
A preliminary version of this paper appears in 2015 IEEE Symposium on Security and Privacy,
S&P 2015.

How Secure and Quick is QUIC?

Provable Security and Performance Analyses

Robert Lychev∗ Samuel Jero† Alexandra Boldyreva‡

Cristina Nita-Rotaru§

Abstract

QUIC is a secure transport protocol developed by Google and implemented in Chrome in
2013, currently representing one of the most promising solutions to decreasing latency while
intending to provide security properties similar with TLS. In this work we shed some light on
QUIC’s strengths and weaknesses in terms of its provable security and performance guarantees in
the presence of attackers. We first introduce a security model for analyzing performance-driven
protocols like QUIC and prove that QUIC satisfies our definition under reasonable assumptions
on the protocol’s building blocks. However, we find that QUIC does not satisfy the traditional
notion of forward secrecy that is provided by some modes of TLS, e.g., TLS-DHE. Our analyses
also reveal that with simple bit-flipping and replay attacks on some public parameters exchanged
during the handshake, an adversary could easily prevent QUIC from achieving minimal latency
advantages either by having it fall back to TCP or by causing the client and server to have
an inconsistent view of their handshake leading to a failure to complete the connection. We
have implemented these attacks and demonstrated that they are practical. Our results suggest
that QUIC’s security weaknesses are introduced by the very mechanisms used to reduce latency,
which highlights the seemingly inherent trade off between minimizing latency and providing
‘good’ security guarantees.

1 Introduction

The proliferation of mobile and web applications and their performance requirements have exposed
the limitations of current transport protocols. Specifically, protocols like TLS [18] have a relatively
high connection establishment latency overhead, causing user unhappiness and often resulting in
a decreased number of customers and financial losses. As a result, several efforts [34, 22, 38, 24]

∗MIT Lincoln Laboratory. E-mail: robert.lychev@ll.mit.edu. Most of his work on this paper done while at
Georgia Institute of Technology.

†Purdue University. E-mail: sjero@purdue.edu.
‡Georgia Institute of Technology. E-mail: sasha@gatech.edu.
§Purdue University. E-mail: cnitarot@purdue.edu.

1

have gone into designing new transport protocols that have low latency as one of the major design
goals, in addition to basic security goals such as confidentiality, authentication, and integrity.

One of the most promising protocols is QUIC [34], a secure transport protocol developed by
Google and implemented in Chrome in 2013 [33]. QUIC integrates ideas from TCP, TLS, and DTLS
[31] in order to provide security functionality comparable to TLS, congestion control comparable
with TCP, as well as minimal round-trip costs during setup/resumption and in response to packet
loss. Some of the major design differences from TLS are not relying on TCP in order to eliminate
redundant communication and the use of initial keys to achieve faster connection establishment.
However, the exact security and performance advantages and disadvantages of QUIC are not clear
when compared to existing protocols such as TLS and DTLS. Shedding light on this problem is the
main focus of our work.

The way to assess and compare security is by providing a provable security analysis. However,
while the importance of provable security analysis for practical protocols is gaining wider accep-
tance, it is still common for a protocol to be deployed first and analyzed later. For example, the
complete provable security results for TLS remained elusive for many years and have only recently
been identified [26, 27, 12]. Not surprisingly, no formal guarantees of the provided services existed
for QUIC, with the exception of informal arguments in its design specifications, before the recent
(concurrent) work by Fischlin and Günter [23] and our work. Even though [23] assesses QUIC’s
security, its results do not overlap with ours and its analysis is limited to the key exchanges rather
than the entire protocol. We provide a detailed comparison of these works in Section 2.

Furthermore, even if certain security properties about a protocol may be proven to hold, its
usefulness in real-life deployments can be undermined by attacks that prevent connections from
being established in the first place, especially in ways that are more subtle than just dropping
traffic, e.g. TCP reset attacks against TLS. Such types of attacks have gained notoriety since it
became known that they have been used for censorship by some governments to deter users from
viewing certain content on the Internet [17].

As QUIC has been deployed widely among Google servers, and may eventually be deployed
outside of Google, it is critical to provide its provable security analysis and to understand its
performance guarantees in the presence of attackers before it becomes more widely used. Under-
standing its performance guarantees is particularly important considering that QUIC is envisioned
mainly for web content delivery and mobile applications.

Our contributions. We provide the provable-security analysis of QUIC and assess its per-
formance guarantees in the presence of attackers. Our study is suitable for a general class of
performance-driven communication protocols that employ an initial session key to enable data ex-
change even before the final session key is set. We call such protocols Quick Communications (QC)
protocols. While QUIC is our main focus, the recently announced version 1.3 of TLS [30] also fits
the QC framework.

One of our major contributions is the security model for QC protocols. We designed a new
model since the existing security definitions were unsuitable. The Authenticated and Confidential
Channel Establishment (ACCE) model [26, 27] which was used in proving TLS did not fit QUIC for
several reasons. First, TLS and its security model use one session key, while QUIC uses two, and the
data may start being encrypted before the final session key is set. Therefore, the model has to deal
with key and data exchange under multiple keys. Second, QUIC does not run on top of TCP and
implements many of the features provided by TCP itself. This is done primarily for performance
reasons, but QUIC also adds some cryptographic protection, such as protection against IP spoofing

2

and packet re-ordering. Hence, it makes sense to model additional attacks such as IP spoofing or
packet re-ordering. Also, we cannot analyze the key and data exchange phases separately using the
established security definitions and then compose them to get a composition result implying the
security of the whole protocol, because in QUIC these phases use common parameters (such as IV)
and can overlap (data can be exchanged while the final session key is being set).

Our security definition is an extension of the ACCE definition to fit QC protocols. We call our
model QACCE for Quick ACCE. We consider a very powerful attacker who knows all servers’ public
keys, can initiate and observe the communications between honest parties, and can intercept, drop,
misorder, or modify the contents of the exchanged packets. We also consider DoS attacks such
as IP spoofing. The adversary can adaptively corrupt servers and learn their (long-term) secret
keys and secret states. It can also, again adaptively, learn parties’ initial and final session keys.
The adversary can also have partial knowledge of the data being exchanged by the parties. Given
such strong adversarial capabilities, the attacker should not be able to prevent the parties from
establishing session keys (without the parties noticing that something went wrong) and using these
keys to achieve data exchange with privacy and integrity. We note that the sender authentication
can only be achieved one-way, as only servers hold public keys.

Our security model formally captures the different levels of security guaranteed for data en-
crypted under the initial and final session keys.1 While the attacker can cause honest parties to
agree on distinct initial keys (something which is not possible in TLS), we still require that data
exchanged under either key is protected. For the final session keys, the security requirement is
similar to that for session keys in TLS: if one party sets the key, it is guaranteed that the other
party sets the same key, and moreover, that the key is “good enough” to securely exchange data.
Finally, we also consider forward secrecy. Unlike TLS-RSA, currently the most commonly deployed
mode of TLS, QUIC provides certain forward secrecy guarantees such that corrupting a server dur-
ing one time period does not let the attacker break the security of the data sent in previous time
periods. On the other hand, because the initial keys, used for initial data exchange, are derived
using parameters that change only once per time period, QUIC does not provide forward secrecy
guarantees against attackers that may corrupt the server after, but in the same time period as,
the data that was sent. Thus, QUIC’s overall forward secrecy guarantees are not as strong as
those of TLS-DHE, a TLS mode that has recently gained popularity. However, in practice, TLS
SessionTickets [35] are often used to minimize round trips. Their use in some sense cancels the
forward secrecy guarantees provided by TLS because the SessionTicket key, which must be retained
for sufficiently long periods of time for resumption to be effective, can be used to decrypt previous
communication. In addition to the formal model, we provide extensive explanations and discussions
to help practitioners understand the security level we target.

We then analyze the security of the cryptographic core of QUIC, which we extracted from
[34, 33, 28]. We prove that QUIC satisfies our security model assuming strong unforgeability of the
underlying signature scheme, security of the underlying symmetric authenticated encryption scheme
with associated data, and the strong Diffie-Hellman assumption, in the random oracle model.

We note that not all the building blocks suggested by QUIC satisfy the required security no-
tions though. While Galois-Counter Mode (GCM) authenticated encryption has been proven to
be a secure authentication encryption scheme assuming security of AES [29], the signature scheme
options, such as the RSA-PSS-SHA256 and ECDSA-SHA256 are not known to be strongly unforge-
able. This does not mean that there are attacks, but the required security guarantees have not

1The security goals were not formally stated in QUIC’s documentation.

3

been formally shown. We provide more details in Section 7.
We also analyze QUIC’s latency goals in the presence of attackers. We show that the very

mechanisms used in QUIC to minimize latency, such as unprotected fields on handshake packets
and the use of publicly available information on both client and server sides, can be exploited by
an adversary during the handshake to introduce extra latencies and possibly lead to DoS attacks.
We implemented five attacks against QUIC. Four of these attacks prevent a client from establishing
a connection with a server while the fifth is a DoS attack against QUIC servers. In all cases, we
found the attacks easy to implement and completely effective. In many cases, the client is forced
to wait for QUIC’s ten-second connection establishment timeout before giving up.

Our results suggest that the techniques that QUIC uses to minimize latency may not be useful
in the presence of malicious parties. Although these weaknesses are not completely unexpected,
they are of significant concern to the QUIC team at Google who have been developing a dedicated
monitoring infrastructure to try to address them [39]. However, we have found that there may be
fundamental limitations to effectively mitigating these weaknesses.

We note that similar types of attacks have been used against TLS and TCP (recall that TLS
runs on top of TCP). However, TLS and TCP made no general promises about their performance
in the presence of adversaries. We find that even if QUIC’s performance may not be perfect, it is
not worse than that of TLS in the worst case, and is much better in the absence of adversaries.

To summarize, our contributions are:

• A security model for QC protocols that formally captures the different levels of security
guaranteed for data encrypted under the initial and final session keys in the presence of a
very strong adversary, Section 6;

• A provable-security analysis for QUIC under the considered security model, Section 7;

• A quantitative analysis of the performance properties of QUIC under adversarial settings,
Section 8;

• A practicality demonstration of attacks, Section 9.

Our study has shed some light on QUIC’s security guarantees and weaknesses that would be
useful for practitioners and protocol developers. On a high level, our provable security analysis
study confirms the soundness of QUIC’s security protection design. And by doing so, our study
details the exact level of security the protocol provides, e.g., for data encrypted under the initial
and final session keys; something which the protocol description did not specify in sufficient detail.
Our performance analysis results confirm yet again that there is no free lunch: either practitioners
have to put up with the extra latencies inherent in setting up TLS connections with TCP, or they
have to figure out how to deal with the additional security risks introduced by the very mechanisms
used to reduce those latencies. Similar tradeoffs were observed with respect to a performance-
driven key exchange protocol proposed in [3]. Although in principle QUIC outperforms TLS in
terms of latency when there are no attackers, there seems to be a fundamental tradeoff between
minimizing latency and providing ‘good’ security guarantees that practitioners should keep in mind
when considering whether to deploy and/or work to improve QUIC or other performance-driven
protocols such as TLS 1.3 and TLS with SessionTicket resumption.

Future Directions. It would be interesting to see if analyses permitting machine-checked or even
automatically-generated proofs using systems like Coq, CryptoVerif [13], EasyCrypt [4] or a type

4

system by Fournet et al. [25] used in TLS analyses [11, 10] could be applied to performance-oriented
protocols such as QUIC or TLS 1.3.

2 Concurrent and Independent Work

In (concurrent) work, Fischlin and Günter [23] analyze the key exchange of QUIC. They show that
QUIC’s (multi-stage) key exchange satisfies a reasonable notion of security. However, this notion
does not “compose” with the notions for data exchange, meaning that even if one uses a secure
authenticated encryption scheme for data exchange, the security of the QUIC protocol as a whole
is not guaranteed. For such a desirable composition to hold, QUIC has to be slightly modified.
Traditionally, it has proved very hard to convince practitioners to change implementations unless
a serious attack has been deployed. While we believe Google may be more agreeable to tweak the
protocol to make it suitable for modular analysis, until that happens, the security of QUIC as a
whole is not known.

Furthermore, the change proposed in [23] will not suffice because the way authenticated encryp-
tion is used in QUIC prevents its security from generically composing with secure key exchange.
Specifically, part of the nonce IV used for encryption is not picked at random independently from
everything else but is derived in the same way as the party’s secret keys, fixed, and not given to the
adversary. To enable a result about the composed security, Google would need to modify its use of
encryption. Although we fully support complex protocol design that allows for modular security
treatment, we also realize that it is often done differently in practice. So far, our analysis is the
only one suitable for the unmodified QUIC.

Another limitation of the analysis in [23] is that it does not address packet-level attacks and
IP spoofing. The security model of [23] also does not consider time periods and refreshments
of the server configuration. The latter is treated as the long term secret of the server, and the
communication of the public portion of it to the client is not considered; i.e., they do not consider
1-RTT connections. Hence, while [23] gives a good insight in the design of multi-stage protocols
in a way supporting modular security analyses, our work captures more accurately the current
implementation of QUIC and the corresponding practical threats.

3 Preliminaries

Notation and conventions. We denote by {0, 1}∗ the set of all binary strings of finite length.
If x, y are strings then (x, y) denotes the concatenation of x and y from which x and y are uniquely
decodable. If κ ∈ N then 1κ denotes the string consisting of κ consecutive “1” bits. If S is a finite

set, then s
$← S denotes that s is selected uniformly at random from S. All algorithms are assumed

to be randomized and efficient (i.e. polynomial in the size of the input). For any n ∈ N, [n] denotes
the set of integers {1, . . . , n}.
PKI. Whenever we use public keys, we also (implicitly) assume that a public key infrastructure
(PKI) is supported, i.e. the public keys are valid, bound to users’ identities, and publicly known.
Thus, we omit certificates and certificate checking of public keys in our analysis.

