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Abstract—Recent research has demonstrated that there is
no sharp distinction between passive attacks based on side-
channel leakage and active attacks based on fault injection.
Fault behavior can be processed as side-channel information,
offering all the benefits of Differential Power Analysis including
noise averaging and hypothesis testing by correlation. This paper
introduces Differential Fault Intensity Analysis, which combines
the principles of Differential Power Analysis and fault injection.
We observe that most faults are biased - such as single-bit,
two-bit, or three-bit errors in a byte - and that this property
can reveal the secret key through a hypothesis test. Unlike
Differential Fault Analysis, we do not require precise analysis
of the fault propagation. Unlike Fault Sensitivity Analysis, we do
not require a fault sensitivity profile for the device under attack.
We demonstrate our method on an FPGA implementation of
AES with a fault injection model. We find that with an average
of 7 fault injections, we can reconstruct a full 128-bit AES key.

Index Terms—Fault Analysis; AES; Fault Injection; Fault
Intensity.

I. INTRODUCTION

Traditionally, implementation attacks on secure embedded
systems come in two flavors: passive side-channel analysis
(SCA), and active fault analysis (FA). SCA observes the phys-
ical implementation of cryptography and uses implementation
effects (time, power, etc) to reverse-engineer the secret key.
The most powerful SCA, differential power analysis, enables
the adversary to accumulate knowledge over many encryptions
[1]. FA, on the other hand, injects faults into the cryptographic
implementation, and analyzes the system response under the
assumption of a specific fault model [2].

This paper introduces Differential Fault Intensity Analysis
(DFIA), a fault attack that combines the principles of DPA
and fault injection. DFIA is based on a differential analysis
of the system response under fault injection with varying
intensity. Changing the fault intensity causes a non-uniform
fault response. For example, a biased fault on a full byte of a
secret state variable would cause a single-bit, two-bit, or three-
bit error with high probability [3], [4]. Under a biased fault
model, small changes to a faulty state variable are therefore
more likely than big, random changes. This is the basis for the
differential technique. In DFIA, the attacker injects faults with
different intensities into the cryptographic module to get faulty
ciphertexts. Next, he derives an intermediate, key-dependent
state variable under a given key hypothesis (similar to DPA).
Finally, he will select the key hypothesis that is most likely
under the biased fault model. Indeed, due to the non-linear

properties of cryptographic modules, a wrong key hypothesis
will always infer big, random changes as a result of a fault.

In comparison to earlier contributions, DFIA has three
benefits. The first one is that DFIA does not require fault
path analysis of the cipher, in the same manner as required
for Differential Fault Analysis (DFA). In DFA, the adversary
compares the response of a cipher with and without fault
injection. DFA thus requires the adversary to obtain both
faulty and fault-free ciphertext. The secret key is inferred
by analyzing the fault propagation under assumption of a
fault model [5]. DFA does not average over different fault
injections, but treats each fault separately as part of a system
of equations [6]–[8].

The second benefit of DFIA is that DFIA works with a
looser fault model. For example, earlier work has assumed
precise fault effects such as stuck-at-0 or stuck-at-1 faults [3],
or precise control on the position where the fault is injected
[6]. DFIA, on the other hand, only assumes that the fault model
is biased.

The third advantage is that DFIA does not require a profiling
phase. In contrast, the recently proposed Fault Sensitivity
Analysis (FSA) is based on two phases [5]. The first phase
does an exhaustive profiling of the circuit to characterize
its response under varying fault intensity. This allows the
adversary to associate the value of secret state variables to the
fault sensitivity of the circuit. In the second phase, the attacker
will measure the fault sensitivity of a circuit with an unknown
key, and derive the key value based on the most likely secret
state variable. The profiling phase is an important condition
for FSA to work, since the attacker needs to associate fault
sensitivity and secret state values. DFIA, on the other hand,
does not need the association to fault sensitivity, and it can
directly derive the most likely secret state.

The paper is organized as follows. In Section II, we describe
the fault model. Section III explains the proposed attack
procedure and provides an example of the proposed attack for
the case of an AES implementation. Section IV describes the
experimental setup that was used to derive results. The results
prove the fault model existence, the key retrieval cost for AES
round key byte and whole AES key. Section V gives a brief
overview on the previous works. This section compares DFIA
with other types of attacks. Finally Section VI concludes the
paper.

