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Abstract. The negation map can be used to speed up the computation
of elliptic curve discrete logarithms using either the baby-step-giant-step
algorithm (BSGS) or Pollard rho. Montgomery’s simultaneous modular
inversion can also be used to speed up Pollard rho when running many
walks in parallel. We generalize these ideas and exploit the fact that for
any two elliptic curve points X and Y , we can efficiently get X − Y
when we compute X + Y . We apply these ideas to speed up the baby-
step-giant-step algorithm. Compared to the previous methods, the new
methods can achieve a significant speedup for computing elliptic curve
discrete logarithms.
Another contribution of our paper is to give an analysis of the average-
case running time of Bernstein and Lange’s “grumpy giants and a baby”
algorithm, and also to consider this algorithm in the case of groups with
efficient inversion.
Our conclusion is that, in the fully-optimised context, both the inter-
leaved BSGS and grumpy-giants algorithms have superior average-case
running time compared with Pollard rho.

Keywords: baby-step giant-step, elliptic curve discrete logarithm, negation
map.

1 Introduction

The discrete logarithm problem (DLP) in finite groups is an important compu-
tational problem in modern cryptography. Its presumed hardness provides the
basis for security for a number of cryptographic systems. The DLP was first
proposed in the multiplicative groups of finite fields. Koblitz [9] and Miller [10]
were the first to suggest that elliptic curves over finite fields would have some
advantages.



Let E be an elliptic curve defined over a finite field Fq. Let P ∈ E(Fq) be a
point of prime order N , and let 〈P 〉 be the prime order subgroup of E generated
by P . If Q ∈ 〈P 〉, then Q = nP for some integer n, 0 ≤ n < N . The problem
of finding n, given P,Q, and the parameters of E, is known as the elliptic curve
discrete logarithm problem (ECDLP).

The baby-step giant-step algorithm (BSGS), attributed to Shanks [15] and
Gel’fond (see [12]), allows one to compute discrete logarithms in a cyclic group
G of order N in deterministic time O(

√
N) group operations. The algorithm

also requires
√
N group elements storage. Standard textbook descriptions of the

algorithm state a worst-case running time of 2
√
N group operations, and it is

known that one can reduce the average case running time to 1.333
√
N group

operations for general groups [14].

The Pollard rho algorithm [13] is a probabilistic algorithm that has low stor-
age but retains the O(

√
N) expected running time. If G is an elliptic-curve group

chosen according to standard criteria then the best discrete logarithm algorithms
available are variants of the baby-step giant-step method (for deterministic al-
gorithms) and the Pollard rho method (for probabilistic algorithms).

Note that the BSGS algorithm is useful for a number of variants of the
discrete logarithm problem, such as the “DLP in an interval” and the “multi-
dimensional DLP”. It can also be used in point-counting algorithms. Compu-
tations of discrete logarithms in small intervals are used as subroutines in sev-
eral cryptographic protocols in the literature. For example: the BGN degree-2-
homomorphic public-key encryption [3] system uses generic square-root discrete-
logarithm methods for decryption; the Henry-Henry-Goldberg privacy-preserving
protocol [8] uses discrete logarithms in small groups. Our methods can be used
in all these applications as well.

Gallant, Lambert and Vanstone [6], and Wiener and Zuccherato [18] pointed
out that the Pollard rho method can be sped up by defining the random walk on
equivalence classes. For a point P on an elliptic curve over a finite field Fq, it is
trivial to determine its inverse −P . Therefore, we can consider the equivalence
relation ∼ induced by the negation map (i.e., P ∼ Q if and only if Q ∈ {P,−P}).
One can then define a random walk on the set of equivalence classes {±P}
to halve the search space in the Pollard rho algorithm. Theoretically, one can
achieve a speedup by a factor of

√
2 when solving the ECDLP. This idea can

be applied in any algebraic group for which inversion is efficient (for example in
torus-based cryptography). See also Wang and Zhang [16].

The most expensive operation in the baby-step giant-step algorithm is point
addition. To speed up the algorithm we can aim to either reduce the total number
of group operations performed, or else to reduce the cost of each individual group
operation. The main observation in this paper allows us to take the second
approach. Precisely, we exploit the fact that, given any two points X and Y , we
can compute X + Y and X − Y (in affine coordinates) in less than two times
the cost of an elliptic curve addition, by recycling the field inversion. Hence,
we propose improved algorithms to compute a list of consecutive elliptic curve
points. We also discuss improved variants of the “grumpy giants” algorithm of
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Bernstein and Lange. We give a new heuristic approach to determine the average-
case behaviour of the grumpy-giants algorithm, and also describe and analyse a
variant of this algorithm for groups with efficient inversion. All our results are
summarised in Table 3.

The paper is organized as follows. We recall the baby-step giant-step algo-
rithm and its minor modifications in Section 2. Section 2.1 gives our new heuristic
method for analysing interleaved BSGS algorithms. In Section 3, we describe a
negation map variant of the baby-step giant-step algorithm and grumpy-giants
algorithm. Section 4 discusses methods for efficiently computing lists of con-
secutive points on elliptic curve. Section 5 brings the ideas together to present
faster variants of the BSGS algorithm. Details of our experiments are given in
the Appendices.