Base primitives and assumptions.
Digital Signature Scheme. A digital signature scheme is used in QUIC by servers to au-

thenticate certain data, so we define the primitive and its security here.

5

A digital signature scheme SS = (Kg,Sign,Ver) with associated message space MsgSp is defined
by three algorithms. The randomized key generation algorithm Kg takes the security parameter

λ and outputs a public–secret key pair: (pk, sk)
$← Kg(λ). The signing algorithm Sign takes the

secret key and message m ∈ MsgSp and outputs a signature: σ
$← Sign(sk,m). The verification

algorithm Ver takes the public key, a message and a signature and outputs a bit b ∈ {0, 1} indicating
whether the signature is deemed valid or not: b← Ver(pk,m, σ).

For correctness, it is required that for every (pk, sk) output by Kg(λ) and every m ∈ MsgSp,
Ver(pk,m,Sign(sk,m)) = 1.

To define security consider the experiment Expsuf
SS(A) associated with an adversary A. First, a

pair of keys is generated: (pk, sk)
$← Kg(λ). Then A is given pk, the oracle Sign(sk, ·), and it has to

output a message and a forgery: (M,σ)
$← ASign(sk,·)(pk). The adversary wins and the experiment

returns 1 iff Ver(pk,m, σ) = 1, m ∈ MsgSp and σ was never output by the Sign(sk, ·) oracle.
We say that SS is strongly unforgeable against chosen message attack (suf-cma) if Advsuf

SS (A) =
Pr
[

Expsuf
SS(A) = 1

]
is negligible in λ, for all efficient algorithms A.

Authenticated Encryption with Associated Data. After the parties using QUIC estab-
lish the shared key, they should be able to use the secure channel to exchange data in a secure
manner. The secure channel is implemented by using an authenticated encryption with associated
data scheme, which we now define. We adopt the definition of an authenticated encryption with
associated data scheme and its corresponding security definition from [32].

An authenticated-encryption with associated-data scheme AEAD consists of two algorithms
AEAD = (E ,D) and is associated with key space {0, 1}λ, nonce space {0, 1}n, additional authenti-

cated data space {0, 1}∗ and message space {0, 1}∗. The key is generated via κ
$← {0, 1}λ. E is a

deterministic encryption algorithm that takes inputs key κ, nonce IV ∈ {0, 1}n, additional authen-
ticated data H ∈ {0, 1}∗ and plaintext m ∈ {0, 1}∗, and outputs a ciphertext c. D is a deterministic
decryption algorithm that takes inputs key κ, nonce IV ∈ {0, 1}n, additional authenticated data
H ∈ {0, 1}∗, and ciphertext c, and outputs either the plaintext m or ⊥.

For correctness, it is required that D(κ, IV, H, E(κ, IV, H,m)) = m for all κ ∈ {0, 1}λ, IV ∈
{0, 1}n, H,m ∈ {0, 1}∗.
Message privacy. To define message privacy let A be an adversary and consider the experiment

Expind-cpa
AEAD (A). It first generates the key κ

$← {0, 1}λ and flips a bit b
$← {0, 1}. A has access to the

encryption oracle E(κ, ·, ·, LR(·, ·, b)), where LR(·, ·, b) on inputs m0,m1 ∈ {0, 1}∗ with |m0| = |m1|
returns mb. At the end A outputs a bit b′, and we define A’s advantage to be Advind-cpa

AEAD (A) =
2 Pr [b′ = b]− 1.

Authenticity. To define message integrity and authenticity let A be an adversary and consider

the experiment Expauth
AEAD(A). It first generates the key κ

$← {0, 1}λ. A has access to oracle
E(κ, ·, ·, ·). Expauth

AEAD(A) outputs 1 iff A outputs (IV, H, c) such that D(κ, IV, H, c) 6= ⊥ and A
did not query E(κ, IV, H,m) for some m that resulted in a response c. We define Advauth

AEAD(A) =
Pr
[

Expauth
AEAD(A) = 1

]
.

We say that A is nonce-respecting, if it never repeats IV in its oracle queries. We say that an
AEAD scheme is indistinguishable under chosen plaintext attack (ind-cpa-secure) if Advind-cpa

AEAD (A)
is negligible in λ for any efficient, nonce-respecting adversary A. We say that an AEAD scheme is
auth-secure if Advauth

AEAD(A) is negligible in λ for any efficient, nonce-respecting adversary A. We
say that any AEAD is secure if it is ind-cpa- and auth-secure.

6

Strong Computational Diffie-Hellman (SCDH) Assumption. We define the SCDH
assumption [1], on which security of QUIC will rely. This assumption was commonly used for
analyses of other protocols, including TLS [27].

Consider the experiment ExpSCDH(A) associated with an adversary A and security parameter
λ. A is given (g, q, ga, gb), where q is prime of size λ, g is a generator of a cyclic group of order
q, and a, b are picked uniformly at random from Zq. A is also given access to verification oracle
V(g, ga, ·, ·), which returns 1 iff queried on gx, gax for some x ∈ Zq. ExpSCDH(A) returns 1 iff A
outputs gab. We define AdvSCDH(A) = Pr [ExpSCDH(A) = 1]. We say that the SCDH problem is
hard if AdvSCDH(A) is negligible in λ, for all efficient adversaries A.

4 Quick Connections Protocol Definition

In this section we formally define a Quick Connections (QC) protocol, which is a communication
protocol between a client and a server (the latter holds a public key and the corresponding secret
key). The parties first agree on an initial session key, which can be used to exchange data until the
final key is set. After the final key is set, it is used for further data exchange. The QC definition fits
QUIC and is also applicable to other protocols, such as TLS 1.3. This formal definition is necessary
for the provable-security analysis.

The protocol is associated with the security parameter λ, a server key generation protocol Kg
that on input λ returns public and secret keys, an authenticated encryption with associated data
scheme AEAD = (E ,D) with key space {0, 1}λ, header space {0, 1}∗, message space {0, 1}∗, an
IV-extraction function get iv that takes a key and a header and outputs an IV ∈ {0, 1}n for each
message to be encrypted or decrypted via the associated AEAD, and a scfg gen function that the
server can use to update part of its global state scfg. The server can maintain global state other
than its scfg. All global state is initially set to ε. We associate a protocol’s execution with the
universal notion of time, which is divided into discrete periods τ1, τ2, The keys are generated

via (pk, sk)
$← Kg(λ). The input of each party (representing what parties know at the beginning)

consists of the public key of the server pk and the list of messages M send = M1, . . . ,Mm for some
m ∈ N and where each Mi ∈ {0, 1}∗, that a party needs to send securely (M send can also be ε).
The server has an additional input: the secret key. All parties can keep global state.

In our model, the client and server are given vectors of messages as input. While in practice
the messages that the parties exchange may depend on each other, for simplicity we chose not to
complicate the protocol syntax. This decision has no implications on our overall security analysis.

Data is exchanged between the parties via packets that must consist of source and destination
IP addresses and port numbers followed by the payload associated with the protocol.2 Each party
gets a 32-bit IP address associated with 216 − 1 port numbers as part of its input. We say that all
received and sent packets by a client party belong to that client party’s connection with a particular
server party if the source IP address and port number (as well as any other protocol-specific source
information included in packets) of all packets received by that client party correspond to that server
and are the same as the destination IP address and port number (as well as any other protocol-
specific destination information included in packets) of all packets sent by that client party. We
define a server party’s connection with a particular client analogously.

2We ignore time to live (TTL), header checksums, and other header information not directly relevant to our
analysis.

7

Note that different protocols may establish connections based on parameters other than just IP
and port numbers (e.g., cid in QUIC as will be described in Section 5), which is why our definition
allows for other protocol-specific parameters contained in packets to be included. The notion of a
connection is relevant to the notion of one party setting a key with another party which we will
establish below and use in our security analysis.

The first packet of data is sent from the client to the server, and we refer to this packet as the
connection request.

The interactive protocol consists of four phases. Each message exchanged by the parties must
belong to some unique stage, but the second and third stages may overlap:

Stage 1: Initial Key Agreement. At the end of this stage each party sets the initial key
variable ik = (ikc, iks, iaux), where iaux ∈ {0, 1}∗ (initially set to ε) is any additional information
used for encryption and decryption.

Stage 2: Initial Data Exchange. In this stage, messages from the input data list can be
transmitted using the associated AEAD scheme and the key ik. The server uses ikc to encrypt
and iks to decrypt, whereas the client uses iks to encrypt and ikc to decrypt. At the end of this
stage, each party outputs the list of messages M iget = M1, . . . ,Mm′ for some m′ ∈ N and where
each Mi ∈ {0, 1}∗, (M iget can also be ε), representing the messages the party received in the initial
data exchange phase.

Stage 3: Key Agreement. At the end of this stage, each party sets the session key variable
k = (kc, ks, aux), where aux ∈ {0, 1}∗ (initially set to ε) is any additional information used for
encryption and decryption.

Stage 4: Data Exchange. In this stage, messages from the input data list can be sent
using the associated AEAD scheme and the key k. The server uses kc to encrypt and ks to decrypt,
whereas the client uses ks to encrypt and kc to decrypt. At the end of this stage, each party outputs
the list of messages Mget = M1, . . . ,Mm′′ for some m′′ ∈ N and where each Mi ∈ {0, 1}∗, (Mget

can also be ε), representing the messages the party received in the final stage.
We say that a party rejects a packet if it outputs ⊥, and accepts it otherwise.
When a client (or server) party sets ik in Stage 1 corresponding to a particular QC protocol

execution instance, we say that client (or server) party sets that ik with a particular server (or
client) party if every sent and received packet by that client (or server) party in Stage 1 of that QC
protocol execution instance belongs to that client (or server) party’s connection with that server
(or client) party. We can define an analogous notion for setting k with respect to Stage 3. We will
refer to parties that set ik’s in Stage 1 with each other as each other’s peers.

The correctness of the protocol requires that the input data of one party’s M send be equal to
outputs of the other party’s M iget,Mget. In other words, the protocol is correct if it allows the par-
ties to exchange the data that they intended to exchange with their corresponding communication
partners in the protocol, while preserving the order of the messages.

5 The QUIC Protocol

In this section we present the QUIC protocol. Our description follows the definition for a QC
protocol primitive.

In QUIC, the parties associate a connection ID cid with the source and destination IP addresses
and port numbers of every packet corresponding to that connection. Every incoming packet is
checked to see if the source and destination IPs and port numbers correspond to those previously

8

observed for that connection, and that connection is closed if they do not match. For simplicity of
presentation, we omit this check in our description below.

Let AEAD = (E ,D) be an authenticated encryption with associated data scheme, let SS =
(Kgs, Sign,Ver) be a digital signature scheme, and let λ be a security parameter. The signature
algorithms supported by QUIC are ECDSA-SHA256 and RSA-PSS-SHA256. AES Galois-Counter

mode (GCM) scheme [29] is used as AEAD. QUIC’s key generation protocol runs (pk, sk)
$← Kg(λ),

kstk
$← {0, 1}128, and returns pk as the server’s public key and (sk, kstk) as the server’s secret key.3

We assume that the server’s scfg is refreshed every time period using the scfg gen function
described below.4

scfg gen(sk, τt, λ):

q
$← {primes of size λ}, g

$← {generators of Zq}
xs

$← Zq−1, ys ← gxs , pubs ← (g, q, ys), secs ← xs
expy← τt+1, scid← H(pubs, expy)
str← “QUIC server config signature”
prof← Sign(sk, (str, 0x00, scid, pubs, expy))
scfgt

pub ← (scid, pubs, expy, prof)

scfg← (scfgt
pub, secs)

H is the SHA-256 hash function. Note that the generation of scfg and the signing of its public
parameters are done independently of clients’ connection requests. Although in QUIC there may
be several distinct configuration parameters scfg that are valid at any given time, we omit this
detail in our analysis, and we do not consider the problem of them expiring during the initial or
session key agreement stages.

QUIC supports two connection establishment schemes: 1-RTT handles the case when the client
tries to achieve a connection with a server for the first time in a particular time period. 0-RTT
considers the case when the client is trying to connect to a server that it has already established
at least one connection with in that time period.

5.1 1-RTT Connection Establishment

We first describe the case when a client C is trying to achieve a connection with a server S for the
very first time at the beginning of time period τt. The protocol follows the four stages of the QC
model and is presented in Figure 1.

Both C and S know that the current time period is τt. C’s input message isMc = (M1
c ,M

2
c , · · · ,Mu

c),

while S’s input message is Ms = (M1
s ,M

2
s , · · · ,Mw

s). S generates keys (pk, sk)
$← Kg(λ) and

kstk
$← {0, 1}128.

3In QUIC, kstk is derived using similar methods as the initial and session keys and may depend on user-supplied
inputs. Poorly chosen user inputs could lead to IP-spoofing opportunities, but we do not address this weakness
because quantifying the predictability of user inputs is out of scope. For simplicity, we assume that users setting up
QUIC servers provide unpredictable inputs, and treat kstk as a random string in our analysis.

4We ignore the optional server nonce used in the case of persistent time synchronization problems, and such
parameters as the server’s supported algorithms for key generation, authenticated encryption with associated data
and congestion control as they are not pertinent to our security analysis.

