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ABSTRACT

Sanctum offers the same promise as SGX, namely strong
provable isolation of software modules running concur-
rently and sharing resources, but protects against an im-
portant class of additional software attacks that infer
private information from a program’s memory access
patterns. We follow a principled approach to eliminat-
ing entire attack surfaces through isolation, rather than
plugging attack-specific privacy leaks.

Sanctum demonstrates that strong software isolation
is achievable with a surprisingly small set of minimally
invasive hardware changes, and a very reasonable over-
head. Sanctum does not change any major CPU building
block. Instead, we add hardware at the interfaces be-
tween building blocks, without impacting cycle time.

Our prototype shows a 2% area increase in a Rocket
RISC-V core. Over a set of benchmarks, Sanctum’s
worst observed overhead for isolated execution is 15.1%
over an idealized insecure baseline, and 2.7% average
overhead over a representative insecure baseline.

1 INTRODUCTION

Today’s systems rely on an operating system kernel, or
a hypervisor (such as Linux or Xen, respectively) for
software isolation. However each of the last three years
(2012-2014) witnessed over 100 new security vulnerabil-
ities in Linux [1, 11], and over 40 in Xen [2].

One may hope that formal verification methods can
produce a secure kernel or hypervisor. Unfortunately,
these codebases are far outside our verification capa-
bilities: Linux and Xen have over 17 million[6] and
150,000[4] lines of code, respectively. In stark contrast,
the seL4 formal verification effort [25] spent 20 man-
years to cover 9,000 lines of code.

Between Linux and Xen’s history of vulnerabilities
and dire prospects for formal verification, a prudent sys-
tem designer cannot include either in a TCB (trusted
computing base), and must look elsewhere for a software
isolation mechanism.

Fortunately, Intel’s Software Guard Extensions (SGX)
[5, 32] has brought attention to the alternative of provid-
ing software isolation primitives in the CPU’s hardware.
This avenue is appealing because the CPU is an unavoid-
able TCB component, and processor manufacturers have
strong economic incentives to build correct hardware.

However, the myriad of security vulnerabilities [15, 17,
35, 43–47] in SGX’s predecessor (Intel TXT [21]) show
that securing complex hardware is impossible, even in
the presence of strong economic incentives. Furthermore,
SGX does not protect against software attacks that learn
information from a module’s memory access pattern [22].
These include cache timing attacks, which have a long
history, as well as recently introduced page fault-based
attacks [48].

This paper’s main contribution is a software isola-
tion scheme that defends against the attacks mentioned
above. Sanctum is a co-design that combines minimal
and minimally invasive hardware modifications with a
trusted software security monitor that is amenable to
formal verification. We achieve minimality by reusing
and lightly modifying existing, well-understood mecha-
nisms. For example, our per-enclave page tables imple-
mentation uses the core’s existing page walking circuit,
and requires very little extra logic.

Sanctum proves that strong software isolation can be
achieved without modifying any major CPU building
block. We only add hardware to the interfaces between
blocks, and do not modify any block’s input or output.
Our use of conventional building blocks translates into
less effort needed to validate a Sanctum implementation.

We demonstrate that memory access pattern attacks
can be foiled without incurring unreasonable overheads.
Our hardware changes are small enough to present the
added circuits, in their entirety, in Figures 8 and 9. Sanc-
tum cores have the same clock speed as their insecure
counterparts, as we do not modify the CPU core critical
execution path. Using a straightforward cache partition-
ing scheme with Sanctum adds a 2.7% execution time
overhead, which is orders of magnitude lower than the
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overheads of the ORAM schemes [20, 39] that are usu-
ally employed to conceal memory access patterns.

We also show that most of the software isolation mech-
anism can be provided by small, trusted software. Most
of our security monitor is written in portable C++ which,
once formally verified, can be used across different CPU
implementations. Furthermore, even the non-portable
assembly code can be reused across different imple-
mentations of the same architecture. In comparison,
SGX’s microcode is CPU model-specific, so each micro-
architectural revision would require a separate formal
verification effort.

2 RELATED WORK

Sanctum’s main improvement over SGX is preventing
software attacks that analyze an isolated container’s mem-
ory access patterns and infer private information from
it. We are particularly concerned with cache timing at-
tacks [7], because they can be mounted by unprivileged
software on the same computer as the victim.

Cache timing attacks are known to retrieve crypto-
graphic keys used by AES [8], RSA [10], Diffie-Hellman
[26], and elliptic-curve cryptography [9]. Early attacks
required access to the victim’s CPU core, but more so-
phisticated recent attacks [31, 49] target the last-level
cache (LLC), which is shared by all cores on the same
chip package. Recently, [33] demonstrated a cache tim-
ing attack that uses JavaScript code in a page visited by
a web browser.

Cache timing attacks observe the victim’s memory
access patterns at cache line granularity. However, recent
work shows that useful information can be gleaned even
from the page-level memory access pattern obtained by
a malicious OS that simply logs the addresses seen by its
page fault handler [48].

XOM [29] introduced the idea of having sensitive code
and data execute in isolated containers, and suggested
that the operating system should be in charge of resource
allocation, but is not to be trusted. Aegis [40] relies on a
trusted security kernel, handles untrusted memory, and
identifies the software in a container by computing a
cryptographic hash over the initial contents of the con-
tainer. Aegis also computes a hash of the security kernel
at boot time and uses it, together with the container’s
hash, to attest a container’s identity to a third party, and
to derive container keys. Unlike XOM and Aegis, Sanc-
tum protects the memory access patterns of the software
executing inside the isolation containers.

Sanctum only considers software attacks in its threat

model (§ 3). Resilience against hardware attacks can by
obtained by augmenting a Sanctum processor with the
countermeasures described in other secure architectures.
Aegis protects a container’s data when the DRAM is
untrusted, and Ascend [19] uses Oblivious RAM [20]
to protect a container’s memory access patterns against
adversaries that can observe the addresses on the memory
bus.

Intel’s Trusted Execution Technology (TXT) [21] is
widely deployed in today’s mainstream computers, due to
its approach of trying to add security to an existing CPU.
After falling victim to attacks [44, 47] where a malicious
OS directed a network card to access data in the protected
VM, a TXT revision introduced DRAM controller modi-
fications that selectively block DMA transfers, which are
also used by Sanctum.