2 The Baby-Step-Giant-Step Algorithm (BSGS)

In this section, we recall the baby-step giant-step algorithm for DLP computa-
tions and present some standard variants of it. The baby-step giant-step algo-
rithm makes use of a time-space tradeoff to solve the discrete logarithm problem
in arbitrary groups. We use the notation of the ECDLP as defined as in the
introduction: Given P and Q to find n such that Q = nP and 0 ≤ n < N .

The “textbook” baby-step giant-step algorithm is as follows: Let M = d
√
Ne.

Then n = n0 + Mn1, where 0 ≤ n0 < M and 0 ≤ n1 < M . Precompute
P ′ = MP . Now compute the baby steps n0P and store the pairs (n0P, n0) in an
easily searched structure (searchable on the first component) such as a sorted list
or binary tree. Then compute the giant steps Q− n1P ′ and check whether each
value lies in the list of baby steps. When a match n0P = Q−n1P ′ is found then
the ECDLP is solved. The baby-step giant-step algorithm is deterministic. The
algorithm requires 2

√
N group operations in the worst case, and 3

2

√
N group

operations on average over uniformly random choices for Q.
To improve the average-case performance one can instead chooseM = d

√
N/2e.

Then n = n0 + Mn1, where 0 ≤ n0 < M and 0 ≤ n1 < 2M . We precompute
P ′ = MP and compute baby steps n0P for 0 ≤ n0 < M and store them appro-
priately. Then we compute the giant steps Q− n1P ′. On average, the algorithm
finds a match after half the giant steps have been performed. Hence, this variant
solves the DLP in

√
2N group operations on average. The worst-case complexity

is (M + 2M) = ( 1√
2

+
√

2)
√
N = 3√

2

√
N group operations.

A variant of the baby-step giant-step algorithm due to Pollard [14] is to
compute the baby steps and giant steps in parallel, storing the points in two
sorted lists/binary trees. One can show that the average-case running time of
this variant of the baby-step giant-step algorithm is 4

3

√
N group operations

(Pollard justifies this with an argument that uses the fact that the expected
value of max{x, y}, over uniformly distributed x, y ∈ [0, 1], is 2/3; at the end of
Section 2.1 we give a new derivation of this result). We call this the “interleaving”
variant of BSGS. The downside is that the storage requirement slightly increases
(in both the average and worst case). We remark that the average-case running
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time of Pollard’s method is not very sensitive in practice to changes in M ;
however to minimise both the average-case and worst-case running time one
should choose the smallest value for M with the property that when both lists
contain exactly M elements then the algorithm must terminate.

2.1 Grumpy Giants

Bernstein and Lange [1] suggested a new variant of the BSGS algorithm, called
the “two grumpy giants and a baby” algorithm. The baby steps are of the form
n0P for small values n0. One grumpy giant starts at Q and takes steps of size
P ′ = MP for M ≈ 0.5

√
N . The other grumpy giant starts at 2Q and takes steps

of size −P ′′ = −(M + 1)P . The algorithm is an interleaving algorithm in the
sense that all three walks are done in parallel and stored in lists. At each step
one checks for a match among the lists (a match between any two lists allows
to solve the DLP; the case of a match 2Q − j(M + 1)P = iP implies the DLP
satisfies 2n ≡ i + j(M + 1) (mod N), and this equation has a unique solution
when N > 2 is prime). The exact performance of the grumpy giants method is
not known, but Bernstein and Lange suggest that one can attain approximately
1.2
√
N group operations on average, and our experiments suggest that 1.25

√
N

is possible to achieve.
The crux of the analysis in [1], building on the work of Chateauneuf, Ling

and Stinson [4], is to count “slopes”. We re-phrase this idea as follows: After L
steps we have computed three lists {iP : 0 ≤ i < L}, {Q + jMP : 0 ≤ j < L}
and {2Q − k(M + 1)P : 0 ≤ k < L} and the DLP is solved as long as either
Q = (i − jM)P or 2Q = (i + k(M + 1))P or Q = (jM + k(M + 1))P . Hence,
the number of points Q whose DLP is solved after L steps is exactly the size of
the union

LL = {i− jM (mod N) : 0 ≤ i, j < L}
∪ {2−1(i+ k(M + 1)) (mod N) : 0 ≤ i, k < L}
∪ {jM + k(M + 1) (mod N) : 0 ≤ j, k < L}.

The algorithm succeeds after L steps with probability #LL/N , over random
choices for Q. The term “slopes” is just another way to express the number of
elements in LL.

We have developed a new approach for the heuristic analysis of average-
case runtimes of interleaved BSGS algorithms. We use this approach to give an
approximation to the average-case running time of the grumpy giants algorithm.
Such an analysis does not appear in [1].

We let α be such that the algorithm halts after at most α
√
N steps. When

M =
√
N the DLP is solved using the first two sets {iP}, {Q+ jMP} after

√
N

steps. Hence it seems safe to always assume α ≤ 1. Note that α seems to be the
main quantity that is influenced by the choice of M .

Now, for 1 ≤ L ≤ α
√
N one can consider the size of LL on average (the precise

size depends slightly on the value of N). Initially we expect #LL to grow like
3L2, but as L becomes larger then the number decreases until finally at L ≈

√
N
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we have #LL = N ≈ L2. Bernstein and Lange suggest that #LL ≈ 23
8 L

2 when

L becomes close to
√
N . The performance of the algorithm will depend on the

value #LL/L2 so, for a real variable 0 ≤ t ≤ α, we define c(t) to be such that
#LL/L2 = c(L/

√
N). Note that #LL/N = c(t)L2/N when t = L/

√
N .