9

Client(Mc, pkj) Server(Ms)

Mc = (M1
c ,M

2
c , · · · ,Mu

c) Ms = (M1
s ,M

2
s , · · · ,Mw

s)

(1) Initial Key Agreement

m1 ← c i hello(pkj) m1

m2 m2 ← s reject(m1)

m3 ← c hello(m2) m3

ik ← get i key c(m3) ik ← get i key s(m3)

(2) Initial Data Exchange

for each α ∈ [ı] for each β ∈ []

sqnc ← α+ 2 sqns ← β + 1

mα
4 ← pak(ik, sqnc,M

α
c) mβ

5 ← pak(ik, sqns,M
β
s)

m4 ← (m1
4, · · · ,mı

4) m4 m5 ← (m1
5, · · · ,m

5)

process packets(ik,m5) m5 process packets(ik,m4)

(3) Key Agreement

sqns ← 2 +

m6 m6 ← s hello(m3, ik, sqns)

k ← get key c(m6, sqns) k ← get key s(m6)

(4) Data Exchange

for each α ∈ {ı+ 1, . . . , u} for each β ∈ {+ 1, . . . , w}
sqnc ← α+ 2 sqns ← β + 2

mα
7 ← pak(k, sqnc,M

α
c) mβ

8 ← pak(k, sqns,M
β
s)

m7 ← (mı+1
7 , · · · ,mu

7) m7 m8 ← (m+1
8 , · · · ,mw

8)

process packets(k,m8) m8 process packets(k,m7)

Figure 1: Summary of QUIC’s 1-RTT Connection Establishment

10

Initial Key Agreement consists of three packets m1, m2, m3. C initiates a connection by
sending the initial connection-request packet m1 which contains a randomly generated connection
id cid, used later by both parties to identify this session. Specifically, C runs c i hello(pk) which
outputs a packet with sequence number 1.

c i hello(pk):

cid
$← {0, 1}64

return (IPc, IPs, portc, ports, cid, 1)

S responds with m2 by running s reject(m1). m2 contains a source-address token stk that will
be used later by C to identify itself to S for this and any other additional sessions in 0-RTT connec-
tion requests (which we discuss below). An stk is similar to a TLS SessionTicket [35]. It consists
of an authenticated-encryption block of the client’s IP address and a timestamp. To generate an
stk, the server uses the same E algorithm associated with the AEAD with kstk. The initialization
vector ivstk is selected randomly. stk can be used by the client in later connection requests as
long as it does not expire and the client does not change its IP address. For simplicity, we take the
range of validity of stk to be bound by the time period during which it was generated or set up.
m2 also contains S’s current state scfgt

pub, which contains S’s Diffie-Hellman (DH) public values
with an expiration date and a signature prof over all the public values under the server’s secret
key sk.

s reject(m):

ivstk
$← {0, 1}96

stk← (ivstk, E(kstk, ivstk, ε, (IPc, current times)))
return (IPs, IPc, ports, portc, cid, 1, scfg

t
pub, stk)

After receiving m2, C checks that scfgt
pub is authentic and not expired. Note that we assume

here that a proper PKI is in place, so C possesses the public key of S and is able to perform this
check. C then generates a nonce and its own DH values by running c hello(m2). C then sends its
nonce and public DH values to the server in m3.

c hello(m):
abort if expy ≤ τt or
Ver(pk, (str, 0x00, scid, pubs, expy), prof) 6= 1,
where str← “QUIC server config signature”

r
$← {0, 1}160, nonc← (current timec, r)

xc
$← Zq−1, yc ← gxc , pubc ← (g, q, yc)

pkt info ← (IPc, IPs, portc, ports)
return (pkt info, cid, 2, stk, scid, nonc, pubc)

After this point, C and S derive the initial key material ik by running get i key c(m3) and
get i key s(m3) respectively. The server has to make sure that it does not process the same connec-
tion twice, so it keeps track of used nonces with a mechanism called the strike-register or strike.
The client includes a timestamp in its nonc, such that servers only need to maintain state for a

11

limited amount of time, this requires a clock sync between client and server. A server rejects a con-
nection request from a client if its nonc is already included in its strike or contains a timestamp
that is outside the allowed time range called strikerng. We consider strikerng to be bound by
the time period during which it was generated or set up.

ik = (ikc, iks, iv) consists of two parts: the two 128-bit application keys (ikc, iks) and the two
4-byte initialization vector prefixes iv = (ivc, ivs). C uses iks and ivs to encrypt data that it
sends to S, while using ikc and ivc to decrypt data it receives from S, and vice versa. This stage
needs to take place only once per each time period τt for which scfgt

pub and stk are not expired.
We model the HMAC with a random oracle in our analysis.

get i key c(m):
ipms← yxcs
return xtrct xpnd(ipms, nonc, cid,m, 40, 1)

get i key s(m):
(ivstk, tk)← stk

dec← D(kstk, ivstk, ε, tk)
abort if either dec = ⊥, or first 4 bytes of dec 6= IPc, or
last 4 bytes correspond to a timestamp outside allowed time,
or r ∈ strike, or τt /∈ strikerng, or

scid is unknown or corresponds to an expired scfgt′<t
pub

or g, q of pubc are not the same as g, q of pubs

ipms← yxsc
return xtrct xpnd(ipms, nonc, cid,m, 40, 1)

xtrct xpnd(pms, nonc, cid,m, `, init):
ms← HMAC(nonc, pms)
if init = 1, then str ← ”QUIC key expansion”
else, str ← ”QUIC forward secure key expansion”
info← (str, 0x00, cid,m, scfgt

pub)
return the first ` octets (i.e. bytes) of
T = (T(1), T(2), · · ·), where for all i ∈ N,
T(i) = HMAC(ms, (T(i− 1), info, 0x0i)) and T(0) = ε

Initial Data Exchange consists of two packet sequences m4 and m5. C and S exchange
their initial data M1

c , . . . ,M
ı
c and M1

s , . . . ,M

s encrypted and authenticated using AEAD with ik

by running pak(ik, sqnc,M
i
α) for each α in [ı] or pak(ik, sqns,M

i
β) for each β in [] respectively.

sqnc and sqns correspond to the sequence numbers of packets sent by C and S respectively.
get iv in QUIC outputs the iv which is the concatenation of either ivc and sqns when S sends

a packet or ivs and sqnc when C sends a packet. ivc and ivs are each 4 bytes in length, while
sqnc and sqns are each 8 bytes in length. Thus, each iv is 12 bytes in length.

Note that the sequence numbers in QUIC are generated per packet, always start with 1, and
are independent of what that packet is carrying. ı and correspond to the maximal number of
message blocks that C and S can send prior to the Key agreement stage. Upon receipt of packets
from S, C decrypts them and outputs their respective payloads concatenated together in the order

12

of their sequence numbers with function process packets. S does the same with packets it receives
from C.

get iv(H,κ):
(kc, ks, ivc, ivs)← κ
if this is a client, then src← c and dst← s
else src← s and dst← c
(cid, sqn)← H
return (ivdst, sqn)

pak(κ, sqn,m):
(kc, ks, ivc, ivs)← κ
if this is a client, then src← c and dst← s
else src← s and dst← c
pkt info ← (IPsrc, IPdst, portsrc, portdst)
H ← (cid, sqn)
iv← get iv(H,κ)
return (pkt info, E(kdst, iv, H,m))

process packets(κ, p1, ..., pv):
(kc, ks, ivc, ivs)← κ
if this is a client , then src← c and dst← s
else src← s and dst← c
for each γ ∈ [v]

(Hγ , cγ)← pγ
ivγ ← get iv(Hγ , κ)
mγ ← D(ksrc, ivγ , Hγ , cγ)

return (m1, . . . ,mv)

Key Agreement consists of one message m6. Specifically, S generates new DH values and
sends its new public DH values to the client by running s hello(m3, ik, sqn), encrypted and authen-
ticated using AEAD with ik.

s hello(m3, ik, sqn):
(ikc, iks, ivc, ivs)← ik

x̃s
$← Zq−1, ỹs ← gx̃s , pũbs ← (g, q, ỹs)

H ← (cid, sqn)
e ← E(ikc, (ivc, sqn), H, (scfgt

pub, pũbs, stk))
return (IPs, IPc, ports, portc, H, e)
The client verifies the authenticity of the server’s new DH public values upon receipt of this

packet using ik and both parties at this point can derive the session key material k by running
get key s(m6) and get key c(m6), which both use the xtrct xpnd function defined earlier.

get key s(m):

pms← yx̃sc
return xtrct xpnd(pms, nonc, cid,m, 40, 0)

get key c(m):

13

(IPs, IPc, ports, portc, cid, sqn, e)← m
abort if D(ikc, (ivc, sqn), (cid, sqn), e) = ⊥
pms← ỹxcs
return xtrct xpnd(pms, nonc, cid,m, 40, 0)

Data Exchange consists of two packet sequences m7 and m8. C and S will use k to encrypt
and authenticate their remaining data M ı+1

c , . . . ,Mu
c and M +1

s , . . . ,Mw
s , respectively, instead of

ik for the rest of this session.
Similar to ik, k = (kc, ks, iv) consists of two parts: the two 128-bit application keys (kc, ks)

and the two 4-byte initialization vector prefixes iv = (ivc, ivs). C uses ks and ivs to encrypt data
that it sends to S, while using kc and ivc to decrypt data received from S, and vice versa.

5.2 0-RTT Connection Establishment

If the client C has already had a connection with a server S in the time period τt, then C does not
need to send the c i hello, but can instead initiate another connection request with the server via a
c hello packet containing the previously obtained stk and scid, as well as new cid, nonc, and pubc

(which should contain its new DH ephemeral public value). In this case, the c hello function will be:

c hello(stk, scfgt
pub):

cid
$← {0, 1}64

r
$← {0, 1}160, nonc← (current timec, r)

xc
$← Zq−1, yc ← gxc , pubc ← (g, q, yc)

pkt info ← (IPc, IPs, portc, ports)
return (pkt info, cid, 1, stk, scid, nonc, pubc)

Upon receipt of c hello, S verifies that the nonc is fresh by checking it against its strike-register,
that the stk is valid, and that scid is not unknown or expired. If the verification steps fail, S
goes back to the 1-RTT case by generating and sending the s reject as described in Section 5.1,
and then the rest of the protocol is exactly the same as described in Section 5.1. If, however, these
verification steps succeed, the rest of the protocol is exactly the same as in Section 5.1, except that
the packet sequence numbers account for the fact that there are two fewer packets.

6 Security Model

We formally define the security model for QC protocols, which is one of our main technical contri-
butions. Our model is an extension of the Authenticated and Confidential Channel Establishment
(ACCE) security model for TLS to accommodate performance-driven protocols that do not run on
top of TCP and have two stages for key agreement and data exchange. We call our model QACCE
for Quick ACCE.

We consider a very strong attacker who can initiate possibly concurrent rounds of a protocol
between various clients and servers and see the exchanged communication. Moreover, an attacker
can corrupt servers, control clients, and drop or modify the packets exchanged by the honest parties.
Our definition targets the major security goal of a communication protocol: secure channel, which

14

means that data is exchanged in a private and authentic manner and cannot be re-ordered. The
necessary goal of key security and (unilateral) authentication is also captured by the definition.
Furthermore, the model addresses particular attacks such as IP spoofing attacks.

After presenting the formal definition (with informal explanations) we discuss the differences
from the existing security models and the reasons for them.

In Section 6.2 we explain how our formal model captures server impersonation attacks, attacks
on secure channel, and such malicious behaviors as eavesdropping, man-in-the-middle attacks,
forgeries, and DDoS attacks (e.g. due to IP spoofing). We also explain the levels of forward
secrecy a protocol can provide. We hope our informal discussions help make our analyses useful
for practitioners.

6.1 Security Definition

Security Experiment. Fix the security parameter λ and a QC protocol Π with associated server
key generation protocol Kg, scfg gen, an authenticated encryption with associated data scheme
AEAD = (E ,D) with key space {0, 1}λ and additional authenticated data (which we will denote
by H) space {0, 1}∗.

We define the experiment ExpQACCE
Π (A) associated with the adversary A. We consider two sets of

parties, clients and servers, C = {C1, . . . , C`} and S = {S1, . . . , S`}, for parameter ` ∈ N denoting
the maximum possible number of servers or clients. The experiment first generates server key pairs

(pki, ski)
$← Kg(λ), kstk

$← {0, 1}128, and scfgti
$← scfg gen(ski, τt, λ), for all time periods, for all

i ∈ [`].
To capture several sequential and parallel executions of the protocol we follow the standard

approach and associate each party Pi ∈ {C ∪ S} with a set of stateful oracles π1
p,i, . . . , π

d
p,i, for

parameter d ∈ N and p ∈ {c, s}, where each oracle π
r∈[d]
p,i represents a process that executes one

single instance of the protocol at party Pi and p indicates whether the party in question is a client
or server. Intuitively, each oracle πsi of some party Pi ∈ {C∪S} models that party’s IP address and
a unique port number. We discuss the importance of this part more in Section 6.2. The experiment

flips a bit bqp,i
$← {0, 1} for each oracle πqp,i.

Each server oracle gets the corresponding scfgti at the beginning of each time period. We
assume that at each point of the protocol’s execution each party (adversary included) can tell what
time period it is. We also assume that every server oracle is aware what protocol stage it is in for
every client oracle that it is and/or has been exchanging messages with. With this assumption we
are not required to keep track of the stages in the simulations in our proofs Appendix A. Even
though the server keeps local state and knows which stage it is in, it may have inaccurate view of
the stage of the protocol because it is not guaranteed to know the correct identity of the party it
is talking with. We refer to oracles that set ik with each other as peers.

The adversary A is given the public keys of all servers pk1, . . . ,pk` and can interact with all
oracles of all parties by issuing queries. The values in parentheses are supplied by A, except when
they are bold face. If the parameter in parentheses is an oracle, e.g. πqp,i, this means that A needs
to supply the indices p, i, q specifying the oracle.

• connect(πqc,i, π
r
s,j), for i, j ∈ [`], q, r ∈ [d].

As a result, πqc,i outputs the initial connection request packet (first connection for that client
party for that particular time period) that it would send specifically to oracle πrs,j according to the

15

protocol. The output of this query is not delivered to the recipient oracle, but is just given to A.
This query allows the adversary to ask a client oracle to start communicating with a particular

server party for the first time between those parties for a particular time period.

• resume(πqc,i, π
r
s,j), for i, j ∈ [`], q, r ∈ [d].

This query returns ⊥ if ik corresponding to oracle πqc,i is not set. Otherwise, πqc,i outputs the
0-RTT connection request packet that it would send to an oracle πrs,j according to the protocol.
The output is given to A, who can deliver it to the destination oracle, modify it, or drop it.