Intel’s SGX [5, 32] adapted the ideas in Aegis and
XOM to multi-core processors with a shared, coherent
last-level cache. Sanctum draws heavy inspiration from
SGX’s approach to memory access control, which does
not modify the core’s critical execution path. We reverse-
engineered and adapted SGX’s method for verifying an
OS-conducted TLB shoot-down. We also adapted SGX’s
clever scheme for having an authenticated tree whose
structure is managed by an untrusted OS, and repurposed
it for enclave eviction. At the same time, SGX has many
security issues that are solved by Sanctum, which are
stated in this paper’s introduction.

Iso-X [18] attempts to offer the SGX security guaran-
tees, without the limitation that enclaves may only be
allocated in a DRAM area that is carved off exclusively
for SGX use, at boot time. Iso-X uses per-enclave page
tables, like Sanctum, but its enclave page tables require
a dedicated page walker. Iso-X’s hardware changes add
overhead to the core’s cycle time, and do not protect
against cache timing attacks.

SecureME [12] also proposes a co-design of hard-
ware modifications and a trusted hypervisor for ensuring
software isolation, but adapts the on-chip mechanisms
generally used to prevent physical attacks, in order to
protect applications from an untrusted OS. Just like SGX,
SecureME is vulnerable to memory access pattern at-
tacks.

The research community has brought forward various
defenses against cache timing attacks. PLcache [27, 41]
and the Random Fill Cache Architecture (RFill, [30])
were designed and analyzed in the context of a small
region of sensitive data, and scaling them to protect a
potentially large enclave without compromising perfor-
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mance is not straightforward. When used to isolate entire
enclaves in the LLC, RFill performs at least 37%-66%
worse than Sanctum.

RPcache [27, 41] trusts the OS to assign different hard-
ware process IDs to mutually mistrusting entities, and its
mechanism does not directly scale to large LLCs. The
non-monopolizable cache [14] uses a well-principled par-
titioning scheme, but does not completely stop leakage,
and relies on the OS to assign hardware process IDs.

Sanctum uses a very simple cache partitioning scheme
with reasonable overheads. It is likely that sophisticated
schemes like ZCache [36] and Vantage [37] can be com-
bined with Sanctum’s framework to yield better perfor-
mance.

The seL4 [25] formal verification effort sets an upper
bound of 9 kloc for trusted system software. Sanctum’s
measurement root and security monitor are smaller (< 5
kloc), so they are amenable to formal verification.

3 THREAT MODEL

Like SGX, Sanctum isolates the software inside an en-
clave from any other software on the system, including
privileged system software. Programmers are expected
to move the sensitive code in their applications into en-
claves. In general, an enclave receives encrypted sensi-
tive information from outside, decrypts the information
and performs some computation on it, and then returns
encrypted results to the outside world.

Sanctum protects the integrity and privacy of the code
and data inside an enclave against an adversary that can
carry out any practical software attack. We assume that
an attacker can compromise any operating system and hy-
pervisor present on the computer executing the enclave,
and can launch rogue enclaves. The attacker knows the
target computer’s architecture and micro-architecture.
The attacker can analyze passively collected data, such
as page fault addresses, as well as mount active attacks,
such as direct memory probing, memory probing via
DMA transfers, and cache timing attacks.

Sanctum also defeats attackers who aim to compro-
mise an operating system or hypervisor by running mali-
cious applications and enclaves. This addresses concerns
that enclaves provide new attack vectors for malware
[13, 34]. We assume that the benefits of meaningful soft-
ware isolation outweigh the downside of giving malware
authors a new avenue for frustrating malware detection
and reverse engineering [16].

Lastly, Sanctum protects against a malicious computer
owner who attempts to lie about the security monitor

running on the computer. Specifically, the attacker aims
to obtain an attestation stating that the computer is run-
ning an uncompromised security monitor, whereas a dif-
ferent supervisor had been loaded in the boot process.
The uncompromised security monitor must not have any
known vulnerability that causes it to disclose its crypto-
graphic keys. The attacker is assumed to know the target
computer’s architecture and micro-architecture, and is
allowed to run any combination of malicious security
monitor, hypervisor, operating system, applications and
enclaves.

We do not prevent timing attacks that exploit bottle-
necks in the cache coherence directory bandwidth or in
the DRAM bandwidth, deferring these to future work.

Sanctum does not protect against denial-of-service
(DoS) attacks carried out by compromised system soft-
ware, as a malicious OS may deny service by refusing
to allocate any resources to an enclave. We do protect
against malicious enclaves attempting to DoS an uncom-
promised OS.

We assume correct underlying hardware, so we do
not protect against software attacks that exploit hard-
ware bugs, such as rowhammer [24, 38] and other fault-
injection attacks.

Sanctum’s isolation mechanisms exclusively target
software attacks. § 2 mentions related work that can
harden a Sanctum system against some physical attacks.
Furthermore, we consider software attacks that rely on
sensor data to be physical attacks. For example, we do
not address information leakage due to power variations,
because software would require a temperature or current
sensor to carry out such an attack.

4 PROGRAMMING MODEL OVERVIEW

By design, Sanctum’s programming model deviates from
SGX as little as possible, while providing stronger secu-
rity guarantees. We expect that application authors will
link against a Sanctum-aware runtime that abstracts away
most aspects of Sanctum’s programming model. For ex-
ample, C programs would use a modified implementation
of the libc standard library. Due to space constraints,
we describe the programming model assuming that the
reader is familiar with SGX.

The software stack on a Sanctum machine, shown in
Figure 1, is very similar to the stack on a SGX system
with one notable exception: SGX’s microcode is replaced
by a trusted software component, the security monitor,
which runs at the highest privilege level (machine level
in RISC-V) and therefore is immune to compromised
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Figure 1: Software stack of a Sanctum machine

system software.
We follow SGX’s approach of relegating the man-

agement of computation resources, such as DRAM and
execution cores, to untrusted system software. In Sanc-
tum, the security monitor checks the system software’s
allocation decisions for correctness and commits them
into the hardware’s configuration. For simplicity, we
refer to the software that manages resources as an OS
(operating system), even though it may be a combination
of a hypervisor and a guest operating system kernel.