2014 Workshop on Fault Diagnosis and Tolerance in Cryptography

978-1-4799-6292-1/14 $31.00 © 2014 IEEE

DOI 10.1109/FDTC.2014.15

49



II. FAULT MODEL

This paper proposes DFIA. We will illustrate it for hardware
implementations of cryptographic algorithms on FPGA. Like
other fault attacks, DFIA starts with the injection of faults.
There are two important factors to any form of fault injection.

1) Control of the location of the fault: In a software
implementation, the fault location refers to the variable or
instruction chosen for fault induction. Because software
is sequential, the fault location is closely associated with
the fault timing. In DFIA, we assume that the attacker
can inject faults at the required timing and that he is
aware of the fault location in the program [9]. This is a
reasonable assumption, even for unknown architectures.
The adversary can characterize implementation aspects
such as encryption rounds using side-channel leakage. For
example, in a typical software implementation of AES, it
is usually easy to distinguish 10 different rounds [10].

2) Fault Model: Depending on the type of fault injection,
different types of faults can occur, with different gran-
ularities. We can have multi-byte faults or single-byte
faults. Furthermore, faults can be stuck-at faults, bit flips,
random faults and sets or resets.
One other aspect of the fault model is the number of
faulty bits induced. Previous work has often considered
the fault model a random effect on one byte, meaning
that the fault injection can change the value of a register
to any random value [11], [12] and [13]. However, we
specifically assume that the fault in a single byte is biased.
For example, in an analysis of the fault effect of radiation,
more than 90% of faults are Single Bit Upsets (SBU) and
the probability of inducing single-bit and two-bit fault
successively is 70% [14], [15]. Also for directed fault
injections (such as clock glitches), the number of faulty
bits are mostly one-bit or two-bits [15]. Hence, we make
the following assumptions for the DFIA fault model:
• We assume that a random byte of the state will be

affected by the fault injection.
• The distribution of faults in this byte will be biased.

The attacker can manually increase or decrease the
number of faulty bits by controlling the fault intensity
[4], [16].

III. DIFFERENTIAL FAULT INTENSITY ANALYSIS

In this section, we describe our attack. First, we define a
generic procedure, and then we apply it to AES.

A. The Attack Procedure

The problem definition is as follows: Given a cryptographic
algorithm, the fault injection tool and enough pairs of faulty
ciphertexts corresponding to the same input, we want to find
the round key. We make the following assumptions:
• The adversary knows what cryptographic algorithm is

executing.
• The adversary is able to inject a fault in an intermediate

variable S that produces a key-dependent observable

Table I
SYMBOLS OF DFIA ATTACK PROCEDURE

P Plaintext
Q Total number of injected faults with different intensities
q A specific fault injection
C Correct ciphertext
C′

q Faulty ciphertext under fault q
S Correct state
k Key hypothesis
S′
k,q Faulty state under hypothesis K = k, fault q, S′

k, q = f(C′
q , k)

Algorithm 1: DFIA Attack Procedure

Assume Cryptographic Algorithm, Fault Injection Tool;
Result Correct Key Guess ;
//Step1 Fault Injection;
forall the Fault q such that 1 ≤ q ≤ Q do

Obtain faulty ciphertext C ′q;
forall the Key Hypothesis k do

Obtain faulty state S′k, q = f(C ′q, k);

//Step2 Post-process;
forall the Key Hypothesis k do

Calculate ρk =
∑Q

n=1

∑n−1
m=1HD(S

′

k,n, S
′

k,m);

//Step3 Key Hypothesis;
K = min ρk;

output. This is similar to the way in which DPA selects
intermediate variables.

• The fault can be injected with varying intensity, with a
limited change to the intermediate variable.

Table I defines the notations of the DFIA attack procedure.
DFIA uses three steps. Algorithm 1 explains the DFIA attack
procedure. This algorithm consists of the following steps.