This query allows the adversary to ask a particular client oracle to request a 0-RTT connection
with a particular server party, if the client party corresponding to that oracle has communicated
before with that server in a particular time period. Recall that every server party is aware of its
communication status with respect to every client oracle that may contact it.

• send(πrp,j ,m), for p ∈ {c, s}, j ∈ [`], r ∈ [d] and m ∈ {0, 1}∗.
As a result, m is sent to πrp,j , which will respond with ⊥ if the oracle is in data exchange phase.
Otherwise, A gets the response, which is defined according to the protocol.

This query allows the adversary to send a specified packet m to a specified destination oracle.
Note that the attacker must provide a header for the packet that specifies the source and destination
IP addresses and port numbers as well as packet sequence numbers of its choice. The destination
oracle can check this information. The adversary gets control of the resulting packet and can choose
to modify, drop, or deliver it to an oracle.

• revealik(πqp,i), for p ∈ {c, s}, i ∈ [`], q ∈ [d].

As a result, A receives the contents of variable ik for oracle πqp,i.
This query allows the adversary to learn the initial key set by the oracle of its choice.

• revealk(πqp,i), for p ∈ {c, s}, i ∈ [`], q ∈ [d].

As a result, A receives the contents of variable k for oracle πqp,i.
This query allows the adversary to learn the final key set by the oracle of its choice.

• corrupt(Si), for i ∈ [`].

A gets back ski and the current scfgti and any other state of Si.
This query allows the adversary to corrupt the server of its choice and learn its long-term

secrets including scfgti for the current time period.

• encrypt(πrp,j ,m0,m1, H, init), for p ∈ {c, s}, j ∈ [`], r ∈ [d], m0,m1, H ∈ {0, 1}∗, and init ∈
{0, 1}:

return ⊥ if |m0| 6= |m1| or init = 1 and πrp,j is
not in the initial data exchange stage or if init = 0
and πrp,j is not in the data exchange stage
p′ ← {c, s} \ {p}
if init = 1

IV← get iv(ik,H), return ⊥ if IV was used
return (H, E(ikp′ , IV, H,mbqp,j

))

if init = 0
IV← get iv(k,H), return ⊥ if IV was used

16

return (H, E(kp′ , IV, H,mbqp,j
))

Above, ik, k, ikp′ , p
′ belong to πrp,j .

This query, unlike the previous ones, deals with the initial and final data exchange phases (flag
init specifies which), while the previous ones concerned the initial and final key exchange phases.
It is designed to follow the standard approach of capturing message privacy under chosen-message
attack. It allows the adversary to obtain a randomly chosen ciphertext out of the two messages
provided by the adversary. Just like in the security definition for AEAD, the attacker can select
the header H. For QUIC it means that the adversary can specify the source and destination IP
addresses and port numbers as well as packet sequence numbers of its choice. Unlike the AEAD
security model, however, we do not let the adversary select the IV because in QUIC the IV depends
on the secrets of a party and is not under the attacker’s control. get iv is the function that we require
to produce initialization vectors used for encryption and appropriate headers. The initialization
vector is not given to the adversary. The adversary is restricted to providing H whose destination
IP address and port number correspond to πrp,j and whose source IP address and port number
correspond to an oracle πqp′,i in the experiment, for p′ ∈ {c, s} \ {p}.
• decrypt(πrp,j , C, H, init), for p ∈ {c, s}, j ∈ [`], r ∈ [d], C, H ∈ {0, 1}∗, and init ∈ {0, 1}:

return ⊥ if init = 1 and πrp,i is not in the initial
data exchange phase, or init = 0 and πrp,j is not
in the data exchange phase, or (H, C) was output
before by encrypt(πrp,j , ∗, ∗, ∗, init)
if init = 1

IV← get iv(ik,H),
if D(ikp, IV, H, C) 6= ⊥, return brp,j else return ⊥

if init = 0
IV← get iv(k,H),
if D(kp, IV, H, C) 6= ⊥, return brp,j else return ⊥

Above, ik, k, ikp′ , p
′ belong to πrp,j .

This query also concerns the initial and final data exchange phases. It follows the standard
approach to capture authenticity for AEAD schemes. The adversary’s goal is to create a “new”
valid ciphertext. If it succeeds, it is given the challenge bit and thus can win.

• connprivate(πqc,i, π
r
s,j), for i, j ∈ [`], q, r ∈ [d].

As a result, the initial connection request is sent to πrs,j . The response, which is defined according
to the protocol, is sent to πqc,i and not shown to A. Any following response of πqc,i is not shown to
A.

This query is not part of the existing definitions. It models IP spoofing attacks, which the
previous models did not consider. We explain its importance below when we discuss A’s advantage.

After the adversary is done with queries it may output a tuple (p, i, q, b), for p ∈ {c, s}.
Before we proceed with the security definition we define the notion of a matching conversation

[5] taking place between a client and a server. The scope of this concept is the initial and final key
exchange phases only.

17

Matching Conversations. For p ∈ {c, s}, p′ ∈ {c, s} \ {p}, i, j ∈ [`], q, r ∈ [d], we denote with
Rqp,i the sequence of all messages used for establishing keys (during stages 1 and 3) sent and received
by πqp,i in chronological order, and we call Rqp,i the message record at πqp,i. With respect to two
message records Rqp,i and Rrp′,j , we say that Rqp,i is a prefix of Rrp′,j , if Rqp,i contains at least one

message, and the messages in Rqp,i are identical to and in the same order as the first |Rqp,i| messages
of Rrp′,j . We say that πqp,i has a matching conversation with πrp′,j , if the following two conditions
are both true:

• either p = c and p′ = s, or p′ = c and p = s;

• either Rrp′,j is a prefix of Rqp,i and πqp,i has sent the last message(s), or Rqp,i is a prefix of Rrp′,j and
πrp′,j has sent the last message(s).

Note that the notion of a matching conversation is not sufficient to define peers because, unlike in
TLS, communicating parties in QUIC may set initial keys without having a matching conversation.
This is why throughout our analysis the notion of peers is instead equivalent to the notion of one
party setting a key with another party.

Measures of A’s attack success.

• The server impersonation advantage of A Adv
s-imp
Π (A) is the probability that there exists an

oracle πqc,i such that k of this oracle is set and there is no oracle πrs,j corresponding to a server
party Sj such that πqc,i has a matching conversation to πrs,j , no revealik contained ik possibly
set in the optional initial key agreement stage between πqc,i and πrs,j , and Sj was not corrupted.

The above captures the attack when the adversary impersonates an honest server and makes a
client think it sets a key shared with the server, but the adversary may have the shared key instead.

• The channel-corruption advantage of A Advch-corr
Π (A) is 2 Pr

[
b = bqp,i

]
− 1,

where if p = s, then it must be the case that πqs,i has a matching conversation with some client
oracle πrc,j , such that the following conditions hold

1. if Si was corrupted, then no encrypt(πqs,i, ∗, ∗, ∗, 1) and encrypt(πrc,j , ∗, ∗, ∗, 1) queries were
made for any ∗ after or during the same time period τt that Si was corrupted,

2. if Si was corrupted, then no encrypt(πqs,i, ∗, ∗, ∗, ∗) and encrypt(πrc,j , ∗, ∗, ∗, ∗) queries were
made for any ∗ after Si was corrupted, and

3. no revealik(πqs,i) and revealik(πrc,j) or revealk(πqs,i) and revealk(πrc,j) queries returned
the key used to answer any encrypt(πqs,i, ∗, ∗, ∗, ∗) and encrypt(πrc,j , ∗, ∗, ∗, ∗) queries for any
∗ respectively;

and if p = c, then let πrs,j be peer of πqc,i. The following conditions must be satisfied.

1. if Sj was corrupted, then no encrypt(πqc,i, ∗, ∗, ∗, 1) and encrypt(πrs,j , ∗, ∗, ∗, 1) queries were
made for any ∗ after or during the same time period τt that Sj was corrupted,

2. if Sj was corrupted, then no encrypt(πqc,i, ∗, ∗, ∗, ∗) and encrypt(πrs,j , ∗, ∗, ∗, ∗) queries were
made for any ∗ after Sj was corrupted, and

3. no revealik(πqc,i) and revealik(πrs,j) or revealk(πqc,i) and revealk(πrs,j) queries returned
the key used to answer any encrypt(πqc,i, ∗, ∗, ∗, ∗) and encrypt(πrs,j , ∗, ∗, ∗, ∗) queries for any
∗ respectively.

18

The above captures the attacks in which information about groups of messages exchanged
between the client and the server is leaked without the adversary corrupting the server party (1)
before or (2) during the same time period as attempting the breach as well as without (3) revealing
the initial and session keys ik and k. Thus, we capture a slightly weaker notion of forward secrecy
by restricting the adversary to corrupt the appropriate server only after the time period when the
adversary attempts the breach. We explain this subtlety further in Section 6.2.

• The IP spoofing of A Adv
ips
Π (A) is the probability that there exist oracles πqc,i and πrs,j such that

at some time period τt A makes a send(πrs,j ,m
′) query, πrs,j does not reject this query, Sj was

not corrupted, m′ is not an output resulting from any previous connection request query (done
via connect or resume queries), and the only other query A is allowed to make concerning πqc,i
during τt is the connprivate(πqc,i, π

r
s,j) query.

This goal captures attacks in which the adversary wins if it succeeds in having the server accept
a connection request on behalf of a client who either did not request connection to that server
or previously requested only an initial connection but did not request any further connections in
the same time period. The adversary issues a connection query hoping it gets accepted by the
server, possibly preceded by the only other allowed query in that time period: connection request
(connprivate) whose output it cannot see.

Security definition. We say that a QC protocol Π is QACCE-secure if its advantage AdvQACCE
Π (A),

defined as Adv
s-imp
Π (A) + Adv

ips
Π (A) + Advch-corr

Π (A), is negligible (in λ) for any polynomial-time
adversary A.

6.2 Security Model Discussion

Comparison to the existing models. Existing models do not fit QUIC. Namely, we could
not simply compose key exchange [7] and authenticated encryption definitions because QUIC has
additional initial key and data exchange stages. The work [23] extended the key exchange definition
of [7] to treat multiple stages of key exchange, but QUIC does not achieve their definition. Moreover,
even with their fix, the full security of QUIC will not follow from their results because QUIC’s secure
channel implementation is not independent from the key exchange phases.

Therefore, similarly to recent analyses of protocols such as TLS [26, 27] and EMV [15, 21] we
chose to work with a dedicated definition that assess the security of a protocol as a whole. We
followed the ACCE model for TLS but had to modify it to accommodate for dealing with setting
and using the initial key, which was not present in TLS. Moreover, QUIC handles novel security
goals that TLS did not address, such as some cryptographic protection for network packet handling
and protection against IP spoofing. We comment on these in more detail below.

On securing packets. Any communication protocol that does not run on top of TCP risks having
its packets be misordered and/or not delivered at all. QUIC, unlike TLS, does not run on top of
TCP but instead runs on top of UDP, which does not provide any delivery guarantees. Since QUIC
adds cryptographic protection to some tasks usually handled by TCP, it makes sense to capture this
in our model. Thus, in our security definition we allow the adversary to intercept, delay, misorder,
modify, and selectively drop any communication between a client and a server. Our model captures
the fact that data in real life is transmitted in packets and that the adversary could in principle
modify such packet fields as source and destination IP addresses and port numbers. Specifically,
we give the adversary the ability to specify the precise oracles associated with certain parties as
subjects of its queries to send and/or receive messages of the adversary’s choice. Our security model

19

does not, however, capture adversaries that simply drop (or delay for an unreasonably long time)
all possible traffic because mitigating such attacks would require more sophisticated protocols than
those captured by our QC protocol model that could detect and avoid failures.

On server impersonation. The server impersonation goal in our model captures attacks in which
the adversary attempts to convince the client to set a session key that is in any way inconsistent
with the key set by the server. That is, when using a secure protocol, a client knows that the final
session key is shared only with the server the client talked to and no one else. We do not capture
attacks of the same type with respect to initial keys in this goal. This is because it may not be
possible in general, since the client may have to derive the initial key from the semi-permanent
scfg that could be used for many client connection requests while it persists. This would allow,
for example, the adversary to replay the values of scfg to clients that have not yet contacted the
corresponding server, which could lead to some clients establishing an initial key without the server
being aware of their connection request. This weakness may also be relevant to TLS variants that
allow for stateless connection resumption, and we discuss it in more detail in Section 8. Although
for simplicity we do not to address this directly in our analysis, the requirement of having a
matching conversation captures the basic mandate that the communicating parties may need to
agree not only on the session key, but also on any other important communication parameters
such as congestion control, key generation, encryption algorithms, etc. Thus, in principle, this goal
not only captures the traditional man-in-the-middle attacks, but also more subtle attacks where
the adversary may be interested in degrading the communication security and performance due to
parties having inconsistent views of session parameters. For example, when the two parties disagree
on congestion-avoidance parameters, a server may end up sending content at much lower or higher
rates than requested by the client.

On channel security. The channel corruption goal in our model captures the expected goals of
data authenticity and confidentiality with forward secrecy, in a way that is similar to the models
used to analyze TLS but with a few crucial additions that we detail below. The goal of authenticity
implicitly captures attacker’s misordering, selectively delaying, and dropping certain content as
well as positive ACK attacks, all of which involve the adversary sending something on behalf of
a participating party. The content of any packet that is dropped or delayed beyond a certain
time threshold (possibly dictated by the congestion-avoidance parameters that may be optionally
negotiated by the communicating parties that we discuss below) could be retransmitted unless its
receipt is positively acknowledged by the receiver. Thus, to prevent content delivery an adversary
could in principle positively acknowledge the receipt of packets on behalf of the receiver, which
is captured by the authenticity goal in our model. This security goal also captures positive ACK
attacks, which involve the adversary or a rogue receiver sending acknowledgments for content that
was not actually received to cause the sender to send too much content and overwhelm the resources
of intermediate and/or receiving network(s).

