
SCLPV: Secure Certificateless Public Verification for

Cloud Storage in Cyber-physical-social System

Yuan Zhanga, Chunxiang Xua, Shui Yub, Hongwei Lia, Xiaojun Zhanga

aSchool of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu, China

bthe School of Information Technology, Deakin University, Melbourne, Australia

Abstract

Cyber-physical-social system (CPSS) allows individuals to share personal in-
formation collected from not only cyberspace, but also physical space. This
has resulted in generating numerous data at a user’s local storage. Howev-
er, it is very expensive for users to store large data sets, and it also causes
problems in data management. Therefore, it is of critical importance to out-
source the data to cloud servers, which provides users an easy, cost-effective
and flexible way to manage data. Whereas, users lose control on their data
once outsourcing their data to cloud servers, which poses challenges on in-
tegrity of outsourced data. Many mechanisms have been proposed to allow
a third-party auditor to verify data integrity using the public keys of users.
Most of these mechanisms bear a strong assumption: the auditors are honest
and reliable, and thereby are vulnerability in the case that auditors are ma-
licious. Moreover, in most of these approaches, an auditor needs to manage
users certificates to choose the correct public keys for verification.

In this paper, we propose a secure certificateless public integrity verifi-
cation scheme (SCLPV). The SCLPV scheme is the first work that simul-
taneously supports certificateless public verification and resistance against
malicious auditors to verify the integrity of outsourced data in CPSS. A
formal and strict security proof proves the correctness and security of our
scheme. In addition, an elaborate performance analysis demonstrates that
our scheme is efficient and practical. Compared with the best of the exist-
ing certificateless public verification scheme (CLPV), the SCLPV provides
stronger security guarantees in terms of remedying the security vulnerability
of the CLPV and resistance against malicious auditors. At the same time, in
comparison with the best of integrity verification scheme achieving resistance

Preprint submitted to ePrint June 13, 2015

against malicious auditors, the communication cost between the auditor and
the cloud server in the SCLPV is independent of the size of the processed
data, meanwhile, the auditor in the SCLPV does not need to manage certifi-
cates.

Keywords:
Cyber-physical-social System, Cloud storage, Public integrity verification,
Certificateless, Resistance against malicious auditors

1. Introduction

Cyber-physical-social system (CPSS) has been envisioned as the next
phase of computing systems [1]. It combines measured elements of the physi-
cal world with manual human input, and seamlessly integrates physical com-
ponents with traditional social networks [2], Typically, CPSS allows users to
store and share information, locations and trajectories collected from per-
sonal devices, such as smart phones, sensors and so on. These extra data
from physical world, which are numerously generated by CPSS users and
collected by enterprised each day, are extraordinarily valuable not only to
individuals themselves, but also to enterprises to better understand people’s
daily activities, social areas and life patterns [3]. From data owners’ per-
spective, including both individuals and enterprises, outsourcing their data
to cloud servers is a wise and practical choice, because cloud service provides
users an efficient and flexible service to manage data. Such storage service
enables users to access the cloud-stored data remotely through the Internet
via different devices, without incurring substantial hardware, software and
personal costs involved in deploying and maintaining applications in local
storage [4], [5], [6], [7].

Although CPSS users enjoy the desirable features brought by the cloud
storage service, there are critical security challenging in data outsourcing.
Since CPSS users lose control on their data once outsourcing data to cloud
servers, the integrity of cloud-stored data faces serious threats. For example,
a cloud service provider may hide the fact that the cloud-stored data is cor-
rupted in order to maintain his reputation [8], [9], [10], [11]. Meanwhile, an
external adversary motivated by financial or political reward may be inter-
ested in distorting the outsourced data, but attempt to convince the users
that their data are still maintained intact [12].

The integrity of the outsourced data has become the major concern of

2

CPSS users. Therefore, it is vital to regularly verify the integrity of cloud-
stored data to react as early as possible in the case of data corruption. Some
approaches rely on users themselves to perform the verification [8], [10], [11],
[13], [14], [15]. However, these approaches are not suitable for CPSS, since
verifying the integrity of outsourced data requires additional online burden
and computation overhead, which are too expensive for CPSS users. In
CPSS, the overhead of using outsourced data should be minimized as much
as possible, such that a CPSS user is able to retrieve and use the data without
performing too many operations.

To ensure the integrity of the outsourced data and release the CPSS users’
computation and online burden, it is an easy and affordable way in practice
to employ an external and independent auditor to periodically verify the da-
ta integrity on behalf of CPSS users, which is called “public verification” [5],
[6], [16], [17]. The existing public verification schemes do not fit CPSS due to
the following reasons. First, these schemes assume that the auditor is honest
and cannot be corrupted. But this is a very strong assumption as corruption
of auditors could happen in practice. Second, most existing public verifi-
cation mechanisms require the auditor to manage the users’ certificates to
choose the correct public keys for verification. Nevertheless, certificate man-
agement, which includes revocation, storage, distribution and verification, is
very costly and cumbersome for applying in CPSS. In short, it is important
to study how to verify the integrity of outsourced data while addressing the
above problems.

Recently, Wang et al. [17] proposed the first certificateless public integrity
verification scheme (CLPV in short). In the scheme, auditor does not need
to manage users’ certificates. Meanwhile, the CLPV can thwart two types of
adversaries, noted as Type I adversary and Type II adversary, respectively.
With the CLPV, a Type I adversary, who does not have access to the master-
key issued by a Key Generation Center (KGC), but is capable of replacing the
public key of any entity with a value of his choice, could not forge legitimate
signatures. While a Type II adversary, who is able to access to the master-
key but cannot perform public key replacement, could not generate valid
signatures either. However, there is another case that is not considered in
the CLPV scheme: when an adversary does not have access to the master-key
but has the ability to obtain the secret key generated by the user himself, he
could impersonate the user and forge valid signatures. As a result, the CLPV
faces a serious security threat. We will show an attack example in Appendix
A. Moreover, in the CLPV, the auditor is assumed as honest, and hence the

3

CLPV is vulnerability in the case that auditors are malicious. Therefore, the
CLPV is hard to be widely applied in CPSS.

More recently, the first and the only attempt to verify the data integrity
against malicious auditor was studied by Armknecht et al. [18] in 2014. An
instantiation was proposed and named as Fortress. The Fortress has a great
advantage in terms of computation efficiency for verification. However, in the
Fortress, to verify the integrity of a set of cloud-stored data, the auditor has
to download the entire data set, and for each data block, the auditor has to
generate a signature, and finally uploads these signatures to the cloud server.
This model implies that the communication cost between the auditor and the
cloud server is proportional to the size of the processed data. Besides, in the
Fortress, after generating signatures, the auditor needs to convince the user
that the signatures computed by the auditor are correct. This procedure
uses a zero-knowledge-proof technique and resorts to the root certificate of a
certification authority. In other words, the auditor in the Fortress faces the
certificate management problem. These barriers have become a bottleneck
for the Fortress to be used in CPSS.

In this paper, we propose a secure certificateless public integrity verifica-
tion scheme (SCLPV in short) against malicious auditors for cloud storage in
CPSS. In the SCLPV scheme, a public auditor is able to verify the integrity of
outsourced data without retrieving the entire data set and managing the us-
er’s certificate. Meanwhile, to fight against malicious auditors, the SCLPV
requires CPSS users periodically check their auditors’ behavior. Further-
more, we extensively analyze the performance of the SCLPV scheme and
demonstrate that the SCLPV scheme is efficient and practical. Compared
with the Fortress by experiments and theory, our SCLPV scheme is more
practical in terms of communication cost. Furthermore, we also compare
the SCLPV scheme with two existing schemes [17], [9], which are vulnerable
against malicious auditors. According to the comparison results, we can see
that SCLPV provides much more security guarantees while keeping a decent
efficiency. Specifically, the contributions of this work are as follows.

