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Abstract

Two (so-called C,D) classes of permutation-based bent Boolean functions were intro-
duced by Carlet two decades ago, but without specifying some explicit construction methods
for their construction (apart from the subclass D0). In this article, we look in more de-
tail at the C class, and derive some existence and nonexistence results concerning the bent
functions in the C class for many of the known classes of permutations over F2n . Most
importantly, the existence results induce generic methods of constructing bent functions
in class C which possibly do not belong to the completed Maiorana-McFarland class. The
question whether the specific permutations and related subspaces we identify in this article
indeed give bent functions outside the completed Maiorana-McFarland class remains open.

Keywords: Boolean functions; bent functions; permutation polynomials.
MSC 2010: 05A05, 06E30, 11T55, 94C10

1 Introduction

Boolean functions are used in many domains such as sequences, cryptography and designs. The
Boolean functions that are used as cryptographic primitives must resist affine approximation,
which is achieved by having high nonlinearity. The bent functions defined on an even number of
variables (although not directly usable as cryptographic primitives due to not being balanced)
have the maximum nonlinearity, that is, they offer maximum resistance to affine approximation.
Bent functions hold an interest among researchers, since they have maximum Hamming distance
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from the set of all affine Boolean functions and have very nice combinatorial properties. Several
classes of bent functions were constructed by Rothaus [18], Dillon [9], Dobbertin [10], and
Carlet [4].

Rothaus studied these objects in the 1960’s, although his paper was not published until
ten years later [18]. In print, bent functions appear in a preprint of Dillon from 1972, and in
his Ph.D. thesis [9]. The class of bent functions found by Dillon is known as Partial Spread
(PS) class, and a subclass known as PSap allows an explicit mathematical description. The
Maiorana-McFarland (M) class introduced in [16] and further investigated in [9] is the other
generic class of bent functions discovered around the same time. Dobbertin [10] proposed
another set of bent functions which includes both M and PS. These three classes are also
referred to as the primary constructions, whereas the classes C and D introduced by Carlet [4]
belong to secondary constructions obtained by modifying the class M, see Section 3 for their
definitions.

Even though both classes C and D are specified (see (2), (3) and property (C) below)
by adding the indicator functions of suitably chosen vector subspaces to the functions in the
M class, apart from an explicit subclass denoted by D0, the bent conditions in terms of the
selection of vector subspaces and permutations (used to define the initial function in M) are
rather hard to satisfy. Certainly, as indicated in Remark 3.2, one could construct bent functions
in the C class, but such an approach does not give us an explicit construction. The purpose of
this article is to fix the permutation (from some known classes of permutations) and investigate
these bent conditions in more detail, and to derive certain (non)existence results concerning
the possibility of selecting appropriate subspaces so that the bent functions in the C class
may be constructed. Most notably, for some classes of permutation polynomials there are no
suitable linear subspaces of certain dimension for which the modification of f ∈M would give
a bent function f∗ ∈ C. On the other hand, some explicit conditions and the existence results
could be derived for other classes of permutations. We also extend the original analysis of bent
conditions of Carlet in terms of the Walsh-Hadamard spectra and show, for instance, that the
modification (addition of the indicator of a linear subspace) of quadratic bent functions in M
only result in bent functions within the completed class M.

The rest of this article is organized as follows. In Section 2 some basic definitions related
to Boolean (and in particular bent) functions are given. The definition of C and D classes
along with one motivating result for the analysis in this article are given in Section 3. The
analysis of bent conditions of the C class of bent functions in terms of their Walsh-Hadamard
spectra is given in Section 4. The main results related to (non)existence of linear subspaces of
certain dimension for some particular classes of permutations are deduced in Section 5. Some
concluding remarks are given in Section 6.

2 Preliminaries

Let Z be the ring of integers and F2 be the prime field of characteristic 2. Let Fn2 = {x =
(x1, . . . , xn) : xi ∈ F2, for all i = 1, 2, . . . , n}. We denote the extension field of degree n over F2

by F2n , and the unit group therein by F∗2n . Any function from Fn2 to F2 (or, equivalently from
F2n to F2) is said to be a Boolean function on n variables. The set of all Boolean functions on
n variables is denoted by Bn.

For a detailed study of Boolean functions we refer to Carlet [5, 6], and Cusick and Stănică [7].
For the convenience of the reader, we recall some basic notions below. For any x ∈ Fn2 , the
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(Hamming) weight of x is the integer sum wt(x) =
∑n

i=1 xi. The algebraic normal form (ANF)
of a Boolean function f ∈ Bn is

f(x1, . . . , xn) =
∑

a=(a1,...,an)∈Fn
2

µax
a1
1 . . . xann ,

where µa ∈ F2, for all a ∈ Fn2 . The algebraic degree of f is deg(f) = maxa∈Fn
2
{wt(a) : µa 6= 0}.

The inner product u · x :=
∑n

i=1 uixi, for all u = (u1, . . . , un), x = (x1, . . . , xn) ∈ Fn2 . We also
identify Fn2 with F2n (as vector spaces) and take the inner product u · x := Trn1 (ux), where
Trn1 (a) := a+ a2 + a2

2
+ · · ·+ a2

n−1
, for all a ∈ F2n , is the absolute trace on F2n .

The Walsh-Hadamard transform of f ∈ Bn at u ∈ Fn2 is

Wf (u) =
∑
x∈Fn

2

(−1)f(x)(−1)u·x.

The multiset
[Wf (u) : u ∈ Fn2 ] (1)

is said to be the Walsh-Hadamard spectrum of f . The derivative of f ∈ Bn at a ∈ Fn2 , denoted
by Daf , is a Boolean function defined by

Daf(x) = f(x+ a) + f(x), for all x ∈ Fn2 .

The notion of derivative of a Boolean function is extended to higher orders as follows. Suppose
{a1, a2, . . . , ak} is a basis of a k-dimensional subspace V of Fn2 (we write dim(V ) = k). The
k-th derivative of f with respect to V , denoted by DV f , is a Boolean function defined by

DV f(x) = DakDak−1
. . . Da1f(x), for all x ∈ Fn2 .

It is to be noted that DV f is independent of the choice of the basis of V .
A Boolean function f ∈ Bn, where n is an even positive integer, is said to be a bent function

if its Walsh-Hadamard spectrum (1) consists of values from the set {−2n/2, 2n/2}.

3 Towards an explicit specification of Carlet’s C-class

The Maiorana-McFarland class M is the set of m-variable (m = 2n) Boolean functions of the
form

f(x, y) = x · π(y) + g(y), for all x, y ∈ Fn2 ,

where π is a permutation on Fn2 , and g is an arbitrary Boolean function on Fn2 . All such

functions are bent and their duals (also bent) have the form f̃(x, y) = y · π−1(x) + g(π−1(x))
(where π−1 is the inverse function for π). Dillon constructed another class of bent functions
called partial spreads, whose supports are union of “disjoint” n = m/2 dimensional subspaces
of Fm2 . For the details of the construction of bent functions in PS we refer to [8, 9].