On forward secrecy. A QACCE-secure protocol guarantees that the final session keys are
forward secure, i.e. obtaining a server’s long-term secrets does not leak any information about the
data that was previously exchanged and encrypted under these keys. However, the guarantees with
respect to the initial keys are weaker because, for them, forward secrecy holds only if the server
does not get corrupted during the time period when the scfg that was used to derive those keys
is valid. This is because, in QUIC, servers use the same scfg to derive initial keys with all clients
for the duration of that scfg’s validity.

Unlike in previous models used to study TLS, we also impose some additional restrictions on the

20

adversary that prevent it from revealing the initial key and corrupting the server during the same
time period as its encryption queries. This restriction is imposed on the adversary because initial
keys are not forward secure, as they could be derived using semi-permanent values stored by the
server in its corresponding scfg, which is changed only once per time period, during which it could
be used for all client connection requests in that period. Thus, to account for this weakness, it is
important that the adversary does not learn of any semi-permanent state captured in the server’s
scfg that could be used for establishing initial keys during its lifetime. This weakness may also be
relevant to TLS variants that allow for stateless connection resumption [35].

On re-ordering attacks. As we mentioned before, strong security for secure channel, in addition
to data privacy and authenticity, must guarantee security against re-ordering attacks. In the ACCE
model for TLS [26, 27] this is captured by requiring the authenticated encryption scheme satisfy
the notion of stateful decryption [6]. That definition requires each ciphertext delivered out of order
to be rejected.

This notion is not suitable for QUIC analysis. In TLS, if the adversary tampers with the packet
order at the TCP level, all re-ordered packets will be rejected as the receiver will detect re-ordering
by comparing the order with the one indicated by the TLS-layer sequence numbers. Hence, the
notion of stateful decryption can be met. In QUIC, this is impossible, because it does not run on
top of TCP. The receiver gets all information about the packet order from the sequence numbers.
The receiver in QUIC cannot reject any packet, even if it “looks” out of order, until the end, when
the messages could be sorted and the proper order could be determined. Thus, re-ordering the
existing packets is prevented in TLS but cannot be prevented in QUIC. Yet, the final order of the
messages should still be correctly determined by the receiver in QUIC. This difference calls for
different treatment in the security model.

For simplicity, we chose to capture re-ordering attacks somewhat implicitly. Note that for
any protocol which authenticates the sequence numbers (in QUIC the sequence number is part of
the authenticated header H), re-ordering is enforced by the authentication security which is part
of encryption breach security. Namely, changing the legitimate order of the packets will require
the adversary to create a valid ciphertext with a new sequence number, and this constitutes a
“forgery” of encryption in the current security definition. It is possible to treat re-ordering attacks
more explicitly, but this would require making the model less general and more involved as we will
have to fit the sequence numbers into the syntax and security definition.

On IP spoofing. Since it may not be possible to authenticate a client, attacks where the adversary
initiates multiple connections to a server on behalf of honest clients by spoofing its IP address are
possible. Such DoS attacks can lead to exhaustion of a server’s resources resulting from prohibitively
high rates of superfluous derivations of session keys. Because TCP provides protection against such
attacks with its three-way handshake, they are not considered when analyzing protocols that rely
on TCP, such as TLS. However, such attacks must be addressed for protocols that do not run on
top of TCP, such as QUIC, and the third goal in our security model captures them. In the IP
spoofing goal, the adversary wins if it can trick the server into establishing a session key with a
client that did not request it.

7 QUIC Security Analysis

We state our main result about the security of QUIC.

21

Theorem 7.1. Consider the cryptographic core of QUIC, as defined in Section 5, associated with
the base signature scheme SS = (Kgs, Sign,Ver), and an authenticated-encryption with associated-
data scheme AEAD = ({0, 1}λ, {0, 1}n, E ,D). Then QUIC is QACCE if SS is suf-cma and AEAD
is ind-cpa- and auth-secure and the SCDH problem is hard, in the random oracle model.

On security of the building blocks. We look at the QUIC’s choices for the building blocks
and their security. Galois-Counter Mode (GCM) authenticated encryption has been proven to be
a secure authentication encryption scheme (ind-cpa- and auth-secure) assuming AES is a pseudo-
random function[29]. However, RSA-PSS-SHA256 and ECDSA-SHA256 signature schemes are not
known to be strongly unforgeable (suf-cma). RSA-PSS has only been shown to satisfy the regular
notion of unforgeability, uf-cma, in [8] under the RSA assumption, in the random oracle model.
We believe it can also be shown suf-cma under the same assumptions, but it is outside of the scope
for this paper to do so. ECDSA was only proven uf-cma secure in the generic group model [14].
It is likely that the proof could be extended to suf-cma. But proofs in the generic group model
are limiting, in that the model disallows some adversarial capabilities possible in practice. In fact,
Stern et al. [37] showed that ECDSA is not suf-cma. Whether the attack from [37] is relevant for
QUIC, depends on the the particular implementation of ECDSA in use. The Chromium QUIC im-
plementation uses either the NSS5 or boringSSL6 libraries, depending on configuration, to provide
ECDSA. It is outside of the scope of this paper to verify these implementations.

We treat HMAC as the random oracle. This is a very common assumption for security analyses.
While it may not be appropriate in every case, as cautioned in [19], the standard use of HMAC
with fixed keys for the key derivation function here seems fine. There are two uses of HMAC in
the key derivation function, and it is important for the analysis that the first occurrence is the
random oracle. The second one may satisfy a weaker notion, but we treat it as the random oracle
for simplicity. It does not seem possible to get rid of the reliance on the random oracle in the first
case though.

The Theorem follows from the following three lemmas.
Let ` be the number of servers (and clients), let d be the maximum number of oracles corre-

sponding to any party (i.e. the maximum number of connection sessions a party can initiate), let
T be the number of time periods and let Q be the maximum number of decryption queries the
adversary does in ExpQACCE

Π .

Lemma 7.2. For any efficient adversary A there exist efficient adversaries B,C,D,E such that

Advch-corr
QUIC (A) ≤ `Advsuf

SS (B) + 2d`2TAdvSCDH(C)

+ 4`dTQAdvauth
AEAD(D)

+ 4`dTAdvind-cpa
AEAD (E) .

Lemma 7.3. For any efficient adversary A there exist efficient adversaries B,C,D such that

Adv
s-imp
QUIC(A) ≤ `Advsuf

SS (B) + 2d`2TAdvSCDH(C)

+ 7`dTQAdvauth
AEAD(D) .

5Mozilla Network Security Services: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
6Google’s fork of OpenSSL: https://boringssl.googlesource.com/boringssl/

22

Lemma 7.4. For any efficient adversary A there exists an efficient adversary B such that

Adv
ips
QUIC(A) ≤ `Advauth

AEAD(B) .

The detailed proofs of the Lemmas can be found in Appendix A .

8 Performance Issues and Malice

In this section we discuss how simple attacks on QUIC packets during the handshake can introduce
latencies, essentially countering one of the primary goals of the protocol: 0-RTT connection estab-
lishment. Persistent failure to establish a QUIC session could further result in a fall-back to TCP,
defeating QUIC’s purpose of minimizing latency while securing the transport layer. We discuss two
types of attacks: the first exploits public, cachable information from either the server or client side,
the second exploits unprotected fields on packets exchanged during the handshake protocol.

8.1 Replay Attacks

Once at least one client establishes a session with a particular server, an adversary could learn the
public values of that server’s scfg as well as the source-address token value stk corresponding to
that client during their respective validity periods. The adversary could then replay the server’s
scfg to the client and the source-address token stk to the server, misleading in either case the
other party. To launch both attacks an adversary would have to have access to the communication
channel.

Server Config Replay Attack. An attacker can replay a server’s public scfg to any other
clients sending initial connection requests to that server while keeping the server unaware of such
requests from clients. Thus, these clients establish an initial key without the server’s knowledge,
and when they attempt to communicate with the server, the server would not be able to recognize
them and would reject their packets. While data confidentiality is not affected, the clients would
experience additional latencies and waste computational resources deriving an initial key.

Source-Address Token Replay Attack. An attacker can replay the source-address token
stk of a client to the server that issued that token on behalf of the client many times to establish
additional connections. This action would cause the server to establish initial keys and even final
forward-secure keys for each connection without the client’s knowledge. Any further steps in the
handshake would fail, but an adversary could create a DoS attack on the server by creating many
connections on behalf of a many different clients and possibly exhausting the server’s computational
and memory resources.

Ironically, these attacks stem from parameters whose main purpose was to minimize latency.
These attacks are more subtle than simply dropping QUIC handshake packets because they mislead
at least one party into “believing” that everything is going well while causing it to waste time and
resources deriving an initial key.

Resolving these types of attacks seems to be infeasible without reducing scfg and stk pa-
rameters to one-time use, because as long as these parameters persist for more than just a single
connection, they could be used by the adversary to fake multiple connections while they remain
valid. However, such restriction would prohibit QUIC from ever achieving 0-RTT connection es-
tablishment.

23

Table 1: Discovered attacks and their properties

Attack Name Type On-Path Traffic Sniffing IP Spoofing Impact

Server Config Replay
Attack

Replay No Yes Yes Connection
Failure

Source-Address Token
Replay Attack

Replay No Yes Yes Server DoS

Connection ID Manipu-
lation Attack

Manipulation Yes No No Connection
Failure;
server load

Source-Address Token
Manipulation Attack

Manipulation Yes No No Connection
Failure;
server load

Crypto Stream Offset
Attack

Other No Yes Yes Connection
Failure

8.2 Packet Manipulation Attacks

Not all fields of QUIC packets are protected against adversarial manipulation. An attacker with
access to the communication channel used by a client to establish a session with a particular server
could flip bits of the unprotected parameters such as the connection id cid and the source-address
token stk and lead the server and client to derive different initial keys which would ultimately
lead connection establishment to fail. For a successful attack, the adversary has to make sure
that all parameters modified in this way seem consistent across all sent and received packets with
respect to any single party but inconsistent from the perspective of both parties participating in
the handshake.

As shown in Section 7 this type of attack does not raise concerns over the confidentiality and
authenticity of communication that is encrypted and authenticated under the initial key, because
even though the initial keys are different, they are not known by the adversary. Note also that if
parties do not agree on an initial key, they cannot establish a session key in QUIC because the
final server hello packet is encrypted and authenticated under the initial key. Therefore, these
attacks also do not compromise the confidentiality and authenticity of communication encrypted
and authenticated under the final key.

These packet manipulation attacks are smarter than just dropping QUIC handshake packets
because the client and server progress through the handshake while having a mismatched conver-
sation, resulting in the establishment of inconsistent keys. This causes both parties to waste time
and resources deriving keys and other connection state. In particular, the server performs all the
processing required for a successful connection, unlike in attacks that simply drop QUIC handshake
packets.

A simple strategy for mitigating this type of attack would be to have the server sign all such
modifiable fields in its s reject and s hello packets (cid is unencrypted). However, this would incur
the cost of computing a digital signature over all such modifiable parameters, which would in turn
open another opportunity for a DoS attack in which the adversary, with IP spoofing, could send
many initial connection requests on behalf of as many clients as it desires.

24

9 Attack Results

In this section we discuss our implementations of the attacks we identified against QUIC in Section
8. We target the Chromium implementation of QUIC7 in our attacks, as this is the canonical
implementation. Our attacks were developed in python using the scapy library.8 We summarize
our attacks, their properties, and impacts in Table 1.

Replay Attacks.
Server Config Replay Attack. To conduct this attack, an attacker must first collect a copy

of the target server’s scfg. This can be done either by actively establishing a connection to the
server or by passively listening for a client to attempt a connection. In either case, the server’s
scfg can be readily collected from a full, 1-RTT QUIC connection handshake.

Once the attacker has scfg, he waits for the target client to attempt to start a connection.
When the attacker sees a c hello message from the client, he can respond with a spoofed s reject
message using the collected scfg and randomly generated stk and sno values. Similar s reject
messages are the proper response to a client that either does not have a cached copy of the server’s
scfg or has a copy that is no longer valid. We assume that the attacker is closer to the client
than the server is so that the s reject message reaches the client prior to the response from the
legitimate server. When the client receives this spoofed s reject message, it promptly sends a new
c hello message using these new scfg, stk, and sno values.

When the real server receives this new c hello message, it will attempt to validate it. However,
the stk and sno values were randomly generated by the attacker and so are almost certain to fail
the validation. In response to this failure, the server generates a new s reject message containing
scfg and new stk and sno values.

This new s reject message provides the client with valid stk and sno values so another c hello
message could correctly complete the connection. However, when testing this attack, we found two
further issues, the combination of which will always result in the connection terminating abnor-
mally. The first issue is that each QUIC packet includes an entropy bit in its header and QUIC
acknowledgment frames include a hash of these bits along with a list of unseen packets. The goal
of this mechanism is to prevent Optimistic Ack attacks [34]. In our case, an acknowledgment
frame will typically be included with the client’s second c hello message acknowledging the spoofed
s reject message. If the entropy bit in the attacker’s spoofed s reject message does not match the
entropy bit in the server’s real response, then the entropy hash in this acknowledgement will not
validate and the server will abruptly terminate the connection.

The second issue is that a single QUIC connection provides multiple byte-streams for data
transfer, and the QUIC handshake takes place within a special byte-stream reserved for connection
establishment. This implies that all the c hello, s reject, and s hello messages we have mentioned so
far occur within the context of this byte-stream and have offset and length attributes. As a result,
if the attacker’s s reject is not exactly the same size as the server’s response, then this byte-stream
is effectively broken. Any further messages from the server will be at offsets either above or below
the client’s position in the byte-stream. These messages will either be dropped or buffered forever.
After ten seconds the client will abruptly terminate the connection because it is unable to complete
the handshake.

7https://chromium.googlesource.com/chromium/src.git. We tested git revision
50a133b51fa9c6a3dc2b82ce9fedcf074859cd13 from October 1, 2014.

