
Constant Communication Oblivious RAM

Tarik Moataz
Colorado State University

IMT Telecom
tmoataz@cs.colostate.edu

Travis Mayberry
United States Naval Academy

travism@ccs.neu.edu

Erik-Oliver Blass
Airbus Group Innovations
81663 Munich, Germany

erik-oliver.blass@airbus.com

ABSTRACT
There have been several attempts recently at using homomorphic
encryption to increase the efficiency of Oblivious RAM protocols.
One of the most successful has been Onion ORAM, which achieves
O(1) communication overhead with polylogarithmic server com-
putation. However, it has a number of drawbacks. It requires a
very large block size of B = Ω(log5 N), with large constants.
Although it needs only polylogarithmic computation complexity,
that computation consists mostly of expensive homomorphic mul-
tiplications. Finally, it achieves O(1) communication complexity
but only amortized over a number of accesses. In this work we
aim to address these problems, reducing the required block size to
Ω(log3 N), removing almost all of the homomorphic multiplica-
tions and achieving O(1) worst-case communication complexity.
We achieve this by replacing their homomorphic eviction routine
with a much less expensive permute-and-merge one which elim-
inates homomorphic multiplications while maintaining the same
level of security. In turn, this removes the need for layered encryp-
tion that Onion ORAM relies on and reduces both the minimum
block size and worst-case bandwidth.

1. INTRODUCTION
With cloud storage is becoming increasingly popular and relied

upon by both enterprise and individual users, ensuring proper se-
curity and privacy is a critical research problem. Reports indicate
that up to 88% of organizations [19] are using public cloud infras-
tructure for at least some of their data. It is fairly straightforward to
encrypt that data, but that is not always enough. Where, when and
how often a user accesses their data can reveal as much about it as
the plaintext itself. We call this information a user’s access pattern.
For instance, observing that an investment bank has repeatedly ac-
cessed their files on a specific company may reveal that they plan
to invest in that company. Crucially, there is no easy way to bound
what information you might leak as part of your access pattern, es-
pecially when an adversary can correlate those accesses with other
outside (potentially public) information he might have.

Oblivious RAM is a tool that was designed to solve exactly this
problem. Given a set of accesses to a block storage device, an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ORAM algorithm allows a user to perform them on an untrusted
storage device in such a way that an adversary observing those ac-
cesses cannot determine which block the user was reading/writing.
This generally involves shuffling and reencrypting the data some-
how each time it is read or written to in order to unlink two ac-
cesses to the same block. Unfortunately, ORAM has traditionally
been very expensive to implement, causing over a thousand-fold
increase in communication over unprotected accesses.

Recently there has been a flurry of research on ORAM that has
managed to drastically decrease communication overhead with a
new tree-based paradigm [20]. Building on that, Stefanov et al. [22]
introduced Path ORAM which, along with some derivative works,
is the most efficient construction currently known. However, it still
requires polylogarithmic communication overhead which can re-
sult in over a hundred-fold slowdown and may not be usable for
many cloud applications given that cost is a driving factor in out-
sourcing data. Along with work on pure Oblivious RAM, May-
berry et al. [15] introduced the idea that communication overhead
can be greatly reduced if the storage device is also considered to
have some computational ability, which it generally does in a cloud
setting. Using recent advances in homomorphic encryption, a small
amount of computation on the server can be leveraged to cut a sig-
nificant amount of communication to the client.

Furthering this research, Devadas et al. [4] have recently pro-
posed a hybrid ORAM-with-computation scheme that achievesO(1)
communication overhead. They achieve this by consecutively wrap-
ping blocks in further layers of encryption as they proceed down
the tree, effectively forming an “onion” out of the blocks. Unfortu-
nately, it still has some major drawbacks:

1. The O(1) overhead is only amortized. Worst case complex-
ity is still O(logN), with relatively large constants.

2. Their scheme requires that the block has a very large size,
Ω(log5 N). In practice, it can be up to 30 MB for reasonably
sized databases.

3. The onion part of their scheme requires a large number of ho-
momorphic multiplications, which are computationally very
expensive. Depending on the encryption scheme used, over-
head on the server may outweigh any communication saved.

In this work we aim to tackle all these problems. We start by
showing that the homomorphic multiplications, and in fact the nest-
ing “onion” nature of their solution, is not necessary. With care-
ful application of an oblivious merging algorithm, all movement of
blocks through the tree can be done with only homomorphic addi-
tion, resulting in a more computationally efficient algorithm. This
also reduced the required block size by aO(log2 N) factor and, we
will show, allows forO(1) communication in the worst case as well

as amortized. Finally, we show via experimental evaluation that our
scheme requires only a small storage overhead compared to Onion
ORAM and that, for practical parameter values, we achieve signif-
icant improvement in block size and number of homomorphic op-
erations. Figure 1 summarizes our improvements when compared
to Onion ORAM.

2. BACKGROUND: ONION ORAM
We start by briefly introducing the main idea of Onion ORAM [4].

We then analyze its complexity to motivate our improvements.

2.1 Overview
An Oblivious RAM is a block-based storage protocol whereby a

user can outsource some data to an untrusted server, and that server
does not learn anything about the pattern of accesses that the user
performs on that data. For instance, whether the user accesses the
same block many times in a row, or each block individually in se-
quence, the server will not be able to distinguish between these two
access patterns. In fact, a secure ORAM guarantees that any two
access patterns will be indistinguishable from the perspective of the
server. This is accomplished by periodically moving, shuffling and
reencrypting the data so that correlations between accesses are lost.
A twist on that model introduced by Mayberry et al. [15], and used
in Onion ORAM, is that instead of the traditional ORAM server
definition where it only stores the data passively, Onion ORAM
assumes that the server can also perform computations.

Onion ORAM is a tree-based ORAM, and shares many qualities
with existing schemes [5, 20, 22]. Most importantly, data blocks
are stored in a tree where each node of the tree is a “bucket” which
contains some number of blocks. When blocks are added to the
ORAM, they start at the root of the tree and are tagged as belonging
to one of the leaf nodes. As the lifecycle of the ORAM continues,
blocks percolate from the root to their assigned leaf node through
a process called eviction. This way, a block can be located at any
time by reading the path from its target leaf back to the root, since
it is guaranteed to always reside on this path. The eviction process
maintains a proper flow of blocks from the root to the leaves so
that no buckets overflow with too many blocks. This is usually
accomplished by picking a path in the tree, from root to a particular
leaf node, and pushing all the blocks on that path as far as possible
down the path toward the leaf node.

The contribution of Onion ORAM is then that it achieves con-
stant communication complexity in the number of ORAM elements
N , while only requiring polylogarithmic computation on the server.
Although the client exchanges many pieces of data back and forth
with the server, the key to having O(1) communication complexity
is that the size of one data block, B, dominates the communica-
tion. All other messages, ciphertexts, etc. are collectively small
compared to the actual data being retrieved. Therefore it might be
more intuitive to say that communication is O(B). However, it is
customary in ORAM literature to refer to the communication com-
plexity in terms of multiplicative overhead, i.e. the cost compared
to retrieving the same data without any security. Everything is then
divided by B and we get to the notion of O(1) communication.
Note that O(1) communication is not difficult if you allow unre-
stricted computation (FHE for instance achieves this trivially), so
the limit to polylogarithmic computation is important.

The main idea behind Onion ORAM is an oblivious shuffling
based on (computational) Private Information Retrieval (PIR). There-
with, ORAM read, write, and eviction operations can be performed
without the client actually downloading data blocks and doing the
merging themselves. This saves a huge amount of communication
when compared to existing schemes like Path ORAM. Compared

to existing tree-based ORAM schemes, Onion ORAM introduces
a triple eviction that empties all buckets along the path instead of
only pushing some elements down and leaving others at intermedi-
ate points in the tree. Elements in any evicted bucket will be pushed
towards both children, thereby ensuring that after an eviction the
entire evicted path is empty aside from the leaves. The authors
take advantage of the fact that if you choose which path to evict
by reverse lexicographic ordering, then you are always guaranteed
during an eviction that the sibling of every node on your path will
already be empty from a previous eviction. This allows for the en-
tire process to be done efficiently and smoothly, because the entire
contents of a parent can be copied into the empty bucket and there
is no need to worry about overwriting what was there because it is
necessarily empty.