Two new classes of bent functions were derived by Carlet in [4]. The class D consists of
bent functions of the form

f(x, y) = x · π(y) + 1E1(x)1E2(y) (2)
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with π a permutation on Fn2 and E1, E2 two linear subspaces of Fn2 such that π(E2) = E⊥1 (1E
is the indicator function of the space E). An explicit subclass of D, denoted by D0, contains
all elements of the form x · π(y) + δ0(x) (δ0(x) is the Dirac symbol, which is 1 if x = 0, and
0, otherwise). It has been shown that D0 strictly includes the M and PS classes [4, 10]. The
second Carlet class C of bent functions (one we will concentrate on) contains all functions of
the form

f(x, y) = x · π(y) + 1L⊥(x) (3)

where L is any linear subspace of Fn2 and π is any permutation on Fn2 such that:

(C) φ(a+ L) is a flat (affine subspace), for all a ∈ Fn2 , where φ := π−1.

We will often say that (φ,L) has property (C).
Certainly, if L has dimension 1, then π−1(a + L) = φ(a + L) is always a one-dimensional

flat: if L = {0, u} is a one-dimensional subspace, then φ(a + L) = {φ(a), φ(a + u)} = φ(a) +
{0, φ(a) + φ(a + u)}, where φ(a) + φ(a + u) 6= 0. So, we will assume from now on that L has
dimension ≥ 2. We will identify the vector space Fn2 with the finite field F2n , and we denote
φ := π−1. We have the following characterization of a subspace L of dimension ≤ 2.

Lemma 3.1. Suppose u, v, w, z ∈ F2n. A set L = {u, v, w, z} is a flat of F2n of dimension ≤ 2
if and only if u+ v + w + z = 0.

Proof. If L is a subspace, then without loss of generality, we can assume that L = {0, u, v, u+v},
which satisfies 0+u+v+u+v = 0. Reciprocally, we assume that the set L = {u, v, w, z} satisfies
u+v+w+z = 0, and so, z = u+v+w. It follows that u+L = {0, u+v, u+w, u+(u+v+w) =
v + w}, which is easily seen to be a subspace of dimension 0, if u = v = w(= z), of dimension
1, if u 6= v = w, and of dimension 2, if v and w are independent.

Remark 3.2. The fact that we can construct many bent functions in the C class of bent
functions is not difficult. One could take two subspaces L,M in Fn2 of the same dimension and
partition Fn2 into ∪a∈A(a+L) and ∪b∈B(b+M), with A,B subsets of Fn2 of the same cardinality
|A| = |B|, and then take any permutation φ that maps the elements of {a+L | a ∈ A} onto the
elements of {b+M | b ∈ B}. The pair (φ,L) would satisfy property (C).

However, our goal here is to fix the permutation π (many times among classes of known
ones) and identify the subspaces L such that the property (C) is satisfied. We will refer to a C
type function of the form f(x, y) = x · π(y) + 1L⊥(x) as the C type function associated to the
permutation φ, where φ = π−1.

To illustrate the hardness of the underlying problem we consider one specific class of per-
mutations {π} proposed by Hou [12, Theorem B] and the existence of a 2-dimensional linear
subspace L for which the function x · π(y) + 1L⊥(x) is a bent function in C.

Theorem 3.3. Let n ≥ 1 and φ(x) = ax + bx2
n

+ x2
n+1−1 be a permutation polynomial over

F2n (see Hou [12, Theorem B] for explicit criteria). Then there exists no 2-dimensional linear
subspace, L, of F2n such that (φ,L) has property (C).
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Proof. Suppose L = 〈u, v〉 is a 2-dimensional subspace of F2n . Then for any c ∈ F2n , φ(c+ L)
is a flat if and only if

0 = φ(c) + φ(c+ u) + φ(c+ v) + φ(c+ u+ v)

= ac+ bc2
n

+ c2
n+1−1 + a(c+ u) + b(c+ u)2

n
+ (c+ u)2

n+1−1

+ a(c+ v) + b(c+ v)2
n

+ (c+ v)2
n+1−1

+ a(c+ u+ v) + b(c+ u+ v)2
n

+ (c+ u+ v)2
n+1−1

= c2
n+1−1 + (c+ u)2

n+1−1 + (c+ v)2
n+1−1 + (c+ u+ v)2

n+1−1

for all c ∈ F2n . Therefore, multiplying the above identity by c+ u+ v and using the binomial
theorem (in characteristic 2) we obtain

(u+ v)c2
n+1−1 + v(c+ u)2

n+1−1 + u(c+ v)2
n+1−1 =

2n+1−2∑
j=0

(
v u2

n+1−1−j + u v2
n+1−1−j

)
cj = 0,

for all c ∈ F22n , implying that the polynomial

2n+1−2∑
j=0

(
v u2

n+1−1−j + u v2
n+1−1−j

)
Xj ∈ F22n [X]

has all of its coefficients 0, that is, v u2
n+1−1−j + u v2

n+1−1−j = 0, for all 0 ≤ j ≤ 2n+1 − 2. In
particular, for j = 2n+1 − 3,

u2v + uv2 = 0⇐⇒ u2v = uv2 ⇐⇒ u = v.

Thus there is no 2-dimensional subspace, L, which satisfies the required property.

4 Some general bent conditions related to C and D classes

Assuming that f is bent (not necessarily of the form x·π(y)), two equivalent (and more general)
conditions for the function f∗(x) = f(x)+1L(x) to be bent were given in [4, Theorem]. The first
condition states that, if L = b+L′ is any flat in Fm2 , then the function f∗(x) = f(x) + 1L(x) is
bent if and only if f(x)+f(x+a) is balanced on L, for any a ∈ Fm2 \L′. That is, the derivatives
of f restricted to L are balanced so that

∑
x∈L(−1)f(x)+f(x+a) = 0, for all a ∈ Fm2 \ L′. Also,

the dimension of L is necessarily larger or equal to n if this condition is satisfied. The class
D was derived using the result that for an n-dimensional subspace L of Fn2 × Fn2 satisfying
f(x, y) = x · π(y) = 0 for any (x, y) ∈ L, the function x · π(y) + 1L(x, y) is bent (cf. [4,
Corollary 1]). The subclass named D0 (which is not contained in M or in PS), deduced by
Carlet, corresponds to a special choice of L = {0} × Fn2 .

