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Abstract. Functional encryption is a modern public-key paradigm where
a master private key can be used to derive sub-keys SKF associated
with certain functions F in such a way that the decryption operation re-
veals F (M), if M is the encrypted message, and nothing else. Recently,
Abdalla et al. gave simple and efficient realizations of the primitive for the
computation of linear functions on encrypted data: given an encryption
of a vector y ∈ Z`

q, a private key SKx for the vector x ∈ Z`
q allows com-

puting 〈x,y〉. Their technique surprisingly allows for instantiations under
standard assumptions, like the hardness of the Decision Diffie-Hellman
(DDH) and Learning-with-Errors (LWE) problems. Their constructions,
however, are only proved secure against selective adversaries, which have
to declare the challenge messages M0 and M1 at the outset of the game.
In this paper, we provide constructions that provably achieve security
against more realistic adaptive attacks (where the messages M0 and M1

may be chosen in the challenge phase, based on the previously collected
information) for the same inner product functionality. Our constructions
are obtained from hash proof systems endowed with homomorphic prop-
erties over the key space. They are as efficient as those of Abdalla et al.
and rely on the same assumptions. As a result of independent interest,
we prove the security of our LWE-based system via a new result on the
hardness of the extended LWE problem, where the distinguisher receives
hints about the noise distribution.

Keywords. Functional encryption, adaptive security, standard assump-
tions, DDH, LWE, extended LWE.

1 Introduction

Functional encryption (FE) [69, 17] is an emerging public-key paradigm, where
the master private key msk allows deriving a private sub-key SKF associated
with a function F . When SKF is used to decrypt a ciphertext C, the key holder
only learns F (X), where X is the encrypted data and nothing else. In some cases,
the message X = (ind,m) consists of an index ind (which is essentially a set of
descriptive attributes) and a message m, which is sometimes called “payload”.
The concept finds numerous applications. In cloud computing platforms, users
can store encrypted data on a remote server and subsequently provide the server
with a key SKF which allows it to compute a specific function F of encrypted
data. If m is the encrypted message, the server can thus return F (m) without



learning anything about the data. One distinguishes FE systems with public
index, where ind is publicly revealed by the ciphertext but m is hidden, from
those with private index, where ind and m are both hidden. Constructions with
public index tend to be more efficient, expressive and easier to obtain than those
in the private-index setting.

The usual security requirement is called “collusion-resistance” and it captures
the intuition that no collection of private keys for functions F1, . . . , Fq should
make it possible to decrypt a ciphertext that no individual such key can decrypt.
In the area, the holy grail is a technique allowing to construct FE schemes
for any polynomial-time-computable function F . Unfortunately, truly efficient
realizations have only been found for very restricted classes of functions thus
far. Examples include identity-based encryption (IBE) [71, 15], attribute-based
encryption (ABE) [69, 45] and predicate encryption (PE) [52]. These primitives
enable the fine-grained distribution of sensitive content [69, 45] and privacy-
preserving searches over encrypted data [14, 1, 52].

Constructions for General Functionalities. Until recently, all results
on functional encryption for general functionalities, such as [42, 41], were lim-
ited to only provide bounded collusion-resistance: namely, the adversary was
restricted to make an a priori bounded number of queries and, in turn, this
upper bound affects the efficiency of the system. Without this restriction, the
most expressive functionalities that could be handled were those that can be
expressed in terms of shallow (i.e., logarithmic depth) circuits. This was the
case of the inner product functionality considered for the first time by Katz,
Sahai and Waters [52]. Specifically, ciphertexts and private keys were both as-
sociated with a vector of attributes and decryption works whenever these two
vectors are orthogonal. This state-of-affairs changed in 2013 with the appearance
of attribute-based encryption schemes for arbitrary polynomial-size circuits [34,
43, 16]. However, as in all earlier ABE schemes, their functionality is to reveal
the payload message m entirely (rather than a function of it) if and only if the
(public) index ind of the ciphertext satisfies the circuit F associated with the
key. Gorbunov, Vaikuntanathan and Wee [44] recently extended these results to
the private index setting. However, their predicate encryption system still does
not provide a construction of functional encryption for general functionalities as
the decryption algorithm reveals the entire plaintext when the circuit of the key
accepts the hidden attribute set ind of the ciphertext.

