock. When
a region is blocked, the block clock is incremented and
the current block clock value is stored in the metadata
associated with the DRAM region (shown in Table 1).
When a core’s TLBs are flushed, the core’s flush time
(maintained for each core) is updated to the current block
clock value. When the OS signals to transition a DRAM
region from BLOCKED to FREE, the monitor checks
that all the relevant cores’ flush times are no less than the
block clock value stored in the region’s metadata. The set
of relevant cores is defined by the DRAM region’s owner
when it is blocked: OS-owned regions require all TLBs
to be flushed, whereas enclave-owned regions mandate

Field Description
lock acquired for all operations on the

DRAM region
owner the ID of the enclave owning the

DRAM region; the OS has its own
enclave ID; BLOCKED and FREE
states are represented as special in-
valid enclave IDs

previous owner the owner at the time when the re-
gion was blocked

pinned pages regions with a non-zero pinned
pages counter cannot be blocked

blocked at the block clock value when this en-
clave was blocked

Table 1: Per-DRAM region metadata

non-
existent LOADING INITIALIZEDcreate

enclave
init

enclave

delete enclave

enter
enclave

load page,
PTE,thread

Figure 10: The enclave management state diagram. The transitions
are API calls issued by the operating system.

flushes only on cores with that enclave’s threads.
Figure 10 shows the enclave management state dia-

gram. The OS creates an enclave by issuing a monitor
API call to allocate a free DRAM region to the enclave
and initialize the enclave metadata fields (shown in Ta-
ble 2) in that DRAM region. When an enclave is cre-
ated, it enters the LOADING state, where the OS sets
up the enclave’s initial state via API calls to create hard-
ware threads and page table entries, and copy code and
data into the enclave. Every operation performed on
an enclave in the LOADING state update the enclave’s
measurement hash. The OS then issues an API call to
transition the enclave to the INITIALIZED state, which
finalizes its measurement hash. The application hosting
the enclave is now free to run enclave threads.

The security monitor uses Sanctum’s MMU extensions
to ensure that enclaves cannot modify their own meta-
data area. Moreover, an enclave’s metadata cannot be
accessed by the OS or any other enclave, as it is stored
in the enclave’s DRAM region. This allows us to use the
metadata area to store public information with integrity
requirements, such as the enclave’s measurement hash.

While an OS loads an enclave, it is free to map the
enclave’s pages, but the monitor maintains its page tables
ensuring all entries point to non-overlapping pages in
DRAM regions owned by that enclave. Once an enclave

10

Field Description
max threads number of slots in the enclave’s

thread slot table
ev base the enclave’s virtual address range
ev mask
epar mask indicates the size of the enclave’s

metadata to Sanctum’s MMU ex-
tensions

is initialized 1 if the enclave is INITIALIZED
is debug 1 if debugging is enabled
metadata top the end of the enclave’s metadata
load eptbr physical address of the base of

the page table used during enclave
loading

last load addr physical address of the last enclave
page touched by the loading pro-
cess

running threads number of cores executing this en-
clave’s threads

hash the enclave’s measurement hash
hash block working area for the enclave mea-

surement process
DRAM region one bit per DRAM region; the en-

clave’s
bitmap regions have their bits set to 1
Thread slots array of thread slots

Table 2: Enclave metadata fields

Field Description
thread info physical address of the thread’s state

area; 0 if the slot is free
lock acquired when changing thread info or

the thread starts executing

Table 3: Thread slot fields

Field Description
entry pc initial program counter
entry stack initial stack pointer
fault pc fault handler program counter
fault stack fault handler stack pointer
eptbr page table base register value
exit state the user register values at the time of

the enter enclave call that started the
thread

aex state the user register values at asynchronous
enclave exit (AEX) time

can resume 1 when this thread can resume from an
AEX

Table 4: Thread state area fields

is initialized, it can inspect its own page tables and abort
if the OS created undesirable mappings. Simple enclaves
do not depend on specific layouts, and we expect that
complex enclaves will communicate their desired layouts
to the OS via enclave metadata not addressed in this
work.