This triple eviction is accomplished by sending a logarithmic
number of oblivious shuffling vectors to the server. These vectors,
encrypted with an additively homomorphic encryption, obliviously
map an old block of the parent bucket to a new position in the child.
This operation is made by a matrix multiplication between the vec-
tor sent to the server and the bucket. Considering the size of the
bucket as logarithmic, this algebraic computation should be per-
formed a polylogarithmic number of times. This results that each
block is encrypted, without transitional decryption, a logarithmic
number of times, hence, the attributed name “onion”.

The above results in an amortized ORAM with constant commu-
nication complexity and constant client-memory, in the number of
elements N stored in the ORAM. If λ refers to the security param-
eter, to obliviously retrieve a block of size B bits from the server,
Onion ORAM requiresOλ(B) bits communication, whereOλ(.) is
a notation to denote the amortized asymptotics over λ ∈ ω(logN).
This is an amortized improvement over related work such as Shi
et al. [20]’s ORAM with O(B log3 N) communication complex-
ity or Path ORAM [22] with either O(B log2 N) or O(B logN)
complexity (depending on block size B).

2.2 Analysis
As noted above,O(1) communication does not imply that blocks

are the only exchanged information between client and server. In
Onion ORAM, the client still needs to retrieve meta-information
and send PIR vectors for PIR reads and PIR writes. Thus, Onion
ORAM chooses the block size such that all communication be-
tween server and client is asymptotically dominated by block size
B. That is, if B ∈ O(|meta-information| + |PIR vectors|), then
Onion ORAM has constant communication complexity.

2.2.1 Large Block Size
Consequently, to achieve constant communication complexity,

Onion ORAM requires a large block size B. For a security pa-
rameter γ in the order of 2048 Bytes, bucket size z = Θ(λ), and
number of elements N , the block size B in Onion ORAM is in
Ω(γλ log2 N). This is a significant increase over B ∈ Ω(logN)
required by related work [20, 22]. Generally, requiring a large
block size renders ORAMs impractical for many real world sce-
narios where the block size is fixed and simply predetermined by
the application. To mitigate the problem, Onion ORAM uses Lip-
maa’s PIR [14] instead of an straightforward additively homomor-
phic PIR [12]. This decreases block size toB ∈ Ω(γ log2 λ log2 N).
Factor λ is replaced by log2 λ. On a side note, observe that using
Lipmaa’s PIR might not result in much (or any) gain in practice. Pa-
rameter λ is a security parameter such that λ ∈ ω(logN), typically
small, and therefore “close” to log2 λ. For example, for λ = 80,
log2 λ = 40 is in the same order of magnitude. Since Lipmaa’s
method requires substantially more computation than the straight-

Scheme Block size Simplified block size Worst-case bandwidth # additions # multiplications
Onion ORAM Ω(γλ log2 N) Ω(log5 N) O(λ) Θ(λ2 log2 N) Θ(λ2 log2 N)

C-ORAM Ω(λ[log λ logN + γ]) Ω(log3 N) O(1) Θ(λ logN) Θ(λ)

Figure 1: Comparison of Onion ORAM and C-ORAM, containing block size, worst-case bandwidth, and number of homomorphic additions
and multiplications. Simplified block value is a looser bound which allows for easier comparison and relies on the fact that λ = ω(logN)
and γ = O(λ2).

forward approach, the small communication gain is likely to be
outweighed by additional computation time.

Onion ORAM block size example: For security parameter γ =
2048, number of elements N = 220, and security parameter λ =
80, the block size must be at leastB = 2048 · log2 (80) ·202 ≈ 33
MBits. Thus, the dataset size equals 220 · 33 · 106 ≈ 35 TBits.
This computation is very rough and does not take into account ad-
ditional, hidden constants such as the constant for the additively
homomorphic cipher chunk in Ω(γ logN), or smaller, yet still sig-
nificant constants, like the fact that downloads have corresponding
uploads which multiplies everything by 2.

Requiring blocks of size at least 4 MBytes to store N = 220

elements is impractical for many real world applications. In con-
clusion, Onion ORAM can only be applied to very special data sets
with very large block sizes.

2.2.2 Amortized Complexity
Besides the large block sizes, a second problem with Onion ORAM

is that communication complexity is constant only in an amortized
analysis. PIR write operations in Onion ORAM involve additively
homomorphic encryption that add encryption layers during evic-
tion. Each layer increases the size of the blocks. Consequently,
after every χ = Θ(λ) read or write operations, the client must
download the leaf of an evicted path and peel off encryption layers.
In addition, the eviction based on PIR writes is λ times more expen-
sive than ORAM read and write operations that are only based on
PIR read. So, the amortized eviction every χ operations reduces the
additional cost of the eviction itself and the encryption layer peel-
ing. In the worst case, the eviction triggered after every χ ORAM
operations results in a communication complexity of O(λB) with
λ ∈ ω(logN).

To sum up, the main downsides of Onion ORAM are: (1) a large
block size rendering Onion ORAM impractical for many real world
applications, (2) amortized costs that hide a worst case factor of z.

3. CONSTANT COMMUNICATION ORAM
Overview: To achieve our increased efficiency and lower block
size, we present a novel, efficient oblivious bucket merging tech-
nique for Onion ORAM that replaces its expensive layered encryp-
tion. We apply our bucket merging during ORAM eviction. The
content of a parent node/bucket and its child node/bucket can be
merged obliviously, i.e., the server does not learn any information
about the load of each bucket. The idea is that the client sends a per-
mutation Π to the server. Using this permutation, the server aligns
the individual encrypted blocks of the two buckets and merges them
into a destination bucket. The client chooses the permutation such
that blocks containing real data in one bucket are always aligned
to empty blocks in the other bucket. As each block is encrypted
with additively homomorphic encryption, merging two blocks is a
simple addition of ciphertexts. For the server, merging is oblivious,
because, informally, any permutation Π from the client is indistin-
guishable from a randomly chosen permutation.

For buckets of size O(z), our oblivious merging evicts elements

from a parent bucket to its child with O(z log z) bits of communi-
cation instead of O(γz2) of Onion ORAM. As a result of applying
our merging technique, we only need a constant number of PIR
reads and writes for ORAM operations.

Based on our merging technique, we now present increasingly
sophisticated modifications to Onion ORAM to reduce its costs.
We call the resulting ORAM, i.e., Onion ORAM with our modi-
fication, C-ORAM. As a warm up, we present a technique allow-
ing amortized constant communication complexity with a smaller
block sizeB in Ω(z log z logN+γz logN). Our second and main
technique improves the first one and results in constant worst case
communication complexity. The block size of this second construc-
tion is in Ω(z log z logN + γz).

3.1 Oblivious Merging
Oblivious merging is a technique that obliviously lines up two

buckets in a specific order and merges them into one bucket. Us-
ing this technique, we can evict real data elements from a bucket to
another by permuting the order of blocks of one of them and then
adding additively homomorphically encrypted blocks. Oblivious
merging is based on an oblivious permutation generation that takes
as input the configurations of two buckets and outputs a permuta-
tion Π. A configuration of a bucket specifies which of the blocks
in the bucket are real blocks and which are empty. Permutation Π
arranges blocks in such a way that there are no real data elements
at the same position in the two blocks.

3.1.1 C-ORAM Construction
C-ORAM keeps Onion ORAM’s main construction. That is, C-

ORAM is a tree-based ORAM composed of a main tree ORAM
storing the actual data and a recursive ORAM storing the position
map. The position map consists of a number of ORAM trees with
linearly increasing height mapping a given address to a tag. For n
elements stored in the ORAM, the communication needed to access
the position map is in O(log2 N). As with all recent tree-based
ORAMS, the recursive position map’s communication complexity
is dominated by the block size. For the remainder of this paper,
we therefore restrict our description only on C-ORAM’s main data
tree.

Let N be a power of 2. C-ORAM is a binary tree with L levels
and 2L leave nodes. Each node/bucket contains µ·z blocks. Here, z
is the number of slots needed to hold blocks as in Onion ORAM and
µ is a multiplicative constant that gives extra room in the buckets
for noisy blocks, a detail we will cover below which is important
for our construction. We maintain the same relation between N , L
and z as in Onion ORAM, namelyN ≤ z ·2L−1. This ensures only
constant storage overhead of about 4µ. Note that L = Θ(logn).

Each block in a C-ORAM bucket is encrypted using an additively
homomorphic encryption, e.g., Pailler’s or Damgard-Jurik’s cryp-
tosystem. Also, each bucket contains IND-CPA encrypted meta-
information, headers, containing additional information about a
bucket’s contents.