• We point out the security vulnerability existing in the CLPV scheme
[17]. With the vulnerability, once an adversary obtains a part of the
user’s signing key, he can impersonate the user and forge legitimate
signatures.

• We propose the novel SCLPV scheme that enables a third-party au-
ditor to verify the integrity of cloud-stored data without managing

4

certificates in CPSS. We prove that the SCLPV can achieve secure
certificateless public verification, work against malicious auditors and
prevent collusion between any two involved parties through a formal
and strict security proof. To the best of our knowledge, the SCLPV
is the first mechanism that can resist malicious auditor and support
certificateless public verification for cloud storage in CPSS with full
proofs of security against arbitrary adversaries in the strongest model,
that of Shacham et al. [8], [9].

The rest of the paper is organized as follows. We discuss the related
work in Section 2. In Section 3, we present the system model, definition,
security model and preliminaries of our work. Then we provide the detailed
description of the SCLPV scheme in Section 4. In Section 5, we evaluate our
SCLPV scheme in terms of correctness, security and performance. We offer
further discussion in Section 6. Finally, we give the concluding remark of the
whole paper in Section 7.

2. Related work

2.1. CPS and CPSS

Cyber-physical system (CPS) integrates the cyber world where informa-
tion is exchanged and transformed, and the physical world we live in. A good
many of researchers have studied on CPS in the last decade [19]. A CPS in-
cludes physical dynamics, sensors, communication network and computation
controllers. The controllers are connected via the communication network to
control the physical dynamics and sensors and convey the measurement on
the system state.

Recently, researchers added human factors into CPS and presented a
new system – cyber-physical-social system (CPSS)[20]. Here, human factors
includes human knowledge, mental capabilities, sociocultural elements and
so on. Some aspects, such as command and control [20], recommendation [3]
and computing [21] in CPSS have been studied. However, there is few study
on data integrity in CPSS up to now.

2.2. Public verification

To ensure the integrity of data stored on an untrusted server, Juels et al.
[10] proposed ”proof of retrievability” (POR) technique. However, they do
not consider the public verification. Ateniese et al. [11] first considered public

5

verification in their ”provable data possession” (PDP) model. Shacham et al.
[8] proposed the first compact POR scheme that support public verification.
Following up the Shacham et al.’s work, several public verification schemes
have been proposed [4], [5], [6], [9]. These schemes build upon a homomor-
phic signature technique and resort to a fully trusted third-party auditor to
verify the integrity of cloud-stored data on behalf of the cloud user without
downloading the entire data set. With these schemes, the auditor needs to
manage the cloud user’s certificate to choose the correct public parameters
for verification. To remove the certificate management problem, Wang et al.
[17] proposed the first certificateless public integrity auditing scheme. With
the scheme, the auditor is still considered as an honest entity and does not
need to manage the user’s certificate.

All the aforementioned schemes mainly focus on verifying the integrity of
cloud-stored data by resorting to a fully trusted auditor. However, it is fair
to say that, up to [18], how to resist against a malicious auditor is an open
problem.

In this paper, we will design a certificateless public integrity verification
mechanism against malicious auditors for CPSS. Our approach can achieve
much lower communication cost compared with Fortress [18]. In addition,
our approach also can address the security vulnerability existing in the CLPV
[17].

3. Formulation and preliminaries

3.1. Modelling SCLPV

In CPSS, the users collect data from cyberspace and physical space, and
outsource their data to cloud server. In our SCLPV scheme, we mainly
focus on how to efficiently verify the integrity of outsourced data in CPSS.
Therefore, we omit the data collection in our SCLPV scheme. There exist
four different entities in the SCLPV, as shown in Fig. 1.

1. User. The user is the data owner, who needs flexibly to access his data
in the cloud. He has an appeal that checking the integrity of his cloud-stored
data. However, due to limited condition, the user cannot check the data
integrity by himself. Therefore, the user will resort to a third-party auditor
(TPA) to perform the verification work. From the cloud server perspective,
the user may upload false information to it.

2. Cloud Server. The cloud server, which is managed by the cloud service
provider, provides cloud storage services, it has not only significant storage

6

Figure 1: System Model

capability, but also a massive amount of computing power. However, the
cloud server may be aborted. This means that the cloud server will follow the
prescribed routine except for profit-seeking. We want to further stress that
for the cloud service provider, ”profit-seeking” means that either reducing
the storage overheads or hiding data loss incidents so as to maintain his
reputation without increasing the storage overheads.

3. Third-party Auditor (TPA). The TPA, who has expertise and capabil-
ities that the user does not, can verify the integrity of the cloud-stored data
when needed. It feeds back the verification result to the user and the cloud
server. In the SCLPV, we consider that the TPA may be aborted similar
to the cloud server. It means that the TPA may hide an incident that the
cloud-stored data has been corrupted to the user. Meanwhile, the TPA may
fabricate a verification result to circumvent the cloud server. Therefore, the
TPA should be liable for its verification result and it can prove that all of
verification work has been executed correctly.

4. Key Generation Center (KGC). The KGC is controlled by an authority,
and therefore trusted by the users, the cloud server and the TPA. The KGC
generates a system parameter set. And based on the corresponding identity,
the KGC further generates a partial private key of the user.

A formal definition of the SCLPV is given in Definition 1.
Definition 1: The SCLPV consists of six algorithms, Setup, Store,

ChalGen, ProGen, VerPro, CheckLog.
Setup. This randomized algorithm takes the security parameter as input

7

and outputs a system parameter SysPara, the user’s signing key sskU and
the corresponding verification key spkU . The private key is made up of
two parts: partial-private key and secret key. The partial-private key is
generated by the KGC, and the secret key is generated by the user himself.
For simplicity, we consider that any involved entity possesses the public keys
of the user at the end of this algorithm.

Store. This randomized algorithm takes the secret parameters of the
entities and a file F as input, outputs a file F̃ to be stored in the cloud. F̃
includes the file F consisted of n blocks, a file tag τ and signatures of all the
data blocks {σi}i∈[1,n]. After receiving F̃ from the user, the cloud server needs

to confirm that F̃ has been uploaded correctly. What we want to emphasize
here is that at the end of this algorithm, some necessary parameters and
agreements have been determined and established. For example, with the
security parameter, the user and the TPA determine the period of verification
and the number of data blocks to be verified.

ChalGen. This randomized algorithm takes the security parameter and
current time as input and outputs a challenging message. The TPA gen-
erates and issues the challenging message to the cloud server to verify the
integrity of F̃ . Note that the TPA may be corrupted, the challenging mes-
sage cannot be determined by its own. Meanwhile, there may be collusion
between any two involved parties, the challenging message cannot depend on
interactive sampling among two parties. Therefore, the challenging message
is determined by a time-based paseudorandom source, which guarantees the
randomness and unbiasedness of the challenging message.

ProGen. This randomized algorithm takes the challenging message and
F̃ as input and outputs a proof information. The proof information is gen-
erated by the cloud server to prove that F̃ is still correctly stored and main-
tained.

VerPro. This deterministic algorithm takes the proof information and
public parameters as input and outputs a result of the TPA’s verification
and a log file Λ. The TPA verifies the validity of the proof information. If
fails, the TPA informs the user that his cloud-stored data may be corrupted.
Otherwise, for each verification, the TPA needs to create an entry and store
it into a log file. This enables the user to audit the TPA.