Our monitor makes sure that page tables do not overlap
by storing the physical address of the last mapped page
in an enclave metadata field. To simplify the monitor, a
new mapping is allowed if its physical address is greater
than the address of the last mapped page, forcing the OS
to map an enclave’s pages in monotonically increasing
order.

Sanctum supports multi-threaded enclaves: each en-
clave thread is represented by a thread slot (Table 3),
which is stored in the enclave metadata, and a thread
state area (Table 4), which is stored in the enclave’s
DRAM regions.

Figure 11 shows the thread slot management state dia-
gram. At enclave creation, the OS specifies how many
thread slots to allocate in the enclave’s metadata. Ini-
tially, all thread slots are free, but during enclave loading,
the OS can initialize a free slot via a load thread API
call, which designates the thread’s state area and stores
it in the thread slot. Running enclaves may initialize
additional slots using a similar API call.

The application hosting an enclave starts executing

11

FREE INITIALIZED RUNNINGcreate
thread

enter
enclave

delete
thread

load
thread

exit
enclave

asynchronous
enclave

exit (AEX)

resume
thread

Figure 11: The thread slot management state diagram. The transi-
tions are API calls issued by the enclave owning the thread slots, or
by the operating system.

enclave code by issuing an enclave enter API call, which
must specify an initialized thread slot. The security mon-
itor saves the application’s register state in the thread
state area, and loads the thread program counter and
stack pointer. The enclave’s code can return control to
the hosting application voluntarily, by issuing an enclave
exit API call, which restores the application’s state from
the thread state and sets the API call’s return value to ok.

If an interrupt occurs while the enclave code is execut-
ing, the security monitor’s exception handler performs
an asnychronous enclave exit (AEX), which saves en-
clave register state in the thread state area, restores the
application’s registers from the area, sets the API call’s
return value to async exit, and invokes the standard
interrupt handling code. After the OS handles the inter-
rupt, the enclave’s host application resumes execution,
and re-executes the enter enclave API call. The enclave’s
thread initialization code examines the saved thread state,
and seeing that the thread has undergone an AEX, issues
a resume thread API call. The security monitor restores
the enclave’s registers from the thread state area, and
clears the AEX flag.

Sanctum’s security monitor stores a single instance
of enclave registers in the thread state area. We avoid
SGX’s state stack by observing that when an AEX oc-
curs in a thread that hasn’t resumed from the previous
AEX, the thread was in the process of resuming from
a previous AEX, and Sanctum can safely discard the
enclave’s current register state. The enclave’s host ap-
plication will retry the enter enclave API call, and the
enclave thread initialization code will simply restart the
process of resuming from the original AEX.

The security monitor is highly concurrent, with fine-
grained locking. API calls targeting two different en-
claves may be executed in parallel on different cores.
Each DRAM region has a lock guarding that region’s
metadata. Each enclave thread slot has a lock guarding
the slot, which is also acquired when the thread starts
runs via an enter enclave API call, and is released when
the thread is stopped via an enclave exit or AEX.

We avoid discussing deadlocks by delegating the co-

ordination burden to the OS. Each API call in the secu-
rity monitor attempts to acquire all the locks it needs
via atomic test-and-set operations, and errors with a
concurrent call code if any lock is unavailable.

We implemented the Sanctum security monitor in less
than 5kloc of C++, which include a subset of the standard
library and the cryptography used by enclave attestation.

5.3 Enclave Eviction

General-purpose software can be executed inside an en-
clave without source code changes, provided that it is
linked against a runtime (e.g., libc) that was modified to
work with Sanctum.

The current Sanctum design allows the operating sys-
tem to over-commit physical memory allocated to en-
claves, by paging out to disk DRAM regions from some
enclaves. Sanctum does not give the OS visibility into
enclave memory accesses, in order to prevent private
information leaks, so the OS must decide the enclave
whose DRAM regions will be evicted based on other ac-
tivity, such as network I/O, or based on a business policy,
such as Amazon EC2’s spot instances.