We have performed simulations, for relatively small values of N , that enu-
merate the set LL for a range of values of L. From these simulations we can get
approximate values for α and get some data points for c(t). A typical example
(this is when N ≈ 228 and M =

√
N/2) is 0.94 < α < 0.97 and some data points

for c(t) are listed in the Table 1.

t 0 0.12 0.24 0.37 0.49 0.61 0.73 0.85 0.97
c(t) 3.00 3.00 3.00 2.99 2.79 2.30 1.77 1.35 1.06

Table 1. Size of set LL written as c(t)L2 where t = L/
√
N .

Denote by Pr(L) the probability that the algorithm has solved the DLP after
L steps, and Pr(> L) = 1 − Pr(L) the probability that the algorithm has not
succeeded after L steps. As noted, after L = t

√
N steps, for 0 ≤ t ≤ α, the

algorithm succeeds with probability Pr(L) = #LL/N = c(t)L2/N = c(t)t2.
Hence, the probability that the algorithm has not succeeded after L = t

√
N

steps is Pr(> L) = (1 − c(t)t2). Now, the expected number of steps before the
algorithm halts is

bα
√
Nc∑

L=1

L(Pr(L)− Pr(L− 1)) =

bα
√
Nc∑

L=0

Pr(> L)

≈
∫ α
√
N

0

(1− c(L/
√
N)L2/N)dL.

Substituting t = L/
√
N and noting dL =

√
Ndt allows us to approximate the

sum as (
α−

∫ α

0

c(t)t2dt

)√
N.

To determine the running time it remains to estimate
∫ α
0
c(t)t2dt and to mul-

tiply by 3 (since there are three group operations performed for each step of
the algorithm). For example, using numerical integration based on the data in
Table 1, we estimate α ≈ 1 and

∫ α
0
c(t)t2dt ≈ 0.6. The estimates would give

running time (number of group operations) roughly

3(1− 0.6)
√
N = 1.2

√
N.

We now give slightly more careful, but still experimental, analysis. Figure 1
reports the results of some of our simulations, for three different choices of M .
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The corresponding values for α are 0.95 < α < 1 for the first set of simulations
(M =

√
N/2), and 0.96 < α < 0.99 respectively 0.98 < α < 1.02 for M =

√
N

and M =
√
N/2. For the three cases, we compute areas under the graphs in

Figure 1 using numerical methods. The areas lie in the intervals, respectively,
[0.577, 0.581], [0.552, 0.569] and [0.595, 0.617]. For these values, the corresponding
running times of the algorithm is c

√
N where the constant c lies in, respectively,

[1.11, 1.27], [1.17, 1.31] and [1.09, 1.28]. It is an open problem to give a complete
and rigorous analysis of the grumpy-giants algorithm.

Fig. 1. Graph of c(t)t2 for t ∈ [0, 1] obtained by simulations for the three values
M =

√
N/2,M =

√
N and M = 1

2

√
N . The multiple lines denote the results for

different experiments coming from different choices of N .

The above analysis does not allow us to give a very precise conjecture on
the running time of the grumpy-giants algorithm. Instead we performed some
computational experiments to get an estimate of its average-case performance.
Details of the experiments are given in the Appendix A. The results are listed in
Table 2 (these results are for M =

√
N/2). In Table 3 we write the value 1.25,

which seems to be a reasonable conjecture. We write 3α for the worst-case cost,
which seems a safe upper bound. Overall, our analysis and experiments support
the claim by Bernstein and Lange [1] that the grumpy-giant algorithm has better
complexity than Pollard rho. Our work also explains why their suggested value
M =

√
N/2 is a good choice.

We remark that Pollard’s result on interleaved BSGS can also be obtained
using this theoretical argument: We have α = 1, c(t) = 1, and the constant in

the running time is 2(1−
∫ 1

0
t2dt) = 2(1− 1/3) = 4/3.
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Bits #Elliptic Curves #DLPs per Curve average value for c

28 100 10000 1.2579

29 100 10000 1.2533

30 100 10000 1.2484

31 100 10000 1.2517

32 100 10000 1.2736

Table 2. Results of experiments with the grumpy-giants algorithm without negation.

2.2 Summary

The known results, and new results of our paper, are summarised in Table 3.
Out of interest we include the values

√
π/2 (and

√
π/4 when using negation) for

the average-case number of group operations of Pollard rho using distinguished
points, which includes a (1 + o(1)) factor that hides many issues (e.g., effects
from the number of partitions used to define the pseudorandom walk, expected
time to a distinguished point, dealing with cycles in random walks on equivalence
classes).