8http://www.secdev.org/projects/scapy/

25

In our tests, the combination of these two issues completely prevented the establishment of
any QUIC connections. Connection attempts always terminated after either half a second, in the
case of an entropy bit mismatch, or ten seconds, if the entropy bits matched, but the byte-stream
was corrupted. Our python implementation requires that the attacker be about 20ms closer to the
client than the server is, in order to create an s reject message and have it reach the client before
the server’s legitimate response. However, with an optimized C implementation, this requirement
could be significantly reduced.

Source-Address Token Replay Attack. The stk token is supposed to prevent packet
spoofing by ensuring that a connection request originates at the IP address claimed. The stk is
created by the server as part of the s reject message. It contains the client’s IP address and the
current time, both encrypted. A client must present a valid stk in its c hello message in order to
perform a 0-RTT connection. However, the stk token must be presented prior to encryption being
established. This means that any attacker who can sniff network traffic can collect stk tokens that
can be used to spoof connection requests from a specific host for a limited period of time, by default
24 hours.

This attack operates by sniffing the network for s reject messages from the target server. Each
s reject message contains a new stk being sent to some client. For each new stk seen, our attacker
grabs the stk, the scfg, and the client’s IP address and starts repeatedly spoofing 0-RTT connection
attempts with random cids from this client.

When the target server receives these requests, they appear to be legitimate 0-RTT connection
requests. The stk will validate because the stk is replayed from a legitimate connection with an
actual client at the spoofed IP address. As a result, the server will create a new connection for this
request. This includes creating initial and forward-secure encryption keys and sending an s hello
message. At this point, the server believes it has completed connection establishment with the
spoofed client.

In our tests, we used separate virtual machines for the attacker and server. We found that a
single attacker starting with a single stk and sending packets at 200KB/sec was able to completely
overwhelm our test server. The 2.4 GHz Intel(R) Xeon(R) CPU dedicated to our server was pegged
at 100% utilization, and the operating system’s out-of-memory killer eventually killed the server
process after it exhausted the 3GB of memory allocated to the server’s virtual machine.

It seems apparent that the QUIC server implementation in Chromium has no limitation on the
number of connections that can be established from a single IP address. While we do not believe
that this is the server implementation that Google uses in production, it is the only open-source
QUIC server available. Additionally, much of the QUIC code is a library that we expect would
be used by any production QUIC server. Note, however, that even if a limit on the number of
connections from a single IP were added, this attack can inflate the number of connections to the
server by this maximum number for every observed QUIC client.

Manipulation Attacks. Manipulation attacks subvert key agreement by causing the client and
server to agree on different keys. This is done by modifying unprotected packet fields that are used
as input to the key derivation process, in particular, the connection id cid or source-address token
stk. We develop attacks against both of these parameters.

Connection ID Manipulation Attack. In this attack, the attacker is positioned on the
path between the client and the server and re-writes the cid such that the client and server see
different values. The handshake proceeds as normal, with the client requesting the scfg, if it does
not have a cached copy, and then sending a c hello message. This c hello is processed by the server

26

and an s hello message sent in response. At this point, the server believes the connection has been
successfully established. However, when the client receives the s hello message sent by the server,
it will fail to decrypt. This is because the cid is an input to the encryption key derivation process.
Since the attacker changes the cid, the client and server will compute different encryption keys.

Unfortunately, decryption failure is not a sign of catastrophic handshake failure because it can
be caused by reordering. In particular, packets encrypted with the forward-secure key will fail to
decrypt prior to the reception of the s hello message, which may be delayed due to reordering.
As a result, packets failing decryption are buffered until the handshake completes. With the bad
s hello message buffered, the client will eventually timeout and retransmit its c hello message. This
process will repeat until the client’s 10 second timer on connection establishment expires. At that
point the connection will be terminated.

An error message will be sent to the server when the connection is terminated. However, this
message will be encrypted with the initial encryption key, and thus the server will fail to decrypt
it and will queue it for later decryption. Since it cannot decrypt the error message, the server will
retain the connection state until the idle connection timeout expires. This timeout defaults to 10
minutes.

Source-Address Token Manipulation Attack. The goal of this attack is to prevent a client
from establishing a connection, either denying access to the desired application or forcing the client
to fall back to TCP/TLS. It requires an attacker positioned on the path between the client and the
server who re-writes the stk such that the client and server see different values. It is important
that the server always see the value it initially sent because it will validate stk later. To the client,
however, stk is simply an opaque byte-string.

Any attempted connection request will proceed as normal, except that the attacker silently
changes the stk values seen by client and server. The client requests the scfg from the server,
which replies with the current scfg and an stk value. The client then sends a full c hello to
initiate the connection. The server receives and processes this c hello and sends an s hello message
in response.

When the client receives this s hello message sent by the server, it will fail to decrypt. This is
because stk is an input into the encryption key derivation process, and the attacker has changed
the stk value seen at the client. As a result, the client and server will compute different encryption
keys.

However, as mentioned previously, a decryption failure is not a sign of catastrophic handshake
failure because this could happen due to reordering, if packets encrypted with the forward-secure
key were received before the s hello message. Hence, the client buffers the bad s hello message for
later decryption. Eventually the client times out and retransmits the c hello message. This process
will repeat until the client’s 10 second timer on connection establishment expires. At that point
the connection will be terminated.

The client will notify the server that it terminated the connection, but, unfortunately, this
message will be transmitted encrypted with the initial encryption key. Hence, the server will be
unable to process it and will continue to retain the connection state. This state will only be removed
when the idle connection timeout expires, by default after 10 minutes.

We found that this attack effectively prevented all targeted QUIC connections. Further, all
targeted connections experienced a 10 second delay before timing out.

Other Attacks While developing and testing the Server Config Replay Attack, we discovered an
additional attack against QUIC. This attack results from QUIC treating handshake messages as

27

part of a logical byte-stream, a detail abstracted out of the provable security analysis.
Crypto Stream Offset Attack. Recall that handshake messages are part of a logical byte-

stream in QUIC. As a result, by injecting data into this byte stream an attacker is able to break
the byte-stream and prevent the processing of further handshake messages. The attack results in
preventing a client from establishing a connection using QUIC, either denying access to the desired
application or forcing the client to fall back to TCP/TLS.

We create the attack by injecting a four character string into this handshake message stream.
This injection is sufficient to prevent connection establishment. Our attacker listens for c hello
messages and responds with a spoofed reply containing the string “REJ\0” in the handshake
message stream. As observed before, this breaks connection establishment because any messages
from the server will now start at the wrong offset in the handshake message stream. Hence, they
will be discarded or buffered indefinitely.

A connection that is attacked in this manner will either be terminated by the server because of
an entropy bit mismatch or be timed out by the client after 10 seconds.

Note that an attacker requires very little information to launch this attack. No information
is needed from the client’s c hello message, QUIC packet sequence numbers always start from 1,
and the cid can be omitted from any packet other than the client’s c hello. As a result, all an
attacker needs to launch this attack is knowledge of when a connection attempt will occur and
the 4-tuple (server IP, client IP, server port, client port) involved. Of this 4-tuple, three items
are already known: the server’s IP, the client’s IP, and the server’s UDP port. If an attacker can
guess the client’s UDP port and when it will make a connection attempt, he can launch this attack
completely blind.

In our tests, the ephemeral UDP port range was still too large to brute force within an RTT,
at least with our python attacker. However, if the attacker can narrow the port range sufficiently,
then an optimized C implementation could probably conduct this attack completely blind.

9.1 Attack Discussion

In this section we discuss how the attacks we found against QUIC relate to prior attacks on TCP
and TLS. We find that attacking QUIC is not easier than TCP and TLS.

Source-Address Token Replay Attack. This QUIC attack is similar to the TCP SYN Flood
attack where the attacker sends numerous spoofed TCP SYN packets to a server to overwhelm it
and cause DoS [20]. The QUIC attack does almost the same thing, but the attacker is limited in
the IP addresses he can use for spoofed packets. However, the impact of each spoofed packet is
larger because QUIC needs to create encryption keys after receiving the initial packet.

The classic mitigation to SYN Flood is SYN Cookies, opaque tokens passed to the client by the
server in the SYN-ACK and returned by the client on the final handshake ACK [20]. A SYN-Cookie
encodes enough information so that the server does not need to keep state between the SYN and
the final ACK and can serve as a proof that the client resides at its claimed IP address. The server
creates the connection state structures only after the cookie is returned by the client, making it
more difficult to overwhelm the server with spoofed connection requests.

An stk serves a similar purpose in preventing spoofed packets, with the difference being that
its goal is to avoid the RTT incurred for a handshake. SYN-Cookies cannot be replayed because
they are single use [20]. Because QUIC wants to support 0-RTT connections, it cannot make stks
single use, instead it limits their time and IP address validity. This allows an attacker to replay
them.

28

QUIC Manipulation Attacks. These QUIC attacks are similar to the SSL Downgrade attack
against a modern TLS implementation. In both cases, a Man-In-The-Middle attacker modifies
packet fields and the attack is not discovered until the end of the handshake, after key generation
and multiple RTTs.

SSL Downgrade works against SSL connections where both endpoints have SSL versions less
than SSL 3.0 enabled. The goal is to downgrade the connection to an older, less secure version of
SSL [16]. Basically, the attacker rewrites the connection request to indicate that the client only
supports an older version of SSL, often version 2.0. The server and client then establish an SSL
2.0 connection, which the attacker can presumably compromise.

SSL 3.0 adds protection against this attack by adding a keyed hash of all the handshake messages
to the Finished message and requiring the receiver to verify this hash [16]. This defense is effective,
but the attack will only be detected at the end of the handshake.

Our QUIC Manipulation Attacks have similar outcome where the attack only becomes apparent
at the end of the handshake when the keys generated by client and server do not match. Thus, the
connection fails after a timeout, and the client may fall back to TCP/TLS. Since QUIC is designed
to provide much lower latency for connection initiation than TCP/TLS, this compromises one of
QUIC’s main goals.

As discussed in section 8.2, one simple mitigation would be to sign all modifiable fields in the
server’s s reject and s hello messages. However, this introduces signature computation overhead
and a possible DoS attack.

QUIC Crypto Stream Offset Attack. This attack is similar to the TCP ACK Storm attack
in that both result in the inability to transfer any more data over the target byte-stream and are
caused by an attacker inserting data into the byte-stream.

The TCP ACK Storm attack [2] requires an attacker who can observe a TCP ACK packet of the
target connection and then spoof data-bearing packets to both the client and the server. This data
will be received and processed by the client and server and both will increase their ACK numbers
as a result. Unfortunately, when an ACK is eventually sent by either client or server, it will appear
to acknowledge data that the other side has not yet sent. TCP will drop such packets and send
a duplicate ACK. At this point, the TCP byte-stream is effectively broken; no more data can be
transferred because all packets will have invalid ACK numbers.

In much the same way, injection of data into a QUIC handshake stream disrupts the stream
offsets and prevents any further handshake negotiation. This eventually results in connection
timeout. Although a byte-stream is a convenient abstraction, it does not appear to be a good fit
for handshake data. A message-stream, or sequence of messages, would be less prone to disruption
in this manner.

10 Conclusions and Future Work

In this paper we provide the provable-security treatment of QUIC and assess its performance
guarantees in the presence of adversaries. We provide a formal definition of a Quick Connections
(QC) protocol, formally define a novel security model Quick ACCE (QACCE) appropriate for QC
protocols, and show that QUIC satisfies QACCE under reasonable assumptions on its underlying
building blocks.

Our analysis also reveals, however, that in the presence of attackers, QUIC may be unable
to attain one of its main goals: 0-RTT connections. The adversary can make QUIC fall-back to

29

TCP/TLS or cause the client and server to have an inconsistent view of their handshake which
could lead to inconsistent states and more latency. Furthermore, such simple attacks could also be
used to mount DoS attacks.

Our security definition is general and we plan to use our models to analyze other performance-
driven security protocols, such as TLS version 1.3. Our work provides insights into the pitfalls of
designing performance-driven secure protocols. In the future, we hope to explore methodologies
for addressing the weaknesses of the QUIC protocol, which we have presented in this paper, and
which may also be relevant to other protocols in this domain.

11 Acknowledgements

We thank the anonymous reviewers for their comments. We thank Marc Fischlin and Bogdan
Warinschi for useful discussions. We thank Adam Langley, Jim Roskind, Jo Kulik, Alyssa Rzeszutek
Wilk, Ian Swett, Fedor Kouranov, and Robbie Shade for help with QUIC protocol details. We thank
Andrew Newell for first introducing us to QUIC. We thank David Pointcheval for useful references.
Alexandra Boldyreva and Robert Lychev were supported in part by NSF CNS-1318511 and CNS-
1422794 awards. Cristina Nita-Rotaru was supported in part by NSF CNS-1421815 award.

References

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA, volume
2020 of Lecture Notes in Computer Science, pages 143–158. Springer, 2001.

[2] Raz Abramov and Amir Herzberg. TCP ack storm DoS attacks. In Jan Camenisch, Simone
Fischer-Hbner, Yuko Murayama, Armand Portmann, and Carlos Rieder, editors, Future Chal-
lenges in Security and Privacy for Academia and Industry, pages 29–40. Springer, 2011.

[3] William Aiello, Steven M. Bellovin, Ran Canetti, John Ioannidis, Angelos D. Keromytis, and
Omer Reingold. Just fast keying: Key agreement in a hostile Internet. In ACM Transactions
on Information and System Security, volume 7 of TISSEC, pages 1–30. ACM, May 2004.

[4] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-
aided security proofs for the working cryptographer. In Phillip Rogaway, editor, CRYPTO,
volume 6841 of Lecture Notes in Computer Science, pages 71–90. Springer, 2011.

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, CCS ’93, pages 62–73. ACM, 1993.

[6] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repair-
ing the SSH authenticated encryption scheme: A case study of the Encode-then-Encrypt-and-
MAC paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206–241, 2004.

[7] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In DouglasR.
Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 232–249.
Springer, 1994.