Once a victim enclave has been decided, the OS asks
the enclave to block a DRAM region, which gives the
enclave an opportunity to rearrange data in its RAM
regions. DRAM region management can be implemented
in the enclave’s runtime, and is completely transparent
to enclave software writers.

The security monitor does not allow the OS to forcibly
reclaim a single DRAM region from an enclave, because
that would reveal memory access patterns. Instead, the
OS can delete an enclave, after stopping its threads,
and reclaim all its DRAM regions. Thus, a small or
short-running enclave can include a runtime that refuses
DRAM region management requests from the OS, and
relies on the OS to delete it under memory pressure and
re-start it at a later time.

In order to avoid wasted work, however, large long-
running enclaves can use a runtime that implements de-
mand paging. When an enclave uses up most of its phys-
ical memory, the memory manager in the runtime finds
least recently used pages by examining the enclave’s
page tables, and adds eviction requests to a global en-
clave queue. The runtime also implements a page fault
handler that adds a page fill request to the global queue,
and stalls until the request is completed.

When asked to relinquish a DRAM region, the en-
clave’s runtime follows the same process as above to free
up physical pages, frees up all the pages in a DRAM

12

region by moving the data to free pages outside the re-
gion, and finally blocks the DRAM region so the OS can
reclaim it.

To be secure, the runtime processes queued page I/O
requests in a dedicated enclave thread that obfuscates
page fault timing and pattern from the operating system
by performing periodic I/O system calls using oblivious
RAM techniques, as in the Ascend processor [35], but at
page rather than cache line granularity.

Enclaves that perform other data-dependent commu-
nication, such as targeted I/O into a large database file,
must also use the periodic oblivious I/O techniques de-
scribed above to obfuscate their access patterns from the
operating system. These techniques are not dependent
on specific application business logic, and can be im-
plemented in generic library software, such as database
access drivers.

Last, the design described above requires that each
enclave occupies at least one DRAM region for its en-
tire lifetime, which contains the memory management
code described above and its data structures. Evicting an
enclave’s entire memory while keeping it alive requires
an entirely different approach that will be described in
future work.

Briefly, the OS can ask the security monitor to freeze
an enclave, which encrypts all the enclave’s DRAM re-
gions in place, and creates a leaf node in a hash tree.
When the monitor thaws a frozen enclave, it uses the
previously created hash tree leaf to ensure freshness,
decrypts the data in the enclave’s DRAM regions, and
relocates the enclave, updating its page tables to account
for the changes in DRAM region ownership after thaw-
ing. The hash tree is managed by the operating system,
using a similar approach to SGX’s version array page
eviction.

6 SECURITY ANALYSIS

Sanctum protects each enclave in a system from the (po-
tentially compromised) operating system, and from the
other potentially malicious enclaves. The security moni-
tor (§ 5.2) keeps track of the operating system’s assign-
ment of DRAM regions to enclaves, and enforces the
invariant that a DRAM region may only be assigned to
exactly one enclave or to the operating system.

The region blocking mechanism guarantees that when
a DRAM region is assigned to an enclave or the OS, no
stale TLB mappings associated with the DRAM region
exist. The monitor uses the MMU extensions described
in § 4.2 and § 4.3 to ensure that once a DRAM region is

assigned, no software other than the region’s owner may
create TLB entries pointing inside the DRAM region.
Together, these mechanisms guarantee that the DRAM
regions allocated to an enclave cannot be accessed by the
operating system or by another enclave.

The LLC modifications in § 4.1 ensure that an enclave
confined to a set of DRAM regions is not vulnerable to
cache timing attacks from software that cannot access the
enclave’s DRAM regions. The security monitor enforces
the exclusive ownership of each DRAM region.

Sanctum’s security monitor lives in a DRAM region
assigned to the OS, so no enclave can set up its page
tables to point to the monitor’s physical memory. The
monitor uses the MMU extensions in § 4.2 and § 4.3
to prevent the OS from creating TLB mappings point-
ing into the monitor’s physical memory, meaning the
security monitor’s integrity cannot be compromised by a
malicious enclave or OS.

