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Abstract

The U.S. National Security Agency (NSA)
developed the Simon and Speck families of
lightweight block ciphers as an aid for securing
applications in very constrained environments
where AES may not be suitable. This paper sum-
marizes the algorithms, their design rationale,
along with current cryptanalysis and implemen-
tation results.

1 Introduction

Biologists make a distinction between specialist
species, which occupy narrow ecological niches, and
generalists, which can survive in a broader variety of
environmental conditions. Specialists include Kirt-
land’s warbler, a bird that only nests in 5–20 year-old
jack pine forests, and the koala, which feeds (almost)
exclusively on eucalyptus leaves. Generalists such as
the American crow and the coyote are able to adapt to
a variety of di�erent environments. In a stable world,
it’s a good strategy to specialize, but when conditions
change rapidly, specialists don’t always fare so well.
The new age of pervasive computing is nothing

if not rapidly changing. And yet, in the world of
lightweight cryptography, specialists abound. Of
course there are important research challenges as-
sociated with optimizing performance on particular
platforms, and the direction taken by many in the
�eld has been to take on such challenges, generally
quite successfully. This can involve optimizing with
respect to the instruction set for a certain microcon-
troller, or designing algorithms for a particular ASIC

∗This paper was accepted for the NIST Lightweight Cryptog-
raphy Workshop, 20-21 July 2015.

application (e.g., with hard-wired key or for IC print-
ing), or designing speci�cally for low-latency appli-
cations, and so on.

We would argue that what’s needed in the Internet
of Things (IoT) era is not more Kirtland’s warblers
and koalas, as wonderful as such animals may be,
but crows and coyotes. An animal that eats only eu-
calyptus leaves, even if it outcompetes the koala, will
never become widely distributed. Similarly, a block
cipher highly optimized for performance on a partic-
ular microcontroller will likely be outcompeted on
other platforms, and could be of very limited utility
in 15 years when its target platform is obsolete.

Of course it’s hard to get a handle on block cipher
performance on devices that don’t yet exist. But what
we can do is strive for simplicity, by designing algo-
rithms around very basic operations that are certain
to be supported by any future device capable of com-
putation. Simon and Speck aim to be the sort of gener-
alist block ciphers that we think will be required for
future applications in the IoT era.
It would be unsatisfactory if we had to defer any

discussion of performance because we’re waiting for
the arrival of future devices. But we can measure per-
formance on current platforms, and in this paper we
demonstrate the sort of performance that is achieved
by Simon and Speck on a broad range of existing soft-
ware and hardware platforms. We emphasize, how-
ever, that the main point is not the performance of
Simon and Speck with respect to other algorithms on
any particular platform. Rather, it’s that by limiting
the operations we rely on to a small list that works
well in hardware and software, we obtain algorithms
that are likely to perform well just about anywhere.
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2 AES and Lightweight Cryptography

Before focusing our discussion on Simon and Speck,
we’d like to better establish the state of play. In par-
ticular, we note that quite a lot of e�ort has gone into
reshaping the current go-to block cipher, AES, into a
solution for lightweight applications. Indeed, great
strides have been made in this direction in the past 15
years or so. ASIC implementations of AES-128 have
been developed with an area of just 2400 gate equiv-
alents (GE) [40] and fast software implementations
are available for 8-bit [43] and 16-bit [21] microcon-
trollers.

However, there are limits as to how far these types
of adaptations can be pushed. They tend to fall short
of what is required for today’s most constrained envi-
ronments, and surely won’t meet tomorrow’s needs.
For example, the consensus has long been that a bud-
get of 2000 GE is all the chip area that might reason-
ably be allocated for security on the most constrained
RFID tags [36], and this is well out of reach for AES
implementations. On microcontrollers, AES imple-
mentations can be very fast but they also tend to be
large and complex. Implementations that decrease
size or complexity certainly exist, but small imple-
mentations tend to be complex (and slow), while sim-
ple implementations tend to be large (and slow).

One further point about AES: not every application
requires the same high level of security that AES is
designed to provide. When resources are scarce, it
doesn’t always make sense to lavish them on an algo-
rithm providing 128 (or 192 or 256) bits of security
when 96might su�ce. In addition, theAES block size
of 128 bits is not always optimal. An RFID authen-
tication protocol may only ask that 64-bit quantities
be encrypted, and demanding 128 bits of state when
only 64 are necessary can amount to a signi�cant
waste of chip area.

These are the principal reasons for the develop-
ment of new lightweight block ciphers, and many
new algorithms have been proposed. Since the limi-
tations of AES are more apparent in hardware than
in software, most of the best e�orts to date have fo-
cused on this aspect of the problem. This work has
produced designs including PRESENT [17], KATAN
[22], and Piccolo [51], each of which has a very small
hardware footprint. But none was meant to provide
high performance on constrained software-based de-
vices, e.g., 8- and 16-bit microcontrollers. The design-
ers of LED [35] and TWINE [56] are more intent on

supporting software implementations, but these algo-
rithms retain a bias toward hardware performance.
We believe a lightweight block cipher should be

“light” on a wide range of hardware- and software-
based devices, including ASICs, FPGAs, and 4-, 8-,
16-, and 32-bit microcontrollers. Moreover, as noted
in [11], many of these devices will interact with a
backend server, so a lightweight block cipher should
also perform well on 64-bit processors.
It seems clear to us that there is a need for �exible

secure block ciphers, i.e., ones which can perform
well on all of these platforms. Our aim, with the
design of Simon and Speck, is to make this sort of
block cipher available for future use.