30

[8] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with
RSA and Rabin. pages 399–416, 1996.

[9] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Proceedings of the 24th Annual International Conference
on The Theory and Applications of Cryptographic Techniques, EUROCRYPT’06, pages 409–
426. Springer, 2006.

[10] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves
Strub. Implementing TLS with verified cryptographic security. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, pages 445–459. IEEE Computer Society, 2013.

[11] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves
Strub, and Santiago Zanella Béguelin. Proving the TLS handshake secure (as it is). In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO, volume 8617 of Lecture Notes in Computer
Science, pages 235–255. Springer, 2014.

[12] Karthikeyan Bhargavan, Cdric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves
Strub, and Santiago Zanella Bguelin. Proving the TLS handshake secure (as it is), 2014.
IACR Cryptology ePrint Archive 2014: 182 (2014).

[13] Bruno Blanchet. A computationally sound mechanized prover for security protocols. In Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy, pages 140–154. IEEE Com-
puter Society, 2006.

[14] D. R. L. Brown. The Exact Security of ECDSA. IEEE 1363 Standard Specifications for Public
Key Cryptography, January 2012.

[15] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An analysis of the
EMV channel establishment protocol. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’13, pages 373–386. ACM, 2013.

[16] Jeremy Clark and Paul C. van Oorschot. SoK: SSL and HTTPS: Revisiting past challenges and
evaluating certificate trust model enhancements. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, pages 511–525. IEEE Computer Society, 2013.

[17] Richard Clayton, Steven J Murdoch, and Robert NM Watson. Ignoring the great firewall of
China. In Privacy Enhancing Technologies, pages 20–35. Springer, 2006.

[18] Tim Dierks and Christopher Allen. The TLS protocol version 1.0. RFC 2246 (Proposed
Standard), January 1999.

[19] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro. To hash or not
to hash again? (In)differentiability results for H2 and HMAC. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages
348–366. Springer, 2012.

[20] Wesley Eddy. TCP SYN flooding attacks and common mitigations. RFC 4987 (Informational),
August 2007.

31

[21] EMVCo LLC. EMV ECC key establishment protocols, 2012.

[22] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ramakrishnan. Towards a
SPDY’ier mobile web? In Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages 303–314. ACM, 2013.

[23] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of google’s QUIC
protocol. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, pages 1193–1204. ACM, 2014.

[24] Bryan Ford. Structured streams: A new transport abstraction. In Proceedings of the 2007
Conference on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications, SIGCOMM ’07, pages 361–372. ACM, 2007.

[25] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based cryptographic
verification. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pages 341–350. ACM, 2011.

[26] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 273–293. Springer, 2012.

[27] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS protocol:
A systematic analysis. In Ran Canetti and Juan A. Garay, editors, CRYPTO, volume 8042 of
Lecture Notes in Computer Science, pages 429–448. Springer, 2013.

[28] Adam Langely. Google, Personal communication, 2014.

[29] David A. McGrew and John Viega. The security and performance of the Galois/counter mode
(GCM) of operation. In Progress in Cryptology-INDOCRYPT 2004, pages 343–355. Springer,
2004.

[30] E. Rescorla. New handshake flows for TLS 1.3, 2014.

[31] E. Rescorla and N. Modadugu. Datagram transport layer security version 1.2. RFC 6347
(Proposed Standard), January 2012.

[32] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th
ACM Conference on Computer and Communications Security, CCS ’02, pages 98–107. ACM,
2002.

[33] J. Roskind. Experimenting with QUIC. The Chromium Blog, 2013.

[34] Jim Roskind. Quick UDP internet connections: Multiplexed stream transport over UDP, 2012.

[35] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport layer security (TLS) session
resumption without server-side state. RFC 5077 (Proposed Standard), January 2008.

[36] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive, page 332, 2004.

32

[37] Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in applying
proof methodologies to signature schemes. pages 93–110, 2002.

[38] R. Stewart. Stream control transmission protocol. RFC 4960 (Proposed Standard), September
2007.

[39] Alyssa Rzeszutek Wilk, Jo Kulik, Fedor Kouranov, and Assar Westerlund. Google QUIC team,
Personal communication, 2014.

A Security Proofs

Our proofs follow the “game hopping” technique [9, 36], which considers a sequence of experiments
(games) associated with an adversary. Each game (except the first one) is equivalent to the previous
one until it aborts when some event Ev happens. By the fundamental lemma of game hopping,
the difference between the probabilities of the adversary having the same output in both games is
upper bounded by the probability of Ev.

A.1 Proof of Lemma 7.2

We consider a sequence of games and make claims about them. The proofs of the claims are in
Appendix A.1.1.

Consider the following sequence of games, and let Prδ denote the event when b = brp,i, where
(p, i, r, b) is A’s output in Game δ.
Game 0: The game is exactly as ExpQACCE

QUIC(A) defined in Section 6. It is immediate that

Claim A.1. Pr0 = 1/2 + 1/2 ·Advch-corr
QUIC (A) .

Game 1: The game is like Game 0, but it aborts if A sends the first message on behalf of πrs,i (if
p = s) or peer of πrc,i (if p = c) (called m2 in QUIC’s description), pubs in that message was not
output by the server oracle in question and the message was not rejected.

Claim A.2. There is an efficient adversary B such that Pr1−Pr0 ≤ `Advsuf
SS (B) .

Game 2: The game is like Game 1, but it aborts if A makes a random oracle query (nonc, ipms)
after oracle πrp,i or its peer made the same random oracle query as the first step in computing
xtrct xpnd(∗, ∗, ∗, ∗, ∗, 1) for arbitrary ∗. In addition, the following conditions hold. If p = s, then
Si was not previously corrupted and there must be a matching conversation between πrs,i and its
peer client oracle. If p = c, then a matching conversation with the peer server oracle is not required,
but the peer server oracle should not be corrupted.

Claim A.3. There is an efficient adversary C such that Pr2−Pr1 ≤ d`2T ·AdvSCDH(C) .

Game 3: The game is like Game 2, but when oracle πrp,i or its peer needs to execute xtrct xpnd(∗, ∗, ∗, ∗, ∗, 1)
for any ∗, the code for xtrct xpnd is ignored and a random value (from the appropriate domain) is

33

returned instead, and the input and output are saved. However, if the input to xtrct xpnd is re-
peated, then the previously set output value is returned. In other words, the initial key set by each
oracle is random and independent from the rest of the protocol (but peer oracles with matching
conversations set the same initial keys).

Claim A.4. Pr3 = Pr2 .

This claim is true because in both games the initial keys of πrp,i and its peer are set in the
same way in both games (to random independent values). This is because the first HMAC in the
execution of xtrct xpnd is modeled with the random oracle and the adversary does not make the
RO query (as per Game 2) to notice the difference.

Game 4: The game is like Game 3, but the game aborts if A ever makes a decrypt(πrp,i, c,H, 1)
query for some c,H which does not return ⊥, and H, c was never output as a result of the encrypt
query to the peer oracle of πrp,i.

Claim A.5. There is an efficient adversary D such that Pr4−Pr3 ≤ 2`dTQAdvauth
AEAD(D) .

Game 5: The game is like Game 4, but it aborts if A makes a random oracle query (nonc, ipms)
after oracle πrp,i or its peer made the same random oracle query as the first step in computing
xtrct xpnd(∗, ∗, ∗, ∗, ∗, 0) for arbitrary ∗. In addition, the following conditions hold. There must be
a matching conversation between πrp,i and its peer client oracle. If p = s, then Si was not previously
corrupted and there must be a matching conversation between πrs,i and its peer client oracle. If
p = c, then the peer server oracle should not be corrupted.

Claim A.6. There is an efficient adversary C ′ such that Pr5−Pr4 ≤ d`2T ·AdvSCDH(C
′) .

Game 6: The game is like Game 5, but when oracle πrp,i or its peer need to execute xtrct xpnd(∗, ∗, ∗, ∗, ∗, 0)
for any ∗, a random value (from the appropriate domain) is returned, and the input and output
are saved. However, if the input to xtrct xpnd is repeated, then the previously set output value is
returned. In other words, the final key set by each oracle is random and independent from the rest
of the protocol (but peer oracles with matching conversations set the same initial keys).

Claim A.7. Pr6 = Pr5 .

This is because without the “crucial” RO queries that made Game 4 abort, the final session
keys are set consistently, but they are completely independent from A’s view.

Game 7: The game is like Game 6, but the game aborts if A ever makes a decrypt(πrp,i, c,H, 0)
query for some c,H which does not return ⊥, and H, c was never output as a result of the encrypt
query to the peer oracle of πrp,i

Claim A.8. There is an efficient adversary D′ such that Pr7−Pr6 ≤ 2`dTQAdvauth
AEAD(D′) .

Finally we estimate Pr7.

Claim A.9. There is an efficient adversary E such that Pr7 = 1
2 + 1

2(4`dTAdvind-cpa
AEAD (E)) .

The statement of Lemma 7.2 follows from the above claims. We now fill out the missing proofs
of the claims.

34

A.1.1 Proofs of Claims A.2-A.8

Proof of Claim A.2. We construct the adversary B breaking security of the signature scheme
as follows. B is given a public key for the signature scheme and the signing oracle. B picks a server
at random and sets the public key of that server as its own public key. B creates all public and
secret parameters (except for the keys for the randomly picked server), runs A, and simulates all
its queries according to the experiment and the protocol. To create signatures under the secret
key of the randomly picked server, B uses its own signature oracle. When A outputs the message
described in Game 1, with probability 1/` that message contains a signature under the secret key
of the server that B has picked. Since the condition in Game 1 requires that pubs was not returned
by the server, it implies that B did not query a message containing pubs to its signing oracle.
Hence B can output pubs and the corresponding signature as its forgery and it will succeed with
probability 1/`. It is important here that the server cannot be corrupted, as mandated by the
winning conditions for adversary A.

Proof of Claim A.3. We construct adversary C solving the SCDH problem as follows. C is given
the security parameter λ, (q, g,X ≡ gx, Y ≡ gy) for random x, y ∈ Z∗r , and the verification oracle

V(g,X, ·, ·). C selects indices at random i∗, j∗
$← [`], r∗

$← [d], t∗
$← [T] and then generates all secret

and public parameters as defined in ExpQACCE
QUIC , except for server Sj∗ and time period t∗. C sets pubs

of Sj∗ for time t∗ not according to the protocol, but as (g, q,X). (We will refer to Sj∗ as the crucial
server and to all its corresponding oracles as crucial server oracles.) C gives A the required public
parameters, and then simulates the answers to A’s queries, including the random oracle queries. C
simulates the actions of all oracles according to Π and ExpQACCE

QUIC , with the following exceptions.

The public DH values pubc of client oracle πr
∗
c,i∗ for time period t∗ are not generated according

to the protocol, but set to Y . (We will refer to πr
∗
c,i∗ as the crucial client oracle.) If πr

∗
c,i∗ is in a

connection with an oracle belonging to Sj∗ during t∗, then C cannot compute ipms according to
the protocol. Instead, C sets ms to a random 256-bit value and records this information along with
the corresponding DH values X and Y .

Similarly, C cannot compute ipms according to the protocol when simulating any server oracle
belonging to Sj∗ during t∗. If there is a matching conversation with some client oracle other than
πr
∗
c,i∗ , then C can compute ipms as Xz, where z ∈ Zq was chosen on behalf of the peer client oracle

to compute its DH value gz. If there is no matching conversation with some client oracle, then it is
possible that the client’s DH value was chosen by A. Let us call it Z. Then again, C sets ms to a
random 256-bit value and records this information along with the corresponding DH values X and
Z.

When A makes a new RO query (nonc′, ipms′) for some nonc′ and ipms′ (repeated queries are
answered with the previously recorded answer), C first calls its verification oracle on (g,X, Y, ipms′),
and returns ipms′ as its own output in case the oracle returned 1. Otherwise, C calls its verification
oracle on (g,X,Z, ipms′) for all stored Z’s. If the oracle returns 1, C returns to A the corresponding
previously stored ms. If the verification oracle never returned 1, then C answers with a random ms

in Zq and records this information along with the corresponding ipms′.

The answers to all RO calls (nonc′, ipms′) made by any oracle other than πr
∗
c,i∗ and any πq

′

s,j∗

for any q′ ∈ [d] are answered in the straightforward manner (each new input is answered with the
random value, a repeated input is answered with the previous answer for that input).

We claim that before Game 3 aborts, A’s view in the simulated experiment has the same

35

distribution as in ExpQACCE
QUIC(A).

First, it is easy to see that the simulation of all non-crucial oracles, which do not have a crucial
oracle as peer, is perfect, since for those C properly simulates the experiment for A.

Next, the simulation of non-crucial client oracle that has a matching conversation with a crucial
server oracle is also perfect. Even though C does not know the secret of the crucial server’s DH
value, it knows the secrets of the client oracles. This is enough to compute the corresponding ipms

value, the initial key, and everything else needed.
If A violates the matching conversation between some non-crucial client oracle and a crucial

server oracle, or between some non-crucial server oracle and a crucial client oracle, then it is possible
that C does not know the secrets needed to compute the ipms value and the initial key of the server
oracle. But in this case C relies on the RO model and its own SCDH verification oracle to simulate
the ipms value and the initial key with the right distribution and consistently.

Finally, let us consider C’s simulation of two peer crucial oracles. In this case the initial key
generated by C is not according to Π. We claim that A cannot detect this unless it makes the RO
query (nonc′, ipms′) and C’s corresponding call of the verification oracle on (g,X, Y, ipms′) returns
1 or it corrupts the server oracle during time period t∗. Hence with probability at least 1/`2dT ,
C’s output ipms′ is the correct output for SCDH problem. In other words, to succeed, C needs to
correctly guess the time period and the pair of oracles which correspond to the initial key that in
turn corresponds to the oracle whose encryption A “breaks”.