Using the machinery of multi-linear maps [32], Garg et al. [32] gave a first
theoretical solution of general functional encryption [33]. Due to the use of in-
distinguishability obfuscation [6], their solution is quite far from being practical
as it incurs huge ciphertexts and keys, even for very simple circuits. Moreover, it
relies on very ad hoc assumptions in groups with a multi-linear map, the security
of which is not well-understood yet (at least with currently known candidates).
Indeed, the two candidates [32, 22] put forth in 2013 were recently found to be
insecure [21, 49]. Even if these cryptanalyses do not impact constructions of in-
distinguishability obfuscation, they motivate the search for (efficient) solutions
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based on well-studied hardness assumptions, even for a smaller range of func-
tions.

Functional Encryption for Inner Product Evaluations. As noticed
by Katz, Sahai and Waters [52], inner product relations suffice to express con-
junctions and disjunctions of simple atomic conditions as well as CNF/DNF
formulas involving a small number of variables. In the private index setting, the
inner product encryption (IPE) systems of [52, 53, 60, 3, 61, 62] make it possible
to test, e.g., whether the hidden ciphertext attributes ind belong to a specific
set encoded in the key, if they are roots of some polynomial or if they satisfy
a small CNF/DNF formula. A common feature of all of these works is that the
realized functionality is to test whether the index ind of the ciphertext – which
is a vector y of attributes – is orthogonal to another vector x hard-coded in the
decryption key SKx without revealing any further information. This functional-
ity (intentionally) does not compute the actual inner product value 〈x,y〉 when
the latter is non-zero.

Recently, Abdalla, Bourse, De Caro and Pointcheval [2] considered a slightly
different functionality which computes the actual value of the inner product in-
stead of testing its cancellation (this functionality was considered in a different
model by an independent work of Naveed et al. [59]). When a ciphertext C
encrypts a vector y ∈ D` over some domain D, a private key for the vector
x ∈ D` allows computing 〈x,y〉 and nothing else about y. Abdalla et al [2]
pointed out that the inner product functionality suffices for the computation
of linear functions (e.g., sums or averages) over encrypted data. By encoding
`-bit messages m = m[1] . . .m[`] as vectors y = (m[1], . . . ,m[`]), inner products
also allow for the computation of Hamming weights using private keys skx for
the all-one vector x = (1, 1, . . . , 1). As mentioned in the earlier work of Katz,
Sahai and Waters [52], inner products also enable the evaluation of polynomials
over encrypted data. To do this, we can simply encode a message m as a vector
y = (1,m,m2, . . . ,md) ∈ Dd+1 and a degree-d polynomial P [X] =

∑d
i=0 piX

i is
encoded as a vector x = (p0, p1, . . . , pd) ∈ Dd+1 for which the key SKx is gen-
erated. Using a similar encoding, we can also evaluate multivariate polynomials
of the form P [X1, . . . , Xd] =

∏d
i=1(Xi − Ii) of small degree d = O(log `). A dif-

ference with [52] is that the functionality of [2] makes it possible to compute the
exact value of the polynomial whereas [52] only tests if the encrypted message
is a root of the polynomial or not.

More surprisingly, Abdalla et al. showed that [2] this specific functionality
allows for very simple and efficient realizations under standard assumptions like
the Decision Diffie-Hellman (DDH) – which was unexpected since DDH is not
known to easily lend itself to the design of such primitives – and Learning-with-
Errors (LWE) assumptions [66]. Their constructions can be seen as instantia-
tions of a general paradigm based on encryption schemes (like Elgamal [28] or
Regev [66]) with additive homomorphic properties over the message space and
the key space. They also leveraged the fact that, as shown in [7], such encryption
schemes sometimes make it possible to safely recycle random encryption coins
across different encryptions computed under different keys.
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Using the additively homomorphic variant of Elgamal [28], Abdalla et al
described a very simple FE scheme where the master public key consists of ele-
ments

(
g, {hi = gsi}`i=1

)
in a cyclic group G and vectors y = (y1, . . . , y`) ∈ Z`q

are encrypted as (C0, {Ci}`i=1) = (gr, {gyi · hri }`i=1). A private key for the vec-
tor x = (y1, . . . , y`) ∈ Z`q is obtained as SKx = 〈s,x〉 and allows computing

g〈y,x〉 = (
∏`
i=1 C

xi
i )/CSKx

0 , which in turn yields the inner product 〈y,x〉 as long
as the latter lands in a small interval where discrete logarithms are computable in
reasonable time. Abdalla et al also applied the same design principle to Regev’s
cryptosystem [66] and obtained a variant based on the LWE assumption.