3 The Simon and Speck Block Ciphers

In 2011, prompted by potential U.S. government re-
quirements for lightweight ciphers (e.g., SCADA and
logistics applications) and the concerns with existing
cryptographic solutions which we’ve noted above,
we began work on the Simon and Speck block cipher
families on behalf of the Research Directorate of the
U.S. National Security Agency (NSA).
Because our customers will rely on commercial

devices, we determined that the only realistic way to
make the algorithms available would be to put them
in the public domain. Furthermore, because cost will
be such an important driver in this area—a fraction of
a penny per device may make the di�erence between
whether a cryptographic solution is viable or not—we
were motivated to make Simon and Speck as simple,
�exible, and lightweight as we could. Our hope was
that their availability would make it possible to raise
the security bar for future IoT devices.

The development process culminated in the publi-
cation of the algorithm speci�cs in June 2013 [9]. Prior
to this, Simon and Speck were analyzed byNSA crypt-
analysts and found to have security commensurate
with their key lengths; i.e., noweaknesseswere found.
Perhaps more importantly, the algorithms have been
pretty heavily scrutinized by the international cryp-
tographic community for the last two years (see, e.g.,
[2], [3], [5], [4], [1], [6], [15], [16], [20], [27], [29], [37],
[46], [50], [52], [55], [58], [61], [59], [30], [7], [25], [41],
[24]). Table 1 summarizes the cryptanalytic results as
of this writing that attack the most rounds of Simon
and Speck. (We note that the recent paper [7] pur-
ports to attack 24 rounds of Simon 32/64. The author
informs us that this paper is currently under revision,
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size alg rounds ref
total attacked

32/64 Simon 32 23 (72%) [24]
Speck 22 14 (64%) [29]

48/72 Simon 36 24 (67%) [24]
Speck 22 14 (64%) [29]

48/96 Simon 36 25 (69%) [24]
Speck 23 15 (65%) [29]

64/96 Simon 42 30 (71%) [24]
Speck 26 18 (69%) [29]

64/128 Simon 44 31 (70%) [24]
Speck 27 19 (70%) [29]

96/96 Simon 52 37 (71%) [60, 24]
Speck 28 16 (57%) [29]

96/144 Simon 54 38 (70%) [24]
Speck 29 17 (59%) [29]

128/128 Simon 68 49 (72%) [60, 24]
Speck 32 17 (53%) [29]

128/192 Simon 69 51 (74%) [24]
Speck 33 18 (55%) [3, 29]

128/256 Simon 72 53 (74%) [24]
Speck 34 19 (56%) [29]

Table 1: Security of Simon and Speck.

and we have therefore not included those results in
Table 1. For more, see the comments regarding this
work in [24].) The content of the table is simple: there
are no attacks on any member of the Simon or Speck
families, and each block cipher maintains a healthy
security margin.

As we see in the table, Simon and Speck are not sim-
ply block ciphers, but are block cipher families, each
family comprising ten distinct block ciphers with dif-
fering block and key sizes to closely �t application
requirements.
We will write Simon 2n/mn to mean the Simon

block cipher with a 2n-bit block and m-word (mn-bit)
key. We will sometimes suppress mention of the key
and just write Simon 128, for example, to refer to a
version of Simon with a 128-bit block. The analogous
notation is used for Speck.
The block and key sizes we support are shown in

Table 2. The range here goes from tiny to large: a 32-
bit block with a 64-bit key at the low end, to a 128-bit
block with a 256-bit key at the high end.
We note that key lengths below 80 bits or so do

not provide an especially high level of security, but

they may still be useful for certain highly constrained
applications where nothing better is possible.

block size key sizes
32 64
48 72, 96
64 96, 128
96 96, 144
128 128, 192, 256

Table 2: Simon and Speck parameters.

The desire for �exibility through simplicity moti-
vated us to limit the operations used within Simon
and Speck to the following short list:

• modular addition and subtraction, + and −,
• bitwise XOR, ⊕,
• bitwise AND, &,
• left circular shift, S j , by j bits, and
• right circular shift, S− j , by j bits.

Speck gets its nonlinearity from the modular addi-
tion operation, which slightly favors software perfor-
mance over hardware. Simon’s nonlinear function is
a bitwise AND operation, which tends to favor hard-
ware over software. But modular addition can be
computed e�ciently in hardware, and similarly, bit-
wise AND is easy and natural in software.

The round functions for Simon 2n and Speck 2n
each take as input an n-bit round key k, together with
two n-bit intermediate ciphertextwords. For Simon, the
round function is the 2-stage Feistel map

Rk (x , y) � (y ⊕ f (x) ⊕ k , x),

where f (x) � (Sx & S8x) ⊕ S2x and k is the round
key. For Speck, the round function is the (Feistel-
based) map

Rk (x , y) � ((S−αx + y) ⊕ k , Sβ y ⊕ (S−αx + y) ⊕ k),

with rotation amounts α � 7 and β � 2 if n � 16
(block size � 32) and α � 8 and β � 3 otherwise.

The round functions are composed some number
of times which depends on the block and key size.
See Table 1.

Each algorithm also requires a key schedule to turn
a key into a sequence of round keys. We brie�y de-
scribe the key schedules, but refer the reader to [9]
for complete details.
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For Simon, if we let the key value be k0 , . . . , km−1
(m ∈ {2, 3, 4} is the number of key words), the se-
quence of round keys is k0 , k1 , k2 , . . . , where

ki+2 � ki ⊕ (I ⊕ S−1)S−3ki+1 ⊕ Ci ,

ki+3 � ki ⊕ (I ⊕ S−1)S−3ki+2 ⊕ Di ,

ki+4 � ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1) ⊕ Ei ,

depending on whether m is 2, 3, or 4, respectively.
The values Ci , Di , and Ei are round constants which
serve to eliminate slide properties; we omit discus-
sion of them here. I is the n × n identity matrix.