CheckLog. This deterministic algorithm takes the log file as input and
outputs a result of the user’s verification. The user checks the validity of Λ.
The user considers that the TPA has executed all the algorithms correctly

8

only if Λ is valid. Here, we want to further stress that the periodicity the user
runs CheckLog is much longer than the periodicity the TPA runs VerPro.

3.2. Security model
The security model in this paper is constructed based on the model in [8],

[9], [22] and [18]. In our scheme, we colligate the security of data integrity
checking scheme and the security of certificateless aggregate signature. To
prove that the signature scheme used for {σi}i∈[1,n] in the SCLPV is exis-
tentially unforgeable, we first modify the series of games proposed by [9] to
satisfy the certificateless aggregate signature scheme on additive group, and
then we prove it. Here, due to space limitations, we omit the formal security
definition, and see Section 5 for more details. Definition 2 gives the security
goals that the SCLPV should achieve.

Definition 2: The SCLPV can be said to be secure if and only if all of
the following conditions hold:

1. There is no any polynomial time algorithm that can forge a valid
signature with nonnegligible probability without the complete and correct
signing key.

2. There is no adversary that can deceive the TPA with non-negligible
probability.

3. Any involved party cannot deceive the rest parties.
4. Collusion between any two involved parties cannot deceive the rest

party.

3.3. Design goals
To enable certificateless public verification for cloud storage under the

aforementioned model, the SCLPV should achieve the following objectives.
1. Public certificateless verification: to allow a TPA to verify the integrity

of cloud-stored data, without managing the user’s certificates.
2. Security: to achieve the security goals presented by Definition 2.
3. Efficiency: to allow a TPA to execute verification with minimum

communication and computation overheads.

3.4. Bilinear maps
The SCLPV is realized in an efficient bilinear map [23]. Let G1 be an

additive group and G2 be a multiplicative group, G1 and G2 have the same
prime order q. A bilinear map e: G1×G1 → G2 has the following properties:

9

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1, a, b ∈ Z∗q .
2. Non-degeneracy: for P,Q ∈ G1 and P 6= Q, e(P,Q) 6= 1.
3. There exists an efficient computable algorithm for computing e.
Computation Diffe-Hellman (CDH) problem in G1: given G1 and one of

its generator P , for any unknown a, b ∈ Z∗q , given aP and bP ; compute abP .

3.5. Bitcoin

Bitcoin is introduced in [24]. In fact, Bitcoin has an attractive property.
That is, given a determinate time t, if t is a past or current time, we can
easily find a Bitcoin block which is generated in the nearest time of t; but if t
is a future time, the Bitcoin block, which is generated in t, is unpredictable.
Here, we denote the hash of Bitcoin block which is generated in a past time
t as Blt. Since Bitcoin has this property, we can consider Bitcoin as a time-
based pseudo-randomness source. The output of this source can be computed
when the input of the source is a past/current time, otherwise, the output is
unpredictable.

We takeBlt as a seed of pseudorandom bit generator (PRBG)GetRandomness(),
and get a parameter θ as:

θ = GetRandomness(Blt)

θ is used to generate a challenging message in the POR algorithm.

4. Proposed SCLPV scheme

In this Section, we propose the SCLPV scheme. A user U , a cloud server
C and a third-party auditor (TPA) are involved in the SCLPV scheme.

The specifications of the algorithms are as follows.
Setup. This algorithm consists of the following three steps.
step-1: The KGC generates the system parameters as follows.

• With a security parameter `, choose G1 and G2, where G1 is an additive
group generated by a generator P with order q, G2 is a multiplicative
group with the same order. The bilinear map is e : G1 ×G1 → G2.

• Choose a random λ ∈ Zq as the master key, and compute PM = λP .

• Choose five hash functions H(), H1(), H2(), H3(), H4(), where H1() ∼
H4() : {0, 1}∗ → G1 are cryptographic hash functions and H() :
{0, 1}∗ → G1 is a secure map-to-point hash function.

10

The system parameter list is SysPara = {G,G2, e, P, PM , H(), H1() ∼
H4()}.

step-2: The KGC calculates the partial private key for U using U ’s iden-
tity IDU as follows:

• Compute QU ,0 = H1(IDU , 0) and QU ,1 = H1(IDU , 1).

• Compute DU ,0 = λQU ,0 and DU ,1 = λQU ,1.

step-3: U chooses a random xU ∈ Z∗q , and computes pkU = xUP .
U ’s signing key is sskU = {xU , DU ,0, DU ,1} and the corresponding verifi-

cation key is spkU = {pkU , QU ,0, QU ,1}.
Store. By utilizing an information dispersal algorithm (i.e. erasure code

[30]), U transforms his data F into n blocks: F = {mi}1≤i≤n. U chooses
a random element name for file naming and computes the file tag as τ =
name||SigsskU (name), where Sig(·) is a certificateless signature algorithm.

Then, U generates a signature for each data block mi, i ∈ [1, n] as follows:

• Choose a one-time-use number ∆.

• For each i ∈ [1, n], choose a random ri ∈ Z∗q and compute Ri = rig.

• Compute three hash values T = H2(∆), V = H3(∆) and W = H4(∆).

• Compute Si = mi(DU ,0 + xUV) +H(i||name)(DU ,1 + xUW) + riT

• Output σi = {Ri, Si} as the signature on mi

Now, U outsources F̃ = {F = {mi}i∈[1,n], φ = {σi}i∈[1,n], τ,∆} into C. Af-

ter U uploads F̃ to C, C needs to confirm that F̃ has been uploaded correctly
by verifying the following equation

e(
n∑
i=1

Si, P)
?
= e(

n∑
i=1

(miQU ,0 +H(i||name)QU ,1), PM)

×e(
n∑
i=1

miV +
n∑
i=1

H(i||name)W, pkU)

×e(T,
n∑
i=1

Ri)

11

where QU ,0 = H1(IDU , 0) and QU ,1 = H1(IDU , 1). If the equation holds, C
accepts F̃ .

ChalGen. The TPA generates a challenging message as follows.

• Acquire Blt based on the current time t.

• Initialize the PRBG GetRandomness as θ = GetRandomness(Blt).

• Pick a random subset I of the set {1, ..., n} on θ and `.

• For each i ∈ I, choose a random vi ∈ Zp (p is a much smaller prime
than q).

Then, the TPA sends the challenging message {(i, vi)}i∈I to C.
ProGen. With the challenging message, C calculates:

S =
∑
i∈I
viSi, R =

∑
i∈I
viRi, µ =

∑
i∈I
vimi

C takes proof = {S,R, µ,∆} as the proof information and sends it to the
TPA.

VerPro. With the proof information, The TPA first retrieves the file
tag τ , and checks its validity via spkU . Then, the TPA verifies the following
equation:

e(S, P)
?
= e((µQU ,0 +

∑
i∈I

viH(i||name)QU ,1), PM)

×e((µH3(∆) +
∑
i∈I

viH(i||name)H4(∆)), pkU)

×e(H2(∆), R) (1)

If the equation does not hold, the TPA takes the verification result as Reject.
If the equation holds, the TPA takes the verification result as Accept.

Next, the TPA creates an entry as follows:

(Blt, S, R, µ,∆)

Finally, the TPA stores the entry into a log file Λ as shown in Table 1.
CheckLog. U checks the validity of Λ as follows.

• Pick a random subset B of indices of Bitcoin blocks.

12

Table 1: the log file Λ

∆

Bl
(1)
t S(1) R(1) µ(1)

Bl
(2)
t S(2) R(2) µ(2)

· · · · · · · · · · · ·
Bl

(l)
t S(l) R(l) µ(l)

• Generate a set of challenging messages I(B) = {{i(1), v(1)i }i∈[I(1)] , ..., {i(b), v
(b)
i }i∈[I(b)]},

where b is the size of subset B.