At first glance, the constructions of [2] seem limited to only provide bounded
collusion resistance since, in their DDH-based system for example, an adver-
sary that obtains private keys SKx = 〈s,x〉 for ` independent vectors x can
reconstruct s. However, as observed in [2], this is limitation is inherent to the
functionality: indeed, an adversary that can use an encryption of y ∈ Z`q to

compute inner products 〈y,xi〉 for ` independent vectors xi ∈ Z`q can always re-
construct y, no matter how the functionality is realized. Said otherwise, bounded
collusion-resistance is the best we can hope for as far as the exact computation
of inner products is concerned. In the context of identity-based encryption, this
relaxed notion of collusion-resistance was already known [27, 48, 40, 72] to enable
constructions based on standard (non-pairing-related) assumptions. The results
of [2] thus provided the first solutions beyond the mere IBE functionality.

On the downside, Abdalla et al. [2] only proved their schemes to be secure
against selective adversaries, that have to declare the challenge messages M0,M1

of the semantic security game upfront, before seeing the master public key mpk.
The security proofs of [2] rely on a technique that appeared for the first time in
the work of Boneh and Boyen [10, 12], where the reduction (obliviously to the
adversary) partitions the function space in two sub-spaces. As discussed by Sahai
and Waters [69], this technique makes it hard to cope with adaptive adversaries
when we aim at expressiveness.

Selective vs Adaptive Security. Intuitively, selective security only guar-
antees the security of messages that are fixed before the adversary starts its
interaction with the system. While sufficient for some applications [19, 20], it is
generally believed too restrictive for most practical scenarios, where the notion
of full (a.k.a. adaptive) security appears much more realistic as it ensures secu-
rity for adaptively chosen messages.

Historically, most flavors of functional encryption have been first realized
for selective adversaries [10, 69, 45, 52, 33] before being upgraded to attain full
security. Boneh and Boyen [12] observed that a standard complexity leveraging
argument can be used to argue that a selectively-secure system is also adaptively
secure. However, this argument is not satisfactory in general as the reduction
incurs an exponential security loss in the message length.

The first examples of fully secure functional encryption appeared in the set-
ting of IBE schemes, with the techniques of Boneh and Boyen [11] and Wa-
ters [73], where the security reductions proceed by randomly partitioning the
message space in two parts independently of the adversary’s view. This random
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partitioning paradigm turned out to be insufficient for proving full security in
more powerful forms of FE systems, like hierarchical IBE [39] for polynomially-
many levels and attribute-based encryption [69], via a polynomial reduction.
This problem remained open until the work of Gentry and Halevi [36] and the
more general “dual system” encryption methodology developed by Waters [74].
The latter was subsequently refined so as to develop fully secure attribute-based
encryption [53, 60] and predicate encryption systems [60–62].

In more general forms of functional encryption, the first adapatively secure
constructions were based on multi-linear maps [35] and indistinguishability ob-
fuscation [75]. Quite recently, Ananth, Brakerski, Segev and Vaikuntanathan [5]
described an elegant generic method of building adaptively secure functional
encryption systems from selectively secure ones. Their method uses the hybrid
encryption paradigm and combines a selectively secure public-key FE system
and an adaptively secure secret-key FE system.1 At a high level, it uses the en-
cryption algorithm of the selectively secure public-key system to encrypt a secret
key for the private-key FE scheme, the actual message being encrypted using the
one-time secret key of the symmetric FE scheme. Using similar tricks, Ananth
et al. [5] also gave a bootstrapping technique which allows constructing a FE
system for any polynomial-size circuit out of any system for shallow circuits.

While powerful, the technique of [5] incurs some overhead as the key gen-
eration algorithm of the selectively secure system is used to generate private
keys for the key generation circuit of the symmetric FE component. Also, since
the decryption algorithm uses the decryption procedure of the public-key com-
ponent in order to generate a key for the symmetric component, it requires to
begin with a selectively secure FE scheme where the decryption algorithm com-
putes functions with a large image. For this reason, it cannot be applied to the
DDH-based realization of Abdalla et al. [2] which can only decrypt inner prod-
ucts in a small interval. In order to retain the simplicity and the efficiency of
constructions based on standard assumptions (like [2]), we still need to prove
full security via dedicated techniques.