3.1.2 Headers

Figure 2: C-ORAM bucket structure

Bucket headers are an important component in C-ORAM as they
determine how oblivious permutations are generated. A bucket
header is comprised of two parts: the first part stores for each block
whether it is noisy, contains real data or is empty. The second part
stores the block tags. More formally, the header is composed of two
vectors header1 and header2. Vector header1 has length µ · z, and
each element is either noisy, empty or real. Thus, each element has
a size of two bits. The total size of this vector is inO(µz). header2
is a (µ · z × logN) binary matrix. The rows represent the address
of the blocks. Finally, as with all tree based ORAMS, each block
in a bucket also contains the encryption of its address. That is, the
address of each block is encrypted separately from the block itself.
We show a high level view of a C-ORAM bucket in Fig 2.

3.2 C-ORAM: First Construction
To prepare for our main contribution, we start by presenting a

new technique allowing amortized constant communication com-
plexity with a smaller block size.

3.2.1 Overview
To access an element in C-ORAM, i.e., read or write, the client

first fetches the corresponding tag from the position map. This tag
defines a unique path starting from the root of the ORAM tree and
going to a specific leaf given by the tag. The element might reside
in any bucket on this path. To find this element, we make use of a
PIR read [12] that will be applied to each bucket. To verify whether
the block exists in a bucket, the client downloads the encrypted
headers of each bucket. Therewith, the client can generate a PIR
read vector retrieving the block from a bucket. To preserve the
scheme’s obliviousness, the client sends PIR read vectors for each
bucket on the path. Once the block has been retrieved, the client
can modify the block’s content if required, then insert it back into
the root of the C-ORAM tree using PIR write. This is the standard
Path-PIR behavior to read from or write into blocks [15].

Eviction in our first construction takes place after every χ =
O(z) access operations. As in Onion ORAM, a path in C-ORAM is
selected following deterministic reverse lexicographic order. Then,
the entire root of the ORAM tree is downloaded, randomly shuf-
fled and written back (additively homomorphically) encrypted. Fi-
nally, the eviction is performed by repeatedly applying an oblivious
merge on buckets along the selected path. Any bucket belonging to
this path is obliviously merged with its parent while the other child
of the parent will be overwritten by a copy of the parent bucket.
We call the former bucket on the path the destination bucket and
the latter one its sibling bucket.

Before starting the eviction of a specific path, an invariant of the
eviction process is that siblings of buckets of this path are empty,

except the leaves. After the eviction, all buckets belonging to the
evicted path will be empty except the leaf [4]. Note that siblings of
this path, after the eviction, will not be empty anymore. See Fig 3
for a sample eviction with N = 8.

Sibling buckets, since their are simply copies of their parents,
will contain blocks with tags outside the subtree of this bucket.
These blocks are called noisy blocks as they do not belong into this
subtree and are essentially leftover “junk”. Now for correctness, in
our construction, we will guarantee that the number of noisy blocks
in any bucket is upper bounded. So, there will always be space for
real elements in a bucket and will not overflow.

Elements in each bucket are encrypted using additively homo-
morphic encryption, respectively. Given two buckets B1 and B2,
oblivious merging will permute the position of blocks in B1 such
that there are no real or noisy element at the same positions in B1

and B2. Consequently, if there is a real element in the ith position
in B1, then for the scheme to be correct, the ith position in B2

should be empty. The following addition of elements at the same
position in B1 and B2 will preserve the value of the real element.
After χ operations, we also download the leaf bucket to delete its
noisy blocks.

3.2.2 Details and Analysis
Let P(tag) denote the path starting from the root and going to

the leaf identified by tag. The path is composed of logN + 1
buckets including the root. P(tag, i) refers to the bucket at the
ith level of P(tag). For example, P(tag, 0) is the root bucket.
Ps(tag, i) is the sibling of bucket P(tag, i). We denote by [N]

the set of integers {1, · · · , N}, x $←− [N] uniformly sampling a
random element from set [N], and byχ the period of eviction which
is in O(z). Identity stands for an empty bucket containing only
encryptions of zero.

Algorithm 1 presents details of the access operation. An access
can be either an ORAM Read or a Write operation. The only dif-
ference between the two is that a write changes the value of the
block before putting it back in the root. The access operation in-
vokes a PIR read algorithm, see Algorithm 2 that obliviously re-
trieves a block. Algorithm 3 shows the eviction where elements
percolate towards their leafs using oblivious permutations, see Al-
gorithm 4.

Block size asymptotics: The following asymptotical analysis will
be in function of z, N , and γ. z is the size of the bucket, N the
number of elements, and γ the length of the ciphertext of the ad-
ditively homomorphic encryption. The communication complexity
induced by an ORAM access operation comprises a PIR read op-
eration and the eviction process (happening every χ ∈ O(z) ac-
cesses). The size of the bucket is µ · z, but we will show in our
security analysis section later that µ is a constant. Therefore, we
ignore it in our analysis.

First, the client performs PIR reads L + 1 times. For this, the
client has to download all addresses in the path, i.e., O(zL logN)
bits. Also, the client should send a logarithmic number of PIR read
vectors V with sizeO(γzL) bits. Note that the computation of PIR
read vectors outputs for all but one buckets blocks of encrypted
zeros. Instead of sending back a logarithmic number of blocks to
the client, the server only sends a single block, the summation of all
the blocks output, cf. Algorithm 1. Thus, the client only retrieves
a single block B. A PIR read applied to all buckets of the path
induces an overhead in O(zL logN + γzL+B).

For the eviction, the client downloads header1 and the ith col-
umn of header2 and sends permutations for all buckets in the path.
Thus, the overhead induced by the permutations is O(Lz log z)

bits. Also, after every χ = O(z) operations, the client downloads
the root and one leaf, which has O(zB) communication complex-
ity. Amortized, for each operation we have Oz(B) communication
complexity (amortized over z).

In conclusion, each access hasOz(zL logN+γzL+z log(z)L+
B) communication complexity. To have a constant communication
communication complexity in B, the block size should be

B ∈ Ω(z L logN + γzL+ Lz log z)

∈ Ω(λ log2 N + γλ logN). (1)

Expression 1 is a consequence of z = Θ(λ), λ ∈ ω(logn) and
L ∈ Θ(logN). In general, γ = O(λ2), which means that the value
λ·log2 N is negligible against γ ·λ·logN , thenB ∈ Ω(γλ logN).

The block size of our first modification is already a logN multi-
plicative factor improvement over the block size of Onion ORAM.
However, in practice, this value is still large. The main idea in
our second construction is based on the following observation. The
block size has exactly the same asymptotic as transmitted vectors
V . So to improve the block size, we change the way we are access-
ing the ORAM.

Input: Operation op, address adr, data data, counter ctr, state st
Output: Block B associated to address addr
// Fetch tag value from position map

1 tag← posMap(adr);

2 posMap(adr)
$← [N];

3 if ctr = 0 mod (χ) then
4 Download root bucket, refresh encryptions, randomize order of

real elements;
5 Evict(st);
6 else
7 for i from 0 to L do B = B+PIR-Read(adr,P(tag, i)) ;
8 end
9 if op = write then set B = data ;

10 ctr = ctr + 1;
11 Upload IND-CPA encrypted block to root P(tag, 0);

Algorithm 1: Access(op, adr, data, ctr, st): C-ORAM access
operation, 1st construction

Input: Bucket P(tag, level)), address adr
Output: Block B

1 Retrieve and decrypt addresses Addr of bucket P(tag, level));
// Compute the PIR-Read vector V in client side

2 if adr ∈ Addr then
// Retrieve the index α

3 α = Addr[addr];
4 for i from 1 to µ · z do
5 if i 6= α then Vi

$←− ENC(0) else

6 Vi
$←− ENC(1) ;

7 end
8 else
9 for i from 1 to µ · z do Vi

$←− ENC(0) ;
10 end

// Retrieve block in server side
11 Parse bucket P(tag, level) as (µ · z × |B|) binary matrixM;
12 B = (

∑µ·z
i=1 Vi · M1,i, · · · ,

∑µ·z
i=1 Vi · M|B|,i);

Algorithm 2: PIR-Read(adr,P(tag, level))