Algorithm Average-case Worst-case

Textbook BSGS 1.5 2.0
Textbook BSGS optimised for average-case 1.414 2.121
Pollard interleaving BSGS 1.333 2.0
Grumpy giants 1.25? ≤ 3
Pollard rho using distinguished points 1.253(1 + o(1)) ∞
BSGS with negation 1.0 1.5
Pollard interleaving BSGS with negation 0.943 1.414
Grumpy giants with negation 0.9? ≤ 2.7
Pollard rho using negation 0.886(1 + o(1)) ∞
Interleaved BSGS with block computation 0.38 0.57
Grumpy giants with block computation 0.36? ≤ 1.08
Pollard rho with Montgomery trick 0.47(1 + o(1)) ∞

Table 3. The table lists constants c such that the named algorithm requires c
√
N group

operations for large groups. The first block lists algorithms for general groups, and all
these results are known (see Section 2). The value for the grumpy-giant algorithm
is conjectural and the values for the rho algorithm are heuristic. The second block
lists algorithms for groups having an efficiently computable inversion (see Section 3).
These results are mainly new (the first one appears as an exercise in the first author’s
textbook). The third block lists algorithms that exploit efficient inversion as well as
our main observation, and these results are all new (see Section 5).
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3 Using Efficient Inversion in the Group

It is known that the negation map can be used to speed up the computation
of elliptic curve discrete logarithms. Recall that if P = (xP , yP ) is a point on a
Weierstrass model of an elliptic curve then −P has the same x-coordinate. As
mentioned, one can speed up the Pollard rho algorithm for the ECDLP by doing
a psuedorandom walk on the set of equivalence classes under the equivalence
relation P ∼ ±P . More generally, the idea applies to any group for which an
inversion can be computed more efficiently than a general group operation (e.g.,
in certain algebraic tori).

One can also speed up the baby-step giant-step algorithm. We present the
details in terms of elliptic curves. Let M = d

√
Ne. Then n = ±n0 + Mn1,

where −M2 ≤ n0 < M
2 and 0 ≤ n1 < M . Compute M/2 baby steps n0P

for 0 ≤ n0 ≤ M/2. Store the values (x(n0P ), n0) in a sorted structure. Next,
compute P ′ = MP and the giant steps Q − n1P ′ for n1 = 0, 1, . . . . For each
point computed we check if its x-coordinate lies in the sorted structure. If we
have a match then

Q− n1P ′ = ±n0P

and so Q = (±n0 +Mn1)P and the ECDLP is solved.

Lemma 1. The average-case running time of the baby-step giant-step using ef-
ficient inversion is

√
N group operations. The worst-case running time is 1.5

√
N

group operations.

Proof. Computing the baby steps requires M/2 group operations and comput-
ing the giant steps requires, on average M/2 group operations. Hence the total
number of group operations is, on average, M =

√
N . In the worst case one

performs all M giant steps.

Compared with the original “textbook” BSGS algorithm optimised for the
average case, we have reduced the running time by a factor of

√
2. This is exactly

what one would expect.
Readers may be confused about whether we are fully exploiting the ± sign.

To eliminate confusion, note that a match x(Q−n1P ′) = x(n0P ) is the same as
±(Q− n1P ′) = ±n0P , and this reduces to the equation Q− n1P ′ = ±n0P .

One can of course combine this trick with Pollard’s interleaving idea. Take
now M =

√
2N so that n = ±n0 +Mn1 with 0 ≤ n0, n1 ≤M/2. The algorithm

computes the lists of baby-steps {x(n0P )} and giant steps {x(Q − n1P
′)} in

parallel until the first match.

Lemma 2. The average-case running time of the interleaved baby-step giant-
step using efficient inversion is (2

√
2/3)
√
N group operations. The worst-case

running time is
√

2N group operations.

Proof. The worst-case number of steps (this is an interleaved algorithm so a
“step” now means computing one baby step and one giant step) is M/2, giving
a total cost of 2(M/2) = M =

√
2N group operations. By Pollard’s analysis,
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generating both walks in parallel leads to a match in 4(M/2)/3 group operations
on average. The leading constant in the running time is therefore 2

√
2/3 ≈

0.9428.

We can also prove this result using the method from Section 2.1. The number
of points Q whose DLP can be solved after L steps is 2L2 (since we have Q =
(±i + jM)P ) and so c(t) = 2 for 0 ≤ t < α. When M =

√
2N then α =

√
1/2

and so the constant in the running-time is

2

(
α−

∫ α

0

2t2dt

)
= 2(α− 2α3/3) = 0.9428.

One might wonder if there is a better way to organise the interleaving. Since
one gets two baby-steps for each group operation it would be tempting to take
more giant steps on average than baby steps. However, the goal is to maximise
the number 2L1L2 of points Q solved after L1 + L2 steps (where L1 and L2

denote the number of group operations spent computing baby-steps and giant-
steps respectively). This boils down to maximising f(x, y) = 2xy subject to
x + y = 1, which is easily seen to have the solution x = y = 1/2. Hence, the
optimal way to organise the interleaving is to use the same number of group
operations for baby-steps and giant-steps for each time L.

3.1 Grumpy Giants with Negation

One can consider the grumpy giants method where matches are detected using
x(iP ), x(Q+jMP ), x(2Q−k(M+1)P ). This algorithm is not mentioned in [1].
Hence, one of the contributions of our paper is to develop the algorithm in this
case and analyse it.