Like in SGX, an enclave stores its code and private
data in parts of DRAM that have been allocated by the OS
exclusively for the enclave’s use, which are collectively
called the enclave’s memory. Consequently, we refer
to the regions of DRAM that are not allocated to any
enclave as OS memory. The security monitor tracks
DRAM ownership, and ensures that no piece of DRAM
is assigned to more than one enclave.

Each Sanctum enclave uses a range of virtual mem-
ory addresses (EVRANGE) to access its memory. The
enclave’s memory is mapped by the enclave’s own page
tables, which are also stored in the enclave’s memory
(Figure 2). This deviation from SGX is needed because
page table dirty and accessed bits reveal memory access
patterns at page granularity.

The enclave’s virtual address space outside
EVRANGE is used to access its host application’s
memory, via the page tables set up by the OS. Sanctum’s
hardware extensions implement dual page table lookup
(§ 5.2), and make sure that an enclave’s page tables can
only point into the enclave’s memory, while OS page
tables can only point into OS memory (§ 5.3).

Figure 3 shows the contents of an enclave’s memory.
Like SGX, Sanctum supports multi-threaded enclaves,
and enclaves must provision thread state areas for each

Host application
space

Host application
space

EVRANGE A

Enclave A Virtual
Address Space

Physical Memory

Enclave A region

Enclave A page tables

Enclave A region

Enclave B region

Enclave B page tables

OS region
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OS page tables

Host application
space

Host application
space

EVRANGE B

Enclave B Virtual
Address Space

Figure 2: Per-enclave page tables
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Figure 3: Enclave layout and data structures

thread that executes enclave code. Enclave threads, like
their SGX cousins, run at the lowest privilege level (user
level in RISC-V), so that a malicious enclave cannot com-
promise the OS. Specifically, enclaves cannot execute
privileged instructions, and address translations that use
OS page tables will result in page faults when accessing
supervisor pages.

Sanctum, like SGX, considers system software to be
untrusted, so it regulates transitions into and out of en-
clave code. An enclave’s host application enters an
enclave via a security monitor call that locks a thread
state area, and transfers control to its entry point. After
completing its intended task, the enclave code exits by
asking the monitor to unlock the thread’s state area, and
transfer control back to the host application.

Like in SGX, enclaves cannot make system calls di-
rectly, as we cannot trust the OS to restore an enclave’s
execution state. Instead, the enclave’s runtime must ask
the host application to proxy syscalls such as file system
and network I/O requests.

Sanctum’s security monitor is the first responder for
all hardware exceptions, including interrupts and faults.
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Like in SGX, an interrupt received during enclave ex-
ecution causes an asynchronous enclave exit (AEX),
whereby the monitor saves the core’s registers in the
current thread’s AEX state area, zeroes the registers, ex-
its the enclave, and dispatches the interrupt as if it was
received by the code entering the enclave.

Unlike in SGX, resuming enclave execution after an
AEX means re-entering the enclave using its normal en-
try point, and having the enclave’s code ask the security
monitor to restore the pre-AEX execution state. Sanctum
enclaves are aware of asynchronous exits so they can
implement security policies. For example, an enclave
thread that performs time-sensitive work, such as peri-
odic I/O, may terminate itself if it ever gets preempted
by an AEX.

Furthermore, whereas SGX dispatches faults (with
sanitized information) to the OS, our security monitor
dispatches all faults occurring within an enclave to a
designated fault handler inside the enclave, which is ex-
pected to be implemented by the enclave’s runtime. For
example, a libc runtime would translate faults into
UNIX signals which, by default, would exit the enclave.
It is possible, though not advisable for performance rea-
sons (§ 6.3), for a runtime to handle page faults and
implement demand paging in a secure manner, without
being vulnerable to the attacks described in [48].

Unlike SGX, we isolate each enclave’s data through-
out the system’s cache hierarchy. The security moni-
tor flushes per-core caches, such as the L1 cache and
the TLB, whenever a core jumps between enclave and
non-enclave code. Last-level cache (LLC) isolation is
achieved by a simple partitioning scheme supported by
Sanctum’s hardware extensions (§ 5.1).

Sanctum’s strong isolation yields a simple security
model for application developers: all computation that
executes inside an enclave, and only accesses data inside
the enclave, is protected from any attack mounted by
software outside the enclave. All communication with
the outside world, including accesses to non-enclave
memory, is subject to attacks.

We assume that the enclave runtime implements the
security measures needed to protect the enclave’s com-
munication with other software modules. For example,
any algorithm’s memory access patterns can be protected
by ensuring that the algorithm only operates on enclave
data. The library can implement this protection simply
by copying any input buffer from non-enclave memory
into the enclave before computing on it.

The enclave runtime can use Native Client’s approach

DRAM Region
Index

Cache
Line Offset

5 0611
Page Offset

1214

Cache Set Index

DRAM Stripe
Index

151720 18
Cache Tag

Address bits used by 256 KB of DRAM

Address bits covering the maximum addressable physical space of 2 MB

Physical page number (PPN)

Figure 4: Interesting bit fields in a physical address

[50] to make sure that the rest of the enclave software
only interacts with the host application via the runtime,
and mitigate any potential security vulnerabilities in en-
clave software.

5 HARDWARE EXTENSIONS

Sanctum uses an LLC partitioning mechanism that is
readily available thanks to the interaction between page
tables and direct-mapped or set-associative caches. By
manipulating the input to the cache set indexing compu-
tation, as described in § 5.1, the computer’s DRAM is
divided into equally sized contiguous DRAM regions
that use disjoint LLC sets. The OS allocates the cache
dynamically to its processes and to enclaves, by allocat-
ing DRAM regions. Each DRAM region can either be
entirely owned by an enclave, or entirely owned by the
OS and used by non-enclave processes.

We modify the input to the page walker that translates
addresses on TLB misses, so it can either use the OS page
tables or the current enclave’s page tables, depending on
the translated virtual address (§ 5.2). We also add logic
between the page walker and the L1 cache, to ensure
that the OS page table entries can only point into DRAM
regions owned by the OS, and the current enclave’s page
table entries can only point into DRAM regions owned
by the enclave (§ 5.3).