Like Simon, Speck has 2-, 3-, and 4-word key sched-
ules. Speck’s key schedules are based on its round
function, as follows. We let m be the number ofwords
of key, and we write the key as (`m−2 , . . . , `0 , k0). We
then generate two sequences ki and `i by

`i+m−1 � (ki + S−α`i ) ⊕ i and
ki+1 � Sβki ⊕ `i+m−1.

The value ki is the ith round key, for i ≥ 0. Note the
round counter i here which serves to eliminate slide
properties.

4 Design Notes

E�ciency and security are competing goals in crypto-
graphic design, and understanding how to strike the
right balance is the primary challenge faced by a de-
signer. If security is not important, e�ciency is easy:
do nothing! Conversely, if e�ciency doesn’t matter,
then it makes sense to build a round function using
the most secure cryptographic components available,
and then iterate an absurdly large number of times.
But in the real world both of these things matter, and
we’d like to design algorithms that are maximally
e�cient, while still providing the advertised level of
security, as determined by the key size.
There is an important intellectual challenge asso-

ciated with understanding optimally secure crypto-
graphic components such as 8-bit S-boxes. However,
we would argue that the way to design e�cient cryp-
tography, particularly cryptography for constrained
platforms, is to forgo them in favor of very sim-
ple components, iterating an appropriate number of
times to obtain a secure algorithm. Such simple com-
ponents are by their nature cryptographically weak,
making them unappealing to some designers. But

simplicity enables compact implementations, and de-
ciding on appropriate numbers of rounds is possible
with analysis.

The question is whether there is something inher-
ently wrong with this approach. It seems clear to us
that there isn’t: After all, a complex round function
can always be factored into a composition of simple
functions (transpositions, even), and so every block ci-
pher is a composition of simple functions. It’s just that
in general the decomposition into simple functions
is not useful to an implementer, because the factors
tend to be unrelated, and so there is no associated
e�cient implementation of the algorithm. Viewed
this way, we could imagine that Simon and Speck are
based on complex round functions—a “round” in this
sense may in fact mean eight of the usual rounds—
but we’ve worked to make those complex round func-
tions factor into identical functions, at least up to the
translations by round key.
We now discuss in a bit more detail the thinking

that went into the design of Simon and Speck.

Nonlinear and Linear Components

Most designers of lightweight block ciphers employ S-
boxes to provide nonlinearity; a notable feature of Si-
mon and Speck is their lack of dependence on S-boxes.
The appeal of S-boxes is that, when used as a part
of a substitution-permutation network (SPN), they
allow for relatively easy security arguments, at least
with respect to standard attacks. But for e�ciency
on constrained platforms, we believe that these sorts
of designs are not optimal. We prefer to increase the
one-time work necessary to do the cryptanalysis, in
order to reduce the every-time work of encryption
and decryption.
Lightweight block ciphers often use bit permuta-

tions as part of an SPN. The role of these bit per-
mutations is to spread bits around in some optimal
manner, and therefore allow SPN-style security argu-
ments. If the target platform is an ASIC this is a per-
fectly reasonable thing to do, as such permutations
are essentially free. But if we care about software
implementations at all, then extreme care must be
taken to ensure that the bit permutation can be done
e�ciently on a microprocessor. The bit permutations
we use are all circular shifts, which are easy to e�ect
on just about any platform. While we lose something
in di�usion rates as compared with more general
bit permutations, we are able to achieve signi�cant
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improvements in software performance, even when
increased round numbers are factored in.
One might argue that arbitrary bit permutations

are �ne in software, because e�cient bit-sliced im-
plementations are possible. However, it doesn’t
seem wise to rely on these, as they have drawbacks—
including relatively expensive data transpose oper-
ations on the plaintext and ciphertext, and the in-
ability to e�ciently encrypt single plaintext blocks
(and single encryptions will be necessary for many
lightweight communication and authentication pro-
tocols). In addition, the code size and the RAM re-
quirements tend to be quite large, making such im-
plementations unsuitable for some lightweight appli-
cations.

Parameters

Both Simon and Speck are equipped with a single
set of rotation parameters for all variants (with the
exception of the smallest version of Speck, which has
its own set of parameters). Besides allowing a suc-
cinct description of the family, this uniformity helps re-
duce the risk of coding errors whereby a programmer
might mistakenly use the Simon 64/128 parameters,
say, for Simon 128/128.

Many microcontrollers only support shifts by a
single bit; the result is that a rotation by two bits
is twice as expensive as a rotation by one bit. On
the other hand, 8-bit rotations tend to be easy on 8-
bit microcontrollers, as they correspond to simple
relabelings of registers, and well supported through
byte-swap or byte-shu�e operations on machines
with largerword sizes. So for e�ciency on a variety of
software platforms, it’s best to keep rotation amounts
as close to multiples of eight as possible.
The Simon and Speck rotation amounts were care-

fully chosen with this consideration in mind. Both
algorithms employ 8-bit rotations, and the other rota-
tions used are as close to multiples of 8 as we could
make them, without sacri�cing security.