Sanctum also protects the operating system from (po-
tentially malicious) enclaves: the security monitor exe-
cutes enclave code with the same privilege as application
code, so the barriers erected by the OS kernel to protect
itself against malicious applications also prevent mali-
cious enclaves from compromising the OS.

Each enclave has full control over its own page tables,
but the security monitor configures the MMU extensions
in § 4.2 and § 4.3 to confine an enclave’s page tables to
the DRAM regions assigned to it by the OS. This means
that enclaves cannot compromise the OS memory, and
that enclaves may only use the DRAM regions given to
them by the OS.

The security monitor preempts an enclave thread (via
AEX) when its CPU core receives an interrupt, allowing
the OS to preempt a rogue enclave’s threads via inter-
processor interrupts (IPI), and then destroy the enclave.

7 PERFORMANCE EVALUATION

While we propose a high-level set of hardware and soft-
ware to implement Sanctum, we focus on the concrete
example of a 4-core RISC V system generated by Rocket
Chip [13]. As Sanctum isolates concurrent workloads
from each other, we can examine its overhead by running
a single application on one core, and not worry about
having to account for workload interactions.

7.1 Experiment Design
We use a Rocket-Chip generator modified to model the
hardware modifications described in § 4. We generate a
4-core 64-bit RISC V CPU with per-core 16KB 4-way

13

set associative instruction and data L1 caches. We use
a cycle-accurate simulator for this machine to produce
an LLC access trace. We post-process the trace with a
cache emulator for a shared 4MB L2 cache (LLC), with
and without Sanctum’s DRAM region isolation, and we
compute the program completion time, in cycles, for each
benchmark. We obtain accurate results because Rocket
cores have in-order single pipelines, and cannot make
any progress on a TLB or cache miss.

Our cache size choices were inspired by Intel’s Sandy
Bridge [55] desktop models, which have 8 logical CPUs
on a 4-core hyper-threaded system with 32KB 8-way
L1s, and an 8MB LLC. We do not model Intel’s 256KB
per-core L2, because it is not supported by Rocket’s
implementation. We note, however, that a private L2
would greatly reduce each core’s LLC requests, which is
Sanctum’s main source of overhead.

We simulate a machine with 4GB of memory that
is divided into 64 DRAM regions by Sanctum’s cache
address indexing scheme. In our model, an LLC access
adds a 12-cycle latency, and a DRAM access costs 100
cycles.

We do not model the behavior of the DRAM mem-
ory controller, nor limited DRAM bandwidth. We also
omit an evaluation of the on-chip network and cache co-
herence overhead, as we do not make any changes that
impact any of these subsystems.

Using the hardware model above, we benchmark
the subset of SPECINT 2006 [56] that we could com-
pile using the RISC V toolchain without additional
infrastructure, specifically bzip2, gcc, lbm, mcf,
milc, sjeng, and 998.specrand. This is a mix of
memory-bound and compute-bound long-running work-
loads with a range access locality.

We avoided the overhead of having to simulate a com-
plete Linux kernel, and instead used the RISC V proto
kernel [57] that provides the services used by our bench-
marks. We scheduled each benchmark on Core 0, and
ran it to completion, while the other cores were idling.

7.2 Cost of Added Hardware

Sanctum’s hardware changes add a small amount of gates
to the Rocket chip, which increases its area and power
consumption. Like SGX, we did not touch the core’s
critical execution path. Our addition to the page walker,
analyzed in the next section, may increase the latency of
TLB misses, but is guaranteed not to increase the Rocket
core’s clock cycle, which was competitive with an ARM
Cortex-A5 [13].