• Send B to the TPA and receive ∆, S(B), R(B), µ(B) from the TPA, where

S(B) =
∑

j∈I(B)

S(j)

R(B) =
∑

j∈I(B)

R(j)

µB =
∑

j∈I(B)

µ(j) =
∑

j∈I(B)

∑
i∈I
v
(j)
i m

(j)
i

• Verify

e(S(B), P)
?
= e((

∑
j∈I(B)

µ(j)QU ,0 +

∑
j∈I(B)

∑
i∈I

v
(j)
i H(i||name)(j)QU ,1), PM)

×e((
∑
j∈I(B)

µ(j)H3(∆) +

∑
j∈I(B)

∑
i∈I

v
(j)
i H(i||name)(j)H4(∆)), pkU)

×e(H2(∆),
∑
j∈I(B)

R(j)) (2)

If the verification fails, U can consider that his cloud-stored data is corrupted,
and either/both the TPA or/and C is/are malicious. When this occurs, U
takes verification result as Reject. Otherwise, U takes verification result as
Accept.

13

5. Evaluation

5.1. Correctness proof

For the equation (1), the correctness is proved as follows:

e(S, P) = e(
∑
i∈I

viSi, P)

= e(
∑
i∈I

vi(mi(DU ,0 + xUV) +H(i||name)(DU ,1 + xUW) + riT), P)

= e(
∑
i∈I

vimiDU ,0, P) · e(
∑
i∈I

vimixUV, P) · e(
∑
i∈I

viH(i||name)DU ,1, P)

×e(
∑
i∈I

viH(i||name)xUW,P) · e(
∑
i∈I

viriT, P)

= e(
∑
i∈I

vimiλQU ,0, P) · e(
∑
i∈I

vimiH3(∆), xUP)

×e(
∑
i∈I

viH(i||name)λQU ,1, P) · e(
∑
i∈I

viH(i||name)H4(∆), xUP)

×e(T,
∑
i∈I

viriP)

= e(µQU ,0, λP) · e(µH3(∆), pkU) · e(
∑
i∈I

viH(i||name)QU ,1, λP)

×e(
∑
i∈I

viH(i||name)H4(∆), xUP) · e(T,R)

= e((µH1(IDU , 0) +
∑
i∈I

viH(i||name)H1(IDU , 1)), PM)

×e((µH3(∆) +
∑
i∈I

viH(i||name)H4(∆)), pkU)

×e(H2(∆), R)

And for the equation (2), the correctness is shown as follows:

e(S(B), P) = e(
∑
j∈I(B)

S(j), P)

= e(
∑
j∈I(B)

∑
i∈I

v
(j)
i S

(j)
i , P)

14

= e(
∑
j∈I(B)

∑
i∈I

v
(j)
i (m

(j)
i (λQU ,0 + xUV) +H(i||name)(j)(λQU ,1 + xUW) + r

(j)
i T), P)

= e(
∑
j∈I(B)

µ(j)QU ,0, λP)e(
∑
j∈I(B)

µ(j)V, xUP)e(
∑
j∈I(B)

∑
i∈I

v
(j)
i H(i||name)(j)QU ,1, λP)

×e(
∑
j∈I(B)

∑
i∈I

v
(j)
i H(i||name)(j)W,xUP)e(T,

∑
j∈I(B)

∑
i∈I

v
(j)
i r

(j)
i P)

= e((
∑
j∈I(B)

µ(j)H1(IDU , 0) +
∑
j∈I(B)

∑
i∈I

v
(j)
i H(i||name)(j)H1(IDU , 1)), PM)

×e((
∑
j∈I(B)

µ(j)H3(∆) +
∑
j∈I(B)

∑
i∈I

v
(j)
i H(i||name)(j)H4(∆)), pkU)

×e(H2(∆),
∑
j∈I(B)

R(j))

5.2. Security analysis

In this Section, we provide a formal and strict security proof of SCLPV
scheme. More precisely, according to the security requirements presented in
Section 3.2, we summarize four theorems and we will prove that our SCLPV
scheme satisfies these four theorems one by one.

Theorem 1: For an internal/external adversary, it is computationally
infeasible to generate a forge signature of any involved entities with our S-
CLPV scheme.

Proof. In SCLPV, the certificateless aggregate signature (here, we name
it ICL-ASS) is used to generate the signatures of data blocks. To prove the
security of ICL-ASS, we first introduce a lemma which is presented by [26].

Lemma 1: Two signature schemes are called strongly equivalent if the
signature of the first scheme can be transformed into signature of the second
scheme and vice versa, without knowledge of private key.

Now, we will reduce the security of ICL-ASS to the security of an existing
certificateless aggregate signature [22] (short for CL-ASS). We remark that
the main difference between the ICL-ASS and the CL-ASS is the signature
generation. In the CL-ASS

Si = DU ,0 + xUV + hi(DU ,1 + xUW) + riT .

15

where hi = H5(mi||∆||IDU ||pkU) and H5 : {0, 1}∗ → Z∗q is a cryptographic
hash function.

But in the ICL-ASS

Si = mi(DU ,0 + xUV) +H(i||name)(DU ,1 + xUW) + riT .

By Lemma 1, if the ICL-ASS is strongly equivalent to the CL-ASS, then
we get that the security of ICL-ASS is the same as that of CL-ASS.

Suppose (m,Ri, Si) is a valid CL-ASS signature, and (m,Ri, S̃i) is a valid
ICL-ASS signature. Note that for the CL-ASS, we can get

e(Si, P) = e(QU ,0 + hiQU ,1, PM)e(V + hiW, pkU)e(T,Ri) (3)

and for the ICL-ASS, we can get

e(S̃i, P) = e(mQU ,0 +HiQU ,1, PM)e(mV +HiW, pkU)e(T,Ri) (4)

where Hi = H(i||name). With the equation (4), we further get

e(mQU ,0, PM) =
e(S̃i, P)

e(HiQU ,1, PM)e(mV +HiW, pkU)e(T,Ri)

according to the properties of bilinear map, we can get

e(QU ,0, PM)m =
e(S̃i, P)

e(HiQU ,1, PM)e(mV +HiW, pkU)e(T,Ri)

that is

m = loge(QU,0,PM)

e(S̃i, P)

e(HiQU ,1, PM)e(mV +HiW, pkU)e(T,Ri)
(5)

Accordingly,

hi = H5((loge(QU,0,PM)

e(S̃i, P)

e1e2e3
)||∆||ID||pkU) (6)

where e1 = e(HiQU ,1, PM), e2 = e(mV +HiW, pkU) and e3 = e(T,Ri).
In consideration of clear expression, here, we introduce an operational

symbol e−1a (b, c) which means that given a, b, c, bilinear map e, and c =
e(a, b), so that a = e−1a (b, c).

16

Because of equation (5), we can get

Si = e−1Si
((e(QU ,0 + hiQU ,1, PM) · e(V + hiW, pkU) · e(T,Ri)), P) (7)

Then, substituting equation (6) into (7), we obtain equation (8) as follows:

Si = e−1Si
((e(QU ,0 +H5((loge(QU,0,PM)

e(S̃i, P)

e1e2e3
)||∆||ID||pkU)QU ,1, PM)

×e(V +H5((loge(QU,0,PM)

e(S̃i, P)

e1e2e3
)||∆||ID||pkU)W, pkU)

×e(T,Ri)), P) (8)

From equation (3) to equation (8), we can see that our ICL-ASS can be
transformed into CL-ASS, i.e. ICL-ASS⇒ CL-ASS.