3.3 C-ORAM: Second Construction
We start by further reducing the block size – again by a multi-

plicative factor of logN compared to our first construction. Then,

Input: State st
Output: Evicted path and updated state st

1 for i from 0 to logn− 1 do
2 Retrieve headeri1 and headeri+1

1 ;
3 Retrieve Ci and Ci+1 respectively the ith and the (i+ 1)th

column of headeri2 and headeri+1
2 of the bucket P(st, i) and

P(st, i+ 1);

4 π
$←− GenPerm((headeri1,Ci), (header

i+1
1 ,Ci+1)), generate

the oblivious permutation π;
// Merge the parent and destination bucket

5 P(st, i+ 1) = π(P(st, i)) + P(st, i+ 1);
6 if i < L− 1 then

// Copy the parent bucket into its
sibling

7 Ps(st, i) = P(st, i);
8 else

// Merge the last bucket with the sibling
leaf

9 Retrieve headeri+1
1 and Ci+1 from the sibling leaf;

10 π
$←− GenPerm((headeri1,Ci), (header1

i+1,Ci+1));
11 P(st, i+ 1) = π(P(st, i)) + P(st, i+ 1);
12 end
13 Update(headeri1) and store it with bucket Ps(st, i);
14 Update(headeri+1

1) and store it with bucket P(st, i+ 1);
15 P(st, i) = Identity;
16 end

Algorithm 3: Evict(st), eviction process

Input: Configuration of buckets A and B
Output: A permutation randomly lining up bucket B to bucket A
// Slots in A and B start either empty, full

or noisy; mark slots in A as assigned if
block from B is assigned in π

1 Let x1, x2 be the number of empty and noisy slots in A;
2 Let y1, y2 be the number of full and noisy slots in B;
3 d1 = x1 − y1;
4 d2 = x2 − y2;
5 for i from 1 to k do
6 case B[i] is full z $← all empty slots in A ;
7 case B[i] is noisy
8 if d2 > 0 then
9 z

$← all noisy slots in A;
10 d2 = d2 − 1;
11 else
12 z

$← all empty slots in A;
13 end
14 end
15 case B[i] is empty
16 if d1 > 0 then
17 z

$← all non-assigned slots in A;
18 d1 = d1 − 1;
19 else
20 z

$← all full slots in A;
21 end
22 end
23 π[i] = z;
24 A[z] = assigned;
25 end
26 return π;

Algorithm 4: GenPerm(A,B), oblivious permutation generation

we improve asymptotics even for the worst case. Recall that in our
first construction, the worst case involves a blow-up of O(z), be-
cause during eviction the client needs to download O(zB) bits. In
our second and main construction, the eviction remains exactly the
same, and our focus will only be on the ORAM access.

3.3.1 Overview
In our first modification, we perform a PIR read per bucket dur-

ing an access. Contrary, we now perform an oblivious merge to
find out the block to retrieve. For an ORAM access to tag, our idea
is to perform a special evict of path P(tag). We push all real el-
ements in P(tag) towards the leaf and then simply access the leaf
bucket. So, we preserve access obliviousness and make sure that
the element we want is pushed into leaf bucket tag.

This approach comes with several challenges. We must preserve
the bucket distribution, i.e., we have to maintain sibling empti-
ness property, as guaranteed by the reverse lexicographic eviction,
before evicting any path. Instead of deterministically selecting a
path for eviction, we choose paths randomly. However, using ran-
domized eviction, we still have to guarantee empty siblings on the
evicted path. By randomly evicting a path, we might copy a bucket
in its sibling which is not empty resulting therefore in a correctness
flaw.

Our approach will be to temporarily clone the path P(tag). The
clone of P(tag) serves to simulate the eviction towards the leaf
bucket, and we remove the clone after the access operation. We
apply the oblivious merging on the bucket of this cloned path, and
at the end we will have all real elements in the leaf bucket of the
cloned path. Finally, we apply a PIR read to retrieve the block.

Besides, to get rid of the amortized cost and have a scheme that
only requires a constant bandwidth in the worst case, we make use
of a PIR write operation that will be performed during every ac-
cess. In the first construction, we have to shuffle the root bucket
since oblivious merging has to be performed on random buckets
for security purposes. Moreover, we need to eliminate noisy blocks
from the leaf buckets and therefore after each χ operations, the
client downloads the evicted leaf to eliminate all noisy blocks. In
C-ORAM second construction, we are evicting after every access,
then we are certain that the root bucket is always empty after an
eviction. The first PIR write operation that we perform will ran-
domly insert the block in an empty root bucket after any access
obliviously. The second use of PIR write is to delete the retrieved
element from the leaf. In fact, we can also delete noisy blocks by
the same tool but a PIR read is needed to retrieve first the noisy
block that we will overwrite with a PIR write. We dedicate Sec-
tion 4.2 to analyze security and correctness of our modification.

3.3.2 Details and Analysis
Algorithm 5 presents the core of our second construction. Now,

instead of performing a logarithmic number of PIR reads, we only
invoke an Evict-Clone to read a block, cf. Algorithm 6. Evict-
Clone uses our oblivious merging, together with one PIR read to
retrieve a block. Moreover, we evict after every access. In order to
eliminate noisy blocks that have been percolated to the leaf bucket,
we use a PIR write to delete the noisy block, cf. Algorithm 7.

Block size asymptotics: The access operation in C-ORAM com-
prises eviction, one eviction in the cloned path, a PIR read, and two
PIR writes. The size of the headers are negligible compared to the
PIR read and write vectors. Thus, we avoid including them in our
asymptotics’ details for sake of clarity.

First, the eviction always involves an overhead of O(zL log z).
Evict-Clone performs one PIR read in addition to the regular evict.

Finally, we retrieve the block of size B. Therefore, the overhead
induced by these steps is O(zL log z + z logN + γz +B).

Adding the two PIR write and single PIR read operation will not
change asymptotical behavior since the number of these operations
is constant in N .

In conclusion, to have a bandwidth that is constant in block size
B, the block size should be B ∈ Ω(zL log z + zγ).

Having z ∈ Θ(λ), λ ∈ ω(logN) and L ∈ Θ(logN), B ∈
Ω(λ[logN log λ+ γ]).

In practice, γ ∈ O(λ2) so γ dominates logN log λ. Therefore,
block size B is B ∈ Ω(γλ).

Our second construction results in a worst case cost lower than
the amortized cost of our first construction, but also omits inef-
ficient PIR reads performed for ORAM access. This second con-
struction improves the blocks size by a multiplicative factor of log2 N
compared to Onion ORAM in the worst case.

As you can see, the main overhead of C-ORAM block size comes
from the size of the ciphertext γ. Recall that γ ∈ O(λ2), there-
fore the smaller the additively homomorphic ciphertext will get,
the smaller the block size of C-ORAM will be.

Input: Operation op, address adr, data data, state st
Output: Block B associated to address adr
// Fetch tag value from position map

1 tag← posMap(adr);

2 posMap(adr)
$← [N];

// Retrieve desired block
3 B =Evict-Clone(adr, tag);
4 if op = write then set B = data ;
// Select a random position in the root bucket

5 pos1
$← [µ · z];

// Write back the block to the empty root
6 PIR-Write(pos1, B,P(st, 0));
7 Evict(st);
// Select a random noisy block position from

the header of the leaf P(st, L)

8 pos2
$← headerL;

9 N =PIR-Read(pos2,P(st, L));
// Write back the negation of the noisy block

10 PIR-Write(pos2,−N,P(st, L));
Algorithm 5: Access(op, adr, data, st): C-ORAM access oper-
ation, 2th construction

Input: Leaf tag and address adr
Output: Block B

1 Create a copy of the C-ORAM path P(tag);
2 for i from 0 to logn do
3 Retrieve headeri1 and headeri+1

1 ;
4 Retrieve Ci and Ci+1 respectively the ith and the (i+ 1)th

column of headeri2 and headeri+1
2 of the bucket P(tag, i) and

P(tag, i+ 1);
// Generate the oblivious permutation π

5 π
$←− GenPerm((headeri1,Ci), (header

i+1
1 ,Ci+1));

// Merge the parent and destination bucket
6 P(tag, i+ 1) = π(P(tag, i)) + P(tag, i+ 1);
7 end
8 B =PIR-Read(adr,P(tag, L))

Algorithm 6: Evict-Clone(adr, tag)

4. C-ORAM ANALYSIS

4.1 C-ORAM correctness analysis

Input: Position pos, bucket P(tag, level), block B
Output: Updated bucket P(tag, level)
// Compute the PIR-Write vector V in client side

1 for i from 1 to µ · z do
2 if i 6= pos then Vi

$←− ENC(0) else

3 Vi
$←− ENC(1) ;

4 end
// Write block in server side

5 Parse bucket P(tag, level) as (µ · z × |B|) binary matrixM;
6 Mi,j =Wi ·Bj ;
7 P(tag, level) =M+ P(tag, level);
Algorithm 7: PIR-Write(pos, block, P(tag, level)), PIR-write
process

The goal of the correctness analysis section is to show that, dur-
ing any eviction namely in Evict and Evict-Clone algorithms, the
probability that a failure occurs is very small. The failure in C-
ORAM is defined as the lack of encryption of zeros in the evicted
path. In this section, we only consider the proof of correctness of C-
ORAM’s first construction. The proof of correctness of C-ORAM
second construction can easily be deduced from the first one. Be-
fore starting detailing the main lines of our correctness analysis, we
introduce some notations and assumptions.