N
or

m
al

iz
ed

 C
om

pl
et

io
n

T
im

e

1.00000

1.00005

1.00010

1.00015

bzip2 gcc lbm mcf milc sjeng specrand

Figure 12: Sanctum’s modified page walk has minimal effect on
benchmark performance

Based on the gate-level illustrations in Figures 7 and 8,
we estimate Sanctum’s changes to the Rocket hardware
to require 1500 (+0.78%) gates and 700 (+1.9%) flip-
flops per core, consisting of 50 gates for the cache index
calculation, 1000 gates and 700 flip-flops for the extra
address page walker configuration, and 400 gates for the
page table entry transformations. DMA filtering requires
600 gates (+0.8%) and 128 flip-flops (1.8%) in the uncore.
We do not make any changes to the LLC, which generally
accounts for 50% of a chip.

7.3 Page Walker Latency Changes
Sanctum’s page table entry transformation logic is de-
scribed in § 4.3. We expect that the logic can be com-
bined with the page walker FSM logic, without pushing
the logic latency over the cycle budget.

In the worst case, the transformation logic would have
to become its own pipeline stage on the path between the
L1 data cache and the page walker. The transformation
logic is guaranteed to fit in 1 cycle on its own, as it is
significantly simpler than the ALU in the core’s execute
stage. In this case, every memory fetch issued by the
page walker would experience a 1-cycle latency, which
adds 3 cycles of latency to each TLB miss.

Figure 12 shows the completion time of selected
benchmarks, normalized to the completion time with-
out the extra TLB miss latency. The overheads are well
below 0.01%, which is insignificant compared to the
overheads of cache isolation.

7.4 Security Monitor Overhead
Invoking Sanctum’s security monitor to load code in an
enclave adds a one-time setup cost to each isolated pro-
cess, when compared to insecurely running the computa-
tion without Sanctum’s isolation support. This overhead
does not scale with the duration of the computation, so
we consider it to be negligible for long-running work-
loads.

Entering and exiting enclaves is more expensive than

14

N
or

m
al

iz
ed

 C
om

pl
et

io
n

T
im

e

1.00

1.05

1.10

1.15

bzip2 gcc lbm mcf milc sjeng specrand

Allocated DRAM Regions, as fraction of LLC
1/8 1/4 1/2 All

Figure 13: The impact of the number of DRAM regions allocated
to an enclave on the benchmark’s completion time

hardware context switches, because the security monitor
must flush TLBs and L1 caches. However, a sensible OS
is expected to minimize the number of context switches
by allocating some cores to an enclave and allowing them
to execute to completion. Therefore, we also consider
this overhead to be negligible for long-running computa-
tions.

7.5 Overhead of DRAM Region Isolation

The crux of Sanctum’s strong isolation is that each
DRAM region is cached in separate LLC sets. Therefore,
when the OS assigns DRAM regions to an enclave, it
also gives it a share of the LLC, which impacts the en-
clave’s performance. At the same time, Sanctum does
not partition the per-core caches, so a thread can utilize
its core’s entire L1 caches and TLBs.

Figure 13 shows the completion times of the SPECINT
workloads, where each number is normalized to the com-
pletion time of the same benchmark running on an ideal
insecure OS that allocates the entire LLC to the bench-
mark.

Sanctum excels at isolating compute-bound workloads
operating on sensitive data. Thus, SPECINT’s large,
multi-phase workloads heavily exercise the entire mem-
ory hierarchy, and therefore paint an accurate picture of
a worst case for our system. mcf, in particular, is very
sensitive to the available LLC size, so it incurs noticeable
overheads when being confined to a small subset of the
LLC.

We consider mcf’s 15% decrease in performance
when limited to 1/8th of the LLC to be a very pessimistic
view of our system’s performance, as it explores the case
where the enclave receives 1/4th of the CPU power (a
core), but 1/8th of the LLC. For a reasonable allocation
of 1/4 of DRAM regions (in a 4-core system), DRAM
regions add a 3-6% overhead to most memory-bound
benchmarks (with the exception of mcf), and do not

impact compute-bound workloads.
In the LLC, our region-aware cache index translation

forces consecutive physical pages in DRAM to map to
the same cache sets within a DRAM region, creating
interference. We expect the OS memory management
implementation to be aware DRAM regions, and map
data structures to pages spanning all available DRAM
regions.