Step 1: The attacker induces a fault into S while running the
cryptographic algorithm with input P . The fault will change
the value of S to a faulty value. The output of the algorithm
will be C ′q .

The attacker is in possession of the values of C ′q . Under a
key hypothesis k, he can compute S′k,q as a function of C ′q
and k. The attacker will generate S′k,q for every possible key
hypothesis.

Step 2: The attacker computes Equation 1 for each key
hypothesis k. This equation adds up the Hamming Distance
between the value of S′k,q for current fault injection and any
previous one. The Hamming Distance between S

′

k,n and S
′

k,m

is equal to the difference between the number of injected faults
in fault injection n and fault injection m.

ρk =

Q∑
n=1

n−1∑
m=1

HD(S
′

k,n, S
′

k,m) (1)

Step 3: The attacker evaluates the Hamming Distance
among faulty state variables testing for the distance that is
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Figure 1. AES-128 encryption algorithm

most likely under the assumed biased fault model. To get
to this point, the attacker should look for the minimum of
cumulative Hamming Distance (ρk) among all key hypotheses.
The reason behind looking for minimum is that only under the
correct key guess the number of injected faults will correspond
to the fault intensity, otherwise the Hamming Distance will be
a random or unpredictable number. If no conclusion can be
made on the most likely key, the attacker will increase Q and
repeat the process.

Hence, similar to DPA, the DFIA attack tests the most
likely model corresponding to an observation (measurement).
Adding more observations improves the hypothesis test.

B. DFIA on AES

We now describe our algorithm as applied to the Advanced
Encryption Standard (AES) [17]. Figure 1 shows the flow
diagram of AES. We assume 128-bit AES (10 rounds).

We use the same notations as before, with the extension that
S represents the AES state at round 10, and K represents the
round key for round 10.

If a fault q is induced in S, it will only corrupt a single byte
of C since the last AES round does not perform MixColumns
diffusion. The adversary then collects multiple faulty cipher-
texts C ′1, C ′2, ..., C ′Q under the same plaintext intput P . We
know that

C ′q = k ⊕ ShiftRows(SubBytes(Sq
′)) (2)

Therefore, the faulty state can be computed as

Sq
′ = SubBytesInverse(ShiftRowsInverse(k ⊕ C ′q))

(3)
We arrange the observations in a table such as Table II,

which we call the key hypothesis table. Now, only one of the
256 key guesses is true. Because of the biased fault model,
the true faulty state bytes must be close to each other in terms
of Hamming Distance. Hence, under a given key hypothesis,
we test the distance between faulty state bytes by calculating
ρk. Only for a correct key guess will a minimum be found.
As before, we may need multiple fault injections to uniquely
pinpoint the most likely roundkey.

Table II
KEY HYPOTHESIS TABLE

Key Hypothesis K
k0 k1 ... kn

Fault In-
jection

Faulty
Cipher-
texts

Apply Equation 3 to get S′
q

1 C′
1 S′

0,1 S′
1,1 ... S′

n,1

2 C′
2 S′

0,2 S′
1,2 ... S′

n,2

... ... ... ... ... ...
Q C′

Q S′
0,Q S′

1,Q ... S′
n,Q

Apply Equation 1 to get ρk ρ0 ρ1 ... ρn

C. Methodology for Selecting Fault Set

The previous section demonstrated how a set of biased faults
can be used to construct a hypothesis test leading to the correct
key. In this section, we elaborate how to construct the set of
biased faults such that the hypothesis test shows the quickest
convergence. From a practical point of view, the adversary is
interested in using as few faults as possible, since every fault
injection costs time and effort.

To build an understanding of what makes a good set of
biased faults, we performed the following experiment. We
wrote a simulator for the AES algorithm that supports the
injection of biased faults in the last round. The simulator
allows the injection of single-bit, two-bit, three-bit and four-bit
errors in a state byte. For example, injection of a two-bit biased
fault in a state byte means that the simulator randomly selects
two bits from the state byte. Then, it flips the selected bits to
random values of 0 or 1. Hence, two-bit fault injection means
that at most two bits in a byte have faulty values. Observe
that this fault model only gives us control over the number of
bits that may be affected, not over their location or their final
value.