Lastly, we trust the DMA bus master to reject DMA
transfers pointing into DRAM regions allocated to en-
claves, to protect against attacks where a malicious OS
programs a peripheral to access enclave data. This re-
quires changes similar to the modifications done by SGX
and later revisions of TXT to the integrated memory
controller on recent Intel chips (§ 5.4).

5.1 LLC Address Input Transformation
Figure 4 depicts a physical address in a toy computer with
32-bit virtual addresses and 21-bit physical addresses,
4,096-byte pages, a set-associative LLC with 512 sets
and 64-byte lines, and 256 KB of DRAM.

The location where a byte of data is cached in the LLC
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2-bit cache address shift - 2 x 16 KB stripes per DRAM region

3-bit cache address shift - each DRAM region is one 32 KB stripe
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Figure 5: Cache address shifting makes DRAM regions contiguous

depends on the low-order bits in the byte’s physical ad-
dress. The set index determines which of the LLC lines
can cache the line containing the byte, and the line offset
locates the byte in its cache line. A virtual address’s
low-order bits make up its page offset, while the other
bits are its virtual page number (VPN). Address transla-
tion leaves the page offset unchanged, and translates the
VPN into a physical page number (PPN), based on the
mapping specified by the page tables.

We define the DRAM region index in a physical ad-
dress as the intersection between the PPN bits and the
cache index bits. This is the maximal set of bits that im-
pact cache placement and are determined by privileged
software via page tables. We define a DRAM region to
be the subset of DRAM with addresses having the same
DRAM region index. In Figure 4, for example, address
bits [14 . . . 12] are the DRAM region index, dividing the
physical address space into 8 DRAM regions.

DRAM regions are the basis of our cache partitioning
because addresses in a DRAM region do not collide in
the LLC with addresses from any other DRAM region. If
programs Alice and Eve use disjoint DRAM regions, they
cannot interfere in the LLC, so Eve cannot mount LLC
timing attacks on Alice. Furthermore, the OS can place
applications in different DRAM regions by manipulating
page tables, without having to modify application code.

In a typical system without Sanctum’s hardware ex-
tensions, DRAM regions are made up of multiple con-
tinuous DRAM stripes, where each stripe is exactly one
page long. The top of Figure 5 drives this point home, by
showing the partitioning of our toy computer’s 256 KB
of DRAM into DRAM regions. The fragmentation of

DRAM Region
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Line OffsetS2

Address Translation Unit

Page OffsetVirtual Page Number (VPN)
5 061112

14151718

31

Physical address

Cache Tag

Virtual Address

Physical Page 
Number (PPN)

12

5 0611

DRAM Region
IndexS2

20

S1

S1

12141520 1718

Address bits used by 256 KB of DRAM

Cache Unit
Input

Cache Set Index

Cache 
Address 
Shifter

Figure 6: Cache address shifter that shifts the PPN by 3 bits

DRAM regions makes it difficult for the OS to allocate
contiguous DRAM buffers, which are essential to the ef-
ficient DMA transfers used by high performance devices.
In our example, if the OS only owns 4 DRAM regions,
the largest contiguous DRAM buffer it can allocate is 16
KB.

We observed that, up to a certain point, circularly
shifting (rotating) the PPN of a physical address to the
right by one bit, before it enters the LLC, doubles the size
of each DRAM stripe and halves the number of stripes
in a DRAM region, as illustrated in Figure 5.

Sanctum takes advantage of this effect by adding a
cache address shifter that circularly shifts the PPN to
the right by a certain amount of bits, as shown in Fig-
ures 6 and 7. In our example, configuring the cache
address shifter to rotate the PPN by 3 yields contiguous
DRAM regions, so an OS that owns 4 DRAM regions
could hypothetically allocate a contiguous DRAM buffer
covering half of the machine’s DRAM.

The cache address shifter’s configuration depends on
the amount of DRAM present in the system. If our
example computer could have 128 KB - 1 MB of DRAM,
its cache address shifter must support shift amounts from
2 to 5. Such a shifter can be implemented via a 3-position
variable shifter circuit (series of 8-input MUXes), and
a fixed shift by 2 (no logic). Alternatively, in systems
with known DRAM configuration (embedded, SoC, etc.),
the shift amount can be fixed, and implemented with no
logic.

5.2 Page Walker Input
Sanctum’s per-enclave page tables require an enclave
page table base register eptbr that stores the physical
address of the currently running enclave’s page tables,
and has similar semantics to the page table base register
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ptbr pointing to the operating system-managed page
tables. These registers may only be accessed by the
Sanctum security monitor, which provides an API call
for the OS to modify ptbr, and ensures that eptbr
always points to the current enclave’s page tables.

The circuitry handling TLB misses switches between
ptbr and eptbr based on two registers that indicate the
current enclave’s ERANGE, namely evbase (enclave
virtual address space base) and evmask (enclave virtual
address space mask). When a TLB miss occurs, the
circuit in Figure 8 selects the appropriate page table
base by ANDing the faulting virtual address with the
mask register and comparing the output against the base
register. Depending on the comparison result, either
eptbr or ptbr is forwarded to the page walker as the
page table base address.

5.3 Page Walker Memory Accesses
In modern high-speed CPUs, address translation is per-
formed by a hardware page walker that traverses the
page tables when a TLB miss occurs. The page walker’s
latency greatly impacts the CPU’s performance, so it is
implemented as a finite-state machine (FSM) that reads
page table entries by issuing DRAM read requests using
physical addresses, over a dedicated bus to the L1 cache.

Unsurprisingly, page walker modifications require a
lot of engineering effort. At the same time, Sanctum’s
security model demands that the page walker only ref-
erences enclave memory when traversing the enclave

0
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1

0

1

0

1

0

1

EPTBR

PTBR

AND
EVMASK

TLB Miss
Virtual Address

EQ
EVBASE

FSM Input:
Page Table Base

EDRBMAP

DRBMAP FSM Input:
DRAM Region Bitmap

EPARBASE

PARBASE FSM Input:
Protected Address Base

EPARMASK

PARMASK FSM Input:
Protected Address Mask

EPANDMASK

PANDMASK FSM Input:
Protected Permission Mask

Address Range Check

Figure 8: Page walker input for per-enclave page tables

page tables, and only references OS memory when trans-
lating the OS page tables. Fortunately, we can satisfy
these requirements without modifying the FSM. Instead,
the security monitor works in concert with the circuit in
Figure 9 to ensure that the page tables only point into
allowable memory.