In-place Operations in Software

Speck’s superior performance in software is due in
part to the fact that it’s possible to implement it en-
tirely with in-place operations, and so moves are un-
necessary. This can be seen in the following pseu-
docode for a round of Speck:

x = RCS( x , α )
x = x + y
x = x ⊕ k
y = LCS(y , β )
y = y ⊕ x

Simon requires some moves, because multiple op-
erations are done on a single word of intermediate
ciphertext, and copies need to be made. This fact
(combined with the fact that Simon uses a weaker
nonlinear function than Speck, and so more rounds
are required), makes Speck outperform Simon in soft-
ware.

Encrypt/Decrypt Symmetry

To enable compact joint implementations of the en-
cryption and decryption algorithms, it’s best to make
encryption look like decryption. Simon decryption
can be accomplished by swapping ciphertext words,
reading round keys in reverse order, and then swap-
ping the resulting plaintext words.
We note that Simon beats Speck in this regard

(Speck decryption requires modular subtraction, and
the rotations are reversed), because its Feistel step-
ping performs all operations on one word, which is
precisely why its software implementations required
moves.

Key Schedule Considerations

Speck’s reuse of the round function for key schedul-
ing allows for reductions in code size and improves
performance for software implementations requiring
on-the-�y round key generation.

Because Simonwas optimized for hardware, it does
not take advantage of this software-oriented opti-
mization. Instead, it uses a key schedule which was
designed to be a little lighter than the round function.

Of course it is possible to have key schedules even
simpler than the ones we have used for Simon and
Speck; for example, one can produce round keys sim-
ply by cycling through key words. This leads to the
possibility of “hard-wiring” the key in an ASIC im-
plementation, thereby saving considerably on area
by eliminating any �ip-�ops needed for holding the
key. But such an approach, when used together with
very simple round functions, can lead to related-key
issues, and we therefore avoided it.
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We believe the ability to use hard-wired key is of
limited utility, and it runs counter to our �exibility
goal by optimizing for a particular sort of use, per-
haps to the detriment of other uses in the form of
increased numbers of rounds or cryptanalytic weak-
nesses. Our key schedules do the minimal mixing
that we thought would eliminate the threat of related-
key attacks.

Both block ciphers include round constants, which
serve to eliminate slide issues. Speck, where design
choices were made to favor software over hardware,
uses one-up counters. Simon achieves a small savings
in hardware (at a small cost in software) by using a
sequence of 1-bit constants generated by a 5-bit linear
register.
As a �nal point, we omit plaintext and ciphertext

key whitening operations, as such operations would
increase circuit and code sizes. This means that the
�rst and last rounds of the algorithms do nothing
cryptographically, beyond introducing the �rst and
last round keys.

We conclude this section by pointing to some work
that we think helps to validate our approach to the
design of Simon and Speck. Designing an algorithm
to perform well on a particular platform is a straight-
forward proposition; we believe the real test is per-
formance on unintended platforms, in particular plat-
forms which may not even exist today.

Aswe’ve noted, it’s hard to get a handle on an issue
like this, but we have one data point that’s interest-
ing: Because of its simplicity (more precisely, its low
multiplicative depth), Simon has been picked up by
more than one team [38], [23] for use in the decidedly
non-lightweight world of homomorphic encryption.

5 Implementations on Constrained
Platforms

In this section, we quickly summarize implementa-
tion results for Simon and Speck on constrained plat-
forms, beginning with ASICs and FPGAs, and then
moving on to microcontrollers.

ASICs

Until recently, designers of lightweight cryptography
primarily took aim at ASIC performance. As a re-
sult there are a number of excellent ASIC designs
(see Table 3), all of which can be implemented with
substantially less area than the 2400 GE required by

AES. Much of this improvement is possible because
of the hardware complexity of AES components, in
particular its S-box. But a signi�cant gain comes from
the recognition that a 128-bit block size is not always
required for constrained applications, and there is a
considerable area savings to be had by reducing to a
64-bit block.
As we’ve noted, care must be taken with an ASIC

design, or else software performance can su�er. Soft-
ware performance is indeed a weakness of a num-
ber of existing algorithms. Simon and Speck have
improved on the state of the art for hardware im-
plementation, while also o�ering leading software
performance.

Simon has ASIC implementations with the smallest
areas achieved to date, when compared with block
ciphers with the same block and key size and with
�exible key. This is because the logic required for a
bit-serial implementation (meaning that only one bit
of the round function is computed per clock cycle)
is minimal: computing a bit of the round function
requires just one AND and three XORs, and so there
isn’t much room for further improvement. There is
of course additional logic required for control (which
we’ve also worked to minimize), and a few XORs are
needed in the key schedule, etc., but for the smallest
implementations, almost all the area is used by the
�ip-�ops required to store the state.

Because the logic required to compute a bit of the
round function is so small, implementations of Simon
scale nicely: two bits or more can be updated in one
clock cycle with minimal impact on area.

Speck is not far behind Simon with respect to small
ASIC implementations. The primary di�erences are
that Simon’s AND gets replaced with a full adder, and
some additional multiplexing is required because of
how the state updates. Its area also scales well, but
not quite as well as Simon’s.