Nevertheless, the fact that x · π(y) + 1L(x, y) is bent for L = {0} × Fn2 can also be easily
deduced using the condition related to the derivatives of f restricted to L. On the other
hand, by taking L = Fn2 × {0}, it is obvious that the function f∗(x, y) = x · π(y) + 1L(x, y) =
x · π(y) +

∏n
i=1(yi + 1) = x · π(y) + g(y) is bent, but no new bent functions can be obtained

through this selection of L, since f∗ ∈ M. More generally, for the same reason the function
f∗(x, y) = x · π(y) + 1L(x, y) is also in M, for L = Fn2 × E where E is k-dimensional linear
subspace of Fn2 , 0 ≤ k ≤ n. Thus, the case L = Fn2 × E is of no interest to us and it is not
treated further.
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4.1 The analysis for arbitrary π and L = E × Fn2
Let us extend our investigation for f∗(x, y) = x · π(y) + 1L(x, y) to the case when π is any
permutation on Fn2 , and L = E × Fn2 . Notice that this particular choice of L implies that
1L(x, y) = 1L(x) and therefore we are considering the class C. Assuming f(x, y) = x · π(y), we
have

0 =
∑

(x,y)∈L

(−1)f(x,y)+f(x+b,y+c)

=
∑

(x,y)∈L

(−1)x·π(y)+(x+b)·π(y+c)

=
∑
x∈E

∑
y∈Fn

2

(−1)b·π(y+c)+x·(π(y)+π(y+c))

=
∑
y∈Fn

2

∑
x∈E

(−1)x·(π(y)+π(y+c))+b·π(y+c). (4)

Notice that (b, c) 6= (0, 0) and in particular b 6= 0, whereas c can be equal to zero. We consider
two cases, namely c = 0 and c 6= 0. If c = 0, then the above sum becomes∑

x∈E

∑
y∈Fn

2

(−1)b·π(y),

which is zero as b 6= 0.
If c 6= 0, then rewriting (4) as

∑
y∈Fn

2
(−1)b·π(y+c)

∑
x∈E(−1)x·(π(y)+π(y+c)), one easily de-

duces the following result.

Lemma 4.1. Let f ∈ Bm be a bent function given by f(x, y) = x·π(y), where π is a permutation
over Fn2 , and L = E×Fn2 where dim(E) = k, for k = 1, . . . , n. Then, the necessary and sufficient
condition that f∗(x, y) = f(x, y) + 1L(x, y) is a bent function in class C is that,∑

y∈Fn
2 :π(y)+π(y+c)∈E⊥

(−1)b·π(y+c) = 0,

for any (b, c) ∈ Fn2 × Fn2 \ L.

Remark 4.2. The above condition ensures that even though
∑

x∈E(−1)x·(π(y)+π(y+c)) 6= 0 for
some fixed y ∈ Fn2 (which happens exactly when π(y)+π(y+c) ∈ E⊥) the double sum still equals
to zero. The cases dim(E) ∈ {n − 1, n} are trivial and correspond to addition of a constant
(dim(E) = n) and affine function (dim(E) = n− 1).

Remark 4.3. Though taking f(x, y) = x · π(y) is just a special case of considering f to be a
bent function in M, most notably the condition on balancedness of the derivatives on E is now
related to the balancedness of the derivatives of π on E⊥, as mentioned above.

Even though the condition of Lemma 4.1 appears to be hard one can easily find a permu-
tation π and a suitable subspace E that satisfy the above condition.
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Example 4.4. Let n = 3 and E = {000, 010} thus dim(E) = 1. Then, E⊥ = {000, 001, 101, 100}.
Let us define a nonlinear permutation π : F3

2 → F3
2 and compute the differentials for c = (001):

y3y2y1 π(y) π(y + 001) π(y) + π(y + 001)

000 000 001 001

001 001 000 001

010 011 010 001

011 010 011 001

100 111 110 001

101 110 111 001

110 101 100 001

111 100 101 001

This c is obviously a linear structure of π (thus π(y) + π(y + 001) = 001 for all y ∈ F3
2) and

since (001) ∈ E⊥ we have:∑
y∈Fn

2 :π(y)+π(y+001)∈E⊥
(−1)b·π(y+001) =

∑
y∈Fn

2

(−1)b·π(y+001) = 0,

where the last equality is due to the fact that π is a permutation and b 6= 0. For other (nonzero)
values of c ∈ F3

2 it turns out that either Im(π(y)+π(y+c)) ⊆ E⊥ or Im(π(y)+π(y+c))∩E⊥ =
∅. For instance, one may check that Im(π(y) + π(y + 011)) = {010, 011} and the intersection
with E⊥ is the empty set.

In both cases
∑

y∈Fn
2 :π(y)+π(y+c)∈E⊥

(−1)b·π(y+c) = 0, thus f(x, y) = x ·π(y)+1L(x, y), where

L = E×F3
2, is a bent function on F6

2. For instance, one may check that Im(π(y)+π(y+011)) =
{010, 011}.

It is also of interest to investigate the relation between the spectral values of f(x, y) = x·π(y)
and f∗(x, y) = f(x, y) + 1L(x, y). Then, requiring that f∗(x, y) is bent implies the following
identity

Wf∗(u, v) =
∑

(x,y)∈Fn
2×Fn

2

(−1)x·π(y)+1L(x,y)+(u,v)·(x,y)

= Wf (u, v)− 2
∑

(x,y)∈L

(−1)x·π(y)+(u,v)·(x,y)

= ±2n − 2
∑

(x,y)∈L

(−1)x·π(y)+(u,v)·(x,y),

and if f∗ is to be bent then we must have Wf|L(u, v) =
∑

(x,y)∈L(−1)x·π(y)+(u,v)·(x,y) ∈ {0,±2n},
for any (u, v) ∈ Fn2×Fn2 . If L = E×Fn2 , we have Wf|L(u, v) =

∑
x∈E(−1)u·x

∑
y∈Fn

2
(−1)x·π(y)+v·y

and Wf|L(u, 0) = 2n, for any u ∈ Fn2 . This is because for any fixed x 6= 0 and v = 0, the inner

sum
∑

y∈Fn
2
(−1)x·π(y) = 0, unless x = 0 and the sum equals then to 2n.

The next result is now immediate.

Proposition 4.5. Let f ∈ Bm be a bent function given by f(x, y) = x · π(y), where π is a
permutation over Fn2 . Let L = E × Fn2 . If f∗(x, y) = f(x, y) + 1L(x, y) is a bent function, then
Wf (u, 0) = 2n, for any u ∈ Fn2 .
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Proof. Assuming L = E × Fn2 , we only need to prove that Wf (u, 0) = 2n, for any u ∈ Fn2 , is
always satisfied. Indeed,

Wf (u, 0) =
∑

(x,y)∈Fn
2×Fn

2

(−1)x·π(y)+(u,v)·(x,y) =
∑
x∈Fn

2

(−1)u·x
∑
y∈Fn

2

(−1)x·π(y) = 2n,

which must be true for all u ∈ Fn2 . Notice that the inner sum
∑

y∈Fn
2
(−1)x·π(y) = 0 for any

fixed x, unless x = 0 (since π is a permutation), and therefore Wf (u, 0) = 2n, for all u ∈ Fn2 .

4.2 The subcase when π is a linear permutation and L = E × Fn2
In this section we consider f∗(x, y) = x ·π(y)+1L(x, y) when π(y) = yA is a linear permutation
over Fn2 , L = E × Fn2 for some k-dimensional linear subspace E, for 0 ≤ k ≤ n, and A is an
invertible matrix over F2 of size n × n (that is A ∈ GL(n,F2)). It will be shown that f∗ is
always bent regardless the choice of E, but nevertheless f∗ is in the completed class M∗.