Our Contributions. In this paper, we describe fully secure functional en-
cryption systems for the evaluation of inner products on encrypted data. Our
constructions are essentially as efficient as those of Abdalla et al. [2] and rely on
the same standard assumptions. In addition, our LWE-based realization allows
computing inner products over Zp, for some prime p, whereas its predecessor [2,
Section 6] evaluates them over the integers, in a smaller interval than Zp. As a
consequence, we can evaluate polynomial in Zp[X] over encrypted data.

Our DDH-based construction and its security proof implicitly build on hash
proof systems [24]. It involves public parameters comprised of group elements(
g, h, {hi = gsi · hti}`i=1

)
, where g, h generate a cyclic group G of prime order

q, and the master secret key is msk = (s, t) ∈ Z`q × Z`q. On input of a vector

y = (y1, . . . , y`) ∈ Z`q, the encryption algorithm computes (gr, hr, {gyi · hri }`i=1)
in such a way that a private key of the form SKx = (〈s,x〉, 〈t,x〉) allows com-

1 The latter secret-key component is implied by the results of Gorbunov et al. [42] as
it only needs to satisfy a weak security level.
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puting g〈y,x〉 in the same way as in [2].
Despite its simplicity and its efficiency (only one more group element than

in [2] is needed in the ciphertext), we show that the above system can be proved
fully secure using arguments – akin to those of Cramer and Shoup [23] – which
consider what the adversary knows about the master secret key (s, t) ∈ Z`q ×Z`q
in the information theoretic sense. The security proof is even simpler than its
counterpart in the selective case [2]. As in all security proofs based on hash proof
systems, it uses the fact that the private key is known to the reduction at any
time, which makes it simpler to handle private key queries without knowing the
adversary’s target messages y0,y1 ∈ Z`q in advance.

Our LWE-based construction builds on the dual Regev encryption scheme
from [37]. Its security analysis requires some more work. The master public key
contains a random matrix A ∈ Zm×nq . For simplicity, we restrict ourselves to
plaintext vectors and private key vectors with binary coordinates. Each vector co-
ordinate i ∈ {1, . . . , `} requires a master public key component uTi = zTi ·A ∈ Znq ,
for a small norm vector zi ∈ Zm made of Gaussian entries which will be part of
the master secret key msk = {zi}`i=1. Each {ui}`i=1 can be seen as a syndrome
in the GPV trapdoor function for which vector zi is a pre-image. Our security
analysis will rely on the fact that each GPV syndrome has a large number of
pre-images and, conditionally on ui ∈ Znq , each zi retains a large amount of
entropy. In the security proof, this will allow us to apply arguments similar to
those of hash proof systems [24] when we will generate the challenge ciphertext
using {zi}`i=1. More precisely, when the first part c0 ∈ Zmq of the ciphertext is
a random vector instead of an actual LWE sample c0 = A · s + e0, the action
of {zi}`i=1 on c0 ∈ Zmq produces vectors that appear statistically uniform to any
legitimate adversary.

In order to properly simulate the challenge ciphertext using the master secret
key {zi}`i=1, we use a variant of the extended LWE assumption [63] (eLWE) so
as to have the (hint) values {〈zi, e0〉}`i=1 at disposal. One difficulty is that the
reductions from LWE to eLWE proved in [4] and [18] handle a single hint vector z.
Fortunately, we extend the techniques of Brakerski et al. [18] using the gadget
matrix from [55] to obtain a reduction from LWE to the multi-hint variant of
eLWE that we use in the security proof. More specifically, if we encrypt vectors
y ∈ Z`p, for some prime modulus p, we prove that the multi-hint variant of eLWE
remains as hard as LWE when the adversary obtains as many as `dlog pe hints,
provided the dimension n of the LWE secret is ≥ 2`dlog pe.