By the similar arguments as for ICL-ASS⇒ CL-ASS, the inverse process
CL-ASS ⇒ ICL-ASS is still feasible, here we omit it. This completes the
proof of the Theorem 1.

Theorem 2. If the cloud server passes the TPA’s verification, it must
possess truly the specified data intact.

Proof. We will prove the theorem as a series of games with interleaved
analysis. The series of games were first presented by [8] and [9], here, we mod-
ify it to satisfy the ICL-ASS on additive group. Here, we want to stress that
SCLPV is the first provable secure certificateless public verification scheme
under the Shacham et al.’s security model [9].

Game 0. This game is simply the challenge game defined in Section 4.

Game 1. This game is the same as Game 0, with the exception of one
difference. The adversary is trained to be capable of forging a valid tag τ .
The challenger keeps a list of all signed tags which is generated in Store. If
the adversary ever submits a tag τ during VerPro that is a valid signature
under sskU but is not signed by the challenger, the challenger declares failure
and aborts.

Analysis. Clearly, in Game 1, if the challenger aborts with nonneg-
ligible probability which is caused by the adversary, we can resort to the
adversary to construct a forger against the certificateless signature scheme

17

used to generate τ . Otherwise, for the adversary, there is no difference be-
tween in Game 0 and in Game 1. Since the first thing the TPA does after
receiving the proof information, is to check the validity of τ . If failed, the T-
PA rejects immediately and aborts. Note that if τ with a valid certificateless
signature, it might be either generated by the challenger, or forged by the
adversary. However, if the latter case occurs, it is in conflict with the defini-
tion defined in Game 1. Therefore, we can sure that the cloud-stored data,
which is issued by the cloud server and will be audited by the TPA, is the
”valid” data. Here, ”valid” means consistency between the TPA’s challenge
and the cloud server’s proof.

Game 2. This game is the same as Game 1, with the exception of one
difference. The adversary is trained to be capable of forging a part of the
proof information. The challenger keeps a list of its responses of sign which
is queried by the adversary. The challenger observes each instance of Pro-
Gen with the adversary. If in any instances, compared with the expected
proof information {S,R, µ,∆}, the proof information of the adversary has a
difference in µ, but the adversary is successful, the challenger declares failure
and aborts.

Analysis. As described in Game 2, the adversary responds {S,R, µ′,∆}
to the challenger. We now show that if the adversary causes the challenger
in Game 2 to abort with nonnegligible probability, how can we construct a
simulator that solve the CDH problem.

For the expected proof information {S,R, µ,∆}, by the correctness of the
scheme, we can get

e(S, P) = e((µH1(IDU , 0) +
∑
i∈I

viH(i||name)H1(IDU , 1)), PM)

×e((µH3(∆) +
∑
i∈I

viH(i||name)H4(∆)), pkU)

×e(H2(∆), R)

and for the adversary’s response {S,R, µ′,∆}, we also get

e(S, P) = e((µ′H1(IDU , 0) +
∑
i∈I

viH(i||name)H1(IDU , 1)), PM)

×e((µ′H3(∆) +
∑
i∈I

viH(i||name)H4(∆)), pkU)

18

×e(H2(∆), R)

Note that µ 6= µ′, and if we assume µ̄ = µ−µ′, so that µ̄ 6= 0. There are two
cases in this situation.
1. µH1(IDU , 0) = µ′H1(IDU , 0) and µH3(∆) = µ′H3(∆).
2. µH1(IDU , 0) 6= µ′H1(IDU , 0) and µH3(∆) 6= µ′H3(∆).

For the first case, clearly, we can learn that

µH1(IDU , 0) = µ′H1(IDU , 0), µ̄H1(IDU , 0) = 0

Because G1 is an additive cyclic group, for two random elements A,B ∈
G1, there exists χ ∈ Zq so that A = χB. Similarly, for an arbitrary
H1(IDU , 0), we can represent it as H1(IDU , 0) = ζA + ξB. Then, we learn
that

0 = µ̄H1(IDU , 0) = µ̄(ζA+ ξB)

Obviously, we can find a solution of CDH problem with a probability of
1− (1/p). In particularly, given B, A = χB ∈ G1, we can compute

A = −ξ
ζ
B, χ = −ξ

ζ

And for the second case, we can get:

e(µH1(IDU , 0), PM)e(µH3(∆), pkU) = e(µ′H1(IDU , 0), PM)e(µ′H3(∆), pkU)

Rearranging terms yields

e(µH1(IDU , 0)λ+ µH3(∆)xU , P) = e(µ′H1(IDU , 0)λ+ µ′H3(∆)xU , P)

that is

µ(H1(IDU , 0)λ+H3(∆)xU) = µ′(H1(IDU , 0)λ+H3(∆)xU)

Here, we set ω = H1(IDU , 0)λ + H3(∆)xU , and for an arbitrary ω, we can
represent it as ω = $C + %D, where C and D are random elements of G1.
Similarly, there exists χ ∈ Zq so that C = χD. Next, we learn that

0 = µ̄ω = µ̄($C + %D)

19

Obviously, we can find a solution of CDH problem with a probability of
1− (1/p). More precisely, given D, C = χD ∈ G1, we can compute

C = − %
$
D χ = − %

$

Therefore, if there is a nonnegligible probability that the adversary causes
the challenger abort, we can construct a simulator that use the adversary to
solve the CDH problem as needed.

Game 3. This game is the same as Game 2, with the exception of one
difference. The adversary is trained to be capable of forging a valid aggre-
gate authenticated value. The challenger keeps a list of its responses of sign
which is queried by the adversary. The challenger observes each instance of
ProGen with the adversary. If in any instances, the aggregate signature of
the adversary (S ′, R′) 6= (S,R), where (S =

∑
i∈I viSi, R =

∑
i∈I viRi) is the

expected aggregate signature, but the adversary is successful, the challenger
declares failure and aborts.

Analysis. After receiving the challenging message, the response of ad-
versary is {S ′, R′, µ′,∆}, while the expected response is {S,R, µ,∆}. By the
correctness of the scheme, we can learn that

e(S, P) = e((µQU ,0 +
∑
i∈I

viHiQU ,1), PM)e((µV +
∑
i∈I

viHiW), pkU)e(T,R)

e(S ′, P) = e((µ′QU ,0 +
∑
i∈I

viHiQU ,1), PM)e((µ′V +
∑
i∈I

viHiW), pkU)e(T,R′)

where Hi = H(i||name). Since the adversary causes the challenger to abort,
we can get (S ′, R′) 6= (S,R). Obviously, µ′ 6= µ. we define µ̄ = µ′ − µ. We
now show that how the challenger constructs a simulator to solve the CDH
problem, i.e. given P , sP , P ′, compute sP ′. Here, we want to stress that in
this analysis, we consider the user as the challenger, therefore, xU and ri can
be chosen immediately.

In Setup, the simulator sets PM = sP as the master public key, but
the simulator does not know the corresponding master private key s. It
controls the random oracle H1, H2, H3 and H4, and keeps a list of queries
and responses to queries consistently. It responds the query of Hj as follows.