Theorem 4.6. Let f∗(x, y) = x · π(y) + 1L(x, y) be a function on Fn2 × Fn2 and π(y) = yA,
A ∈ GL(n,F2), a linear permutation over Fn2 so that f(x, y) = x ·π(y) is bent. Furthermore, let
L be of the form L = E ×Fn2 where E is a k-dimensional linear subspace of Fn2 , for 0 ≤ k ≤ n.
Then, f∗ is a bent function.

Proof. Since f∗ is bent if and only if f(x, y) + f(x + b, y + c) is balanced on L = E × Fn2 for
any (b, c) ∈ Fn2 × Fn2 \ L we have,∑

(x,y)∈L

(−1)f(x,y)+f(x+b,y+c) =
∑

(x,y)∈L

(−1)x·π(y)+(x+b)·π(y+c)

=
∑

x∈E;y∈Fn
2

(−1)x·yA+(x+b)·(yA+cA)

=
∑
x∈E

(−1)(x+b)·cA
∑
y∈Fn

2

(−1)b·yA

which must equal to zero if f∗ is bent. Now, since π(y) = yA is a permutation over Fn2
then

∑
y∈Fn

2
(−1)bA·y = 0, for any b 6= 0. Noticing that b 6= 0 since (b, c) 6∈ L, we have that∑

(x,y)∈L(−1)f(x,y)+f(x+b,y+c) = 0, thus f∗ is bent.

However, it turns out that the functions given by f∗(x, y) = x ·y+1L(x, y) (π being a linear
permutation) are embedded in M.

Theorem 4.7. Let f∗(x, y) = x ·π(y) + 1L(x, y) be a function on Fn2 ×Fn2 , and π(y) = yA be a
linear permutation over Fn2 . Furthermore, let L = E × Fn2 , where E is a k-dimensional linear
subspace of Fn2 , for 0 ≤ k ≤ n. Then, f∗ belongs to M∗.

Proof. It is well-known that f ∈ M∗ on Fn2 × Fn2 if and only if there exists an n-dimensional
subspace, say U ⊂ F2n

2 , such that the second derivatives DαDβf(x, y) = 0, for any α, β ∈ U .
Notice that since L = E×Fn2 , the support of L does not depend on the y variables, and so,

1L(x, y) = 1L(x). Now, for α = (a, b) and β = (c, d) where (a, b), (c, d) ∈ Fn2 × Fn2 we have,

DαDβ(x · yA) = Dβ(x · bA+ a · yA+ a · bA),
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and taking the derivative with respect to β = (c, d) gives DαDβ(x · yA) = c · bA+ a · dA. So it
is sufficient to show the existence of U such that both DαDβ1L(x) = 0 and DαDβ(x · yA) = 0,
for any α, β ∈ U . Taking U = {0}×Fn2 so that a = c = 0, we clearly have DαDβ1L(x) = 0 and
DαDβ(x · y) = b · c+ aA · d = 0, for any α, β ∈ U .

5 k-linear split permutations

In this section we look for permutations π, where there are subspaces L such that (π, L) satisfies
the property (C). In contrast to Theorem 3.3 which, for a particular class of permutations
introduced by Hou [12] shows the nonexistence of a 2-dimensional linear subspace L, it turns
out that our considered permutations do give rise to functions in the C class, and both necessary
and sufficient conditions on L can be given.

It is known that any permutation on a finite field can be written as a polynomial. We con-
sider those permutation polynomials which can be factored (split) into linearized polynomials.

Definition 5.1. A linearized polynomial ` ∈ F2n [X] is a polynomial of the shape

`(X) =
n−1∑
i=0

aiX
2i with ai ∈ F2n .

The set of all such polynomials is denoted by L(n).

The action of a pair of bijective linearized polynomials (`1, `2) ∈ L(n)× L(n) on F2n [X] is
defined as `1 ◦ φ ◦ `2 where φ ∈ F2n [X]. Two polynomials φ, ψ ∈ F2n [X] are said to be linearly
equivalent if there exist (bijective) `1, `2 ∈ L(n) such that `1 ◦ φ ◦ `2 = ψ.

Lemma 5.2. Suppose π and φ are two linearly equivalent permutations on F2n such that
φ = `1 ◦ π ◦ `2 where `1, `2 ∈ L(n), and L is a linear subspace of F2n. If π(a+ L) is a flat for
all a ∈ F2n, then φ(a+ `−12 (L)) is a flat for all a ∈ F2n.

Proof. For any a ∈ F2n we have

φ(a+ `−12 (L)) = `1 ◦ π ◦ `2(a+ `−12 (L)) = `1 ◦ π(`2(a+ `−12 (L)))

= `1 ◦ π(`2(a) + L) = `1(π(`2(a) + L)).

Since π(`2(a) + L) is a flat and `1 is a linear permutation, `1(π(`2(a) + L)) is a flat.

Thus it is enough to consider C type constructions associated to linearly inequivalent permu-
tations. In the spirit of Blokhuis, Coulter, Henderson and O’Keefe [2] and Laigle-Chapuy [13],
we extend their construction in the next definition.

We call a polynomial φ ∈ F2n [X] a k-linear split polynomial if it is of the form

φ(X) = π1(X)π2(X) · · ·πk(X) with πi ∈ L(n), 1 ≤ i ≤ k.

Blokhuis et al. [2] and Laigle-Chapuy [13] refer to the case k = 2 as a bilinear polynomial
(some authors prefer Dembowski-Ostrom polynomial), but the “bilinear” notion has a different
meaning in too many areas, so we prefer to insert “split” into the definition. Certainly, if the
function associated to the polynomial φ is bijective, we will refer to φ as a k-linear split
permutation.

9



It is easy to see that using the transformation Y = π1(X), the polynomial φ is linearly
equivalent to one of the type

φ(Y ) = Y `1(Y ) · · · `k−1(Y ), where `i = πi ◦ π−11 ∈ L(n), (5)

so, we will only consider these forms from here on.

5.1 C type bent functions associated to bilinear split permutations

From our observation (5) (see also [2, Section 2]), it will be sufficient to investigate the C type
bent functions (in this case) associated to bilinear split permutations of the shape

X`(X) =

n−1∑
i=0

aiX
2i+1 with ai ∈ F2n .

The set of all such polynomials is denoted by B(n).

Theorem 5.3. Suppose φ : F2n → F2n is a permutation defined by φ(x) = x`(x)+`0(x), for all
x ∈ F2n, where `, `0 ∈ L(n). Let L = 〈u, v〉 be a 2-dimensional subspace. Then (φ,L) satisfies

the (C) property if and only if `(u)
u = `(v)

v .