Our results leave a few interesting open problems. One of them is to build
efficient chosen-ciphertext-secure variants of our schemes in the standard model.
To techniques suggested in [20, 45, 76] do not readily apply in our setting since
they either require key delegation capabilities or they are designed for the public
index setting. Our construction based on DDH can be made chosen-ciphertext
secure by applying the Naor-Yung paradigm [58] and resorting to pairing-based
NIZK proofs [46, 47]. Still, it requires to switch to groups endowed with an asym-
metric bilinear map. It would be interesting to achieve chosen-ciphertext security
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in standard (i.e., non-pairing friendly) abelian groups. Another interesting open
question is how to build a ring-based [56] variant of our LWE-based solution.

2 Background

In this section, we recall the functionality and security definitions of functional
and non-interactive controlled functional encryption schemes, as well as the hard-
ness assumptions underlying the security of the schemes we will describe.

2.1 Hardness assumptions

Our first scheme relies on the standard DDH assumption in ordinary (i.e., non-
pairing-friendly) cyclic groups.

Definition 1. In a cyclic group G of order q, the Decision Diffie-Hellman
(DDH) problem is to distinguish the distributions

D0 = {(g, ga, gb, gab) | g ←↩ G, a, b←↩ Zq}

and D1 = {(g, ga, gb, gc) | g ←↩ G, a, b, c←↩ Zq}.

Our second construction builds on the Learning-With-Errors (LWE) problem,
which is known [67, 18] to be at least as hard as certain standard lattice problems
in the worst case.

Definition 2. Let q, α,m be functions of a parameter n. For a secret s ∈ Znq ,
the distribution Aq,α,s over Znq × Zq is obtained by sampling a ←↩ Znq and an
e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e) ∈ Zn+1

q . The Learning With Errors
problem LWEq,α,m is as follows: For s ←↩ Znq , the goal is to distinguish between
the uniform distribution over Zn+1

q and distribution Aq,α,s, given access to m
independent samples. We say that a PPT algorithm A solves LWEq,α if it dis-
tinguishes the two distributions with non-negligible advantage (over the random
coins of A and the randomness of the samples), with non-negligible probability
over the randomness of s.

2.2 Definitions for functional encryption

We now recall the syntax of Functional Encryption, as defined by Boneh, Sahai
and Waters [17], and their indistinguishability-based security definition.

Definition 3 ([17]). A functionality F defined over (K,Y) is a function F :
K × Y → Σ ∪ {⊥}, where K is a key space, Y is a message space and Σ is an
output space, which does not contain the special symbol ⊥.

Definition 4. A functional encryption (FE) scheme for a functionality F is
a tuple FE = (Setup,Keygen,Encrypt,Decrypt) of algorithms with the following
specifications:
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Setup(1λ): Takes as input a security parameter 1λ and outputs a master key
pair (mpk,msk).

Keygen(msk,K): Given the master secret key msk and a key (i.e., a function)
K ∈ K, this algorithm outputs a key skK .

Encrypt(mpk, Y ): On input of a message Y ∈ Y and the master public key mpk,
this randomized algorithm outputs a ciphertext C.

Decrypt(mpk, skK , C): Given the master public key mpk, a ciphertext C and a
key skK , this algorithm outputs v ∈ Σ ∪ {⊥}.

It is required that, for all (mpk,msk) ← Setup(1λ), all keys K ∈ K and all
messages Y ∈ Y, if skK ← Keygen(msk,K) and C ← Encrypt(mpk, Y ), with
overwhelming probability, we have Decrypt(mpk, skK , C) = F (K,Y ) whenever
F (K,Y ) 6=⊥.

Indistinguishability-based security. From a security standpoint, what we
expect from a FE scheme is that, given C ← Encrypt(mpk, Y ), the only thing
revealed by a private key skK about the underlying Y is the function evaluation
F (K,Y ). In the natural definition of indistinguishability-based security (see, e.g.,
[17]), one asks that no efficient adversary be able to differentiate encryption of
Y0 and Y1 without obtaining private keys skK such that F (K,Y0) 6= F (K,Y1).

Definition 5 (Indistinguishability-based security). A functional encryp-
tion scheme FE = (Setup,Keygen,Encrypt,Decrypt) provides semantic security
under chosen-plaintext attacks (or IND-CPA security) if no PPT adversary has
non-negligible advantage in the following game, where q1 ≤ q ∈ poly(λ):

1. The challenger runs (mpk,msk)← Setup(1λ) and the master public key mpk
is given to the adversary A.

2. The adversary adaptively makes private key queries to the challenger. At
each query, A chooses a key K ∈ K and obtains skK ← Keygen(msk,K).