We argue that the single-bit, two-bit, three-bit and four-bit
biased fault models can be used to simulate variation of fault
intensity. At low fault intensity, a single-bit fault is more likely,
while at higher intensities, multi-bit faults are more likely. This
effect has been observed by other authors as well [16], [18]
, and we also confirmed it through practical experiments (See
section IV.B).

Using the simulator, we can now explore different strategies
for fault injection campaigns. The most simple set of biased
faults is a set with one single fault at a given intensity level
(single-bit, two-bit, three-bit or four-bit). After injection of a
fault, the simulator computes the number of possible key bytes
under the given fault model. For example, after injection of a
two-bit fault, the simulator finds the number of key candidates
that, according to Equation 3, predicts a faulty state with a
Hamming Distance of 1, or 2 from the original state. We repeat
this for 256 different plaintext inputs, each time finding the
number of key candidates.

Figure 2(top) shows different scenarios of injecting faults
into the state byte. Each level of the tree shows different fault
intensities at each trial. Figure 2(a) shows the possible fault
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(a) First Level of Fault Injection (b) Second Level of Fault Injection (c) Third Level of Fault Injection

Figure 2. Effect of Choosing Fault Set on Key Recovery Convergence

intensities for the first fault injection trial. In the first trial, the
attacker can inject either single-bit, two-bit, three-bit or four-
bit faults into the state byte. Figure 2(d) shows how many key
guesses could be the correct key after the first trial of fault
injection. In this figure, the X axis shows the sequence of
faults injected so far and each sequence of fault injections are
labeled by the corresponding fault intensities. Y axis shows
the number of possible correct key guesses corresponding to
the each sequence of fault injections. The numerical data in
Figure 2(bottom) is shown as a box-and-whisker diagram.

Figure 2(d) shows that strongly-biased faults (such as single-
bit faults) leave less ambiguity about the correct key than
weakly-biased faults (such as four-bit faults). The reason for
this is simply a consequence of Hamming Distance compu-
tation over a byte: Under a single-bit error, a state byte can
only map in 7 other byte values (of the possible 256). Under a
two-bit error, however, a state byte can map in up to 55 other
possible values.

In more elaborate fault injection campaigns, we will inject
multiple faults, with varying intensity. Figure 2(b) shows
the next level of the tree. In the second trial, the attacker
can increase the fault intensity. Therefore, the second fault
injection after single-bit could be two-bit, three bit or four-

bit. Figure 2(e) shows the number of possible key guesses
after post-processing the information of both trials. As an
example, the number of possible key guesses after single-bit
and two-bit fault injection is 7 in average. This number is
smaller compared to injecting only single-bit (13 key guesses
based on Figure 2(d) ) or two-bit ( 33 key guesses based on
Figure 2(d)) faults. The reason is that the attacker is now in
possession of two sets of possible key guesses and can find
the subscription of the two sets.

Finally, at the last level, the attacker injects the third fault
(Figure 2(c)). Only one or two key guesses are left if the
attacker has injected one, two and three faulty bits (Figure
2(f)). But there exists up to 11 key guesses if the attacker
injects two, three and four bit faults. This demonstrates the
fact that by injecting more accurate faults (single-bit), the key
retrieval procedure takes less execution time and less trials.
We also see that multiple fault injections quickly reduce the
number of viable key candidates.

IV. EXPERIMENTAL SETUP

In order to evaluate our claims, we implemented an exper-
imental setup as shown in Figure 3. The experimental setup
consists of an FPGA (Altera Cyclone 4 E), a computer, and an
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Figure 3. Block Diagram of the Experimental Setup

external clock signal generator (Agilent 81110A Pulse/Pattern
Generator). On the FPGA, we have three blocks: Device
under test (DUT), JTAG-to-Avalon master, and Avalon PLL.
The DUT is connected to an Avalon-MM bus via Avalon
memory-mapped slave interface. The DUT is controlled by
a PC through a JTAG-to-Avalon master bridge. The PC uses
an FPGA debug program with a Tcl script in order to create
read/write transactions on the Avalon bus. In our setup, we use
clock glitches for fault injection and control the fault intensity
by increasing/decreasing the frequency of the clock signal.
Hence, the system has two clock signals clk fast and clk slow,
which are derived from an external clock signal (clk ext) using
a phased-locked loop block (Avalon PLL). The external clock
signal is generated by the external clock signal generator and
it can take frequency values up to 330 MHz. The clk slow
signal drives the Avalon-MM bus and it is used for fault-free
operation of the DUT. The frequency of the clk slow signal is
one fourth of the external clock signal frequency. The clk fast
signal is used to create clock glitches for fault injection and
its frequency is equal to the external clock signal frequency.