The locality of DRAM accesses is also affected: an
enclaved process has exclusive access to its DRAM re-
gion(s), each a contiguous range of physical addresses.
DRAM regions therefore cluster process accesses to
physical memory, decreasing the efficiency of bank-level
interleaving in a system with multiple DRAM channels.
Row or cache line-level interleaving (employed by some
Intel processors [55]) of DRAM channels better paral-
lelizes accesses within a DRAM region, but introduces a
trade-off in the efficiency of individual DRAM channels.
Considering the low miss rate in a modern cache hier-
archy, and multiple concurrent threads, we expect this
overhead is small compared to the cost of cache partition-
ing. We leave a thorough evaluation of DRAM overhead
in a multi-channel system for future work.

8 CONCLUSION

We have shown through the design of Sanctum that strong
provable isolation of concurrent software modules can
be achieved with low overhead. The average overhead
observed across all benchmarks with a reasonable alloca-
tion of DRAM regions was 3.5%, with memory-heavy
benchmarks averaging 6.25%. This approach provides
strong security guarantees against an insidious threat
model including cache timing and memory access pat-
tern attacks. With this work, we hope to enable a shift in
discourse in the secure hardware architecture approaches
away from plugging specific security holes to a princi-
pled approach to eliminating attack surfaces.

REFERENCES

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al., “sel4: Formal verifi-
cation of an os kernel,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems
principles, pp. 207–220, ACM, 2009.

[2] S. Anthony, “Who actually develops linux? the
answer might surprise you.” http://www.
extremetech.com/computing/175919-

15

who-actually-develops-linux-the-
answer-might-surprise-you, 2014.
[Online; accessed 27-April-2015].

[3] “Xen project software overview.” http:
//wiki.xen.org/wiki/Xen_Project_
Software_Overview, 2015. [Online; accessed
27-April-2015].

[4] D. Jang, Z. Tatlock, and S. Lerner, “Establish-
ing browser security guarantees through formal
shim verification,” in Proceedings of the 21st
USENIX conference on Security symposium, pp. 8–
8, USENIX Association, 2012.

[5] “Linux kernel: Cve security vulnerabilities,
versions and detailed reports.” http://www.
cvedetails.com/product/47/Linux-
Linux-Kernel.html?vendor_id=33,
2014. [Online; accessed 27-April-2015].

[6] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich,
and M. F. Kaashoek, “Linux kernel vulnerabilities:
State-of-the-art defenses and open problems,” in
Proceedings of the Second Asia-Pacific Workshop
on Systems, p. 5, ACM, 2011.

[7] “Xen: Cve security vulnerabilities, ver-
sions and detailed reports.” http://www.
cvedetails.com/product/23463/XEN-
XEN.html?vendor_id=6276, 2014. [Online;
accessed 27-April-2015].

[8] R. Boivie and P. Williams, “Secureblue++: Cpu
support for secure executables,” tech. rep., IBM
Research Division, Apr 2013.

[9] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sav-
agaonkar, “Innovative instructions and software
model for isolated execution,” HASP, vol. 13, p. 10,
2013.

[10] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scar-
lata, “Innovative technology for cpu based attesta-
tion and sealing,” in Proceedings of the 2nd Inter-
national Workshop on Hardware and Architectural
Support for Security and Privacy, HASP, vol. 13,
2013.

[11] Intel Corporation, Software Guard Extensions Pro-
gramming Reference, 2013. Reference no. 329298-
002US.

[12] T. Ristenpart, E. Tromer, H. Shacham, and S. Sav-
age, “Hey, you, get off of my cloud: exploring infor-
mation leakage in third-party compute clouds,” in
Proceedings of the 16th ACM conference on Com-
puter and communications security, pp. 199–212,
ACM, 2009.

[13] Y. Lee, A. Waterman, R. Avizienis, H. Cook,
C. Sun, V. Stojanovic, and K. Asanovic, “A 45nm
1.3 ghz 16.7 double-precision gflops/w risc-v pro-
cessor with vector accelerators,” in European Solid
State Circuits Conference (ESSCIRC), ESSCIRC
2014-40th, pp. 199–202, IEEE, 2014.