The first task is to count “slopes”. After L steps we have computed three
lists {x(iP ) : 0 ≤ i < L}, {x(Q+ jMP ) : 0 ≤ j < L} and {x(2Q− k(M + 1)P ) :
0 ≤ k < L}. A collision between the first two lists implies Q + jMP = ±iP
and so Q = (±i − jM)P . A collision between the first and third lists implies
2Q− k(M + 1)P = ±iP and so Q = 2−1(±i+ k(M + 1))P . A collision between
the second and third lists implies either Q + jMP = 2Q − k(M + 1)P or Q +
jMP = −2Q + k(M + 1)P . Hence we have either Q = (jM + k(M + 1))P or
Q = 3−1(k(M + 1)− jM)P . The relevant quantity to consider is the size of the
union

LL = {±i− jM (mod N) : 0 ≤ i, j < L}
∪ {2−1(±i+ k(M + 1)) (mod N) : 0 ≤ i, k < L}
∪ {jM + k(M + 1) (mod N) : 0 ≤ j, k < L}
∪ {3−1(k(M + 1)− jM) (mod N) : 0 ≤ j, k < L}.

We follow the heuristic analysis given in Section 2.1. Let α be such that
the algorithm halts after at most α

√
N steps. We also define c(t) to be such

that the number of elements in LL is equal to c(L/
√
N)L2. We have conducted

9



simulations, for various values of N (again, the values of α and c(t) depend on N
and on the choice of M). A typical example (this is for N ≈ 228 and M =

√
N/2)

has 0.87 < α < 0.92 and the values for c(t) as in Table 4.

t 0 0.15 0.30 0.46 0.61 0.76 0.91
c(t) 6.00 5.76 5.47 4.10 2.56 1.72 1.20

Table 4. Size of set LL written as c(t)L2 where t = L/
√
N .

Figure 2 reports on our simulations, again by computing LL exactly for
various choices of N . Our experiments suggest that M =

√
N/2 is the best

choice, for which 0.9 ≤ α ≤ 0.96. The integral under the curve, computed using
numerical methods, is in the interval [0.58, 6.0], giving a running time c

√
N for

3(0.9− 0.6) = 0.9 ≤ c ≤ 1.14 = 3(0.96− 0.58).

Fig. 2. Graph of c(t)t2 for t ∈ [0, 1] obtained by simulations, for grumpy giants method
using x-coordinates, with M =

√
N/2 and M =

√
N .

Table 5 gives our experimental results. Details about the experiment are
given in Appendix A. The average running time seems to be around 0.9

√
N ,

so that is the value we put in Table 3. Note that 0.9 ≈ 1.27/
√

2 so we have
obtained a speed-up by a factor of approximately

√
2. It is notable that this is

not faster than Pollard rho on equivalence classes. However, it does still seem
to be an improvement over Pollard’s interleaved version of the standard BSGS
algorithm.

4 Computing Lists of Elliptic Curve Points Efficiently

The BSGS and Pollard rho algorithms require computing elliptic curve opera-
tions in affine coordinates (otherwise collisions are not detected). Affine arith-
metic requires inversion in the field, and this operation is considerably more
expensive than multiplications in the field or other operations.

10



Bits #Elliptic Curves #DLPs per Curve average value for c

28 100 10000 0.8926

29 100 10000 0.9053

30 100 10000 0.8961

31 100 10000 0.9048

32 100 10000 0.9207

Table 5. Results of experiments with the grumpy-giants algorithm exploiting efficient
inversion.

Let M, S and I denote the cost of a multiplication, squaring and inversion
in Fq. The standard formulae for addition on Weierstrass curves in affine coor-
dinates over Fq cost I + 2M + S. Extensive experiments from [5] suggest that
a realistic estimate of the ratio I/M of inversion to multiplication cost is 8 (or
higher). Hence, the naive method to compute a list L = {S + [i]T : 0 ≤ i < M}
of elliptic curve points is to perform M point additions in serial, taking time
roughly M(I + 2M+ S).

The well-known “Montgomery simultaneous modular inversion trick” allows
to invert k field elements using one inversion and 3(k − 1) multiplications in
the field. Such ideas have been used in the context of Pollard rho: one performs
k pseudorandom walks in parallel, and the group operations are computed in
parallel by using simultaneous modular inversion. However the BSGS algorithm
as usually described is inherently serial, so this approach does not seem to have
typically been proposed in the context of BSGS.

The aim of this section is to describe efficient ways to compute a list of points
of the form L = {S + [i]T : 0 ≤ i < M}. The serial method is to compute M
point additions, each involving a single inversion.

A way to make this computation somewhat parallel is the following. Fix an
integer k and set M ′ = dM/ke. The list will be computed as S + (jM ′+ i)T for
0 ≤ j < k, 0 ≤ i < M ′. One can then compute L using Algorithm 1.

Algorithm 1 Compute list of points using parallel computation

Input: Points S and T , integer M
Output: L = {S + [i]T : 0 ≤ i < M}
1: Choose k
2: Set M ′ = dM/ke
3: Compute T ′ = (M ′)T
4: Compute (serial) T0 = S, T1 = T0 + T ′, T2 = T1 + T ′, . . . , Tk−1 = Tk−2 + T ′

5: for i = 0 to M ′ − 1 do
6: L = L ∪ {T0, T1, . . . , Tk−1}
7: Compute in parallel T0 = T0 + T, T1 = T1 + T, . . . , Tk−1 = Tk−1 + T
8: end for
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Lemma 3. Algorithm 1 runs in time proportional to

(2 log2(M/k) + k − 1)(I + 2M+ S) + (M/k)(I + (5k − 3)M+ kS).

Ignoring precomputation, this is roughly (M/k)I + 5MM+MS.