Let Bi,j refer to the bucket at the ith level of the path evicted
at the jth step. Each bucket contains µ · z blocks where µ is a
nonnegative integer such that µ > 1. In C-ORAM first construc-
tion, the root bucket contains z real elements and (µ− 1) · z empty
blocks. We set φ = µ − 1. Empty block represents an additively
homomorphic encryption of zero. Each bucket cannot have more
than z real elements at any time with high probability, see result of
Th 4.3. Let Zi,j and Ri,j respectively denote the discrete random
variables of the number of blocks containing an encryption of zero
and the number of real blocks in the bucket Bi,j in the ith level
and during the jth eviction. Recall that if a real block is pushed
to a path leading to a leaf different from its own tag, this block is
called a noisy block. Finally, Ñi,j represents the random variable
that counts the number of noisy blocks in the bucket Bi,j .

Formally, the eviction in Evict and Evict-Clone algorithms fails
if ∃i ∈ {0, · · · , L} and k ∈ N such that Zi+1,k < Ri,k or Zi,k <
Ri+1,k. Thus, the proof’s goal will be to show that there is no
integer t that verifies both inequalities with high probability.

First, we introduce two notions that will help us to understand
the proof and the eviction mechanism more thoroughly. The first
notion is called the path composition history while the second one
is the bucket composition history. Given a pathP(j), the path com-
position history captures the eviction time in which each bucket has
been created. Given a bucket Bi,j , the bucket composition history
captures all sequence of buckets that have contributed to the con-
struction of the bucket Bi,j .

Path composition history: In C-ORAM, the eviction follows a
deterministic reverse lexicographic order. If we are in the jth step
of the eviction, every bucket of the path P(j) is the result of a
previous eviction. Moreover, every bucket in this path has been
created from different eviction step.

The buckets belonging to the same path are not arbitrary created.
In fact, the time -eviction step- of creation of any bucket follows a
pattern. This pattern is an induction relation that links the buckets
belonging to the same path. This induction relation links the time
of the creation of every bucket depending on the time of creation
of other buckets belonging to the same path. For instance, in Fig 4,
the path P(9) of the 9th eviction is composed of the buckets B1,8,
B2,7, B3,5 that represent buckets that were respectively created in

Figure 3: The evicted path contains the buckets in black. The
bucket 3 is a copy of the root. Bucket 4 is the result of merging
Bucket 1 and 2. Bucket 6 is the result of merging buckets 1, 2 and
5.

Figure 4: Illustration of nine evictions. The numbers below the
leaves represent the order of the reverse deterministic lexicographic
eviction. Buckets that have numbers with the same color means
that they are evicted at the same step. For example (6,5,3) with
the orange color represents the buckets that are evicted in step 7.
Numbers 6, 5 and 3 represent the time of creation of these buckets.
Black numbers are for buckets that are not yet evicted.

the 8th, 7th and 5th eviction’ step. We do not count the root bucket
and the leaf because the pattern of their eviction is clear, namely,
the root is evicted every time while the leaf is evicted depending on
its reverse lexicographic order.

Formally, forN elements stored in the ORAM andL ∈ Θ(logN),
the jth eviction, for all j ≥ 1, is composed of the buckets

{B1,j−20 , B2,j−21 , · · · , BL−1,j−2L−2}.

It is clear from this induction relation that after L operations
eviction, all the buckets belonging to an evicted path, except the
leaves, are not new anymore, i.e., all of them without any exception
are copies of a bucket from previous evictions. Thus, in the proof,
we will assume that the ORAM has handled a number of eviction
larger than L. This will take into account the worst case where all
buckets might eventually contain real element as well as noisy ones
assuming that beforehand the C-ORAM construction was empty.

Bucket composition history: This notion follows from the previ-
ous one. Given a path P(j), the eviction will empty all buckets
in this path except the leaf. The eviction works as follows: the
root B0,j will be merged with its destination child B1,j−20 in the
path while the sibling B′1,j , originally empty, will be overwritten
by a copy of the root, the root is finally overwritten by an empty
bucket. The bucket B1,j−20 will be merged with its destination
child B2,j−21 then emptied. The sibling of the bucket B1,j−20

will be overwritten by the content of B1,j−20 . We reiterate the
process until the end of the path (this was a recapitulation of Evict
protocol).

Given a bucket Bi,k, we want to enumerate all the buckets that
resulted in the creation of that bucket. Particularly, we are inter-
ested in enumerating the time (step of eviction) of creation of all
buckets that contribute on the creation of the bucket Bi,k. The
bucket composition also follows a pattern that is common to any
bucket in the construction. Given the eviction algorithm, every

Level1 8 7 6 5 4 3 2 1 -
Level2 7 6 5 4 3 2 1 - -
Level3 5 4 3 2 1 - - - -
Evicted path 9 8 7 6 5 4 3 2 1

Table 1: Bucket creation pattern in function of the eviction step.

bucket in the ith level is created by merging all the buckets in the
path from the root to the (i − 1)th level, see Table 1 for an ex-
ample of this pattern for N = 16. As an instance, the bucket in
path 9 at the 3rd level was created during the 5th eviction step. To
know what are the buckets that contributed in this bucket creation,
we check out the column that has an evicted path equal to 5, then
we consider all the buckets that they are in upper levels, namely,
buckets 4 and 3 that are respectively in the level 2 and 1.

In general, the bucket Bi,j is the result of merging the following
buckets:

{B0,j , B1,j−20 , B2,j−21 , · · · , Bi−1,j−2i−2}

Now that we have introduced these two observations, we can
state our theorem.

THEOREM 4.1. If the bucket size z ∈ ω(logN),L ∈ Θ(logN)
and φ ∈ Θ(1), the probability that Zi+1,j ≥ Ri,j and Zi,j ≥
Ri+1,j is in O(N− log logN), for all i ∈ [L] and j ∈ N.

PROOF. Based on our assumption, we know that a path cannot
handle more than z real elements with high probability. This is
equivalent to say that ∀i ∈ {0, · · · , L}, we have

Ri+1 +Ri ≤ z.

To show that ∀i ∈ [L], Zi+1 ≥ Ri and Zi ≥ Ri+1, it is equiva-
lent to show that Ñi ≤ φ · z. Here, for sake of clarity and without
loss of any generality, we do not take into account the eviction step
j just to minimize the burden of additional indexes. Then for a
given eviction step

Ri+1 +Ri ≤ z

Ri+1 +Ri + Ñi + Zi ≤ z + Ñi + Zi

Ri+1 + a · z ≤ z + Ñi + Zi

Ri+1 ≤ (Ñi − φ · z) + Zi

Therefore, it is sufficient to show that Ñi − φ · z ≤ 0 in order
to proof that ∀i ∈ [L], Zi+1 ≥ Ri and Zi ≥ Ri+1. It is clear that
these inequalities hold for any eviction step j ∈ [n].

In the following, we will proof that the probability that Ñi,j >
φ · z is negligible with very hight probability.

Based on the bucket composition history pattern, notice that the
noisy elements in the bucket Bi,j are exactly those that exist al-
ready in the bucket Bi−1,j−2i−2 , plus, all the real elements that
will be evicted to the other child and therefore they are considered
noisy elements for the bucket Bi,j . Thus, we have Pr(Ñi,j >

φ · z) = Pr(Ñi−1,j−2i−2 +R′i−1,j > φ · z).
We have shown in the bucket composition history that Bi,j is

created by summing all the buckets {B0,k, B1,j−20 , B2,j−21 , · · · ,
Bi−1,j−2i−2}. The above equation can be then formulated more
accurately such that Pr(Ñi,j > φ · z) = Pr(maxi(Ñ1,j−20 , · · · ,
Ñi−1,j−2i−2) +R′i−1,j > φ · z).