Proof. For L to satisfy the required condition for all a ∈ F2n , we must have

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v)

= a`(a) + `0(a) + (a+ u)`(a+ u) + `0(a+ u) + (a+ v)`(a+ v) + `0(a+ v)

+ (a+ u+ v)`(a+ u+ v) + `0(a+ u+ v)

= a`(a) + a`(a) + a`(u) + u`(a) + u`(u) + a`(a) + a`(v) + v`(a) + v`(v)

+ a`(a) + a`(u) + a`(v) + u`(a) + u`(u) + u`(v) + v`(a) + v`(u) + v`(v)

= u`(v) + v`(u) = 0.

Therefore the necessary and sufficient condition that a 2-dimensional linear subspace L = 〈u, v〉
has the required property is that `(u)

u = `(v)
v .

Corollary 5.4. Suppose φ : F2n → F2n, defined by φ(x) = x`(x)+`0(x), for all x ∈ F2n, where
`(X) =

∑n−1
i=0 aiX

2i ∈ L(n). Then there exists a C type function associated to φ if and only if

the function x 7→ `(x)
x on F∗2n is not a permutation.

Proof. The proof follows easily from Theorem 5.3.

The following result due to Payne [17] restated by Berger, Canteaut, Charpin and Laigle-
Chapuy [1] provides a complete characterization of such linearized polynomials.

Theorem 5.5 ([1], Theorem 6). A polynomial in F2n [X] of the form

Q(X) =

n−1∑
i=1

ciX
2i−1, ci ∈ F2n

cannot be a permutation polynomial unless Q(X) = ckX
2k−1 with gcd(k, n) = 1 and ck ∈ F∗2n.

10



Let Supp(`) = {i : ai 6= 0} where ` ∈ L(n). Then P (X) = `(X)
X is not a permutation if any

one of the following conditions are satisfied.

1. The cardinality of Supp(`), that is, |Supp(`)| ≥ 3.

2. The coefficient a0 = 0 and |Supp(`)| = 2.

3. The coefficient a0 6= 0 and Supp(`) = {0, k} where gcd(k, n) 6= 1.

In addition to Remark 3.2, it is possible to obtain explicitly C type bent functions, for a
special class of explicit permutations. Thus, for effective construction of the functions in C,
there is a need to characterize linear subspaces such as L with respect to permutations over
F2n .

In Theorem 5.7 we consider the permutation φ(x) = x2
t+1+1 +x3 +x, for all x ∈ F2n where

n = 2t+ 1 (see [11]).

Lemma 5.6 ([3], Corollary 1). Let d, n, s be positive integers satisfying gcd(n, s) = 1 and let

0 6= g(X) =
d∑
i=0

riX
2si ∈ F2n [X].

Then the equation g(X) = 0 has at most 2d solutions in F2n.

Theorem 5.7. Suppose φ(x) = x2
t+1+1+x3+x, for all x ∈ F2n, where n = 2t+1, gcd(t, n) = 1.

Then there exists at least one and at most 2(2n − 2) two dimensional linear subspaces L such
that φ(a+ L) is flat for all a ∈ F2n.

Proof. Since, φ(x)−x
x is not a permutation, by Corollary 5.4 there exists at least one function

in C associated to φ.
Let L = 〈u, v〉 be a 2-dimensional subspace of F2n . The set φ(a+ L) is a flat if and only if

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) = u2
t+1
v + uv2

t+1
+ u2v + uv2 = 0.

Exponentiating both sides of the above equation by 22t, we obtain

(u2
t+1
v + uv2

t+1
+ u2v + uv2)2

2t
= 0

i.e., u2
3t+1

v2
2t

+ u2
2t
v2

3t+1
+ u2

2t+1
v2

2t
+ u2

2t
v2

2t+1 = 0

i.e., (u2
2t+1

)2
t
v2

2t
+ u2

2t
(v2

2t+1
)2

t
+ u2

2t+1
v2

2t
+ u2

2t
v2

2t+1 = 0

i.e., u2
t
v2

2t
+ u2

2t
v2

t
+ uv2

2t
+ u2

2t
v = 0, since u, v ∈ F2n where n = 2t+ 1

i.e., (u2
t

+ u)v2
2t

+ u2
2t
v2

t
+ u2

2t
v = 0.

Therefore,
2∑
i=0

civ
2it = 0, where c2 = u2

t
+ u, c1 = c0 = u2

2t
. (6)

Since gcd(t, n) = 1 where n = 2t + 1, the greatest common divisor gcd(2t − 1, 22t+1 − 1) = 1.
Thus c2 = u2

t
+ u 6= 0 if and only if u = 1. If u = 1, then (6) reduces to v2

t
+ v = 0, which

has only one solution v = 1. Equation (6) has at most 22 = 4 solutions if u 6= 1, by Lemma 5.6
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among them one solution is v = 0 and another is v = u. So, if u /∈ {0, 1} ⊆ F2n , we can obtain
at most two values of v such that {u, v} is linearly independent. Thus, we can obtain at most
2(2n − 2) many subspaces L such that φ(a + L) is a flat for all a ∈ F2n . If u = 1, then the
only solution is v = u = 1; giving us no subspace L. So the total number of two dimensional
subspace L such that φ(a+ L) is flat for all a ∈ F2n is at most 2(2n − 2).

We now consider the case of a bilinear split permutation φ : F2n → F2n defined by φ(x) =
x2

i+1, for all x ∈ F2n .

Theorem 5.8. Suppose φ(x) = x2
r+1, for all x ∈ F2n, where gcd(r, n) = e.

(i) We assume that n/e is odd. Then (φ,L) (where L is a subspace of dim(L) = 2) satisfies
the (C) property if and only if L = 〈u, cu〉 where u ∈ F∗2n and 1 6= c ∈ F∗2e.

(ii) We assume that e = gcd(n, r) > 1 and L = 〈u1, c1u1, . . . , cs−1u1〉, dim(L) = s, ci ∈ F∗2e,
1 ≤ i ≤ s− 1, s ≥ 2, and u1 ∈ F∗2n . Then (φ,L) satisfies the (C) property.

Proof. We first show (i). Suppose that L = 〈u, v〉 is a 2-dimensional subspace of F2n . For any
a ∈ F2n we have

a+ L = {a, a+ u, a+ v, a+ u+ v}.
The set φ(a+ L) is a flat if and only if

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) = 0.

Therefore we have

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v)

= a2
r+1 + (a+ u)2

r+1 + (a+ v)2
r+1 + (a+ u+ v)2

r+1

= a2
r+1 + a2

r+1 + au2
r

+ a2
r
u+ u2

r+1 + a2
r+1 + av2

r
+ a2

r
v + v2

r+1

+ a2
r+1 + a(u+ v)2

r
+ a2

r
(u+ v) + (u+ v)2

r+1

= uv2
r

+ u2
r
v

= uv2
r

+ u2
r
v = 0.

It follows that (uv−1)2
r−1 = 1. Combining with this the fact that (uv−1)2

n−1 = 1, for u, v ∈
F∗2n , and gcd(2n − 1, 2r − 1) = 2e − 1 we obtain (uv−1)2

e−1 = 1. Therefore L = 〈u, cu〉 where
u ∈ F∗2n and c ∈ F∗2e .