Sanctum’s security monitor must guarantee that ptbr
points into an OS DRAM region, and eptbr points into
a DRAM region owned by the enclave. This secures the
page walker’s initial DRAM read. The circuit in Figure 9
receives each page table entry fetched by the FSM, and
sanitizes it before it reaches the page walker FSM.

The security monitor configures the set of DRAM
regions that page tables may reference by writing to a
DRAM region bitmap (drbmap) register. The sanitiza-
tion circuitry extracts the DRAM region index from the
address in the page table entry, and looks it up in the
DRAM region bitmap. If the address does to belong to
an allowable DRAM region, the sanitization logic forces
the page table entry’s valid bit to zero, which will cause
the page walker FSM to abort the address translation and
signal a page fault.

Sanctum’s security monitor must maintain metadata
about each enclave, and does so in the enclave’s DRAM
regions. For security reasons, the metadata must not
be writable by the enclave. Sanctum extends the page
table entry transformation described above to implement
per-enclave read-only areas. A protected address range
base (parbase) register and a protected address range
mask (parmask) register denote this protected physical
address range.
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Figure 9: Hardware support for per-enclave page tables: transform-
ing the page table entries fetched by the page walker.

The page table entry sanitization logic in Sanctum’s
hardware extensions checks if each page table entry
points into the protected address range by ANDing the
entry’s address with the protected range mask and com-
paring the result with the protected range base.

If a leaf page table entry is seen with a protected ad-
dress, its permission bits are masked with a protected
permissions mask (parpmask) register. Upon discov-
ering a protected address in an intermediate page table
entry, its valid bit is cleared, forcing a page fault.

The above transformation allows the security monitor
to set up a read-only range by clearing permission bits
(write-enable, for example). Entry invalidation ensures
no page table entries are fetched from the protected range,
which prevents the page walker FSM from modifying the
protected region by setting accessed and dirty bits.

All registers mentioned above come in pairs, as Sanc-
tum maintains separate OS and enclave page tables. The
security monitor sets up a protected range in the OS page
tables to isolate its own code and data structures (most
importantly its private attestation key) from a malicious
OS.

Figure 10 shows Sanctum’s logic inserted between the
page walker and the cache unit that fetches page table
entries.

5.4 DMA Transfer Filtering
We whitelist a DMA-safe DRAM region instead of fol-
lowing SGX’s blacklist approach. Specifically, Sanctum
adds two registers (a base, dmarbase and an AND
mask, dmarmask) to the DMA arbiter (memory con-
troller). The range check circuit shown in Figure 8
compares each DMA transfer’s start and end addresses
against the allowed DRAM range, and the DMA arbiter
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Figure 10: Sanctum’s page entry transformation logic in the context
of a RISC V Rocket core

drops transfers that fail the check.

6 SOFTWARE DESIGN

Sanctum has two pieces of trusted software: the measure-
ment root (§ 6.1), which is burned in on-chip ROM, and
the security monitor (§ 6.2), which is stored alongside the
computer’s firmware (usually flash memory). We expect
both to be amenable to formal verification: our imple-
mentation of a security monitor for Sanctum has fewer
than 5 kloc of C++, including a subset of the standard
library and the cryptography used for enclave attestation.

6.1 Measurement Root

The measurement root (mroot) is stored in a ROM at
the top of the physical address space, and covers the reset
vector. Its main responsibility is to compute a crypto-
graphic hash of the security monitor, and generate an
attestation key pair and certificate based on the moni-
tor’s hash. This allows the machine owner to patch or
customize the security monitor, while preserving the at-
testation mechanism needed to convince a third party that
it is talking to a specific enclave built in a well-defined
environment.
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The security monitor (shown in Figure 12) is expected
to be stored in non-volatile memory (such as an SPI
flash chip) that can respond to memory I/O requests
from the CPU, perhaps via a special mapping in the
computer’s chipset. When mroot starts executing, it
computes a cryptographic hash over the security monitor.
mroot then reads the processor’s key derivation secret,
and derives a symmetric key based on the monitor’s hash.
mroot will eventually hand down the key to the monitor.

The security monitor contains a header that includes
the location of an attestation key existence flag. If the flag
is not set, the measurement root generates an attestation
key pair for the monitor, and produces an attestation
certificate by signing the monitor’s public attestation key
with the processor’s private key. The certificate includes
the monitor’s hash.

The security monitor is expected to encrypt its pri-
vate attestation key with the symmetric key produced
earlier, and store the encrypted key in its flash memory.
When writing the key, the monitor is expected to set the
asymmetric key existence flag, instructing future boot
sequences not to re-generate a key. The public attesta-
tion key and certificate can be stored unencrypted in any
untrusted memory.

Before handing control to the monitor, mroot sets a
lock that blocks any software from reading the proces-
sor’s symmetric key derivation seed and private key until
a reset occurs.

6.2 Security Monitor

The security monitor receives control after mroot fin-
ishes setting up the attestation measurement chain.

The monitor provides API calls to the operating system
and enclaves for DRAM region allocation and enclave
management. The monitor guards sensitive registers,
such as the page table base register (ptbr) and the al-
lowed DMA range (dmarbase and dmarmask). The
OS can set these registers via monitor calls that ensure
the register values are consistent with the current DRAM
region allocation.

Figure 11 shows the DRAM region allocation state
transition diagram. After the system boots up, all DRAM
regions are allocated to the OS, which can free up DRAM
regions so it can re-assign them to enclaves or to itself.
A DRAM region can only become free after it is blocked
by its owner, which can be the OS or an enclave. While
a DRAM region is blocked, any address translations
mapping to it cause page faults, so no new TLB entries
will be created for that region. Before the OS frees the

OWNED BLOCKED FREE
block
DRAM
region

free
DRAM
region

assign DRAM region

Figure 11: DRAM region allocation states and API calls
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Figure 12: Security monitor data structures

blocked region, it must flush all the cores’ TLBs, to
remove any stale entries for the region.