3. A chooses distinct messages Y0, Y1 subject to the restriction that, if {Ki}q1i=1

denotes the set of private key queries made by A at stage 2, it holds that
F (Ki, Y0) = F (Ki, Y1) for each i ∈ {1, . . . , q1}. Then, the challenger flips a
fair coin β ←↩ {0, 1} and computes C? ← Encrypt(mpk, Yβ) which is sent as
a challenge to A.

4. A makes further private key queries for arbitrary keys K ∈ K. However, it
is required that F (K,Y0) = F (K,Y1) at each query K ∈ {Kq1+1, . . . ,Kq}.

5. A eventually outputs a bit β′ ←↩ {0, 1} and wins if β′ = β.

The adversary’s advantage is defined to be AdvA(λ) := |Pr[β′ = β] − 1/2|,
where the probability is taken over all coin tosses.

Definition 5 captures adaptive security in that the adversary is allowed to
choose the messages Y0, Y1 at stage 3. In [2], Abdalla et al. considered a weaker
security notion, called selective security, where the adversary has to declare the
messages Y0, Y1 at the very beginning of the game, before even seeing mpk (note
that, in this scenario, the adversary can receive the challenge ciphertext at the
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same time as the public key). In this work, our goal will be to meet the strictly
stronger requirements of adaptive security.

Boneh, Sahai and Waters [17] pinpointed shortcomings of indistinguishability-
based definitions in the case of general functionalities, where they may fail to
rule out intuitively insecure systems. Boneh et al. [17] advocated the use of
simulation-based definitions, but also proved them hard to satisfy as their first
natural candidate was shown [17] impossible to realize in the standard model.

For a wide range of practically interesting specific functionalities (including
inner product evaluations), however, indistinguishability-based security is be-
lieved to suffice. Moreover, De Caro et al. gave [26] a general method of construct-
ing FE schemes that achieve a meaningful definition of simulation-based security
from systems that are only proved secure in the sense of indistinguishability-
based definitions. In the following, we will thus aim at full security in the sense
of Definition 5.

Chosen-ciphertext security. In the chosen-ciphertext scenario, the adver-
sary is additionally granted access to a decryption oracle. At each decryption
query, the adversary specifies a ciphertext C and a function K ∈ K (which
may not satisfy F (K,Y0) = F (K,Y1)) and obtains the value F (K,Y ) obtained
by decrypting C using a private key skK generated for K. Of course, no such
decryption query is allowed for the challenge ciphertext C?.

3 Fully secure functional encryption for inner products
from DDH

In this section, we show that a simple adaptation of the DDH-based construction
of Abdalla et al. [2] provides full security under the standard DDH assumption.

In comparison with the solution of Abdalla et al., we only introduce one
more group element in the ciphertext and all operations are just as efficient as
in [2]. Our scheme is obtained by modifying [2] in the same way as Damg̊ard’s
encryption scheme [25] was obtained from the Elgamal cryptosystem. The orig-
inal DDH-based system of [2] encrypts a vector y = (y1, . . . , y`) ∈ Z`q by com-

puting (gr, {gyi · hri }`i=1), where {hi = gsi}`i=1 are part of the master public

key and skx =
∑`
i=1 si · xi mod q is the private key associated with the vector

x = (x1, . . . , x`) ∈ Z`q. Here, we encrypt y in the fashion of Damg̊ard’s Elga-

mal, by computing (gr, hr, {gyi · hri }`i=1). The decryption algorithm uses private

keys of the form skx = (
∑`
i=1 si · xi,

∑`
i=1 ti · xi), where hi = gsi · hti for each

i ∈ {1, . . . , `} and s = (s1, . . . , s`) ∈ Z`q and t = (t1, . . . , t`) ∈ Z`q are part of the
master secret key msk.

The scheme and its security proof also build on ideas from the Cramer-Shoup
cryptosystem [23, 24] in that the construction can also be seen as an applying a
hash proof system [24] with homomorphic properties over the key space.

Setup(1λ, 1`): Choose a cyclic group G of prime order q > 2λ with generators
g, h ←↩ G. Then, for each i ∈ {1, . . . , `}, choose si, ti ←↩ Zq and compute
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hi = gsi · hti . Define

mpk :=
(
G, g, h, {hi}`i=1

)
and msk := {(si, ti)}`i=1.