In the remainder of this section, we provide area
and throughput data to illustrate the ASIC perfor-
mance of Simon and Speck.
Our ASIC implementations were done in VHDL

and synthesized using Synopsys Design Compiler
11.09-SP4 to target the ARM SAGE-X v2.0 standard
cell library for IBM’s 8RF 130 nm (CMR8SF-LPVT)
process. Worst-case operating conditions were as-
sumed. We did not proceed to place and route: in
an actual chip there will be interconnect delays that
haven’t been accounted for, and these delays will
likely signi�cantly a�ect clock speeds. But we note
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that most work in this �eld—in particular the work
cited in this paper—uses this approach, similarly ig-
noring interconnect delays, so this shouldn’t bias our
comparisons.
The smallest �ip-�op available to us had an area

of 4.25 GE. For a block cipher with a 64-bit block and
128-bit key, this means at least 4.25 · 192 � 816 GE
are required for �ip-�ops. Our bit-serial implemen-
tations of Simon 64/128 and Speck 64/128 have ar-
eas of 958 GE and 996 GE, respectively. This means
that they require (at most) 958 − 816 � 142 GE and
996 − 816 � 180 GE, respectively, for all the logic
required to compute the round function, key sched-
ule, and do the control, which includes loading the
plaintext and reading out ciphertext. And of the
142 GE not devoted to storing the cipher and key
for Simon 64/128, 11 · 4.25 � 46.75 GE, or about a
third, are �ip-�ops needed to count rounds in order
to signal the end of encryption.

Table 3 compares size-optimized ASIC implemen-
tations of Simon, Speck, and some other prominent
block ciphers, listing the area and throughput at a
�xed 100 kHz clock rate. Note that we show our ab-
solute smallest implementations of Simon and Speck,
with correspondingly low throughputs. Through-
puts can be doubled, quadrupled, etc., for small area
increases. See [9] for data regarding additional imple-
mentations. For example, quadrupling the through-
put for Simon 128/128 and Speck 128/128 increases
the area by just 29 GE and 116 GE, respectively.
An important caveat is that these comparisons

consider implementations done by di�erent authors,
with perhaps di�erent levels of e�ort, and using dif-
ferent cell libraries, so it’s hard to make really mean-
ingful inferences regarding small di�erences in the
table.

Large di�erences, on the other hand, are meaning-
ful, and comparing Simon and Speck with AES shows
the dramatic savings possible with a lightweight
block cipher. At the same security level, Simon and
Speck nearly halve AES’s 2400 GE area to 1234 and
1280 GE, respectively. Keeping the same 128-bit key
size and reducing the block size to 64 bits further
drops the areas to 958 and 996 GE. Using smaller
block or key sizes results in even greater area reduc-
tions.
Some applications won’t require areas to be min-

imized; rather it may be important to maximize ef-
�ciency (throughput divided by area, in kbps/GE).
The implementations in Table 3 have low e�ciency,

size algorithm area tput ref
(GE) (kbps)

48/96 Simon 739 5.0 [9]
Speck 794 4.0 [9]

64/80 TWINE 1011 16.2 [56]
PRESENT 1030 12.4 [64]
Piccolo 1043 14.8 [51]
Katan 1054 25.1 [22]
KLEIN 1478 23.6 [33]

64/96 Simon 809 4.4 [9]
Speck 860 3.6 [9]
KLEIN 1528 19.1 [33]

64/128 Simon 958 4.2 [9]
Speck 996 3.6 [9]
Piccolo 1334 12.1 [51]
PRESENT 1339 12.1 [64]

96/96 Simon 955 3.7 [9]
Speck 1012 3.4 [9]

128/128 Simon 1234 2.9 [9]
Speck 1280 3.0 [9]
AES 2400 56.6 [40]

Table 3: ASIC performance comparisons at a 100 kHz
clock speed optimized for size.

but e�ciency can easily be raised by doing additional
computation during each clock cycle, in e�ect to be-
gin to amortize away the �xed cost of storing the
state. The �exibility of Simon and Speck mean that
many sorts of implementations are possible. See Sec-
tion 6 for data regarding e�cient implementations;
in particular implementations which compute a full
round per clock cycle, and implementations which
fully unroll the algorithms.

We conclude this section by discussing latency,
i.e., the time required to encrypt one plaintext block.
Low-latency implementations of lightweight block ci-
phers have recently beenmuch discussed; the leading
voices have been the authors of [19]. The algorithm
they propose, PRINCE, is a clever design which can
encrypt in one clock cycle at the impressively small
area of 8679 GE1 [19]. (A slightly latency, but slightly
larger, implemention is shown in Table 4.)

It would appear that Simon and Speck are not low-

1We note that registers were not counted in this total, and any
real system would need to register the data, thus increasing the
area by about 10% to around 9500 GE.
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algorithm area latency clock
(GE) (ns) (MHz)

PRINCE 9522 22.9 43.7
Simon 64/128 9516 22.88 437.1

5072 31.90 344.9
Speck 64/128 6377 52.36 191.0

Table 4: Low-latency implementations of PRINCE,
Simon, and Speck at 130 nm. The Simon and Speck
implementations count 64+128 �ip �ops; the PRINCE
implementation doesn’t.

latency designs, because they require many rounds.
However, because of their simplicity, it’s possible
to compute multiple rounds per clock cycle, while
maintaining reasonably good clock speeds. Indeed
for Simon 64/128, at the same feature size, we’ve
found an implementation that almost exactlymatches
PRINCE’s latency and area; it implements the combi-
national logic for 5 rounds, and encrypts in b 445 c � 9
cycles. In spite of its need to compute carry chains,
Speck can get a factor of 2.5 in latency, at a signi�-
cantly smaller area.2 (This implementation computes
3 rounds per clock cycle for a total of 27

3 + 1 � 10
cycles—our current Speck implementation requires
a load cycle, which it should be possible to elimi-
nate with a little more work.) Of course these are
not single-cycle implementations, but we don’t see a
compelling case that such implementations—at what
seem to be arti�cially-constrained clock speeds, and
on devices where clocks are easy to generate—are
necessary. See Table 4, where one Speck and two
Simon implementations are shown; many other laten-
cy/area trade-o�s are possible but are omitted here.