Using the experimental setup with two different DUT
blocks, we carried out two experiments:

1) In the first experiment, we investigate the behavior of four
different S-box implementations by using them as DUTs
in order to evaluate our biased fault model.

2) In the second experiment, we evaluate the DFIA attack
on AES proposed in Section III by using an FPGA
implementation of AES block cipher.

The details of the experimental setups will be explained in
the following subsections.

A. Biased Fault Experiment for S-Box Architectures

In this experiment, we used four different FPGA imple-
mentations of AES S-box block as the DUT: PPRM1 S-
box [19], Boyar-Peralta S-box [20], Canright S-box [21],
and LUT-based S-box. In the DUT block of Figure 3, we
place a combinational S-box implementation between a set of
input/output registers as it is shown in Figure 4.

Our approach in this experiment is, for different external
clock frequencies, applying a test input to the DUT, and
then, computing the Hamming distance between the fault-free
output and the test output corresponding to this test input.
The fault-free output can be easily obtained by looking up
the AES S-box table. The test output is the value obtained in
the test output register of Figure 4 for the applied test input

Figure 4. DUT Architecture for the Biased Fault Experiment

Figure 5. A High-level Timing Diagram for the Biased Fault Experiment

and clock frequency. Before applying the test input, we reset
the test output register to the bitwise inverse of the fault-free
output value via an initial input value. Hence, the Hamming
distance between the fault-free and the test outputs gives the
number of faulty bits obtained for the applied test input and
clock frequency. Similar to the fault-free output value, the
initial output value can be easily determined by looking up
the inverse AES S-box table.

In our experiment, we arbitrarily selected 0x00 as the test
input, and thus, the corresponding fault-free output value is
0x63. In order to reset the test output register to 0x9C (i.e. the
inverse of 0x63) before applying the test input, our initial input
value is 0x1C. A high-level timing diagram for the experiment
is shown in Figure 5. The experiment starts with setting the
input register to an initial input value to obtain the initial
output value in the test output register. Then, the test input is
applied to obtain the test output. These steps are controlled by
a data write (wr data) and an initialization (init) signal, which
are generated by the Tcl script (measure.tcl) and are transferred
to the DUT via JTAG-to-Avalon master block. Finally, the
Hamming distance between the test and the fault-free outputs
are computed.

In this experiment, we applied the above steps for four
aforementioned S-box implementations and 33 different ex-
ternal clock frequency values. As a result, we obtained 33
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Figure 6. Biased Fault Behavior for Different S-box Implementations

Figure 7. (a) Fault-injection Flip-flop (FI-FF) Architecture. (b) The DUT
Architecture for Fault Injection into k-th Byte of the AES State

experimental results for each S-box architecture. The experi-
mental results are given in Figure 6. For each graph of Figure
6, the X axis represents the external clock frequency and the Y
axis represents the Hamming distance between the fault-free
and the test outputs. As it can be seen from Figure 6, the
Hamming distance between the fault-free and the test outputs
(i.e. the number of faulty output bits) increases with the clock
frequency.