Keygen(msk,x): To generate a key for the vector x = (x1, . . . , x`) ∈ Z`q, com-

pute skx = (sx, tx) = (
∑`
i=1 si · xi,

∑`
i=1 ti · xi) = (〈s,x〉, 〈t,x〉).

Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y`) ∈ Z`q, choose r ←↩ Zq and
compute

C = gr,

D = hr,

Ei = gyi · hri , ∀i ∈ {1, . . . , `}.

Return Cy = (C,D,E1, . . . , E`).

Decrypt(mpk, skx, Cy): Given skx = (sx, tx), compute

Ex =
∏̀
i=1

Exii /(C
sx ·Dtx).

Then, compute and output logg(Ex).

The decryption algorithm requires to compute a discrete logarithms in an in-
terval {0, . . . , L}, which takes time Θ(L1/2) using Pollard’s kangaroo method
[65]. Galbraith and Ruprai [31] gave an improved algorithm with complex-
ity Θ(L1/2). As reported in [9], this can be reduced to Θ(L1/3) operations by
precomputing a table of size Θ(L1/3).

Like [2], our scheme requires the inner product value to live in a small,
polynomial-size interval in order to enable efficient decryption. Before proceeding
with the security proof, we would like to clarify that, although the scheme of [2]
only decrypts values in a polynomial-size space, the usual complexity leveraging
argument does not prove it fully secure via a polynomial reduction. Indeed, when
` is polynomial in λ, having the inner product 〈y,x〉 in a small interval does not
mean that original vector y ∈ Z`q lives in a polynomial-size universe.

The security analysis uses similar arguments to those of Cramer and Shoup
[23, 24] in that it exploits the fact that mpk does not reveal too much infor-
mation about the master secret key. At some step, the challenge ciphertext is
generated using msk instead of the public key and, as long as msk retains a suf-
ficient amount of entropy from the adversary’s view, it will perfectly hide which
vector among y0,y1 is actually encrypted.

The reason why we can prove adaptive security is the fact that, as usual in
security proofs relying on hash proof systems [23, 24], the reduction knows the
master secret key at any time. It can thus correctly answer all private key queries
without knowing the challenge messages y0,y1 beforehand.

The DDH-based construction can easily be generalized so as to rely on weaker
variants of DDH, like the Decision Linear assumption [13], the k-linear assump-
tion [70] for k > 2 or the Cascade assumption [29]. We believe that it can be
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generalized to rely on other key homomorphic hash proof systems, like those [24]
based on Paillier’s cryptosystem [64].

Theorem 1. The scheme provides full security under the DDH assumption.

Proof. The proof uses a sequence of games that begins with the real game and
ends with a game where the adversary’s advantage is zero. For each i, we denote
by Si the event that the adversary wins in Game i.

Game 0: This is the real game. In this game, the adversary A is given mpk. In
the challenge phase, A chooses two distinct vectors y0,y1 ∈ Z`q and obtains an
encryption of yβ = (yβ,1, . . . , yβ,`) for a random bit β ←↩ {0, 1} chosen by the
challenger B. At the end of the game, A outputs β′ ∈ {0, 1} and we denote by
S0 the event that β′ = β. For any vector x ∈ Z`q submitted to the private key
extraction oracle, it must be the case that 〈x,y0〉 = 〈x,y1〉.

Game 1: We modify the generation of the challenge Cyβ = (C,D,E1, . . . , E`).
Namely, the challenger B first computes

C = gr, D = hr, (1)

for a randomly chosen r ←↩ Zq. Then, it uses msk := {(si, ti)}`i=1 to compute

Ei = gyβ,i · Csi ·Dti (2)

Clearly, Cyβ = (C,D,E1, . . . , E`) has the same distribution as in Game 0 and
we have Pr[S1] = Pr[S0].

Game 2: In this game, we modify again the generation of Cyβ = (C,D,E1, . . . , E`)
in the challenge phase. Namely, instead of computing the pair (C,D) as in (1),
the challenger B chooses r, r̃ ←↩ Zq and sets

C = gr, D = hr̃,

The ciphertext components (E1, . . . , E`) are still computed as per (2). Under
the DDH assumption, this modification should not significantly affect A’s view
and a straightforward reduction shows that |Pr[S2]− Pr[S1]| ≤ AdvDDH

B (λ).