Proof. Step 3 takes up to 2 log2(M/k) group operations, while step 4 is k group
operations (in serial). The loop contains k additions performed in parallel, and so
benefits from the simultaneous modular inversion trick. The cost of each iteration
is I + 3(k− 1)M for the modular inversion, followed by k(2M+ S) for the rest
of the elliptic curve addition operations. �

Taking I = 8M and S = 0.8M, the speedup from the naive algorithm to
Algorithm 1 is roughly

(M/k)I + 5MM+MS
M(I + 2M+ S)

=
M(8/k + 5 + 0.8)M
M(8 + 2 + 0.8)M

=
8/k + 5.8

10.8

which is about 0.63 when k = 8 and tends to 0.53 as k → ∞. (Of course we
cannot take very large k, as then the precomputation dominates.)

In other words, we can significantly reduce the overall cost of performing
inversions, by taking a few extra multiplications. Next we explain how to do
even better: we can essentially halve the number of inversions with only a few
more additional multiplications.

4.1 Elliptic Curve Group Law for Affine Weierstrass Equations

Let

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be a Weierstrass equation for an elliptic curve and let X = (x1, y1) and Y =
(x2, y2) be two general points on E (in other words, we assume Y 6= ±X). Recall
that −X = (x1,−y1 − a1x1 − a3). Let (x3, y3) = X + Y . (We are interested in
affine coordinates rather than projective coordinates as the BSGS algorithm
cannot be used with projective coordinates.) Then

λ =
y2 − y1
x2 − x1

,

x3 = λ2 + a1λ− x1 − x2 − a2,
y3 = −λ(x3 − x1)− y1 − a1x3 − a3.

Let M, S and I denote the cost of a multiplication, squaring and inversion
in Fq respectively. We ignore the cost of multiplications by fixed constants such
as a1, since these are often chosen to be 0 or 1. Then, the cost of point addition
over E(Fq) is close to I + 2M+ S. Therefore the main cost of point addition is
the computation of field inversion: (x2 − x1)−1.
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Now, note that (x4, y4) = X−Y = X+(−Y ) = (x1, y1)+(x2,−y2−a1x2−a3)
as follows:

λ =
−y2 − a1x2 − a3 − y1

x2 − x1
,

x4 = λ2 + a1λ− x1 − x2 − a2,
y4 = −λ(x3 − x1)− y1 − a1x3 − a3.

We see that we can re-use the inversion (x2 − x1)−1 and hence compute X − Y
with merely the additional costs 2M+ S.

Taking I = 8M and S = 0.8M the cost of point “combined ± addition” is
I+4M+2S = 13.6M. Compared with the cost 2(I+2M+S) of two additions,
we have a speedup by a factor of

I + 4M+ 2S
2(I + 2M+ S)

≈ (8 + 4 + 1.6)M
2(8 + 2 + 0.8)M

≈ 0.63.

If the cost of inversion is much higher (e.g., I ≈ 20M) then the speedup is by a
factor close to 2.

Elliptic curves over non-binary finite fields can be transformed to Edwards
form x2 + y2 = c2(1 +x2y2), with (0, c) as identity element. Edwards curves can
be efficient when using projective coordinates, but since we need to use affine
coordinates for BSGS algorithms then these curves are not so interesting. But
we give some details anyway. Let X = (x1, y1) and Y = (x2, y2), the addition
law is

X + Y =

(
x1y2 + y1x2

c(1 + x1x2y1y2)
,

y1y2 − x1x2
c(1− x1x2y1y2)

)
.

The cost of addition is therefore I + 6M. Since −(x, y) = (−x, y), we have

X − Y =

(
x1y2 − y1x2

c(1− x1x2y1y2)
,

y1y2 + x1x2
c(1 + x1x2y1y2)

)
.

We can re-use the inversions and compute X − Y with merely the additional
costs 2M. So the speedup is

I + 8M
2(I + 6M)

≈ 8 + 8

2(8 + 6)
≈ 0.57.

The observation that one compute X+Y and X−Y efficiently simultaneously
was first introduced by Wang and Zhang [17], and they tried to apply it to
the Pollard rho algorithm. This seems not to be effective, since the Pollard
rho algorithm uses random walks that go in a “single direction”, whereas the
combined operation X+Y and X−Y gives us steps in “two different directions”.

4.2 Improved Algorithm for Lists of Points

We now combine the X ± Y idea with simultaneous modular inversion. Both
tricks replace an inversion with a couple of multiplications. Recall that we are
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already computing the list L as {S+ (jM ′+ i)T : 0 ≤ j < k, 0 ≤ i < M ′} where
the points Tj = S+ jM ′ are precomputed and the additions +T are parallelised
with simultaneous modular inversion.

The idea is to also precompute T ′ = 3T . For 0 ≤ i < M ′/3 we compute the
sums Tj ± T and then Tj + T ′. In other words, we compute three consecutive
points Tj + (3i− 1)T, Tj + (3i)T, Tj + (3i+ 1)T using fewer than three full group
operations.

To get a greater speedup we use more of the combined operations. Hence
instead of using T ′ = [3]T we can take T ′ = [5]T . Then in the i-th iteration we
compute Tj = Tj + T ′ = Tj + 5T and then also Tj ± T and Tj ± 2T (where
2T is precomputed). In other words, we compute a block of 5 consecutive points
Tj + (5i − 2)T , Tj + (5i − 1)T , Tj + (5i)T , Tj + (5i + 1)T and Tj + (5i + 2)T
with one addition and two “combined ± additions”. Extending this idea one can
use T ′ = (2` + 1)T , and then precompute 2T, . . . , `T . We give the details as
Algorithm 2.