B. DFIA Experiment on AES

In this experiment, we evaluated the proposed attack on
AES. We used the experimental setup given in Figure 3 with
an AES block cipher implementation as the DUT. Our AES
implementation is a register-transfer level Verilog definition of
AES encryption and uses PPRM1 S-box architecture. In this
experiment, our method is injecting biased faults into the AES
state at 10-th round. In order to inject a fault into a position
of the AES state, we use a fault-injection flip-flop (FI-FF) for
this position rather than using a regular flip-flop (FF). As it is
shown in Figure 7(a), the FI-FF includes a multiplexer and
control logic in addition to a regular FF to select between
two different clock signals. An FI-FF uses a high-frequency
clock signal (clk fast) at 9-th round of the AES, while using a
low-frequency clock signal (clk slow) at the other rounds. In
Figure 7(b), we show a DUT architecture for fault injection
into k-th byte of the AES state. In Figure 7, S[k] denotes
the k-th byte of the AES state S, while S[k:n] denotes all
of the AES state bytes from k-th byte to n-th byte. In this

Figure 8. A High-level Timing Diagram for FI-FF

architecture, we replaced regular FFs used for k-th byte of the
AES state with FI-FFs. Using this architecture, we can inject
a clock glitch into the k-th byte of the AES state as it can be
seen from the high-level timing diagram provided in Figure 8.
In the DUT design, our assumption is that the fault injection
affects only the state registers of an AES implementation. A
reasonable extension to our method would be considering the
effects of the fault injection on the other registers of AES as
well. Hence, this is left as a future work.

In order to evaluate a key retrieval process by DFIA, we
applied the attack on AES algorithm by different fault models.
Hence, our experiment consists of two parts:

1) In the first part, we first injected faults with different
intensities (i.e. for different external clock frequencies)
into the most significant byte of the AES state (S[15])
in order to show how we retrieve a byte of the key
using DFIA. Then, we injected faults into the separate
bytes of the AES state (S[14], S[13], ..., S[0]) to compute
how many single-byte fault injections are required, on
the average, to retrieve the key via fault injections with
single-byte granularity. We used the architecture given
Figure 7(b) with different values of k (k ∈ [15, 0]) in
this part of the experiment.

2) In the second part, we injected faults with different
intensities into the whole AES state by changing all of the
regular AES state FFs into FI-FFs. Our purpose in this
experiment was to see how many fault injections with
16-byte granularity are needed to retrieve the key value.

In our experiment, we selected one arbitrary plaintext and an
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Figure 9. Results of a DFIA Attack Procedure on the Most Significant Byte of AES Algorithm
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arbitrary key value. We obtained ciphertexts for fault injections
with different intensities. Finally, we analyzed the results with
a post-processing script executed in Matlab in order to find
the total number of fault injections for a complete retrieval of
the AES encryption key.

In this part, our assumption is that the attacker can affect
only one byte of the AES state at 10-th round. In order to
inject faults into separate bytes of the AES state, we used
the architecture given Figure 7(b) with different values of
k (k ∈ [15, 0]). The attacker can increase the external clock
frequency and generate different faulty ciphertexts. Based on
results shown in Figure 6, the attacker is aware that the
number of faulty bits is in proportion with the clock frequency.
For each byte k of the AES state, we injected faults at four
different intensities using different external clock frequencies:
faultless, single-bit errors, two-bit errors, and three-bit errors.
Based on the fault models, the Hamming Distance from the
correct state to the faulty state should be one, two and three
for the single-bit, two-bit and three-bit errors respectively.

Before proceeding to the results, we provide an example
to show how we retrieve a single byte of the key using the
experimental results: Figure 9 shows the results of the attack
applied to the most significant byte of the AES state (S[15]).

1) AES Key Retrieval Process with One Byte Fault Injec-
tion: Figure 9(a),(c),(e) plot the Hamming Distance between
the fault-free state and the faulty state for one-bit, two-bit,
and three-bit errors respectively. The X axis shows the key
hypothesis, while the Y axis shows the Hamming Distance
as computed with Table II. Figure 9(b),(d),(f) show the bar
graph after post-processing the results of different trials of
fault injection.

Because of the varying fault intensity, we know that the
correct key in Figure 9(a) can only have a Hamming distance
of 1. The black dots show the possible key values. After
post-processing the results, there are 14 possible keys (Figure
9(b)). These key guesses are shown by red circles. Hence,
we conclude that a single-bit fault injection is insufficient to
reveal the key. We therefore increase the fault intensity, and
inject a two-bit error. The Hamming Distance graph now looks
as in Figure 9(c). We expect the correct key is among those
who show a Hamming Distance of 2. We can also see that
some key choices lead to a Hamming distance of only one.
However, under two-bit fault injections, any wrong key choice
will eventually end up at a Hamming Distances higher than 2,
while the correct key will always remain at or lower than 2. We
post-process the results of the one-bit fault injection and the
two-bit fault injection by accumulating the Hamming Distance
for each key guess. Again we find multiple candidates(Figure
9(d)). We increase the fault intensity once more, to three-
bit errors. In this case, the correct key is among those with
Hamming Distance at or lower than 3(Figure 9(e)).