FPGAs

We’ve shown that it’s possible to realize considerable
reductions in ASIC area by using Simon or Speck
instead of an algorithm such as AES. The advantages
of Simon and Speck become even more pronounced
on FPGA platforms.

In this section we brie�y discuss implementations
of the algorithms on the Spartan-3, a low-end FPGA
which is often used by cryptographers for compar-

2The PRINCE implementation supports decryption, while the
Simon and Speck implementations that we consider here don’t. But
for applications requiring extremely low latency, it’s likely that
encrypt-only modes would be preferred.

size algorithm area tput ref
(slices) (Mbit/s)

64/128 Simon 24 9.6 †

Simon 138 512 †

Speck 34 7.0 †

Speck 153 416 †

PRESENT 117 28.4 [63]
PRESENT 202 508 [45]

128/128 Simon 28 5.7 †

Simon 36 3.6 [8]
Simon (DPA) 87 3.0 [48]
Simon 197 567 †

Simon 375 867 †

Speck 36 5.0 †

Speck 232 455 †

Speck 401 920 †

AES 184 36.5 [26]

Table 5: FPGA performance comparisons on low-cost
Xilinx Spartan FPGAs. All implementations are on
the Spartan-3. Results marked with a † are our work.
The Simon implementation labeled (DPA) is resistant
to �rst-order DPA.

isons. Table 5 presents some of these results for AES
and PRESENT, alongside our results for Simon and
Speck.

On this platform, the smallest reported implemen-
tation ofAES-128 requires 184 slices [26]. Remarkably,
Simon 128/128 can be implemented in just 28 slices
(15% of the size of AES), and Speck 128/128 can be
done in 36 slices (20% of AES’s size). Comparisons
with PRESENT also show dramatic area reductions:
PRESENT-128 requires 117 slices; the comparable Si-
mon 64/128 and Speck 64/128 algorithms require 24
and 34 slices—21% and 30% of the area—respectively.

If higher throughputs are required, area reductions
are still possible, as can be seen in Table 5.

Other authors have reported Simon implementa-
tion results [13, 8, 34, 48] which are in line with our
results, and extend them. In [34], it is shown that a
joint implementation of all 10 versions of Simon can
be done using 90 slices on the Spartan-3, which is
about half the size of a single AES-128 implementa-
tion. The 87-slice implementation of Simon 128/128
described in [48] provides resistance to �rst-order
di�erential power analysis, again at about half the
area of an unprotected AES-128 implementation.
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AVR MSP430
size algorithm ROM RAM cost ROM RAM cost

(bytes) (bytes) (cyc/byte) (bytes) (bytes) (cyc/byte)
e�cient implementations

64/80 PRESENT [31] 936 0 1340 - - -
64/128 Speck 218 0 154 204 0 98

Simon 290 0 253 280 0 177
TWINE [39] 1208 23 326 - - -

128/128 Speck 460 0 171 438 0 105
AES-128 [10] 970 18 146 - - -
Simon 760 0 379 754 0 389

fast implementations
64/128 Speck 628 108 122 556 0 89

Simon 436 176 221 324 0 153
128/128 AES-128 [42, 21] 1912 432 125 3147 176 132

Speck 452 256 143 602 0 101
Simon 510 544 337 1108 0 379

Table 6: Assembly implementations on the 8-bit AVR ATmega128 and 16-bit MSP430 microcontrollers.

Microcontrollers

We turn now to software implementations on 8-bit,
16-bit, and low-end 32-bit microcontrollers. Table 6
shows ROM and RAM usage and encryption cost (in
cycles/byte) for assembly implementations of Simon,
Speck, and a few other algorithms [42, 43]. The �rst
half of the table shows implementations optimized
for e�ciency3 and the second half implementations
optimized for speed.
The data for PRESENT exempli�es the potential

di�culty of adapting hardware-oriented algorithms
to software; this algorithm is unable to match the
performance of AES, and is easily beaten by Simon
and Speck in both throughput and code size.4
For high-speed applications on the 8-bit AVR mi-

crocontroller, AES-128 is the fastest 128-bit block ci-
pher we know of, beating Speck 128/128 by about
17%. However, because of its low memory usage,
Speck 128/128 has higher e�ciency than AES-128.
And as key sizes increase, Speck overtakes AES in
throughput because of how round numbers scale.
Moreover, Speck 64/128, which has the same key size

3We de�ne e�ciency to be encryption throughput in bytes per
cycle, divided by ROM + 2 · RAM. See [10].

4We note that there is a faster bit-sliced implementation of
PRESENT [44], which encrypts at 370.875 cycles per byte, plus
about 40 cycles per byte for data transposition operations. But it’s
much larger, requiring 3816 bytes of ROM and 256 bytes of RAM.

as AES-128, but a smaller block, is both smaller and
slightly faster than AES-128.
On the 16-bit MSP430, Speck is the highest in e�-

ciency and throughput. It is 23% faster thanAES, uses
no RAM and 81% less ROM. In [21] this performance
advantage resulted in a 35% lower energy consump-
tion compared to AES. Speck 64/128 consumes even
fewer resources for the many applications where a
smaller block size is acceptable.
Others’ work supports our conclusions. In [28], C

implementations of AES, Simon 64/96, Speck 64/96,
and ten other lightweight algorithms are com-
pared on the 8-bit AVR, 16-bit MSP430, and 32-bit
ARM Cortex-M3 microcontrollers. Algorithms were
ranked in two usage scenarios using a �gure of merit
balancing performance, RAM, and code size across
the three platforms. Speck and Simon place �rst and
fourth in a large data scenario and �rst and second
in a scenario involving encryption of a single block.
On the 32-bit ARM processor, the authors of this

paper �nd Speck and Simon to be simultaneously the
smallest and fastest block ciphers for both of the sce-
narios they consider. We point out, however, that
their C implementations of AES are faster than those
of Speck on the 8-bit and 16-bit platforms by about
a factor of two, presumably due to the GNU C com-
piler’s poor handling of rotations. Implementing the
rotations in assembly should lead to greatly improved
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size algorithm area throughput e�ciency clock implementation
(GE) (Mbps) (kbps/GE) (MHz)