We next show (ii). Assume that L = 〈u1, c1u1, . . . , cs−1u1〉 is of dimension s ≥ 2, where
u1 ∈ F∗2n , ci ∈ F∗2e , gcd(2r − 1, 2n − 1) = 2e − 1. Then (φ,L) satisfies the (C) property, which
is equivalent to the fact that for any u, v ∈ L there exists w ∈ L such that φ(a + u) + φ(a +
v) + φ(a) + φ(a + w) = 0. To show this, we take u = αu1, v = βu1, α, β ∈ F∗2e , and define
w := u+ v = (α+ β)u1 ∈ L. Then

φ(a+ u) + φ(a+ v) + φ(a) + φ(a+ w)

= (a+ u)1+2r + (a+ v)1+2r + a1+2r + (a+ u+ v)1+2r

= au2
r

+ ua2
r

+ av2
r

+ va2
r

+ a(u+ v)2
r

+ (u+ v)a2
r

+ uv2
r

+ vu2
r

= uv2
r

+ vu2
r

= αu1(βu1)
2r + βu1(αu1)

2r

= αβu1+2r

1 + αβu1+2r

1 = 0,

where we used that α2r = α, β2
r

= β, since both α, β ∈ F∗2e . The claim is shown.
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From the above theorem we note that if e = 1 then there is no linear subspace of dimension 2
such that function in C can be constructed with respect to the class of permutations under
consideration.

The following bilinear split permutations (all are linearly equivalent to each other) are
constructed by Blokhuis et al. [2] on F2n where 0 < i < n and e = gcd(i, n) (see also Laigle-
Chapuy [13]):

1. X2i+1 where n/e is odd.

2. X2i+1 + aX2n−i+1 where n/e is odd and a(2
n−1)/(2e−1) 6= 1.

3. X22i+1 + (aX)2
i+1 + aX2 where n = 3i and a(2

n−1)/(2e−1) 6= 1.

By Theorem 5.8 and Lemma 5.2 we can derive explicit choices of L which yield C class bent
functions associated to the above permutations.

5.2 C type bent functions associated to k-linear split permutations

We next look at C type bent functions associated to trilinear split permutations.

Theorem 5.9. Suppose φ : F2n → F2n is a permutation of the form φ(x) = x`1(x)`2(x),
for all x ∈ F2n, where `1(X) =

∑n−1
i=0 aiX

2i , `2(X) =
∑n−1

i=0 biX
2i ∈ L(n) (ai, bi ∈ F2n), and

L = 〈u, v〉 is a 2-dimensional subspace of F2n. Then φ(a + L) is a flat for all a ∈ F2n if and
only if

∑
1≤i,j≤n−1

aibj

(
u2

i
v2

j
+ v2

i
u2

j
)

+
n−1∑
j=0

(a0bj + ajb0)
(
uv2

j
+ u2

j
v
)

= 0,

n−1∑
j=0

(aibj + ajbi)
(
uv2

j
+ u2

j
v
)

= 0, for all i = 1, . . . , n− 1,

∑
0≤i,j≤n−1

aibj

(
(u+ v)

(
u2

i
v2

j
+ v2

i
u2

j
)

+ uv2
i+2j + vu2

i+2j
)

= 0.

(7)

Proof. Using Lemma 3.1, we see that φ(a+ L) is a flat for all a ∈ F2n if and only if

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v)

= a[`1(u)`2(v) + `1(v)`2(u)] + `1(a)[u`2(v) + v`2(u)]

+ `2(a)[u`1(v) + v`1(u)] + u`1(u)`2(v) + u`1(v)`2(u)

+ u`1(v)`2(v) + v`1(u)`2(u) + v`1(u)`2(v) + v`1(v)`2(u) = 0

(8)

for all a ∈ F2n . Substituting `1, `2 in (8) we obtainn−1∑
i=0

n−1∑
j=0

(aibj + ajbi)u
2iv2

j

 a+

n−1∑
i=0

ai

n−1∑
j=0

(uv2
j

+ u2
j
v)bj

 a2
i

+

n−1∑
i=0

bi

n−1∑
j=0

(uv2
j

+ u2
j
v)aj

 a2
i

+ u`1(u)`2(v) + u`1(v)`2(u) + u`1(v)`2(v) + v`1(u)`2(u) + v`1(u)`2(v) + v`1(v)`2(u)
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=

 ∑
0≤i,j≤n−1

(aibj + ajbi)u
2iv2

j

 a+

n−1∑
i=0

n−1∑
j=0

(uv2
j

+ u2
j
v)

 (aibj + ajbi) a
2i

+ (u+ v)
∑

0≤i,j≤n−1
aibju

2iv2
j

+ (u+ v)
∑

0≤i,j≤n−1
aibju

2iv2
j

+ u
∑

0≤i,j≤n−1
aibjv

2i+2j + v
∑

1≤i,j≤n−1
aibju

2i+2j

=

 ∑
1≤i,j≤n−1

(aibj + ajbi)u
2iv2

j
+

n−1∑
j=0

(uv2
j

+ u2
j
v)

 (a0bj + ajb0)

 a

+
n−1∑
i=1

n−1∑
j=0

(uv2
j

+ u2
j
v)

 (aibj + ajbi) a
2i

+ (u+ v)
∑

0≤i,j≤n−1
aibj(u

2iv2
j

+ v2
i
u2

j
) +

∑
0≤i,j≤n−1

aibj(uv
2i+2j + vu2

i+2j ) = 0,

for all a ∈ F2n . Thus, in order to construct C type bents associated to the permutation φ with
L = 〈u, v〉, we must obtain linearly independent vectors in u, v ∈ F2n satisfying the system of
equations (7).

Corollary 5.10. Let us consider the case when φ(x) = x1+2r+2s, for all x ∈ F2n, where
1 < r < s. Then there is no 2-dimensional subspace L = 〈u, v〉 satisfying the (C) property.

Proof. By the previous theorem, the system of equations (7) reduces to

arbs(u
2rv2

s
+ u2

s
v2

r
) = 0

(uv2
s

+ u2
s
v)arbs = 0

(uv2
r

+ u2
r
v)arbs = 0

u1+2rv2
s

+ u1+2sv2
r

+ uv2
s+2r + u2

s+2rv + u2
r
v1+2s + u2

s
v1+2r = 0.