Algorithm 2 Compute list of points using parallel computation

Input: Points S and T , integer M
Output: L = {S + [i]T : 0 ≤ i < M}
1: Choose k and `
2: Set M ′ = dM/ke and M ′′ = dM/(k(2` + 1))e
3: Compute (serial) 2T, 3T, . . . , `T , T ′ = (2` + 1)T and T ′′ = (M ′)T
4: Compute (serial) T0 = S+`T, T1 = T0 +T ′′, T2 = T1 +T ′′, . . . , Tk−1 = Tk−2 +T ′′

5: for i = 0 to M ′′ − 1 do
6: L = L ∪ {T0, T1, . . . , Tk−1}
7: for u = 1 to ` do
8: Compute in parallel T0 ± uT, T1 ± uT, . . . , Tk−1 ± uT
9: Add the 2k new points to L

10: end for
11: Compute in parallel T0 = T0 + T ′, T1 = T1 + T ′, . . . , Tk−1 = Tk−1 + T ′

12: end for

Lemma 4. Algorithm 2 runs in time proportional to

(`+ k + 2 + 2 log2(M/k))(I + 2M+ S)

+ M/(k(2`+ 1))((`+ 1)I + (7k`+ 5k − 3(`+ 1))M+ (2k`+ k)S).

Ignoring precomputation, this is roughly (M/(k(2`+ 1)))I + 7
2MM+MS.

Proof. The precomputation in step 3 is at most `+2+2 log2(M/k) elliptic curve
operations. Similarly, step 4 is k group operations (in serial).

The main loop has M/(k(2`+ 1)) iterations. Within that there is a loop of `
iterations that performs one simultaneous modular inversion (cost I+3(k−1)M)
followed by the remaining 2M+ S for 2k point additions. After that loop there
is a further simultaneous modular inversion and k additions. So cost of each
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iteration of the main loop is

`(I + 3(k − 1)M+ 2k(2M+ S)) + (I + 3(k − 1)M+ k(2M+ S)).

The result follows. �

The important point is that we have reduced the number of inversions further
and reduced the number of multiplications. Again, a naive argument suggests a
speedup by up to (3.5 + 0.8)/(10.8) = 0.39 compared with the standard serial
approach, or 4.3/5.8 = 0.74 compared with using Algorithm 1.

5 Application to BSGS Algorithm

It is now straightforward to combine the ideas of Section 4 to the various baby-
step-giant-step algorithms for the DLP. All such algorithms involve computing
two or three lists of points, and such operations can be sped-up by the general
techniques in Section 4. It follows that we get a saving by a constant factor
for all such algorithms (see Algorithm 3 for an example of the standard BSGS
algorithm using efficient inversion; the details for the grumpy-giants algorithm
are similar). This explains the last rows of Table 3.

However, note that there is again a tradeoff in terms of the size of blocks
(and hence the values of (k, `)) and the running time. The BSGS algorithm
will compute a block of points in parallel and then test for matches between
the lists. Hence, the algorithm will usually perform more work than necessary
before detecting the first match and solving the DLP. It follows that the average
number of group operations performed is increased by a small additive factor
proportional to k`.

Algorithm 3 Interleaved Baby-step Giant-step algorithm for elliptic curves,
exploiting efficient inversion (i.e., using x-coordinates), and computing points in
blocks.
Input: Initial points P and Q
Output: (n0, n1) with Q = nP , M = d

√
Ne and n = ±n0 −Mn1

1: Precompute P ′ = MP and other points needed for efficient computation of blocks
of elliptic curve points using Algorithm 2

2: S ← Q
3: while True do
4: Use Algorithm 2 to compute block of baby steps (x(n0P ), n0) for 0 ≤ n0 ≤M/2

and store in easily searched structure L1

5: Use Algorithm 2 to compute block of giant steps (x(Q−n1P
′), n1) for 0 ≤ n0 ≤

M/2 and store in easily searched strucutre L2

6: if L1 ∩ L2 6= ∅ then
7: Determine corresponding values of n0 and n1

8: Determine sign of ±n0P = Q− n1P
′

9: Return ±n0 + Mn1

10: end if
11: end while
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Lemma 4 shows that one can speed-up computation of a list of M points
by using blocks of length ` from M(I + 2M+ S) (using Weierstrass curves) to
(M/(k(2` + 1)))I + 7

2MM + MS. Taking I = 8M,S = 0.8M and k = ` = 8
this is a speedup by

M(I/136 + 7M/2 + S)

M(I + 2M+ S)
≈ 8/136 + 7/2 + 0.8

8 + 2 + 0.8
≈ 0.404.

Hence, all the results in Table 3 can be multiplied by 0.4, and that is what we
have done to get the first two rows in the final block (e.g., 0.9 · 0.4 = 0.36 is the
claimed constant in the running time of the grumpy-giants algorithm).

For comparison, we consider the Pollard method implemented so that k walks
are performed in parallel using Montgomery’s simultaneous modular inversion
method. As we explained, this method gives an asymptotic speed-up of 0.53,
meaning the constant in this parallel Pollard rho algorithm is 0.53 · 0.886(1 +
o(1)) = 0.47(1 + o(1)). This value is the final entry in Table 3. Our conclusion is
that, in this optimised context, both the interleaved BSGS and grumpy-giants
algorithms are superior to Pollard rho.