64/128 Simon 1751 870 497 625 iterative
44322 34243 773 535 key-agile pipeline
35948 45070 1254 704 non-key-agile pipeline

Speck 2014 634 315 307 iterative
48056 23908 498 374 key-agile pipeline
39992 29722 743 464 non-key-agile pipeline

128/128 Simon 2342 1145 489 626 iterative
146287 106961 731 836 key-agile pipeline
104790 87798 838 686 non-key-agile pipeline

Speck 3290 880 268 234 iterative
98003 41531 424 324 key-agile pipeline
86976 52162 600 408 non-key-agile pipeline

128/256 Simon 3419 1081 316 625 iterative
233204 100078 429 782 key-agile pipeline
110875 87193 786 681 non-key-agile pipeline

Speck 5159 1287 249 382 iterative
163770 51705 316 404 key-agile pipeline
97432 52056 534 407 non-key-agile pipeline

Table 7: E�cient, high-throughput 130 nm ASIC implementations of Simon and Speck

performance for our rotation-dependent designs.

It is our opinion that for lightweight applications
onmicrocontrollers, if high performance is important,
then Simon and Speck should be coded in assembly:
because of the simplicity of the algorithms, these
implementations are pretty straightforward, and they
can improve performance by up to a factor of �ve over
C implementations. Details on such implementations
on the AVR microcontroller can be found in [10].

6 Implementations on Higher-end
Platforms

Constrained devices will need to communicate with
other, similar devices, but will also need to com-
municate with higher-end systems. These systems
may perform functions such as aggregating sensor
or inventory data. To facilitate these sorts of interac-
tions, and in particular to support e�cient commu-
nication with large numbers of constrained devices,
lightweight algorithms will need to perform well on
both lightweight and “heavyweight” platforms.

High-throughput ASIC Implementations

Table 7 shows a sample of higher-throughput imple-
mentations on the same 130 nmASIC process used to
generate the Simon and Speck data in Table 3. Decryp-
tion is not supported in these implementations, but
for Simon, in particular, it could be added at low cost
due to the similarity of the encryption and decryption
algorithms.

For each algorithm and block/key size an iterative
and two fully-pipelined encryption implementations
are presented. In the iterative case, a single copy of
the round function is used to loop over the data for a
number of cycles equal to the total number of rounds.
In the fully-pipelined case, a number of copies of

the round function equal to the number of rounds is
implemented, with registers in between. This allows
a complete block of ciphertext to be output every
clock cycle, once the pipeline is full. One of the fully-
pipelined implementations is key-agile, meaning that
every plaintext block to be encrypted can have its own
associated key. The second fully-pipelined implemen-
tation is not key-agile: it saves area by requiring that
all blocks in the pipeline use the same key, so that only
one instance of the key schedule is necessary, rather
than one for each level of the pipeline. Changing key

10
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Figure 1: Intel Xeon E5640 throughput in cycles/byte (smaller is better) for messages from 1–4096 bytes.

for this second sort of implementation requires the
new round keys to be loaded and the pipeline to be
�ushed.

The �exibility of Simon and Speck enables all sorts
of implementations in between these performance
extremes (e.g., iterated versions computing multiple
rounds per clock cycle, and pipelined implementa-
tions with multiple rounds between stages), but we
do not have the space to include those results here.

Simon and Speck have compelling advantages for
high-throughput ASIC applications. This seems clear,
even in view of the di�culties inherent in comparing
implementations using di�erent technologies and
libraries. As a point of comparison, we consider
the CLEFIA block cipher.5 The designers of that
algorithm report on a joint implementation [54] of
the encryption and decryption algorithms6 which
has an e�ciency of 401, using a 90 nm technology
(9339 GE, 3.74Gbit/s at 572MHz). This is excellent
performance relative to other block ciphers; indeed
CLEFIA realizes the “world’s highest hardware gate
e�ciency” [53].

We did ASIC implementations of Simon and Speck
at this same 90 nm feature size. (Note that these re-
sults are not reported in Table 7, where the feature
size is 130 nm.) Speck has a 8089 GE (encrypt-only)
implementation, running at 1.404GHz, for a through-
put of 10.6Gbit/s and an e�ciency of 1307. Simon
is even better: for 8011 GE, an encrypt-only version

5CLEFIA is a lightweight ISO standard which supports high-
throughput ASIC implementations.

6CLEFIA’s symmetry means that there is little overhead in
providing decryption functionality. On the other hand, the area
won’t go down by much for an encrypt-only version.

runs at 3.066GHz, for a throughput of 17.1Gbit/s
and an e�ciency of 2130. There may be di�erences
in cell libraries, etc. (and we note again that intercon-
nect delays are not considered in our work or in the
CLEFIA work), but a factor of 2130

401 > 5 improvement
is surely signi�cant.

x86 and ARM Implementations

We have recently studied implementations of Simon
and Speck as stream ciphers in counter mode on sev-
eral higher-end 32-bit and 64-bit processors. These
processors are likely to be used in systems such as
smartphones, tablets, and servers communicating
with constrained devices. We considered the 32-
bit Samsung Exynos 5 Dual (which includes NEON
SIMD instructions), based on an ARM Cortex-A15,
and two 64-bit Intel processors: the Xeon E5640 and
Core i7-4770, representing theWestmere andHaswell
architectures, respectively. Performance was bench-
marked using SUPERCOP [12], making for fair com-
parison with the performance of highly-optimized
implementations of AES and ChaCha20, in particular.
The Simon and Speck code, all written in C, is avail-
able on GitHub [62]. Figure 1 illustrates the detailed
data produced by SUPERCOP.