The equation can be understood as follows: The noise in bucket
Bi,j is the maximal amount of noise in any bucket in its history.

Each bucket is created independently of the other ones in the evicted
path. Therefore the quantity of noise in every bucket in the evicted
path is independent of the other ones. Since the noise is cumulative
during the eviction, the bucket that has the maximum noise will
represent the noise of the last bucket, since based on Algorithm 4
the noise is added up. Also, to this quantity of noise, we add the
sum of all real elements in the path that are no longer real elements
in the bucket Bi,j and therefore represent a new noise represented
by R′i−1,j .

All buckets in the path are independent of each others, i.e., the
number of real elements, the number of noisy elements are inde-
pendent of the the other buckets in the path. This holds since the
real elements, the noise in any bucket is generated from distinct
evictions. Therefore we have

Pr(Ñi,j > φ · z) = 1− Pr(max
i

(Ñ1,j−20 , · · · , Ñi−1,j−2i−2)

+R′i−1,j ≤ φ · z)

= 1−
i−1∏
k=1

Pr(Ñk,j−2k−1 +R′i−1,j ≤ φ · z)

We can reiterate the process of counting the noise until arriving
to the root. The quantity of noise in the root is null. Then

Pr(Ñi,j > φ · z) = 1−
i−1∏
k=1

k−1∏
l=1

· · ·
s−1∏
t=1

Pr(Ñ0,t +R′0,t +

R′1,s + · · ·+R′i−1,j ≤ φ · z)

= 1−
i−1∏
k=1

k−1∏
l=1

· · ·
s−1∏
t=1

Pr(R′0,t +R′1,s +

· · ·+R′i−1,j ≤ φ · z)

Recall that R′i−1,j represents the number of real elements in the
bucket Bi−1,j that will be considered as noise in the bucket Bi,j .
Any bucket cannot have more than z elements with hight probabil-
ity, denotingR = R′0,t +R′1,s + · · ·+R′i−1,j , we then have:

Pr(R ≤ φ · z) = 1− Pr(i · z ≥ R ≥ φ · z)

= 1−
i·z∑

k=φ·z
Pr(R = k)

≥ 1−
i·z∑

k=φ·z

(k + i− 1

k

)
Pr(R′i−1,j = k) (2)

≥ 1−
i·z∑

k=φ·z

(k + i− 1

k

)(2i−1

k

)
·

1

(2i)k
(3)

≥ 1−
i·z∑

k=φ·z
(
e2 · (k + i− 1)

2k2
)k

≥ 1− (i− φ) · z · (
e2 · (φ · z + i− 1)

2(φ · z)2
)φ·z (4)

≥ 1− i · z · (
e2

φ · z
)φ·z (5)

(6)

Inequality (1) is the result of calculating all the possible com-
binations of the equation x1 + · · · + xk = N which is equal to(
k+N−1
N

)
possibilities. We upper bound this value by multiplying

it with the maximum value of probability that equals Pr(R′i−1,j =
k). Inequality (2) is the result of computing the number of real

elements that might go to the (j − 1)th level. We have R′j−1,k fol-
lows a binomial distribution and then we have Pr(R′j−1,t = i) ≤(

2i−1

i

)
· 1

(2i)k
. Inequalities (3) and (4) are just an bound that are

reached first by replacing k = φ · z since it will result on the larger
value (k is in the denominator) and by summing over the final prob-
ability by i · z.

Combining all results together we have

Pr(Ñj,k > φ · z) ≤ 1−
i−1∏
k=1

k−1∏
l=1

· · ·
s−1∏
t=1

(1− Pr(j · z ≥ R ≥ φ · z)

≤ 1− (1− Pr(j · z ≥ R ≥ φ · z))O(i
i

i!
)

≤ 1− (1− i · z · (
e2

φ · z
)φ·z)O(i

i

i!
)

= O(
ii

i!
iz(

e2

φ · z
)φ·z)

= O(eiiz(
e2

φ · z
)φ·z)

The last transitions are obtained by the binomial inequality and Stir-
ling approximation. Now, we should define the value of φ for which
this probability is negligible. The probability above can be simpli-
fied to be equal to

Pr(Ñi,j > φ · z) = O(ei+ln(i·z)+2φ·z−ln(φ·z)·φ·z)

This probability computation is independent of the step of evic-
tion j ∈ N. Therefore, for any i ∈ [L] we have i ∈ Θ(logN)
and z ∈ ω(logN) choosing φ ∈ Θ(1), the probability equals:
Pr(Ñi,j > φ · z) ∈ O(N− log logN), which is negligible in N .

4.2 Security Analysis

4.2.1 Oblivious merging
We prove that permutations generated by Algorithm 4 are indis-

tinguishable from random permutations. Informally, we show that
the adversary cannot gain any knowledge about the load of a par-
ticular bucket. Applying a permutation from Algorithm 4 is equal
to applying any randomly chosen permutation. We formalize our
intuition in the security definition below.

First, we introduce our adversarial permutation indistinguisha-
bility experiment, that we denote PermG. LetM denote a proba-
bilistic algorithm that generates permutations based on the configu-
rations of two buckets, andA a PPT adversary. Let k be the bucket
size and s the security parameter. By Perm we denote the set of
all possible permutations of size k. Let E1 = (Gen,Enc,Dec)
and E2 = (Gena,Enca,Deca) respectively denote an IND$-CPA
encryption and an IND-CPA additively homomorphic encryption
schemes. PermGAM,E1,E2(s) refers to the instantiation of the ex-
periments by algorithmM, E1, E2 and adversary A.

The experiment PermGAM,E1,E2(s) consists of:

• Generate two keys k1 and k2 such that k1
$←− Gena(1

s) and

k2
$←− Gen(1s) and send n buckets additively homomor-

phic encrypted with Enca(k1, .) associated to their headers
encrypted with Enc(k2, .) to the adversary A

• The adversary A picks two buckets A and B, then sends the
encrypted headers header(A) and header(B)

• A random bit b $←− {0, 1} is chosen. If b = 1, π1
$←−

M(header(A), header(B)), otherwise π0
$←− Perm. Send

πb to A

• A has access to the oracle OM that issues permutation for
any couple of headers different from those in the challenge

• A outputs a bit b′

• The output of the experiment is 1 if b′ = b, and 0 otherwise.
If PermGAM,E1,E2(s, b′) = 1, we say that the adversary A
succeeded.

DEFINITION 4.1 (INDISTINGUISHABLE PERMUTATION). Algorithm
M generates indistinguishable permutations iff for all PPT adver-
saries A and all possible bucket configurations of buckets A and
B, there exists a negligible function negl, such that

Pr[PermGAM,E1,E2(s, 1) = 1]−Pr[PermGAM,E1,E2(s, 0) = 1] ≤ negl(s).

THEOREM 4.2. If E1 is IND$-CPA secure, E2 IND-CPA se-
cure, then Algorithm 4 generates indistinguishable permutations.

PROOF. We consider a succession of games Game0, Game1 and
Game2 defined as follows:

• Game0 is exactly the experiment PermGAM,E1,E2(s, 1)

• Game1 is similar to Game0, except that encrypted headers
are replaced with random strings

• Game2 is similar to Game1, except that encrypted buckets
are replaced with buckets with new randomly generated blocks
which are additively encrypted

From the definition above, we have

Pr[Game0] = Pr[PermGAM,E1,E2(s, 1) = 1]. (7)

For Game1, we can construct an efficient distinguisher B1 that re-
duces E1 to IND$-CPA security such that:

Pr[Game0]− Pr[Game1] ≤ AdvIND$¯CPA
B1,E1 (s). (8)

Similarly for Game1, we can build an efficient distinguisher B2

that reduces E2 to IND-CPA security such that:

Pr[Game1]− Pr[Game2] ≤ AdvIND¯CPA
B2,E2 (s). (9)

In the following, we will show that Pr[Game2] = Pr[PermGAM,E1,E2(s,
0) = 1]. That is, we need to show that the distribution of the output
of algorithmM has a uniform distribution over the set Perm.

For sake of clarity, we assume that the number of noisy slots is
zero in both buckets. Therefore, slots in A and B are either full or
empty. We can easily extend the proof for the case where we have
full, empty and noisy blocks.