The monitor ensures that the OS performs TLB shoot-
downs, using a global block clock. When a region is
blocked, the block clock is incremented, and the current
block clock value is stored in the metadata associated
with the DRAM region (shown in Figure 3). When a
core’s TLB is flushed, that core’s flush time is set to the
current block clock value. When the OS asks the monitor
to free a blocked DRAM region, the monitor verifies
that no core’s flush time is lower than the block clock
value stored in the region’s metadata. As an optimiza-
tion, freeing a region owned by an enclave only requires
TLB flushes on the cores running that enclave’s threads.
No other core can have TLB entries for the enclave’s
memory.

Figure 13 shows the enclave management state dia-
gram. The OS creates an enclave by issuing a monitor
call to allocate a free DRAM region to the enclave and
initialize the enclave metadata fields (shown in Figure 3)
in that DRAM region. When an enclave is created, it
enters the LOADING state, where the OS sets up the
enclave’s initial state via monitor calls that create hard-
ware threads and page table entries, and copy code and
data into the enclave. Every operation performed on an
enclave in the LOADING state updates the enclave’s
measurement hash. The OS then issues a monitor call to
transition the enclave to the INITIALIZED state, which
finalizes its measurement hash. The application hosting
the enclave is now free to run enclave threads.

The security monitor uses Sanctum’s MMU extensions
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to ensure that enclaves cannot modify their own meta-
data area. Moreover, an enclave’s metadata cannot be
accessed by the OS or any other enclave, as it is stored
in the enclave’s DRAM region. Therefore, the metadata
area can safely store public information with integrity
requirements, such as the enclave’s measurement hash.

While an OS loads an enclave, it is free to map the
enclave’s pages, but the monitor maintains its page ta-
bles ensuring all entries point to non-overlapping pages
in DRAM owned by the enclave. Once an enclave is
initialized, it can inspect its own page tables and abort if
the OS created undesirable mappings. Simple enclaves
do not require specific mappings. Complex enclaves are
expected to communicate their desired mappings to the
OS via out-of-band metadata not covered by this work.

Our monitor makes sure that page tables do not over-
lap by storing the last mapped page’s physical address
in the enclave’s metadata. To simplify the monitor, a
new mapping is allowed if its physical address is greater
than the last mapping’s address, which constrains the
OS to map an enclave’s DRAM pages in monotonically
increasing order.

Each enclave thread state area is identified by a thread
slot that contains its address, which is stored in the en-
clave metadata. Figure 14 shows the thread slot state
diagram. At enclave creation, the OS specifies the num-
ber of thread slots in the enclave’s metadata. Initially,
all thread slots are free. During enclave loading, the
OS can initialize a free slot via a load thread monitor
call, which designates the thread’s state area and stores
it in the thread slot. Running enclaves may initialize
additional slots using a similar monitor call.

When performing an AEX, the security monitor atomi-
cally tests-and-sets the AEX state valid flag in the current
thread’s state. If the flag is clear, the monitor stores the
core’s execution state in the thread state’s AEX area. Oth-

erwise, the enclave thread was resuming from an AEX,
so the monitor does not change the AEX area. When the
host application re-enters the enclave, it will resume from
the previous AEX. This reasoning avoids the complexity
of SGX’s state stack.

The security monitor is highly concurrent, with fine-
grained locks. API calls targeting two different enclaves
may be executed in parallel on different cores. Each
DRAM region has a lock guarding that region’s metadata.
An enclave is guarded by the lock of the DRAM region
holding its metadata. Each thread slot has a lock guarding
it and the thread state that it points to. The thread slot
lock is also acquired while the slot’s thread state area is
used by a core running enclave code. Thus, the enter
enclave call acquires a slot lock, which is released by an
enclave exit call or by an AEX.

We avoid deadlocks by using a form of optimistic
locking. Each monitor call attempts to acquire all the
locks it needs via atomic test-and-set operations, and
errors with a concurrent call code if any lock is
unavailable.

6.3 Enclave Eviction

General-purpose software can be enclaved without
source code changes, provided that it is linked against a
runtime (e.g., libc) modified to work with Sanctum. Any
such runtime would be included in the TCB.

The current Sanctum design allows the operating sys-
tem to over-commit physical memory allocated to en-
claves, by paging out to disk DRAM regions from some
enclaves. Sanctum does not give the OS visibility into
enclave memory accesses, in order to prevent private
information leaks, so the OS must decide the enclave
whose DRAM regions will be evicted based on other ac-
tivity, such as network I/O, or based on a business policy,
such as Amazon EC2’s spot instances.

Once a victim enclave has been decided, the OS asks
the enclave to block a DRAM region, giving the enclave
an opportunity to rearrange data in its RAM regions.
DRAM region management can be transparent to the
programmer if handled by the enclave’s runtime.

The security monitor does not allow the OS to forcibly
reclaim a single DRAM region from an enclave, as doing
so would leak memory access patterns. Instead, the OS
can delete an enclave, after stopping its threads, and re-
claim its DRAM regions. Thus, a small or short-running
enclave may well refuse DRAM region management re-
quests from the OS, and expect the OS to delete and
re-run it under memory pressure.

10



To avoid wasted work, large long-running enclaves
may elect to use demand paging to overcommit their
DRAM, albeit with the understanding that demand pag-
ing leaks page-level access patterns to the OS. Securing
this mechanism requires the enclave to obfuscate its page
faults via periodic I/O using oblivious RAM techniques,
as in the Ascend processor [19], applied at page rather
than cache line granularity. This carries a high overhead:
even with a small chance of paging, an enclave must
generate periodic page faults, and access a large set of
pages at each period. Using an analytic model, we esti-
mate the overhead to be upwards of 12ms per page per
period for a high-end 10K RPM drive, and 27ms for a
value hard drive. Given the number of pages accessed
every period grows with an enclave’s data size, the costs
are easily prohibitive: an enclave accessing pages every
second may struggle to make forward progress. While
SSDs may alleviate some of this prohibitive overhead,
and will be investigated in future work, Sanctum focuses
on securing enclaves without demand paging.