The overall results are similar on the ARM and the
x86 platforms. The C implementations of Simon have
better overall performance than the C implementa-
tions of AES for 256-bit keys and slightly worse per-
formance for 128-bit keys. The C implementations of
Speck 128/256 have better overall performance than
the best C implementations of ChaCha20, a stream
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cipher especially noted for its speed.
Finally, we note that extremely high-performance

instantiations of AES are possible on certain pro-
cessors, for example using Intel’s hardware AES-
NI instructions. Despite this, Speck in software can
come close to matching this high performance: on
the Haswell architecture our C implementation of
Speck 128/256 is only 33% slower than the AES-NI
version of AES-256.

7 Side-Channel Mitigations

The most secure algorithm can become vulnerable
to attack if it is implemented in a way that leaks in-
formation because power usage or execution time
(or something else) is correlated to secret key values.
Understanding these sorts of side-channels and how
to eliminate them is an important line of research,
and it’s particularly relevant for constrained devices,
which tend to lack physical countermeasures.

We very brie�y discuss side-channel attacks and
mitigations, and note some work in this area involv-
ing Simon and Speck.
One sort of side-channel attack exploits key-

dependent variations in encryption times to recover
secret information. Algorithms which are imple-
mented using lookup tables, e.g., AES, on processors
with cache memory can be particularly vulnerable to
these cache-timing attacks [18]. Since Simon and Speck
have no look-up tables, they are naturally immune to
this type of attack.
Perhaps the most important type of side-channel

attack uses key-dependent power emanations. Imple-
mentations of block ciphers typically are susceptible
to such di�erential power analysis (DPA) attacks unless
countermeasures are taken. Because of Simon’s low-
degree round function, masking countermeasures are
especially e�cient; see [49, 48]. In particular, the
second of these papers demonstrate a threshold im-
plementation of Simon 128/128 which provides re-
sistance to �rst-order DPA for 87 slices on a Spartan-3
FPGA. This makes it less than half the size of the
smallest reported unprotected Spartan-3 implemen-
tation of AES, and 25% smaller than unprotected im-
plementations of PRESENT-128. (And PRESENT-128
is not exactly a comparable algorithm, since it has a
block size of 64 bits, and the version of Simon they
consider has a block size of 128 bits.)

We are not aware of similar work to protect Speck,
but there are other countermeasures that apply

equally to both Simon and Speck. One such mea-
sure aims to confound DPA by partially unrolling an
algorithm [14]. We’ve done such implementations of
Simon and Speck, but don’t have the space in this pa-
per to discuss them. Brie�y, for the 64-bit block and
128-bit key size, there is an ASIC implementation of
Simon that computes four full rounds per clock cycle
and requires 3290 GE. A similar implementation of
Speck computes three rounds per clock cycle and has
an area of 3120 GE. We have not done side channel
analysis for these implementations.
Another mitigation uses frequent key updating

[57]. The tiny hardware implementations of Simon
and Speck in Tables 3 and 5 are key agile, meaning the
key can be changed with each run without incurring
a signi�cant performance penalty, and so they would
be good candidates for use with this strategy.

8 Conclusion

We have sought in this paper to demonstrate the sort
of performance that Simon and Speck can achieve.
Most importantly, Simon and Speck have an edge
over other algorithms not in terms of head-to-head
comparisons on particular platforms (although it ap-
pears that on most platforms one of Simon or Speck
is the best existing algorithm, and the other is not
far behind), but by virtue of their �exibility. This
�exibility is a consequence of the simplicity of the
designs, andmeans the algorithms admit small ASIC,
FPGA, microcontroller, and microprocessor imple-
mentations, but can also achieve very high through-
put on all of these platforms. Their �exibility makes
Simon and Speck ideal for use with heterogeneous
networks, where algorithms optimized for particular
platforms or usages will not be appropriate.
The simplicity of Simon and Speck has additional

bene�ts. First, they are very easy to implement, and
e�cient implementations can be had for minimal
work; this is in marked contrast to the situation for
algorithms such as AES, where a decade of research
was required to �nd near-optimal implementations.
Coding errors are much easier to avoid for simple
algorithms. In addition, simplicity enables relatively
cheap side-channel mitigations, and makes the al-
gorithms attractive for unanticipated uses (such as
homomorphic encryption). Last, but not least, sim-
plicity makes the algorithms attractive targets for
cryptanalysis. Complexity in this regard presents a
barrier to entry, and this tends to limit the amount of
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scrutiny that an algorithm receives. Because of their
simplicity (and perhaps because of their source!), Si-
mon and Speck have been quite thoroughly vetted by
the cryptographic community in the two years since
their publication.

Simon and Speck are also unique among existing
lightweight block ciphers in their support for a broad
range of block and key sizes, allowing the cryptogra-
phy to be precisely tuned to a particular application.
We are hopeful that the approach we have taken

to the design of Simon and Speck means they will
continue to o�er high performance on tomorrow’s
IoT devices.
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