The simulator randomly chooses γ, a, b, c ∈ Zq, for the tuple {IDU ,mj},
it computes Hj = −a−1cmj and also sets β = a−1bc and R = γP . And then,

20

the simulator computes QU ,0 = cP + βP ′ and QU ,1 = aP + bP ′. For random
values rj, xU , the simulator can compute (Sj, Rj),

Rj = rjP

Sj = mjDU ,0 +mjxUV +Hj · (DU ,1 + xUW) + rjT

= mjsQU ,0 +mjxUV +Hj · (sQU ,1 + xUW) + rjT

= mjs(cP + βP ′) +mjxUV + (−a−1cmj)(s(aP + bP ′) + xUW) + rjT

= (mjV − a−1cW)xU + rjT

Therefore, the simulator generates an authenticated (Sj, Rj) = ((mjV −
a−1cW)xU + rjT, rjP).

The simulator continues to interact with the adversary until the circum-
stance defined in Game 3 occurs: the adversary succeeds in generating
(S ′, R′) which is different from (S,R) but can cause the verification equation
holds.

Here, because PM = sP , we can learn that

e(S, P) = e((µQU ,0 +
∑
i∈I

viHiQU ,1), PM)e((µV +
∑
i∈I

viHiW), pkU)e(T,R)

= e(s(µQU ,0 +
∑
i∈I

viHiQU ,1) + xU(µV +
∑
i∈I

viHiW) +
∑
i∈I

viriT, P)

And since the expected aggregated value also satisfies the above equation,
we can learn that

e(S ′ − S, P) = e(sµ̄QU ,0 + xU µ̄V, P)

Because QU ,0 = cP + βP ′, we can further get

S ′ − S = sµ̄cP + µ̄βsP ′ + xU µ̄V

Finally, we find the solution of CDH problem:

sP ′ =
S ′ − S − sµ̄cP − xU µ̄V

µ̄β

As we described above, because µ̄ 6= 0 and β = 0 only with probability 1/q
and naturally can be neglected. Therefore, the challenger can construct a
simulator to solve the CDH problem with a nonnegligible probability 1 −
(1/q).

21

Finally, we want to stress that Ni et al. proposed an attack model in [12].
In this attack model, an online and active external adversary can invalidate a
public integrity verification scheme by tampering with the proof information.
Since this attack requires a rigorous implementing condition, and is difficult
to perform, we do not consider this attack in our CLP-OPOR scheme. In
fact, this attack can be thwarted easily by signing the proof information.
This completes the proof of Theorem 2.

Theorem 3. In our SCLPV scheme, if any involved party deviates from
the prescribed protocol execution, it cannot deceive the rest parties.

Proof. There are three cases in Theorem 3. Firstly, if the cloud user
is malicious, the only thing he can do is to upload ”forge” signatures to the
cloud server. Here, ”forge” means that the signature which is generated by
the cloud user, does not match the corresponding data block. In this case,
note that after receiving F̃ , C first verifies that whether the file has been
uploaded correctly. If failed, C rejects immediately. Therefore, a malicious
user cannot deceive the cloud server, let alone to deceive the TPA.

Secondly, if the cloud server is malicious, it may forge a proof information
to pass the TPA’s verification. However, according to Theorem 2, we can
see that this way is infeasible.

Finally, there exists a malicious TPA in our SCLPV scheme. We can
further divide this situation into two cases. The first case is that the user’s
data is still well maintained in the cloud but the malicious TPA deceive the
cloud server and the cloud user that the data has been corrupted. In this
case, the cloud server just need to regenerate the proof information to prove
the integrity of cloud-stored data. The other case is contrary to the first one,
that is, the cloud-stored data has been corrupted, but the TPA deceive the
cloud user that the data is still well maintained in the cloud. In this case, if
the proof information generated by C cannot pass the equation (1), the cloud
user can detect it immediately. However, if the proof information passes the
equation (1), that means that either < a > the cloud server forge a proof
information that can pass the TPA’s auditing, or < b > the TPA colludes
with C just to check the data blocks which are not corrupted. However, in
Theorem 2, we have been proven that it is computationally infeasible to
forge the proof information to pass the TPA’s auditing. And for < b >,
note that the indexes of challenging blocks are determined by the time-based
psecudu-randomness source, thus < b > is also infeasible. This completes

22

the proof of the Theorem 3.

Theorem 4. Collusion between any two involved parties cannot reduce
the security of our SCLPV scheme.

Proof. In fact, if the above three theorems are correct, Theorem 4 is
also correct. We can reduce Theorem 4 to the first three theorems. Note
that collusion between any two involved parties just has two cases, since the
only situation where the cloud user may abort is during the initialization
phase of Store [18]. First one, the cloud server colludes with the TPA. This
case has been proven that it cannot deceive the cloud user and naturally
cannot reduce the security of our SCLPV scheme. The second case is that
the cloud user colludes with the cloud server to circumvent the TPA. In this
case, the cloud server just to forge an invalid proof information and sends
it to the TPA. Observe that the cloud server cannot ”regenerate” this forge
proof information without increasing the storage overheads. Therefore, the
TPA can prove that it has been used the parameters received from the cloud
server and executed correctly executes all protocols indeed in CheckLog.
Thereby this case also cannot reduce the security of our SCLPV scheme.
This completes the proof of the Theorem 4.

Summing up, we have proved that our SCLPV scheme satisfies the four
security goals indeed. According to our rigorous and formal security proofs,
we can say that the proposed scheme is secure.

5.3. Performance analysis

In this Section, we give an elaborate performance analysis of the proposed
SCLPV scheme, which proves that the scheme is efficient. Furthermore, we
also analyze the performance of [18], and give a comparison for these two
schemes in terms of bandwidth overhead and auditing overhead.

All the experiments are tested using a Window 7 system with an Intel
Core 2 i5 CPU running at 2.53 GHz and 2 GB DDR 3 of RAM(1.74 GB
available). All algorithms are implemented by C language and our code uses
the MIRACL library version 5.6.1. The elliptic curve we used is a MNT curve,
its base field size is 159 bits and its embedding degree is 6. Accordingly, the
security level is chosen to be 80 bits, that is, |vi| = 80 bits, |q| = 160 bits
and |p| = 80 bits. All the results of experiments are represented the average
of 20 trials.

23

5.3.1. Bandwidth overhead analysis

We first give an analysis of bandwidth overheads between the cloud serv-
er and the TPA of our SCLPV scheme, and also give a comparison with
the Fortress [18]. For our SCLPV scheme, in ChalGen and ProGen, the
TPA sends the challenging message to the cloud server and the cloud server
responds to the TPA with the proof information proof . However, for the
Fortress, besides same interaction operations as our SCLPV scheme, before
the TPA starts to generate a challenging message, the TPA needs to down-
load the entire data from the cloud server, and upload all the signatures to
the cloud server. It means that Fortress [18] has an additional bandwidth
overhead in downloading the entire cloud-stored data and uploading the cor-
responding signatures. Fig.2 and Fig.3 show the total communication traffic
between the TPA and the cloud server of the Fortress and our SCLPV re-
spectively. Because the total communication traffic between the TPA and
the cloud server of private-key POR scheme (short for PSW) in [8], [9], pub-
lic key POR scheme (BLS SW POR) in [8], [9] and [17] are similar to our
SCLPV scheme, here we do not provide the bandwidth overhead analysis of
these schemes.

Figure 2: Communication traffic of
Fortress [18]

Figure 3: Communication traffic of
SCLPV

According to the comparison between Fig.2 and Fig.3, we can say that
our SCLPV scheme has obvious advantage in bandwidth overhead between
the TPA and the cloud server. In our SCLPV scheme, the TPA does not
need to bear the huge communication traffic occurred in the Fortress [18].

24

5.3.2. Verification overhead analysis

We then give an analysis of verification overhead. For our SCLPV scheme,
in VerPro, the TPA verifies the integrity of cloud-stored data, and in Check-
Log, the cloud user audits the correct behavior of the TPA. Firstly, we specify
some notations represent the computation of corresponding operation (refer
to Table 2).