Enclaves that perform other data-dependent commu-
nication, such as targeted I/O into a large database file,
must also use the periodic oblivious I/O to obfuscate
their access patterns from the operating system. These
techniques are independent of application business logic,
and can be provided by libraries such as database access
drivers.

Lastly, the presented design requires each enclave to al-
ways occupy at least one DRAM region, which contains
enclave data structures and the memory management
code described above. Evicting all of a live enclave’s
memory requires an entirely different scheme to be de-
scribed in future work.

Briefly, the OS can ask the security monitor to freeze
an enclave, encrypting the enclave’s DRAM regions in
place, and creating a leaf node in a hash tree. When the
monitor thaws a frozen enclave, it uses the hash tree leaf
to ensure freshness, decrypts the DRAM regions, and
relocates the enclave, updating its page tables to reflect
new owners of relevant DRAM regions. The hash tree is
managed by the OS using an approach similar to SGX’s
version array page eviction.

7 SECURITY ANALYSIS

Sanctum protects each enclave in a system from the (po-
tentially compromised) operating system and from other,
potentially malicious, enclaves. The security monitor
(§ 6.2) keeps track of the operating system’s assignment
of DRAM regions to enclaves, and enforces the invari-

ant that every DRAM region is assigned to exactly one
enclave or to the operating system.

The region blocking mechanism guarantees that when
a DRAM region is assigned to an enclave or the OS, no
stale TLB mappings associated with the DRAM region
exist. The monitor uses the MMU extensions described
in § 5.2 and § 5.3 to ensure that once a DRAM region is
assigned, no software other than the region’s owner may
create TLB entries pointing inside the DRAM region.
Together, these mechanisms guarantee that the DRAM
regions allocated to an enclave cannot be accessed by the
operating system or by another enclave.

The LLC modifications in § 5.1 ensure that an enclave
confined to a set of DRAM regions is not vulnerable to
cache timing attacks from software that cannot access the
enclave’s DRAM regions. The security monitor enforces
the exclusive ownership of each DRAM region.

Sanctum’s security monitor lives in a DRAM region
assigned to the OS, so no enclave can set up its page
tables to point to the monitor’s physical memory. The
monitor uses the MMU extensions in § 5.2 and § 5.3
to prevent the OS from creating TLB mappings point-
ing into the monitor’s physical memory, meaning the
security monitor’s integrity cannot be compromised by a
malicious enclave or OS.

Sanctum also protects the OS from (potentially mali-
cious) enclaves: the security monitor executes enclave
code with the same privilege as application code, so the
barriers erected by the OS kernel to protect itself against
malicious applications also prevent malicious enclaves
from compromising the OS.

Each enclave has full control over its own page tables,
but the security monitor configures the MMU extensions
in § 5.2 and § 5.3 to confine an enclave’s page tables to
the DRAM regions assigned to it by the OS. This means
that enclaves cannot compromise the OS memory, and
that enclaves may only use the DRAM regions given to
them by the OS.

The security monitor preempts an enclave thread (via
AEX) when its CPU core receives an interrupt, allowing
the OS to preempt a rogue enclave’s threads via inter-
processor interrupts (IPI), and then destroy the enclave.

8 PERFORMANCE EVALUATION

While we propose a high-level set of hardware and soft-
ware to implement Sanctum, we focus our evaluation on
the concrete example of a 4-core RISC-V system gen-
erated by Rocket Chip [28]. As Sanctum conveniently
isolates concurrent workloads from each other, we can
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examine its overhead by examining individual applica-
tions executing on a single core, discounting the effect
of other running software.

8.1 Experiment Design
We use a Rocket-Chip generator modified to model Sanc-
tum’s hardware modifications (§ 5). We generate a 4-
core 64-bit RISC-V CPU with private 16KB 4-way set
associative instruction and data L1 caches. Using a cycle-
accurate simulator for this machine, we produce an LLC
access trace and post-process it with a cache emulator for
a shared 4MB LLC with and without Sanctum’s DRAM
region isolation. We accurately compute the program
completion time, in cycles, for each benchmark because
Rocket cores have in-order single issue pipelines, and
cannot make any progress on a TLB or cache miss. We
use a simple model for DRAM accesses and assume un-
limited DRAM bandwidth. We also omit an evaluation
of the on-chip network and cache coherence overhead,
as we do not make any changes that impact any of these
subsystems.

Our cache size choices are informed by Intel’s Sandy
Bridge [23] desktop models, which have 8 logical CPUs
on a 4-core hyper-threaded system with 32KB 8-way
L1s, and an 8MB LLC. We do not model Intel’s 256KB
per-core L2, because hierarchical caches are not imple-
mented by Rocket. We note, however, that a private L2
would greatly reduce each core’s LLC traffic, which is
Sanctum’s main overhead.

We simulate a machine with 4GB of memory that
is divided into 64 DRAM regions by Sanctum’s cache
address indexing scheme. In our model, an LLC access
adds a 12-cycle latency, and a DRAM access costs an
additional 100 cycles.

Using the hardware model above, we benchmark the
subset of SPECINT 2006 [3] that we could compile using
the RISC-V toolchain without additional infrastructure,
specifically bzip2, gcc, lbm, mcf, milc, sjeng,
and 998.specrand. This is a mix of memory and
compute-bound long-running workloads with diverse
access locality.

We choose not to simulate a complete Linux kernel,
and instead use the RISC-V proto kernel [42] that pro-
vides the few services used by our benchmarks. We
schedule each benchmark on Core 0, and run it to com-
pletion, while the other cores are idling.

8.2 Cost of Added Hardware
Sanctum’s hardware changes add relatively few gates
to the Rocket chip, but do increase its area and power

consumption. Like SGX, we avoid modifying the core’s
critical path: while our addition to the page walker (as
analyzed in the next section) may increase the latency
of TLB misses, it does not increase the Rocket core’s
clock cycle, which is competitive with an ARM Cortex-
A5 [28].