[14] A. Waterman, Y. Lee, D. A. Patterson, and
K. Asanovic, “The risc-v instruction set manual,
volume i: User-level isa, version 2.0,” Tech. Rep.
UCB/EECS-2014-54, EECS Department, Univer-
sity of California, Berkeley, May 2014.

[15] A. Waterman, Y. Lee, R. Avizienis, D. A. Patter-
son, and K. Asanovic, “The risc-v instruction set
manual volume ii: Privileged architecture version
1.7,” Tech. Rep. UCB/EECS-2015-49, EECS De-
partment, University of California, Berkeley, May
2015.

[16] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and
B. Sunar, “Fine grain cross-vm attacks on xen
and vmware are possible!.” Cryptology ePrint
Archive, Report 2014/248, 2014. http://
eprint.iacr.org/.

[17] J. Rutkowska, “Thoughts on intel’s upcoming soft-
ware guard extensions (part 2),” Invisible Things
Lab, 2013.

[18] S. Davenport, “Sgx: the good, the bad and the
downright ugly,” Virus Bulletin, 2014.

[19] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits
in memory without accessing them: An experimen-
tal study of dram disturbance errors,” in Proceed-
ing of the 41st annual International Symposium on
Computer Architecuture, pp. 361–372, IEEE Press,
2014.

[20] M. Seaborn and T. Dullien, “Exploiting the
dram rowhammer bug to gain kernel priv-
ileges.” http://googleprojectzero.
blogspot.com/2015/03/exploiting-

16

dram-rowhammer-bug-to-gain.html, 3
2015. [Online; accessed 9-March-2015].

[21] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and
S. Devadas, “Aegis: architecture for tamper-evident
and tamper-resistant processing,” in Proceedings of
the 17th annual international conference on Super-
computing, pp. 160–171, ACM, 2003.

[22] W. Diffie and M. E. Hellman, “New directions in
cryptography,” Information Theory, IEEE Transac-
tions on, vol. 22, no. 6, pp. 644–654, 1976.

[23] S. Banescu, “Cache timing attacks,” 2011. [Online;
accessed 26-January-2014].

[24] J. Bonneau and I. Mironov, “Cache-collision timing
attacks against aes,” in Cryptographic Hardware
and Embedded Systems-CHES 2006, pp. 201–215,
Springer, 2006.

[25] D. Brumley and D. Boneh, “Remote timing attacks
are practical,” Computer Networks, vol. 48, no. 5,
pp. 701–716, 2005.

[26] P. C. Kocher, “Timing attacks on implementations
of diffie-hellman, rsa, dss, and other systems,” in
Advances in Cryptology – CRYPTO, pp. 104–113,
Springer, 1996.

[27] B. B. Brumley and N. Tuveri, “Remote timing
attacks are still practical,” in Computer Security–
ESORICS 2011, pp. 355–371, Springer, 2011.

[28] Y. Yarom and K. E. Falkner, “Flush+ reload: a high
resolution, low noise, l3 cache side-channel attack.,”
IACR Cryptology ePrint Archive, vol. 2013, p. 448,
2013.

[29] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,”
in Security and Privacy (SP), 2015 IEEE Sympo-
sium on, pp. 143–158, IEEE, 2015.

[30] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and
A. D. Keromytis, “The spy in the sandbox – prac-
tical cache attacks in javascript,” arXiv preprint
arXiv:1502.07373, 2015.

[31] “Nist’s policy on hash functions.” http:
//csrc.nist.gov/groups/ST/hash/
policy.html, 2014. [Online; accessed
4-May-2015].

[32] “Gradually sunsetting sha-1.” http:
//googleonlinesecurity.blogspot.
com/2014/09/gradually-sunsetting-
sha-1.html, 2014. [Online; accessed 4-May-
2015].

[33] “Sha1 deprecation policy.” http://
blogs.technet.com/b/pki/archive/
2013/11/12/sha1-deprecation-
policy.aspx, 2013. [Online; accessed
4-May-2015].