We used the facts that C’s choice of indices is independent from A’s view and that A cannot
corrupt the server related to the challenge bit by the conditions in the experiment. (Notice that
even though the matching conversation between the oracles could be violated, pubs cannot be
modified by A (due to Game 1).)

Besides doing such an RO query, the only way A could notice the inconsistency is by asking
to corrupt the crucial server during time period t∗. However, such queries are forbidden for the
“broken” oracles.

Proof of Claim A.5. We construct adversaryD breaking authenticity of the underlying AEAD as
follows. D is given E(κ, ·, ·, ·). Recall that D’s goal is to output (IV, H, c) such that D(κ, IV, H, c) 6=
⊥ and A did not query E(κ, IV, H,m) that resulted in a response c. D selects indices and val-

ues at random p∗
$← {c, s}, j∗ $← [`], r

$← [d], t∗
$← T , b

$← {0, 1}, q∗d
$← [Q], where Q is the

maximum number of decryption queries A makes for each key. D then generates all secret and
public parameters as defined in ExpQACCE

QUIC and simulates A’s queries, including the random ora-

cle queries. All queries are answered according to ExpQACCE
QUIC , with the following exception. The

ik = ikc||iks||IVc||IVs set by oracle πr
∗
p∗,j∗ at time period t∗ is replaced with the random string

of the same length (like described in Game 3). D is not going to use ikp∗ at any point. Also, all
encrypt queries (π′,m0,m1, H, 1) during time period t∗, where π′ is the peer of πr

∗
p∗,j∗ , are answered

via E(κ, IV,H,mb), where IV = get iv(ik,H). Whenever A makes decrypt for πr
∗
p∗,j∗ , D returns

⊥. D finally returns (IV′, H ′, C′) from A’s q∗’s decryption query. Note that A’s view has the right
distribution unless Game 4 aborts. It is important that ikp∗ cannot be subject to reveal query
according to the security model. Note that even though the get iv function uses the whole initial
key as the parameter in general, QUIC’s function only uses the auxiliary part containing IVs. But
if this happens, then D wins with probability 1/2`dTq∗d (A created a new valid ciphertext under
the key of the oracle D happened to guess and during the query D happened to guess).

36

Proof of Claim A.6. The proof proceeds very similarly to the proof of Claim A.3, except that
now the challenge DH values given to C are used to simulate the parameters that the randomly
picked server uses to produce the final session key k in connection with the randomly picked client
oracle during randomly picked time period, instead of the initial key ik. More precisely, C, who is
given the security parameter λ, (q, g,X ≡ gx, Y ≡ gy), for random x, y ∈ Z∗r and the verification
oracle V(g,X, ·, ·) uses X to simulate pũbs of the randomly picked server oracle, instead of its pubs.
The rest of the proof is pretty much the same. Notice that C simulates the initial keys according
to the description of Game 3.

Proof of Claim A.8. The proof is almost identical to the Proof of Claim A.5. The only difference
is that D′ uses its encryption oracle to simulate A’s queries with respect to one of the final session
keys, and not one of the initial keys.

Proof of Claim A.9. E has access to oracle E(κ, ·, ·, LR(·, ·, b)). E selects indices and values at

random p∗
$← {c, s}, j∗ $← [`], r

$← [d], t∗
$← T , init∗

$← {0, 1} and then generates all secret and
public parameters as defined in ExpQACCE

QUIC and simulates A’s queries, including the random oracle

queries. Let p′ be {c, s} \ p∗. All queries are answered according to ExpQACCE
QUIC , with the following

exception. If init∗ = 1, then the ik = ikc||iks||IVc||IVs set by oracle πr
∗
p∗,j∗ at time period t∗ is

replaced with the random string of the same length (like described in Game 3). (The component
ikp′ is not going to be used by E.) Otherwise, the same is done for k = kc||ks||IVc||IVs. (The
component kp′ is not going to be used by E.) All encrypt queries (πr

∗
p∗,j∗ ,m0,m1, H, init

∗) during
time period t∗ are answered via E(κ, IV,H,LR(m0,m1, b)), where IV = get iv(ik,H), if init∗ = 1
and IV = get iv(k,H), if init∗ = 0. If IV is repeated, then E returns ⊥ to A (this is according to
the security experiment). Note that E is hence nonce-respecting. Whenever A makes a decrypt

query to the peer oracle of πr
∗
p∗,j∗ , E returns ⊥. When A returns a bit, E returns the same bit.

Note that even though the get iv function uses the whole initial or final key as the parameter
in general, QUIC’s function only uses the auxiliary part containing IVs. Now it is easy to see, that
E wins whenever A wins and E guessed the indices correctly (to correspond to the oracle and time
period for which A guesses the challenge bit). Since the simulation is perfect, E’s advantage equals
A’s advantage.

A.2 Proof of Lemma 7.3

Game 0: The experiment in this game proceeds exactly as described above for the QACCE security
experiment in Section 6. Let Pr0 denote the probability that there exists an oracle πrc,i∗ such that
the session key k of this oracle is set and there is no oracle πrs,j corresponding to a server party Sj
such that πqc,i has a matching conversation with πrs,j , no revealik contained ik possibly set in the
initial key agreement stage between πqc,i and πrs,j , and Sj was not corrupted.

Claim A.10. Pr0 = Adv
s-imp
QUIC(A) .

Game 1: The game is like Game 0 except that it aborts if A sends the first message (called m2 in
QUIC’s description) on behalf of the server oracle that is the peer of πrc,i, and πrc,i does not reject
the message (i.e., accepts signature prof), while the server oracle never output prof as part of
the reply to the initial connection request, and the server was not corrupted at the time of the
described query.

37

Claim A.11. There is an efficient adversary B such that Pr1−Pr0 ≤ `Advsuf
SS (B) .

Proof of Claim A.11. We construct adversary B attacking strong unforgeability of SS as
follows. B is given the security parameter λ, a public key pk and the signing oracle Sign(sk, ·). B
selects an index at random j

$← [`] and then generates public and secret keys using Kg for every
server except Sj and sets pkj ← pk. B generates all other secret and public parameters as defined

in ExpQACCE
QUIC , gives A the required public parameters, and then simulates A’s queries. Since B

knows all the secrets except for sk = skj , it is able to perfectly compute all replies by itself except
for the signatures prof contained in the first message output by all oracles corresponding to server
Sj , and B cannot simulate corrupt(Sj). To compute the former, B uses its own oracle Sign(sk, ·).
B aborts when A asks for the latter query.

When A sends the message containing the “new” prof described in Game 0 on behalf of some
server, and that server happens to be Sj , then B returns ((cid, pubs, expy), prof), otherwise it
aborts.

We claim that if A “wins”, then B outputs a valid forgery with probability 1/`. This is because
A’s view in the simulated experiment has the same distribution as in ExpQACCE

QUIC(A), because index
j was picked at random independent from A’s view and because A does not corrupt Sj .

Game 2: The game is like Game 1, but it aborts if A makes a random oracle query (nonc, ipms)
after oracle πrc,i or its peer made the same random oracle query as the first step in computing
xtrct xpnd(∗, ∗, ∗, ∗, ∗, 1) for arbitrary ∗.

Claim A.12. There is an efficient adversary C such that Pr2−Pr1 ≤ d`2T ·AdvSCDH(C) .

The proof is analogous to the proof of Claim A.3.

Game 3: The game is like Game 2, but when oracle πrc,i or its peer needs to execute xtrct xpnd(∗, ∗, ∗, ∗, ∗, 1)
for any ∗, the code for xtrct xpnd is ignored and a random value (from the appropriate domain)
is returned instead, and the input and output are saved. But if the input to xtrct xpnd is re-
peated, then the previously set output value is returned. In other words, the initial key set by each
oracle is random and independent from the rest of the protocol (but peer oracles with matching
conversations set the same initial keys).

Claim A.13. Pr3 = Pr2 .

The claim is true because in both games the initial keys of πrp,i and its peer are set in the same
way in two games (to random independent values). This is because the first HMAC in the execution
of xtrct xpnd is modeled with the random oracle, and the adversary does not make the RO query,
as per Game 2.

Game 4: The game is like Game 3, but the game aborts if A ever makes a decrypt(πrc,i, c,H, 1)
query for some c,H which does not return ⊥, and H, c was never output as a result of the encrypt
query to the peer oracle of πrc,i.

Claim A.14. There is an efficient adversary D such that Pr4−Pr3 ≤ 2`dTQAdvauth
AEAD(D) .

The proof is analogous to the proof of Claim A.5.

38

Game 5: The game is like Game 4, but it aborts if A makes a random oracle query (nonc, ipms)
after oracle πrc,i or its peer made the same random oracle query as the first step in computing
xtrct xpnd(∗, ∗, ∗, ∗, ∗, 0) for arbitrary ∗.

Claim A.15. There is an efficient adversary C such that Pr5−Pr4 ≤ d`2T ·AdvSCDH(C) .

The proof is analogous to the proof of Claim A.5.

Game 6: The game is like Game 5, but when oracle πrc,i or its peer need to execute xtrct xpnd(∗, ∗, ∗, ∗, ∗, 0)
for any ∗, a random value (from the appropriate domain) is returned, and the input and output are
saved. But if the input to xtrct xpnd is repeated, then the previously set output value is returned.
In other words, the final key set by each oracle is random and independent from the rest of the
protocol (but peer oracles with matching conversations set the same initial keys).

Claim A.16. Pr6 = Pr5 .

This is because without the “crucial” RO queries that made Game 4 abort, the final session
keys are set consistently, but are completely independent from A’s view.

Game 7: The game is like Game 6, but the game aborts if A ever makes a decrypt(πrc,i, c,H, 0)
query for some c,H which does not return ⊥, and H, c was never output as a result of the encrypt
query to the peer oracle of πrc,i

Claim A.17. There is an efficient adversary D′ such that Pr7−Pr6 ≤ 2`dTQAdvauth
AEAD(D′) .

The proof is analogous to the proof of Claim A.8.

Game 8: The game is like Game 7, but it aborts if the initial keys of πrc,i and its peer are distinct.

Claim A.18. There is an efficient adversary D such that Pr8−Pr7 ≤ `dAdvauth
AEAD(D) .

Proof of Claim A.18. If πrc,i and its peer set the session key, then πrc,i must have accepted
(did not reject) a message from the server containing a ciphertext encrypted under ikc, which is
part of the peer server oracle’s initial key (the message is called m6 in our description of QUIC in
Section 5). If Game 8 aborts, the initial keys are distinct, but by Game 3 they are set to random
independent values. We can construct an adversary D attacking auth of AEAD. D guesses indices

i∗
$← [`] and r∗

$← [d] for a client oracle πr
∗
c,i∗ . D then perfectly simulates the game for A by creating

all values for all honest parties, except for ikc part of ik of πr
∗
c,i∗ . Note that D does not have to use

its encryption oracle, as the peer of πr
∗
c,i∗ has an independent initial key and will encrypt using that

random key instead of ikc. The valid ciphertext in the aforementioned server oracle’s first message
intended for πr

∗
c,i∗ is used as the forgery that D outputs. If A wins and Game 8 aborts, D wins with

probability 1/`d (if indices are guessed correctly).

Game 9: The game is like Game 8, but it aborts if πrc,i and its peer set distinct session keys.

Claim A.19. There is an efficient adversary D′ such that Pr9−Pr8 ≤ `dAdvauth
AEAD(D′) .

39

Proof of Claim A.19. By the protocol’s description, there is only one way A can cause two
oracles to set up distinct session keys after setting equal initial keys. This can be done only by
forging the ciphertext in a server oracle’s message m6 intended for πrc,i. But in this case we can con-
struct an efficient adversary D′ attacking auth of AEAD in a similar way to the proof of Claim A.18.

Game 10: The game is like Game 9, but the ciphertext in a server oracle’s message m6 that πrc,i
receives is distinct from what the server oracle output.

Claim A.20. There is an efficient adversary D′′ such that Pr10−Pr9 ≤ `dAdvauth
AEAD(D′′) .

Again, we can construct an efficient adversary D′ attacking auth of AEAD, very similarly to
the proof of Claim A.18.

Claim A.21. Pr10 = 0 .

This is because by the protocol’s description and the previous games definitions, there must be
a matching conversation between πrc,i and its peer. But this game’s description states that there is
no matching conversation.

A.3 Proof of Lemma 7.4

For any adversaryA with advantage Adv
ips
QUIC(A) we can construct adversaryB such that Adv

ips
QUIC(A) ≤

`Advauth
AEAD(B) .

B is given the security parameter λ and access to oracle E(κ, ·, ·, ·). B selects an index at random

j
$← [`] and then generates all secret and public parameters as defined in ExpQACCE

QUIC , except for key
kstk for server Sj . B gives A the required public parameters and then simulates A’s queries. Since
B knows all the secrets except for kstk of Sj , it is able to perfectly simulate all replies except for
when B needs to produce a secure token stk on behalf of server Sj or to decrypt a token sent to
an oracle corresponding to Sj .

For the former task B uses its own oracle E(κ, ·, ·, ·). For the latter task, B stores all secure
tokens produced by oracles corresponding to Sj and thus can check validity of reused tokens.
Whenever A sends the query send(πrs,j ,m) from πrc,i, for some i, q, r, where m has the format of
the client’s second message m3 and contains (IV, stk) where stk is new, i.e., B did not store it, B
returns (IV,H, stk), where H = ε. Finally, if A issues a corrupt(Sj) query, then C aborts.

One can see that B “wins” with probability 1/` because A’s view in the simulated experiment
prior to the forgery has the same distribution as in Expacce

Π (A), because A’s forgery of stk is a
forgery for B as well if Sj happens to be the server A forges stk for, and because the random index
j is hidden from A, and Sj cannot be corrupted.

Remarks. In the proofs we did not explicitly treat and distinguish 0-RTT and 1-RTT connections
since all new connections are modeled with a new oracle, and multiple 1-RTT connections to the
same server for the same time period share the same scfg anyway.

Also note that it is easy to see that in all proofs the constructed adversaries are efficient.

40