We can now post-process the results of DFIA. The post-
processing is simple: we accumulate the Hamming Distance
for the respective keys for all graphs, and we look for the
minimum. In this case, because we collected a graph at fault
intensity 1, 2, and 3, we expect the minimum Hamming

Distance in the overall graph to be at or lower than 6. Indeed,
in the accumulated graph, we can find only a single key which
shows a minimum Hamming Distance of 6, which allows us
to conclude that this key is the correct one(Figure 9(f)).

It is important to note that the attacker might not be aware
of the number of faulty bits in the state variable. Since the
attacker increases the clock frequency for fault injection, he
expects the number of faulty bits to increase. Therefore, for
the key retrieval process, he still expects the correct key to
be among the key guesses with the minimum summation of
Hamming Distances.

Based on the results obtained for different bytes of the
AES state, the average number of fault injections required for
retrieving one byte of the key is 4.6. Furthermore, we need 68
fault injections to retrieve the whole AES key if the accuracy
of the fault injection is one state byte.

2) AES Key Retrieval Process with Multiple Byte Fault
Injection: In this part, we injected faults into the whole AES
state by changing all of the regular state FFs with FI-FFs in
order to find the total number of fault injection with multiple
byte fault injection for a complete key retrieval of the AES
algorithm. We obtained ciphertexts for 24 different external
clock frequencies, which are uniformly distributed from 100
MHz to 330 MHz. The results of this part shows that the whole
AES key can be retrieved with 7 fault injections if the accuracy
of the fault injection is whole state (i.e. 16 state bytes).

V. COMPARISON WITH PREVIOUS RESEARCH

DFA attacks on AES algorithm can be classified into many
categories [13]. Previous works have tried to reduce the
number of fault injections, using different fault models and
different rounds in the AES algorithm. DFA attacks that have
been proposed so far, have a high complexity due to two
reasons. The first one is that they require a very precise
fault injection method, and the second reason is that they
require a detailed understanding of the fault propagation in
the algorithm, in order to identify the correct key.

Piret has shown that the number of faults required to retrieve
the AES-128 key is two [6], but they inject the fault between
round two and three of AES and consequently have very
complex formulas for the key retrieval algorithm. On the other
hand, methods like the ones proposed in [7] could reduce the
number of fault injections to one byte while they require a
exhaustive search among 28 candidates. Kim shows a method
that can retrieve the key of AES-192 with two fault injections
and AES-256 with three fault injections [8]. Fuhr proposes a
new DFA attack that only requires faulty ciphertexts for the
key retrieval. Their method seems most close to ours, however
they rely on a specific stuck-at fault model [3].

Li introduces Fault Sensitivity Analysis (FSA) [5]. This at-
tack requires an exhaustive profiling phase on the intermediate
values to find the correlation graph. The correlation graph
shows the connection between the fault sensitivity and the
value of the input data. The attacker then measures the fault
sensitivity for every unknown key guess and finds the best
candidate by comparing the graphs to the golden model. Li
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Table III
SIMILARITIES AND DIFFERENCES OF DIFFERENT ATTACKS AND DFIA

Source of
Leakage

Extraction of
the Key

Model of
Leakage Profiling

DPA [1]
Side

Channel
(Power)

Model
Testing

Power
Model No

DFA [22],
[23], [6] Fault Exact

Analysis

None
(Actual

Ciphertext)
No

FSA [5] Fault
Sensitivity

Model
Testing

Fault
Sensitivity

Table
Yes

DFIA Biased
Faults

Model
Testing Fault Model No

shows that 50 trials are sufficient to identify the key for the
AES-128 algorithm.