Since ar 6= 0 and bs 6= 0 we obtain the system

u2
r
v2

s
+ u2

s
v2

r
= 0

uv2
s

+ u2
s
v = 0

uv2
r

+ u2
r
v = 0

u1+2rv2
s

+ u1+2sv2
r

+ uv2
s+2r + u2

s+2rv + u2
r
v1+2s + u2

s
v1+2r = 0

(9)

that is, (uv−1)2
n+s−r−1 = 1, (uv−1)2

s−1 = 1 and (uv−1)2
r−1 = 1. Let

gcd
(
2n − 1, 2n+s−r − 1, 2r − 1, 2s − 1

)
= 2e − 1

(it is immediate that if L exists, then we must have e > 1). Then uv−1 ∈ F2e . Since e > 1,
there exists 1 6= c ∈ F∗2e such that v = cv. Substituting v = cu in the last equation of (9) we
obtain

cu1+2r+2s + cu1+2r+2s + c2u1+2s+2r + cu1+2s+2r + c2u1+2r+2s + c2u1+2r+2s = 0,
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that is, (c+ c2)u1+2r+2s = 0, implying c ∈ {0, 1}, which is a contradiction. Therefore, there are
no trilinear split permutation of the above form for which we can construct a 2-dimensional
subspace L = 〈u, v〉 with the required conditions.

We can extend the previous theorem to the general case of k-linear split permutations,
showing in our next theorem a nonexistence result.

Theorem 5.11. If φ(x) = x
∑k

i=0 2ri (k ≥ 2), for all x ∈ F2n, where r0 = 0 < r1 < . . . < rk < n,
then there is no 2-dimensional subspace L such that (φ,L) satisfies the (C) property.

Proof. We assume that L exists, and so, there exists u, v ∈ F2n that are F2–linearly independent
such that (φ,L) satisfies the (C) property. For a subset A ⊆ {0, 1, . . . , k} (for convenience, we
write the set {0, 1, . . . , k} as [0, k]), we denote by RA :=

∑
i∈A 2ri and Ā = [0, k] \ A, with the

convention that if A = ∅, then RA = 0.
Since, φ(a+ L) is a flat, then φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) = 0, and so,

0 = aR[0,k] + (a+ u)R[0,k] + (a+ v)R[0,k] + (a+ u+ v)R[0,k]

= aR[0,k] +

k∏
i=0

(a+ u)2
ri +

k∏
i=0

(a+ v)2
ri +

k∏
i=0

(a+ u+ v)2
ri

= aR[0,k] +
k∏
i=0

(
a2

ri + u2
ri
)

+
k∏
i=0

(
a2

ri + v2
ri
)

+
k∏
i=0

(
a2

ri + (u+ v)2
ri
)

= aR[0,k] +
∑

A⊆[0,k]

aRAuRĀ +
∑

A⊆[0,k]

aRAvRĀ +
∑

A⊆[0,k]

aRA(u+ v)RĀ

=
∑

A&[0,k]

(
uRĀ + vRĀ + (u+ v)RĀ

)
aRA ,

for all a ∈ F2n . That is, the polynomial∑
A&[0,k]

(
uRĀ + vRĀ + (u+ v)RĀ

)
XRA

has 2n roots, but its degree is ≤ R[0,k] =
∑k

i=0 2ri < 2n, and therefore all its coefficients must
be 0. Hence (replacing Ā by A, under the condition A 6= ∅), we have

uRA + vRA + (u+ v)RA = 0, for all A ⊆ [0, k], A 6= ∅. (10)

Now, taking A = {0, i}, 1 ≤ i ≤ k, and simplifying, we get

vu2
ri + uv2

ri = 0, for all 1 ≤ i ≤ k,

and so, vu−1 ∈ F∗2ri , 1 ≤ i ≤ k. Thus, if 2e − 1 = gcd(2n − 1, 2r1 − 1, . . . , 2rk − 1) (certainly,
if L of dimension 2 exists, it is necessary that e > 1), then v = cu, for some c ∈ F∗2e \ {1}.
Substituting v = cu in (10) with A = {0, 1, 2}, we obtain

cu1+2r1+2r2
+ cu1+2r1+2r2

+ c2u1+2r2+2r1
+ cu1+2r2+2r1

+ c2u1+2r1+2r2
+ c2u1+2r1+2r2

= 0,
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that is,
(c+ c2)u1+2r1+2r2

= 0,

implying c ∈ {0, 1}, which is a contradiction. Therefore, there are no 2-dimensional subspaces
L for which we can construct C type bent functions corresponding to k-linear split monomial
permutations.

For permutations on F2n of the form φ(x) = x
∑k

i=1 2ri (k ≥ 2), we can inquire whether
there are subspaces of dimension > 2 associated to C type bent functions. While in general we
cannot answer that question, we can certainly derive some necessary conditions.

Theorem 5.12. Let φ be a monomial permutation of degree k, that is, φ(x) = x
∑k

i=1 2ri ,
0 = r1 < . . . < rk < n, k ≥ 2. A necessary condition for (φ,L) (with L of dimension s ≥ 2) to
satisfy the (C) property is ∑

u∈L
uRA = 0, for all ∅ 6= A ⊆ [0, k]. (11)

Moreover, if (φ,L) with L of dimension s ≥ 2 satisfies the property (C), then both 2s−1, 2n−2s

must be in Np1 + · · ·+Np`, where 2n−1 =
∏`
i=1 p

ei
i is the prime power factorization (we adopt

the convention that 0 ∈ N).

Proof. Since for subspaces or flats of dimension s ≥ 2 the sum of all elements must be zero, we
can infer (as we have done in the proof of our previous theorem) that for all a ∈ F2n ,

0 =
∑
u∈L

φ(a+ u) =
∑
u∈L

k∏
i=1

(a+ u)2
ri

=
∑
u∈L

∑
A⊆[0,k]

uRAaRĀ

=
∑

∅6=A⊆[0,k]

(∑
u∈L

uRA

)
aRĀ .

As before, the polynomial
∑

∅6=A⊆[0,k]

(∑
u∈L

uRA

)
XRĀ with degree < 2n and has 2n roots, and so,

all coefficients must be zero (the terms XRĀ are all distinct for different Ā by the uniqueness
of binary representations), from which we infer the first claim.

It is well-known (see Lam and Leung [14, 15] and Sivek [19]) that a sum of k distinct m-th
roots of unity is zero (we say that m is k-balancing) if and only if both k and m − k are
in Np1 + · · · + Np`, where m =

∏`
i=1 p

ei
i is the prime power factorization. Since the elements

u ∈ L ⊆ F2n are (2n−1)-th roots of unity, condition (11) shows that (2n−1) is (2s−1)-balancing
(since the cardinality of L∗ is 2s − 1). Expressing 2n − 1 =

∏`
i=1 p

ei
i , then the previous result

forces both 2s − 1 and 2n − 2s to be in Np1 + · · ·+ Np`.

Using some elementary number theory arguments, we can easily get several results regarding
the nonexistence of subspaces as in property (C). Let p(N) denote the smallest prime factor
of N .
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Corollary 5.13. With the notations of Theorem 5.12, the following statements are true:

(i) If 1 < s < log2(p(2n − 1)), or log2 (2n − p(2n − 1)) < s < n, then there are no pairs
(φ,L) satisfying the (C) property, where dim(L) = s and φ is a monomial permutation.

(ii) Let n = P be a prime number. If 2n − 1 = p is a Mersenne prime, or 2n − 1 = p q, a
product of two primes, then there are no subspaces of dimension 1 < s < n satisfying
the C type bent condition (C) for a monomial permutation φ of degree k ≥ 3.