6 Other Settings

There are other groups that have efficient inversion. For example, consider the
group Gq,2 of order q + 1 in F∗q2 . This can be viewed as the group of elements
in F∗q2 of norm 1. A standard fact is that one can compute a product h ∗ g
of two elements in Fq2 using three multiplications in Fq (and some additions).
Now, when g lies in the group Gq,2 then computing g−1 is easy (since ggq =
Norm(g) = 1, so g−1 = gq is got by action of Frobenius. So if g = u + vθ then
g−1 = u−vθ. It follows that one can compute hg and hg−1 in four multiplications,
only one multiplication more than computing hg. So our BSGS improvement can
be applied in this setting too. The speedup is by a factor of 4/6 = 2/3 since we
need 4 multiplications to do the work previously done by 6 multiplications. This
is less total benefit than in the elliptic curve case, but it still might be of practical
use.

The group Gq,2 is relevant for XTR. One way to represent XTR is using
elements of Gq3,2. We refer to Section 3 of [7] for discussion. The cost of an
“affine” group operation in the torus representation of Gq,2 is I + 2M, which
is worse than the cost 3M mentioned already. So when implementing a BSGS
algorithm it is probably better to use standard finite field representations.

7 Conclusion

Our work is inspired by the idea that the negation map can be used to speed up
the computation of elliptic curve discrete logarithms. We explain how to compute
lists of consecutive elliptic curve points efficiently, by exploiting Montgomery’s
trick and also the fact that for any two points X and Y we can efficiently get

16



X − Y when we compute X + Y by sharing a field inversion. We use these
ideas to speed up the baby-step giant-step algorithm. Compared to the previous
approaches we achieve a significant speedup for computing elliptic curve discrete
logarithms.

We also give a new method to analyse the grumpy-giants algorithm, and de-
scribe and analyse a variant of this algorithm for groups with efficient inversion.

The new algorithms, like the original, have low overhead but high memory.
We have not found a low-memory variant. This means that, currently the algo-
rithm is useful only for discrete logarithm problems small enough to fit into fast
memory. The algorithm nevertheless challenges the idea that the rho method is
optimal for larger problems.
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A Implementation and Experimental Evidence

We implemented the grumpy-giants algorithm and the grumpy-giants algorithm
with efficient inversion on elliptic curve groups over prime fields using SAGE.
The purpose of our experiments is to evaluate the expected numbers of steps
until a match is found with different elliptic curves and random DLP instances.

One can perform simulations in the group (ZN ,+), but to test any bias
coming from elliptic curve group orders we performed simulations using elliptic
curves. More precisely, for each integer i ∈ [28, 32] we generated 100 elliptic
curves, where each of them have a subgroup G of prime order N , such that
N ∈ [2i, 2i+1]. To do this we randomly chose a prime number q in a certain range.
Then we randomly chose parameters a, b ∈ Fq, which determine the elliptic curve
Ea,b over Fq. We then checked whether the order of group Ea,b(Fq) had large
prime factor N in the range [2i, 2i+1]. If not, repeat the above procedures. This
gave us a prime order subgroup G of Ea,b(Fq). Then we chose a generator P
of G. We then chose 10000 random points Q ∈ G and ran the grumpy-giants
algorithm (or its variant) omn the DLP instance (P,Q) and counted the number
of group operations performed until each DLP was solved. The average number
of group operations over those 10000 trials was computed and represented in the
form cl

√
N . Then we computed the average of the values cl over the 100 choices

for G, to get an average number of group operations ci
√
N . This is the value

reported. Table 2 gives the mean values obtained for ci over such experiments
with the original grumpy-giants algorithm with M =

√
N/2. Table 5 gives the

mean values obtained for the grumpy-giants algorithm using efficient inversion
with M =

√
N/2.
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B 4-giants Algorithm

In [1] a 4-giants algorithm is mentioned (two in one direction, two in the other,
with computer-optimized shifts of the initial positions) as a variant of 2-giants
algorithm. The paper did not describe the 4-giants algorithm in detail. However,
we implemented a possible version of the 4-giants algorithm, and the experimen-
tal results do not seem to be as good as one may have expected. It seems that
the 4-giants algorithm is not as efficient as the 2-giants algorithm.

More precisely, the baby steps are of the form n0P for small values n0. The
first grumpy giant starts at Q and takes steps of size P ′ = MP for M ≈ 0.5

√
N .

The second grumpy giant starts at 2Q and takes steps of size P ′′ = −(M + 1)P .
The third one starts at 3Q and takes steps of size P ′′′ = (M + 2)P . The fourth
one starts at 4Q and takes steps of size P ′′′′ = −(M + 3)P . The algorithm is an
interleaving algorithm in the sense that all five walks are done in parallel and
stored in lists. At each step one checks for a match among the lists (a match
between any two lists allows to solve the DLP). We performed experiments in
the same framework as above and summarize the results in the following table.
One sees that the constants are larger than the 1.25 of the 2-giants method.

Bits #Elliptic Curves #DLPs per Curve average value for c

28 100 10000 1.2867

29 100 10000 1.3002

30 100 10000 1.2926

31 100 10000 1.2944

32 100 10000 1.3150

Table 6. Results of experiments with the 4-giants algorithm without negation.
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