Table III shows the differences and similarities of DFIA
and other methods. Here is a brief description of the columns:

Source of Leakage is what the adversary uses as extra
information to perform the attack. Besides classic side-channel
leakage, the table lists faults and fault sensitivity and biased
fault. The differences between the latter three is subtle but
important. Faults leak information because they enable small
difference to propagate through the implementation and reach
the output. Fault Sensitivity is a point at which the output
of the device becomes faulty by increasing the Fault Intensity.
Fault Intensity, on the other hand, leaks information because it
induces a biased fault. How the fault propagates to the output
doesn’t matter.

Extraction of the Key column shows the method that each
algorithm exploits for key retrieval. Model-based methods
(DPA, FSA, DFIA) construct a model (an abstracted version)
of the implementation, that can be used to test if the ac-
tual observed leakage (measurement) matches the assumption
(model). Exact methods (DFA), on the other hand, cannot
make use of such models: They need to formulate the key
search directly in terms of the algorithm under analysis.

Model of Leakage shows the different models used.
Profiling column shows whether the attack requires any

exhaustive profiling phase. The only method that requires
profiling on an exhaustive set of inputs is FSA. The reason
is that FSA cannot use the raw data of source of leakage for
performing the model test.

Table III shows that DFIA extends the concept of DPA to
the fault attacks without causing the cost of profiling. The
purpose of the proposed attack is to derive fault intensity
information from the cryptographic algorithm and correlate
this information to the fault type. Compared to the previously
discussed DPA attacks, DFIA does not require a large number
of experiments. Compared to DFA attacks, DFIA has lower
restrictions on the fault model. It also does not require using
the complex mathematical formulas for the key retrieval.
Compared to the FSA attack, DFIA has no need to the profiling
phase. Also, the source of leakage for FSA is Fault Sensitivity

which is the property of the circuit under attack, but the source
of leakage for DFIA is injecting biased faults which is under
the control of the attacker.

VI. CONCLUSION AND FUTURE WORK

This paper presents a way to perform differential fault
analysis based on the correlation of fault propagation proba-
bility and the value of faulty ciphertexts. The method requires
reasonably more fault injections in comparison to previous
works but has lower restrictions on fault injection scheme. We
have injected faults in the 10th round of AES algorithm and
shown that by inversing the value of the faulty ciphertext byte
to an intermediate value, namely the state byte of round 10, the
location of the state bytes are close to each other only for the
correct key byte. We have tested our methodology on an FPGA
implementation of AES algorithm. Our results show that DFIA
can retrieve the 128-bit AES key by 7 fault injections.
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“Fault Attacks on AES with Faulty Ciphertexts Only”, in 2013 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC),. IEEE,
2013, pp. 108–118.

[4] Sylvain Guilley, Laurent Sauvage, J-L Danger, Nidhal Selmane, and
Renaud Pacalet, “Silicon-level Solutions to Counteract Passive and
Active Attacks”, in 5th Workshop on Fault Diagnosis and Tolerance
in Cryptography, 2008. FDTC’08. IEEE, 2008, pp. 3–17.

[5] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga,
Junko Takahashi, and Kazuo Ohta, “Fault Sensitivity Analysis”, in
Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 320–
334. Springer, 2010.

[6] Gilles Piret and Jean-Jacques Quisquater, “A Differential Fault Attack
Technique against SPN Structures, with Application to the AES and
KHAZAD”, in Cryptographic Hardware and Embedded Systems, CHES
2003, pp. 77–88. Springer, 2003.

[7] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali, “Differ-
ential Fault Analysis of the Advanced Encryption Standard Using a
Single Fault”, in Information Security Theory and Practice. Security
and Privacy of Mobile Devices in Wireless Communication, pp. 224–
233. Springer, 2011.

[8] Chong Hee Kim, “Differential Fault Analysis against AES-192 and
AES-256 with Minimal Faults”, in 2010 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC),. IEEE, 2010, pp. 3–9.

[9] Oliver Kömmerling and Markus G Kuhn, “Design Principles for
Tamper-Resistant Smartcard Processors”, in Proceedings of the USENIX
Workshop on Smartcard Technology. USENIX Association, 1999, pp. 2–
2.
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