Table 2: Notation of Operations

Symbol Corresponding Operation

MultG multiplication in additive group G
HashG hash a value into G
AddG addition in additive group G
PairG2

computing pairing pair = e(u, v) where u,v∈ G and pair ∈ G2

In VerPro, based on the proof information received from C, the TPA
verifies the equation (1) to check the integrity of cloud-stored data. The
corresponding computation cost is

4PairG2 + (2c+ 5)HashG + (2c+ 4)MultG + (2c+ 2)AddG

where c is the total number of challenging data blocks.
Compared with the certificateless public auditing scheme proposed by

[17], our SCLPV scheme has a slightly larger verification overhead in the
TPA side. However, this additional verification overhead guarantees that
the security vulnerability of [17] is remedied successfully, and naturally, this
is surely sacrifices well worth making. Also compared with BLS SW POR,
our SCLPV scheme requires more verification cost in the TPA side. But
this extra cost is exactly the guarantee to avoid the certificate management
problem. A detailed comparison of verification overhead of the TPA in dif-
ferent challenging blocks in BLS SW POR, [17] and our SCLPV scheme is
described in Fig.4.

In CheckLog, U verifies the validity of log entry and the correctness of
EL. Next, U checks the equation (1). The corresponding computation cost
is

4PairG2 + (2c+ 5)HashG + (2c+ 4)MultG + (2c+ 2)AddG

Here, note that U needs to make some additional calculations, but it can
resist the malicious TPA. Moreover, as we described in Section 3, the period
that U runs CheckLog is much more than the period that the TPA runs

25

Figure 4: The performance of TPA in different challenging blocks

VerPro. Therefore, this additional calculations in the cloud user side can
be, to a large extent, tolerated in the practical cloud environment.

Comparison with the Fortress [18]: The Fortress utilizes the private
POR technique of [8]. Its biggest advantage is the high-efficiency of com-
putational overhead. More precisely, as described in [18], the verification
in Fortress is almost 2000 times faster than the BLS SW POR. It means
that verification in Fortress is more than 2000 times faster than our SCLPV
scheme. As we shown in Fig.4, the time of verification in the SCLPV is a
second computation, and consequently, the time of Fortress’s verification is
a millisecond computation. In a practical CPSS, these two computation cost
can be tolerated for the TPA and the user. However, in the SCLPV, the
TPA need not to download the entire outsourced data, generate signatures
for each of the data blocks and convince the user that it correctly computed
parameters. Therefore, in that sense, the SCLPV is more practical than the
Fortress.

6. Further discussion

To the best of our knowledge, our SCLPV scheme is the first certificateless
public verification mechanism against malicious auditors. As a prior research,
there are many issues to be further investigated and improved. We list some
of them here based on our understanding.

First, the storage overhead can be further improved. As presented by [9],

26

the data block can be further divided into s sectors to give a tradeoff between
storage overhead and the length of proof information. In practice, the cloud
user can choose an appropriate s as needed.

Second, the optimization of computational overhead in the TPA side is
expected. As we discussed in Section 5, the verification time of the Fortress
[18] is a millisecond computation, but our SCLPV’s verification time is a
second computation. How to further optimize the verification time is our
further work.

Finally, our SCLPV just considers the case of single CPSS user. In a
practical CPSS, how to perform multiple verification tasks from different
users simultaneously is well worth researching.

7. Conclusion and future work

In this paper, we first point out the vulnerability of the best certificate-
less public verification scheme. Then we propose the first secure certificate-
less public integrity verification scheme (SCLPV) for cloud storage in cyber-
physical-social system with full proofs of security against malicious auditor
and arbitrary adversaries in the Shacham et al.’s security model. With our
SCLPV scheme, an auditor does not need to manage certificates. Meanwhile,
a malicious auditor/CPSS user cannot impact the security of our scheme. A
formal security proof proves the security of our SCLPV scheme. Performance
analysis demonstrates that our SCLPV scheme is efficient and practical.

In regards to future work, we will first further investigate the optimization
of computation cost in the TPA side. This means that we have to design
a more efficient certificateless aggregate signature scheme that can be used
in our system. Second, we also will research the case of multiple CPSS
users and multiple cloud servers, e.g., how a single TPA can simultaneously
handle multiple verification tasks from different CPSS users and different
cloud servers, even if they are in various CPSSs. We believe these works are
deserve us to study further.

8. Acknowledgements

This work is supported by the National Natural Science Foundation of
China (No.61370203, No.61472065 and No.61350110238), the Science and
Technology on Communication Security Laboratory Foundation (Grant No.

27

9140C110301110C1103), the International Science and Technology Coopera-
tion and Exchange Program of Sichuan Province, China under Grant 2014H-
H0029, and China Postdoctoral Science Foundation funded project under
Grant 2014M552336.

References

[1] R. R. Raj, I. Lee, L. Sha and J. Stankovic. “Cyber-physical System-
s: The Next Computing Revolution.” Proceedings of the 2010 Design
Automation Conference. ACM, 2010, pp. 731-736.

[2] R. K. Ganti, Y. Tsai, and T. F. Abdelzaher. “Senseworld: Towards
Cyber-physical Social Networks.” Proceedings of the 2008 International
conference on Information processing in sensor networks. IEEE Com-
puter Society, 2008, pp. 563-564.

[3] X. Yu, A. Pan, L. Tang, Z. Li and J. Han. “Geo-friends Recommendation
in GPS-based Cyber-physical Social Network.” Proceedings of the 2011
International conference on Advances in Social Networks Analysis and
Mining, IEEE, 2011, pp. 361-368.

[4] Q. Wang, C. Wang, J. Li, K. Ren and W. Lou. “Enabling Public Verifi-
ability and Data Dynamics for Storage Security in Cloud Computing.”
Computer Security – ESORICS 2009. Springer Berlin Heidelberg, 2009,
pp. 355-370.

[5] C. Wang, Q. Wang, K. Ren and W. Lou. “Privacy-preserving Public
Auditing for Data Storage Security in Cloud Computing. Proceedings
of the 2010 IEEE Conference on Computer Communication, 2010, pp.
1-9.

[6] C. Wang, S. S. Chow, Q. Wang, K. Ren and W. Lou. “Privacy-preserving
Public Auditing for Secure Cloud Storage.” IEEE Transactions on Com-
puters, vol. 62, no. 2, pp. 362-375, February, 2013.

[7] M. Sookhak, A. Gani, H. Talebian, A. Akhunzada, S. U. Khan, R. Buyya
and A. Y. Zomaya “Remote Data Auditing in Cloud Computing Envi-
ronments: A Survey, Taxonomy, and Open Issues.” ACM Computing
Surveys, vol. 47, no.4, Article 65.

28

[8] H. Shacham and B. Waters. “Compact Proofs of Retrievability.” Ad-
vances in Cryptology – ASIACRYPT 2008. Springer Berlin Heidelberg,
2008, pp. 90-107.

[9] H. Shacham and B. Waters. “Compact Proofs of Retrievability.” Journal
of cryptology 26.3 (2013): 442-483.

[10] A. Juels and B. S. K. Jr. “PORs: Proofs of Retrievability for Large
Files.” Proceedings of the 2007 ACM conference on Computer and Com-
munications Security. ACM, 2007, pp. 584-597.

[11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson
and D. Song. “Provable Data Possession at Untrusted Stores. “Proceed-
ings of the 2007 ACM conference on Computer and Communications
Security. ACM, 2007, pp. 598-609.