As illustrated at the gate level in Figures 8 and 9,
we estimate Sanctum’s changes to the Rocket hardware
to require 1500 (+0.78%) gates and 700 (+1.9%) flip-
flops per core, consisting of 50 gates for the cache index
calculation, 1000 gates and 700 flip-flops for the extra
address page walker configuration, and 400 gates for
the page table entry transformations. DMA filtering
requires 600 gates (+0.8%) and 128 flip-flops (+1.8%)
in the uncore. We do not make any changes to the LLC,
and do not include it in the percentages above (the LLC
generally accounts for half of chip area).

8.3 Added Page Walker Latency
Sanctum’s page table entry transformation logic is de-
scribed in § 5.3, and we expect it can be combined with
the page walker FSM logic within a single clock cycle.

Nevertheless, in the worst case, the transformation
logic would add a pipeline stage between the L1 data
cache and the page walker. The transformation logic is
small and combinational, significantly simpler than the
ALU in the core’s execute stage. In this case, every mem-
ory fetch issued by the page walker would experience a
1-cycle latency, which adds 3 cycles of latency to each
TLB miss.

The overheads due to an additional cycle of TLB miss
latency are negligible, as quantified by the completion
time of SPECINT benchmarks. All overheads are well
below 0.01%, relative to the completion time without
added TLB latency. This overhead is insignificant rela-
tive to the overheads of cache isolation: TLB misses are
infrequent and relatively expensive, and a single addi-
tional cycle makes little difference.

8.4 Security Monitor Overhead
Invoking Sanctum’s security monitor to load code into
an enclave adds a one-time setup cost to each isolated
process, when compared against running code without
Sanctum’s isolation container. This overhead is amor-
tized by the duration of the computation, so we discount
it for long-running workloads.

Entering and exiting enclaves is more expensive than
hardware context switches: the security monitor must
flush TLBs and L1 caches to prevent a privacy leak. How-
ever, a sensible OS is expected to minimize the number

12



N
or

m
al

iz
ed

 C
om

pl
et

io
n 

T
im

e

1.00

1.05

1.10

1.15

bzip2 gcc lbm mcf milc sjeng specrand

Allocated DRAM Regions, as fraction of LLC
1/8 1/4 1/2 All

Figure 15: The impact of DRAM region allocation on the com-
pletion time of an enclaved benchmark, relative to an idea insecure
baseline

of context switches by allocating some cores to an en-
clave and allowing them to execute to completion. We
therefore also consider this overhead to be negligible for
long-running computations.

8.5 Overhead of DRAM Region Isolation
The crux of Sanctum’s strong isolation is caching DRAM
regions in distinct sets. Therefore, when the OS assigns
DRAM regions to an enclave, it also confines it to a
share of the LLC. An enclaved thread effectively runs
on a machine with a smaller LLC, which impacts the
enclave’s performance. Note, however, that Sanctum
does not partition the per-core caches, so a thread can
utilize its core’s entire L1 caches and TLBs.

Figure 15 shows the completion times of the SPECINT
workloads, each normalized to the completion time of
the same benchmark running on an ideal insecure OS
that allocates the entire LLC to the benchmark. Sanctum
excels at isolating compute-bound workloads operating
on sensitive data. Thus, SPECINT’s large, multi-phase
workloads heavily exercise the entire memory hierarchy,
and therefore paint an accurate picture of a worst case
for our system. mcf, in particular, is very sensitive to
the available LLC size, so it incurs noticeable overheads
when being confined to a small subset of the LLC.

We consider mcf’s 15.1% decrease in performance
when limited to 1/8th of the LLC to be a very pessimistic
view of our system’s performance, as it explores the case
where the enclave receives 1/4th of the CPU power (a
core), but 1/8th of the LLC. For a reasonable allocation
of 1/4 of DRAM regions (in a 4-core system), DRAM
regions add a 3-6% overhead to most memory-bound
benchmarks (with the exception of mcf), and do not
impact compute-bound workloads.

We also consider a more representative baseline by
considering the performance of a system executing mul-
tiple copies of the benchmark concurrently, in different
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Figure 16: Sanctum’s enclave overheads for one core utilizing 1/4
of the LLC compared against an idealized baseline (non-enclaved
app using the entire LLC), and against a representative baseline (non-
enclaved app sharing the LLC with concurrent instances)

virtual address spaces, effectively normalizing LLC re-
sources available to each instance. Overheads for a rea-
sonable allocation of 1/4th of the LLC shared among
4 instances are shown in Figure 16. With this baseline,
mcf overheads are reduced to 4.6% and 2.2% for alloca-
tions of 1/8th and 1/4th of the LLC, respectively. Over
the full set of benchmarks, overheads fall below 4%,
averaging 1.9%. Memory-bound benchmarks exhibit a
2.7% average overhead over this insecure baseline.

In the LLC, our region-aware cache index translation
forces consecutive physical pages in DRAM to map to
the same cache sets within a DRAM region, creating
interference. We expect the OS memory management
implementation to be aware of DRAM regions, and map
data structures to pages spanning all available DRAM
regions.

The locality of DRAM accesses is also affected: an
enclaved process has exclusive access to its DRAM re-
gion(s), each a contiguous range of physical addresses.
DRAM regions therefore cluster process accesses to
physical memory, decreasing the efficiency of bank-level
interleaving in a system with multiple DRAM channels.
Row or cache line-level interleaving (employed by some
Intel processors [23]) of DRAM channels better paral-
lelizes accesses within a DRAM region, but introduces a
trade-off in the efficiency of individual DRAM channels.
Considering the low miss rate in a modern cache hier-
archy, and multiple concurrent threads, we expect this
overhead is small compared to the cost of cache partition-
ing. We leave a thorough evaluation of DRAM overhead
in a multi-channel system for future work.

9 CONCLUSION

We have shown through the design of Sanctum that strong
provable isolation of concurrent software modules can
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be achieved with low overhead. The worst observed
overhead across all benchmarks when compared to a
representative insecure baseline is 4.6%. This approach
provides strong security guarantees against an insidious
threat model including cache timing and memory access
pattern attacks. With this work, we hope to enable a shift
in discourse in secure hardware architecture approaches
away from plugging specific security holes to a princi-
pled approach to eliminating attack surfaces.
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