For notation clarity, let X denote the discrete random variable
that represents the permutation selected by the adversary and by
Loadi,j the event of load(A) = i and load(B) = j. By load(A),
we denote the number of real elements in bucket A. If b = 0,
the adversary receives a permutation π0 selected uniformly at ran-
dom. It is clear thatA cannot distinguish it from another uniformly
generated random permutation. Note that in this case, for buck-
ets with k slots, the probability that adversary selects a permuta-
tion from Perm uniformly at random equals 1

|Perm| = 1
k!

. Thus,
Pr[X = π0] = 1

k!
.

If b = 1, the adversary receives π1. We need to show that the
permutations output byM are uniformly distributed.

Pr(X = π1) =
∑
i,j∈[n]

Pr(X = π1 and Loadi,j)

=
∑
i,j∈[n]

Pr(X = π1 | Loadi,j) · Pr(Loadi,j)

We compute the probability of selecting a permutation while the
loads of bucketsA andB are fixed to i and j. The number of possi-
ble configurations of valid permutations equals Valid =

(
k
i

)
·
(
k−i
j

)
.

This represents the number of possible permutation from which the
client can choose to generate a valid permutation. From the ad-
versary view, it should take into consideration all possible config-
urations of blocks in both buckets A and B. The total number of
permutations computes to Total =

(
k
i

)
·
(
k
j

)
·
(
k−i
j

)
· j! · (k − j)!.

The first two terms count the possible configurations of the loads
in both buckets while the three last terms are for valid permuta-
tions for a fixed setting of load distribution in the buckets. The
cardinality of possible configurations equals the number of possi-
ble combinations from which we can select j empty blocks from
k − i, i.e.,

(
k−i
j

)
. We then multiply this last value by the possible

permutations of the k − i full blocks and the j empty blocks that
are respectively equal to (k − j)! and j!.

That is,

Pr(X = π1 | Loadi,j) =
Valid

Total

=

(
k
i

)
·
(
k−i
j

)(
k
i

)
·
(
k
j

)
·
(
k−i
j

)
· j! · (k − j)!

=
1

k!
j!·(k−j)! · j! · (k − j)!

=
1

k!

We plug the result of this equation in the previous one and obtain

Pr(X = π1) =
∑
i,j∈[n]

1

k!
· Pr(Loadi,j) =

1

k!
.

Thus for the adversary, permutations output byM are uniformly
distributed, i.e.

Pr[X = π1] = Pr[X = π0] = Pr[PermGAM,E1,E2(s, 0) = 1]
(10)

Finally, plugging all the results of Equations 7, 8, 9 and 10 to-
gether we obtain

Pr[PermGAM,E1,E2(s, 1)] = Pr[Game0]

≤ Pr[Game1] + AdvIND$¯CPA
B1,E1 (s)

≤ Pr[Game2] + AdvIND¯CPA
B2,E2 (s) +

AdvIND$¯CPA
B1,E1 (s)

≤ Pr[PermGAM,E1,E2(s, 0)] +

AdvIND¯CPA
B2,E2 (s) + AdvIND$¯CPA

B1,E1 (s)

4.2.2 Overflow probability of C-ORAM buckets
C-ORAM eviction is similar to Onion ORAM [4]. The distribu-

tion of real elements for both constructions is exactly the same. We

 1

 10

 100

 1000

 10000

16 17 18 19 20 21 22

O
p
ti
m

a
l
b
lo

c
k
 s

iz
e
 (

K
B

)

log N

CORAM
Onion ORAM

Figure 5: Comparison of block size between C-ORAM and Onion
ORAM

have a bucket size of µ · z where z elements are allocated for real
elements and (µ − 1)z is allocated for noisy elements to preserve
the correctness of C-ORAM construction. The overflow probability
denotes the fact that any bucket in C-ORAM will contain more than
z elements. We want to show that this probability is negligible in
n. For this, we borrow the results of Devadas et al. [4] and Fletcher
et al. [5] that have introduced the eviction factor χ. Throughout the
paper, we have been stating that χ = O(z), which is a result of
the following theorem, without explicitly stating it before to avoid
confusion.

THEOREM 4.3. For the eviction factor χ and heightL such that
z ≥ χ and N ≤ χ · 2L−1, the overflow probability after every

eviction equals e
−(2z−χ)2

6χ .

Choosing z ∈ Θ(λ), L ∈ Θ(logN), χ ∈ Θ(λ) and λ ∈
ω(logN) makes the the result of Th 4.3 negligible in N .

5. EVALUATION
We have shown analytically that it suffices to set µ = Θ(1) and

have buckets of size Θ(z) = Θ(λ). However, we have not derived
precisely what bucket size is necessary for concrete security pa-
rameters. In order to get an idea of how bucket size in our scheme
scales with λ, we performed a series of experiments simulating our
ORAM and measuring the maximum number of used slots (real
data blocks plus junk blocks) after x number of operations, for var-
ious values of x. For instance, if we perform 215 operations on
an instance of C-ORAM and the highest bucket load is 35, then
we can assure a failure rate of less than 2−15 with buckets set to
35. Figure 6a shows the results of this test, compared with Onion
ORAMs requirement that buckets be equal to λ.

Additionally we compare the efficiency of our scheme in terms
of server computation to that of Onion ORAM. We aim to quantify
the number of homomorphic addition and multiplication operations
in each scheme, to show that we have significant improvement.
Throughout this analysis, we will consider a single multiplication
or addition to be over an entire block, although in practice it may
be divided into chunks of smaller ciphertext. Any changes in chunk
size will apply equally to both schemes so discussion of its impact
will be ignored. Note however that we do not have layered encryp-
tions and so, in fact, ciphertext operations in our scheme will be
cheaper simply because they are smaller.

During eviction Onion ORAM performs z select operations on
each bucket, which each require a PIR query over z slots. This re-

 0

 10

 20

 30

 40

 50

 60

 70

17 18 19 20 21 22 23

M
in

im
u
m

 b
u
c
k
e
t
s
iz

e

Security parameter

CORAM
Onion ORAM

(a) Required bucket size for different security parameters

 1

 10

 100

 1000

 10000

 100000

10 11 12 13 14 15 16

N
u
m

b
e
r

o
f
o
p
e
ra

ti
o
n
s

L

CORAM Mults
CORAM Adds

Onion Adds/Mults

(b) Comparison of ciphertext operations for Onion ORAM and C-ORAM.

Figure 6: Comparison of C-ORAM and Onion ORAM

sults in a total of z2 multiplications for each bucket, overL buckets.
Each multiplication also implies an addition in the select procedure,
so the number of ciphertext additions is the same.

C-ORAM contains one major modifications that is pertinent when
comparing ciphertext operations: PIR queries are only done on the
root bucket, to add new blocks, and on leaf buckets to read and re-
move blocks. C-ORAM then requires only O(zµ) multiplications
and zµL additions. Since we have shown that µ is a small constant,
we effective gain a factor of O(zL) in multiplications and O(z) in
additions.

Finally, we compare the optimal block size for C-ORAM in re-
lation to Onion ORAM, cf. Figure 5. For each eviction, Onion
ORAM requires λ2L ciphertexts of size γ to be sent by the client,
while we require only permutation vectors of total size µλL log λ.
Since γ = O(λ2), this is a huge savings. For reads, Onion ORAM
requires λLγ bits of ciphertext while we require only 4µλγ.

Comparison results: C-ORAM is able to achieve constant com-
munication overhead in the worst-case, with significantly less server
computation required in addition to smaller minimum block sizes.
Figure 6b shows that we lower both the required number of cipher-
text additions and multiplications by several orders of magnitude
when compared to Onion ORAM. In exchange for this, we have
a slightly higher server storage requirement, increasing by a fac-
tor µ. However, Figure 6a shows that this factor is only about 2.
Additionally, Figure 5 shows that C-ORAM requires much smaller
blocks than Onion ORAM in practice.

6. RELATED WORK
ORAM was first introduced by Goldreich and Ostrovsky [8] and

has recently received an increasing interest with the introduction of
tree-based ORAM construction [1–3, 5–11, 13, 15, 17, 18, 20, 22–
24]. ORAMs can be categorized based on the client memory set-
ting, namely, constant client memory or sublinear client memory.
This categorization can be refined by taking into account the server
computation nature, namely, storage-only server, versus, computa-
tional servers. In the following, we will briefly recapitulate some
notable research works done in this area while arranging them in
their corresponding categories.