[34] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz, “Archi-
tectural support for copy and tamper resistant soft-
ware,” ACM SIGPLAN Notices, vol. 35, no. 11,
pp. 168–177, 2000.

[35] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A
secure processor architecture for encrypted com-
putation on untrusted programs,” in Proceedings
of the seventh ACM workshop on Scalable trusted
computing, pp. 3–8, ACM, 2012.

[36] O. Goldreich, “Towards a theory of software pro-
tection and simulation by oblivious rams,” in Pro-
ceedings of the nineteenth annual ACM symposium
on Theory of computing, pp. 182–194, ACM, 1987.

[37] T. C. Group, “Tpm main specification.” http:
//www.trustedcomputinggroup.org/
resources/tpm_main_specification,
2003.

[38] D. Grawrock, Dynamics of a Trusted Platform: A
building block approach. Intel Press, 2009.

[39] R. Wojtczuk and J. Rutkowska, “Attacking intel txt
via sinit code execution hijacking,” Invisible Things
Lab, 2011.

[40] R. Wojtczuk and J. Rutkowska, “Attacking intel
trusted execution technology,” Black Hat DC, 2009.

[41] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “An-
other way to circumvent intel R© trusted execution
technology,” Invisible Things Lab, 2009.

[42] L. Duflot, D. Etiemble, and O. Grumelard, “Us-
ing cpu system management mode to circumvent
operating system security functions,” CanSecWest/-
core06, 2006.

17

[43] J. Rutkowska and R. Wojtczuk, “Preventing and
detecting xen hypervisor subversions,” Blackhat
Briefings USA, 2008.

[44] R. Wojtczuk and J. Rutkowska, “Attacking smm
memory via intel cpu cache poisoning,” Invisible
Things Lab, 2009.

[45] F. Wecherowski, “A real smm rootkit: Reversing
and hooking bios smi handlers,” Phrack Magazine,
vol. 13, no. 66, 2009.

[46] S. Embleton, S. Sparks, and C. C. Zou, “Smm
rootkit: a new breed of os independent malware,”
Security and Communication Networks, 2010.

[47] E. Brickell and J. Li, “Enhanced privacy id from
bilinear pairing,” IACR Cryptology ePrint Archive,
vol. 2009, p. 95, 2009.

[48] Z. Wang and R. B. Lee, “New cache designs for
thwarting software cache-based side channel at-
tacks,” in Proceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture, ISCA
’07, pp. 494–505, 2007.

[49] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou,
“Deconstructing new cache designs for thwarting
software cache-based side channel attacks,” in Pro-
ceedings of the 2nd ACM workshop on Computer
security architectures, pp. 25–34, ACM, 2008.

[50] F. Liu and R. B. Lee, “Random fill cache architec-
ture,” in Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on,
pp. 203–215, IEEE, 2014.

[51] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev, “Non-monopolizable caches:
Low-complexity mitigation of cache side channel
attacks,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 8, no. 4, p. 35,
2012.

[52] D. Sanchez and C. Kozyrakis, “The zcache: Decou-
pling ways and associativity,” in Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on, pp. 187–198, IEEE, 2010.

[53] D. Sanchez and C. Kozyrakis, “Vantage: scalable
and efficient fine-grain cache partitioning,” in ACM
SIGARCH Computer Architecture News, vol. 39,
pp. 57–68, ACM, 2011.

[54] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar, “Native client: A sandbox for portable, un-
trusted x86 native code,” in Security and Privacy,
2009 30th IEEE Symposium on, pp. 79–93, IEEE,
2009.

[55] Intel Corporation, Intel R© 64 and IA-32 Architec-
tures Optimization Reference Manual, Sep 2014.
Reference no. 248966-030.

[56] “Spec cpu 2006,” tech. rep., Standard Performance
Evaluation Corporation, May 2015.

[57] A. Waterman, Y. Lee, and e. a. Celio, Christopher,
“Risc-v proxy kernel and boot loader,” tech. rep.,
EECS Department, University of California, Berke-
ley, May 2015.

18