[12] J. Ni, Y. Yu, Y. Mu and Q. Xia. “On the Security of an Efficient Dynamic
Auditing Protocol in Cloud Storage.” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 10, pp. 2760-2761, October, 2013.

[13] E. Shi, S. Emil and P. Charalampos. “Practical Dynamic Proofs of Re-
trievability.” Proceedings of the 2013 ACM conference on Computer and
Communications Security. ACM, 2013, pp.325-336.

[14] J. Yu, K. Ren, C. Wang and V. Varadharajan. “Enabling Cloud Storage
Auditing With Key-Exposure Resistance” IEEE Transactions on Infor-
mation Forensics and Security, vol. 10, no. 6, pp. 1167-1179, June, 2015.

[15] D. Cash, A. Küpçü and D. Wichs. ”Dynamic Proofs of Retrievability
via Oblivious RAM.” Advances in Cryptology – EUROCRYPT 2013.
Springer Berlin Heidelberg, 2013, pp. 279-295.

[16] H. Wang, Q. Wu, B. Qin and J. Domingo-Ferrer. “Identity-based Re-
mote Data Possession Checking in Public Clouds.” IET Information
Security, vol. 8, no. 2, pp. 114-121, 2014.

[17] B, Wang, B, Li, H. Li and F, Li. “Certificateless Public Auditing for
Data Integrity in the Cloud.” Proceedings of 2013 IEEE conference on
Communications and Network Security, IEEE, 2013, pp. 136-144.

29

[18] F. Armknecht, J. Bohli, G. O. Karame, Z. Liu and C. A. Reuter. “Out-
sourced Proofs of Retrievability.” Proceedings of the 2014 ACM con-
ference on Computer and Communications Security. ACM, 2014, pp.
831-843.

[19] H. Li, A. Dimitrovski, J. B. Song, Z. Han and L. Qian. “Communication
Infrastructure Design in Cyber Physical Systems with Applications in
Smart Grids: A Hybrid System Framework.” IEEE Communications
Survey and Tutorials, vol. 16, no. 3, pp. 1689-1708, Third quarter, 2014.

[20] Z. Liu, D. Yang, D. Wen, W. Z and W. Mao. “Cyber-Physical-Social
Systems for Command and Control.” IEEE Intelligent Systems, vol. 26,
no. 4, 2011, pp. 92-96.

[21] A. Sheth, P. Anantharam and C. Henson. “Physical-Cyber-Social Com-
puting: An Early 21st Century Approach.” IEEE Intelligent Systems,
vol. 28, no. 1, 2013, pp. 78-82.

[22] L. Zhang, B. Qin, Q. Wu and F. Zhang. “Efficient Many-to-one Authen-
tication with Certificateless Aggregate Signatures.” Computer Network-
s, 2010, vol. 54, no. 14, pp. 1167-1179, October, 2010.

[23] D. Boneh, B. Lynn and H. Shacham. “Short Signatures from the Weil
Pairing.” Journal of Cryptology 17.4 (2004): 297-319.

[24] Nakamoto, Satoshi. “Bitcoin: A Peer-to-peer Electronic Cash System.”
[Online]. Available: http://www.cryptovest.co.uk/resources/Bitcoin

[25] Z. Zhang, D. S. Wong, J. Xu and D. Feng. “Certificateless Public-key
Signature: Security Model and Efficient Construction.” Applied Cryp-
tography and Network Security. Springer Berlin Heidelberg, 2006, pp.
293-308.

[26] K. Nyberg and R. A. Rueppel. “Message Recovery for Signature Schemes
Based on the Discrete Logarithm Problem.” Advances in Cryptology –
EUROCRYPT 1994. Springer Berlin Heidelberg, 1995, pp. 182-193.

[27] S. S. Al-Riyami and K. G. Paterson. “Certificateless Public Key Cryp-
tography.” Advances in Cryptology – ASIACRYPT 2003. Springer
Berlin Heidelberg, 2003. pp. 452-473.

30

[28] W. Mao. “Modern Cryptography: Theory and Practice.” Prentice Hall
Professional Technical Reference, 2003.

[29] H. Li, X. Lin, H. Yang, X. Liang, R. Lu and X. Shen. “EPPDR: An
Efficient Privacy-Preserving Demand Response Scheme with Adaptive
Key Evolution in Smart Grid.” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 8, pp. 2053 - 2064, August, 2014.

[30] I. S. Reed and G. Solomon. “Polynomial Codes over Certain Finite Field-
s.” Journal of the Society for Industrial & Applied Mathematics, vol. 8,
no. 2, pp. 300-304, June, 1960.

[31] H. Li, R. Lu, L. Zhou, B. Yang, and X. Shen. “An Efficient Merkle
Tree Based Authentication Scheme for Smart Grid.” IEEE SYSTEMS
Journal, vol. 8, no.2, pp. 655 - 663. June, 2014.

Appendix A. On the vulnerability of the CLPV [17]

As pointed out in Section 1, the only certificateless public integrity au-
diting mechanism — CLPV [17] — has security vulnerability and naturally
fails to provide the strong security guarantees. To illustrate this, we show in
how to invalidate the CLPV by utilizing this security vulnerability.

Since the CLPV [17] is based on a homomorphic certificateless authenti-
cable signature technique (short for HA-CLS), which also has same security
issue. Now, we first briefly review the HA-CLS, then we give a concrete to
show how to invalidate it.

In the HA-CLS, the KGC first generates the system parameters (G1, G2, e,
g, P1, H1, H2, PT), where G1 and G2 are two multiplicative groups of prime
order q, e : G1×G1 → G2, g is a generator of G1, P1 is a random number, H1

and H2 are two cryptographic hash functions, PT = gλ and λ is the master
key. Then, the KGC generates the partial private key for the user with
identity ID as Ds = H1(ID)λ. The user randomly chooses x ∈ Zq∗ as the
secret key and corresponding public key is Ps = gx. Now, the signing secret
key is (x,Ds), and the corresponding verifying public key is (Ps, H1(ID)).
Given data block m ∈ Zq and block identifier id ∈ {0, 1}∗, the user generates
a signature by using signing secret key as:

(1) Compute V = H2(ID||Ps||id) · Pm
1 .

(2) Output a signature σ on block m and block identifier id as σ = V x ·Ds.
Given signature σ, system parameters, verifying public key, user’s identity

31

ID, data block m and block identifier ID, a verifier checks the integrity of
this block as:

(1) Compute V = H2(ID||Ps||id) · Pm
1

(2) Verify

e(σ, g)
?
=e(H1(ID), PT) · e(V, Ps)

If the equation holds, output Accept, otherwise, output Reject.
As described in [28], a secure signature algorithm should satisfy a proper-

ty, that is, without the correct signing secret key, an adversary cannot create
valid signature from given data block. Here, ”correct” means ”correctness”
and ”completeness”. Unfortunately, the HA-CLS proposed by [17] fails to
meet this security property.

More precisely, in the HA-CLS, the signing secret key is (x,Ds). To create
a forge signature, first, an adversary gets a valid signature σ generated by
the user ID earlier, he also gets correspond data block m and identifier id.
Then, the adversary obtains x and computes V = H2(ID||Ps||id) · Pm

1 , and
he also calculates V x. Next, the adversary computes the inverse element of
V x. Finally, the adversary computes the partial private key Ds as

Ds = σ · (V x)−1

Now, the adversary has the user’s signing secret key, and he can create valid
signature from given data block. By this way, the adversary invalidates the
HA-CLS proposed by [17]. The same security vulnerability still exists in the
public auditing mechanism presented by [17], and here we omit it. However,
it is easy to verify that our SCLPV scheme can thwart this attack. Due to
space limitations, we will not give the formal proof.

32