Constant client memory: This category of ORAMs is very useful
in the case of very restrained client memory devices such us smart-
phones, embedded devices. With constant client memory, the aim
of this research is to reduce the worst-case or amortized case com-
munication complexity between the client and server [4, 9, 10, 13,
15, 17, 18, 20]. Poly-logarithmic amortized-case cost was intro-

duced by Goodrich and Mitzenmacher [9] and Pinkas and Reinman
[18] in O(log2 N) but with linear worst case communication com-
plexity. This last has been improved to O(

√
N · log2 N) with the

work of Goodrich et al. [10]. The first scheme to provide a poly-
logarithmic worst-case was presented by Shi et al. [20]. The idea
behind this scheme is a tree-based construction where nodes con-
sist of small bucket ORAMs, see [8, 16] while memory shuffling is
performed after every access. This scheme offers a communication
complexity inO(log3 N) in term of number of blocks downloaded.

Asymptotics for constant-client memory has been enhanced by
the work of Kushilevitz et al. [13] with a communication complex-
ity equal toO(log2 N

log logN
). However, this construction suffers from a

large hidden constant ∼ 30 that make it less efficient compared to
Shi et al. [20] for example.

While all the previous schemes are based on storage-only servers,
Mayberry et al. [15] have introduced a new paradigm that takes ad-
vantage of a computational server setting. In fact, their idea is based
on coupling PIR [12] with Shi et al. [20]’s ORAM. A PIR vector
is used to retrieve the searched for block from the desired bucket
that greatly reduces the amount of bits needed for one access. The
authors show therewith that the communication complexity can be
reduced to O(log2 N).

Devadas et al. [4] enhanced this idea by proposing the first amor-
tized constant client bandwidth in a computational server. The idea
is also based on merging PIR and ORAM, however, the client still
needs to download a large block size B = Ω(log5 N) which is not
very practical for realistic dataset.

Sub-linear client memory Williams and Sion [23], Williams et al.
[24] works introduce a sublinear client side memory inO(

√
N) but

with a linear worst-case cost complexity. Stefanov et al. [21] im-
proved this result by introducing a polylogarithmic communication
complexity in O(log2 N) but with O(

√
N) client memory.

Gentry et al. [6] improve the ORAM by Shi et al. [20] by re-
placing the binary tree by a κ−array tree. They introduce a new
deterministic eviction process adapted to this new structure based
on reverse lexicographic ordering of leaves. This eviction method
is the basis of many recent tree-based ORAMs such as Fletcher
et al. [5] or Devadas et al. [4]. With a branching factor equal to
κ = logN , the communication complexity of Gentry et al. [6]’s
ORAM is in log3 N

log logN
. The polylogarithmic client memory is in

O(log2 N) because the client has to keep track of all elements in
path during the eviction.

Stefanov et al. [22] present Path ORAM, one of the most efficient

construction with only O(logN) client memory. The bandwidth
is in O(log2 N) if the block size is in Ω(logN) or in O(logN)
for Ω(log2 N) block sizes. Fletcher et al. [5] further reduced the
communication cost by 6 ∼ 7%.

References
[1] D. Boneh, D. Mazières, and R.A. Popa. Remote obliv-

ious storage: Making oblivious RAM practical, 2011.
http://dspace.mit.edu/bitstream/handle/
1721.1/62006/MIT-CSAIL-TR-2011-018.pdf.

[2] K.-M. Chung and R. Pass. A Simple ORAM. IACR Cryptol-
ogy ePrint Archive, 2013:243, 2013.

[3] I. Damgård, S. Meldgaard, and J.B. Nielsen. Perfectly Secure
Oblivious RAM without Random Oracles. In Proceedings of
Theory of Cryptography Conference –TCC, pages 144–163,
Providence, USA, March 2011.

[4] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher,
and Ling Ren. Onion ORAM: A constant bandwidth and con-
stant client storage ORAM (without FHE or SWHE). IACR
Cryptology ePrint Archive, 2015:5, 2015.

[5] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten
van Dijk, Emil Stefanov, and Srinivas Devadas. RAW Path
ORAM: A Low-Latency, Low-Area Hardware ORAM Con-
troller with Integrity Verification. IACR Cryptology ePrint
Archive, 2014:431, 2014.

[6] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S.
Jutla, Mariana Raykova, and Daniel Wichs. Optimizing
ORAM and Using It Efficiently for Secure Computation. In
Proceedings of Privacy Enhancing Technologies, pages 1–18,
2013.

[7] O. Goldreich. Towards a Theory of Software Protection and
Simulation by Oblivious RAMs. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing –STOC,
pages 182–194, New York, USA, 1987.

[8] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious rams. J. ACM, 43
(3):431–473, May 1996. ISSN 0004-5411. doi: 10.
1145/233551.233553. URL http://doi.acm.org/10.
1145/233551.233553.

[9] M.T. Goodrich and M. Mitzenmacher. Privacy-preserving ac-
cess of outsourced data via oblivious ram simulation. In Pro-
ceedings of Automata, Languages and Programming –ICALP,
pages 576–587, Zurick, Switzerland, 2011.

[10] M.T. Goodrich, M. Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Oblivious ram simulation with efficient
worst-case access overhead. In Proceedings of the 3rd ACM
Cloud Computing Security Workshop –CCSW, pages 95–100,
Chicago, USA, 2011.

[11] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via state-
less oblivious RAM simulation. In Proceedings of the Sympo-
sium on Discrete Algorithms –SODA, pages 157–167, Kyoto,
Japan, 2012.

[12] E. Kushilevitz and R. Ostrovsky. Replication is not Needed:
Single Database, Computationally-Private Information Re-
trieval. In Proceedings of Foundations of Computer Science,
pages 364–373, Miami Beach, USA, 1997.

[13] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious ram and a new balancing scheme.
In Proceedings of the Symposium on Discrete Algorithms –
SODA, pages 143–156, Kyoto, Japan, 2012.

[14] Helger Lipmaa. An oblivious transfer protocol with log-
squared communication. In Information Security, 8th Inter-
national Conference, ISC 2005, Singapore, September 20-23,
2005, Proceedings, pages 314–328, 2005.

[15] T. Mayberry, E.-O. Blass, and A.H. Chan. Path-PIR: Lower
Worst-Case Bounds by Combining ORAM and PIR. In Pro-
ceedings of the Network and Distributed System Security Sym-
posium, San Diego, USA, 2014.

[16] R. Ostrovsky. Efficient computation on oblivious rams. In
Proceedings of the Symposium on Theory of Computing –
STOC, pages 514–523, Baltimore, USA, 1990.

[17] R. Ostrovsky and V. Shoup. Private information storage (ex-
tended abstract). In Proceedings of the Symposium on Theory
of Computing –STOC, pages 294–303, El Paso, USA, 1997.

[18] B. Pinkas and T. Reinman. Oblivious ram revisited. In Ad-
vances in Cryptology – CRYPTO, pages 502–519, Santa Bar-
bara, USA, 2010.

[19] RightScale. State of the cloud report, 2015. URL http:
//assets.rightscale.com/uploads/pdfs/
RightScale-2015-State-of-the-Cloud-Report.
pdf.

[20] E. Shi, T.-H.H. Chan, E. Stefanov, and M. Li. Oblivious RAM
with O(log3(N)) Worst-Case Cost. In Proceedings of Ad-
vances in Cryptology – ASIACRYPT , pages 197–214, Seoul,
South Korea, 2011. ISBN 978-3-642-25384-3.

[21] E. Stefanov, E. Shi, and D.X. Song. Towards practical oblivi-
ous ram. In Proceedings of the Network and Distributed Sys-
tem Security Symposium, San Diego, USA, 2012. The Internet
Society.

[22] E. Stefanov, M. van Dijk, E. Shi, C.W. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely sim-
ple oblivious RAM protocol. In Proceedings of Conference
on Computer and Communications Security, pages 299–310,
Berlin, Germany, 2013. ISBN 978-1-4503-2477-9.

[23] P. Williams and R. Sion. Usable pir. In Proceedings of the
Network and Distributed System Security Symposium, San
Diego, USA, 2008.

[24] P. Williams, R. Sion, and B. Carbunar. Building castles out
of mud: practical access pattern privacy and correctness on
untrusted storage. In ACM Conference on Computer and
Communications Security, pages 139–148, Alexandra, USA,
2008.