Proof. The first claim follows easily observing that, by Theorem 5.12, if s < log2(p(2n − 1)),
then 2 ≤ 2s − 1 < p(2n − 1) ∈ {p1, . . . , p`}, and so, 2s − 1 6∈ Np1 + · · · + Np`; if s >
log2 (2n − p(2n − 1)), then 2n − 2s < p(2n − 1), and so, 2n − 2s 6∈ Np1 + · · ·+ Np`.

Regarding claim (ii), if 2n − 1 = p is a Mersenne prime, then, by Theorem 5.12, 2n − 1
is (2s − 1)-balancing, and so, one needs 2s − 1 = ap and 2n − 2s = Ap, for some nonnegative
integers a,A. Thus, 2n−1 = (A+a)p = p, which implies that (a,A) ∈ {(0, 1), (1, 0)}, therefore,
either s = 0, or s = n, which contradicts our assumption that 2 ≤ s < n.

To show the second part of claim (ii), observe that by Theorem 5.12, there exist nonnegative
integers a, b, A,B such that

2n − 1 = p q,

2s − 1 = ap+ bq,

2n − 2s = Ap+Bq,

from which we derive that (A + a)p + (B + b)q = p q, and so, A + a ≡ 0 (mod q), B + b ≡ 0
(mod p). If ab 6= 0, since A,B, a, b are nonnegative and A < q, a < q,B < p, b < p, then
A = q−a,B = p− b. But then, 2n− 2s = Ap+Bq = 2pq− (ap+ bq) = pq+ (pq− 2s + 1) > 2n,
which is a contradiction. Thus, ab = 0, and without loss of generality, we assume that b = 0,
but then B = 0, as well. Thus, 2s − 1 = ap, 2n − 2s = (q − a)p. It is well-known that
gcd(2n − 1, 2s − 1) = 2gcd(n,s) − 1. Since p|2n − 1, p|2s − 1 and n is prime (thus, for 2 ≤ s < n,
gcd(n, s) = 1), then p|2gcd(n,s) − 1 = 1, which is a contradiction.

5.3 C class functions from x(Trnl (x) + ax)

We consider bilinear split permutations of the form

φ(x) = x(Trnl (x) + ax) (12)

where l > 1, a ∈ F2l \ F2 and Trnl (x) =
k−1∑
i=0

x2
li
. For details we refer to [2, 13]. We show here

that bent functions in the C class, corresponding to φ, can be constructed by adding indicator
functions of subspaces of codimension 2. The number of such subspaces is also obtained.

Theorem 5.14. Let n = kl where k be odd and l be any positive integer. Consider φ as given in
(12). Then the total number of 2-dimensional linear subspaces of F2n which satisfy the condition
(C) required for the construction of C type bent functions is (2n−1)(2l−2)+(2n−l−1)(2n−l−2).

Proof. Let L = 〈u, v〉 be any two dimensional subspace of F2n . We know that for any c ∈ F2n ,
φ(c+ L) is flat if and only if φ(c) + φ(c+ u) + φ(c+ v) + φ(c+ u+ v) = 0, that is,

c(Trnl (c) + ac) + (c+ u)(Trnl (c+ u) + a(c+ u)) + (c+ v)(Trnl (c+ v)

+a(c+ v)) + (c+ u+ v)(Trnl (c+ u+ v) + a(c+ u+ v)) = 0. (13)
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Since a(c2 + (c+ u)2 + (c+ v)2 + (c+ u+ v)2) = 0 and (13) can be rewritten as

0 = cTrnl (c) + cTrnl (c) + cTrnl (u) + uTrnl (c) + uTrnl (u) + cTrnl (c) + cTrnl (v) + vTrnl (c) +

vTrnl (v) + cTrnl (c) + c(Trnl (u) + Trnl (v)) + (u+ v)Trnl (c) + (u+ v)(Trnl (u) + Trnl (v))

= uTrnl (u) + vTrnl (v) + uTrnl (u) + uTrnl (v) + vTrnl (u) + vTrnl (v) = uTrnl (v) + vTrnl (u),

then φ(c+ L) is flat if and only if uTrnl (v) + vTrnl (u) = 0, that is,
Trnl (u)
u =

Trnl (v)
v .

Therefore, C type functions associated to φ exist if and only if the function x 7→ Trnl (x)
x is not

a permutation on F2n . We know that a polynomial in F2n [x] of the form Q(x) =
n−1∑
i=0

cix
2i−1,

ci ∈ F2n can not be a permutation polynomial unless Q(x) = ckx
2k−1 with gcd(k, n) = 1 and

ck ∈ F∗2n .

Let k = 1 then Trnl (x) = x. It is obvious that x 7→ Trnl (x)
x = 1 not a permutation. If

k ≥ 3 then it is not a permutation polynomial, where k is odd. Thus for the permutation φ
we can find at least one 2-dimensional subspace of F2n which satisfies the condition (C). Let
α = Trnl (u) and β = Trnl (v).

Case I: Let α 6= 0 and β 6= 0. Then φ(c+L) is flat if and only if αv+ βu = 0⇒ v = β
αu, that

is, v = λu where λ = β
α ∈ F∗

2l
and λ 6= 1 as u 6= v. Therefore, for any u ∈ F∗2n , we can choose v

in 2l − 2 ways. Thus, the total number of 2-dimensional subspaces is (2n − 1)(2l − 2).
Case II: Let α = 0 and β 6= 0. Then, αv + βu = 0 implies βu = 0, and thus u = 0 (since
β 6= 0), which is not possible. The case α 6= 0 and β = 0 implies that v = 0, which is also not
possible.
Case III: Let α = 0 and β = 0. Then, φ(c + L) is flat if and only if u, v ∈ ker(Trnl ) \ {0}
with u 6= v where ker(Trnl ) = {x ∈ F2n : Trnl (x) = 0}. Therefore, the dimension of ker(Trnl )
is kl − l. Thus, u can be chosen in 2kl−l − 1 ways and v in 2kl−l − 2 ways. Hence the total
number of 2-dimensional subspaces is (2kl−l − 1)(2kl−l − 2).

To summarize, for any value of l > 1, the total number of 2-dimensional subspaces of
F2n which satisfies the condition (C) required for the construction of C type bent functions is
(2n − 1)(2l − 2) + (2n−l − 1)(2n−l − 2).

6 Conclusions

The problem of specifying suitable linear subspaces of low dimension for some generic classes of
permutations related to the derivation of new bent functions in C has been partially addressed.
The results clearly indicate the hardness of this problem due to the fact that whereas some
“suitable” permutations may finally yield bent functions within class C for other permutations
such functions simply cannot exist. It appears that additional efforts are needed for getting
a better understanding and deriving more explicit subclasses within the C and D class. Also,
the question whether the classes of permutations specified here and related subspaces indeed
give rise to bent functions outsideM (and possibly outside PS as well) remains to be addressed.
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