In Game 2, we claim that Pr[S2] = 1/2, so that the adversary has no ad-
vantage at all. To see this, we first remark that the pair (C,D) can be writ-
ten (C,D) = (gr, hr+r

′
) for some uniformly random r′ ←↩ Zq. So, for each

i ∈ {1, . . . , `}, we also have

Ei = gyβ,i · Csi ·Dti = gyβ,i+ω·r
′·ti · hri ,

where ω = logg(h). If we define t′i = ti + (ω · r′)−1 · (yβ,i − y1−β,i) for each
i ∈ {1, . . . , `}, we also have

Ei = gy1−β,i+ω·r
′·t′i · hri .

11



In other words, the vector

(E1, . . . , E`) = gyβ+ω·r
′·t · (hr1, . . . , hr`) (3)

can also be written

(E1, . . . , E`) = gy1−β+ω·r′·t′ · (hr1, . . . , hr`) (4)

if we define t′ = t+ (ω · r′)−1 · (yβ − y1−β) mod q. Note that, in all private keys
skx involving vectors x such that 〈x,yβ〉 = 〈x,y1−β〉, we have 〈t′,x〉 = 〈t,x〉.
Moreover, in each private key skx = (〈s,x〉, 〈t,x〉), the information 〈s,x〉 is

redundant with 〈t,x〉 since it is uniquely determined by 〈t,x〉 and
∏`
i=1 h

xi
i . In

fact, together with {hi}`i=1, t′ determines the vector s′ = (s′1, . . . , s
′
`) ∈ Z`q such

that s′i = si + 1
r′ · (y1−β,i − yβ,i) mod q, which satisfies hi = gs

′
i · ht′i for each

i ∈ {1, . . . , `} and 〈s′,x〉 = 〈s,x〉 for any vector x that can be legally submitted
to the key extraction oracle. It comes that situations (3) and (4) are equally
likely in A’s view as long as all revealed private keys skx involve vectors x such
that 〈x,y0〉 = 〈x,y1〉. We conclude that Pr[S2] = 1/2, as claimed. In turn, this
implies Pr[S0] ≤ AdvDDH

B (λ) + 1/2, which yields the announced result. ut

The construction can be modified to provide chosen-ciphertext security in
several ways. One option is to use the random oracle model [8] and the Fujisaki-
Okamoto transformation [30]. In the standard model, another option is to switch
to groups endowed with an asymmetric bilinear map e : G1 ×G2 → GT (where
the DDH assumption is believed to hold in G1 and G2) and apply the Naor-
Yung/Sahai paradigm [58, 68]. In the latter case, it is particularly convenient
to apply quasi-adaptive NIZK proofs of plaintext equality [50] since the con-
structions of [51, 54] allow for proof lengths independent of the dimension ` of
encrypted vectors.

4 Full security under the LWE assumption

In the description hereunder, we consider the message space P = Z`p and the

key vector space V = Z`p, for some prime p and integer `. Further, we define
k = dlog2 pe. Note that modulus p is related to plaintexts. We use another
modulus q = p · p′ for ciphertexts, with p′ 6= p prime.

We use similar notations to [38]. Namely, if x = (x1, . . . , x`) ∈ Z`p and y =

(y1, . . . , y`) ∈ Z`p are vectors over Zp, then PowersOfTwo(y) stands for the vector

[1, 2, . . . , 2k−1]⊗ y = (y1, 2 · y1, . . . , 2k−1 · y1, . . . , y`, 2 · y`, . . . , 2k−1 · y`) ∈ Zk`p

while BitDecomp(x) denotes the vector (x11, . . . , x1k, . . . , x`1, . . . , x`k) ∈ {0, 1}k`
such that xi =

∑k
j=1 xij ·2j−1 for each i ∈ {1, . . . , `}. Hence, we have the equality

〈BitDecomp(x),PowersOfTwo(y)〉 = 〈x,y〉 mod p.
For the sake of simplicity, the reader may instantiate the scheme and its anal-

ysis presented below with binary plaintext and key vectors, evaluated modulo
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p ≥ 2
√
` (i.e., evaluated over the integers). Then one may set k = 1: in that case,

the functions BitDecomp and PowersOfTwo are unnecessary. In the more general
case, their purpose is to reduce the necessary size of q to ensure that the noise
term in decryption does not interfere with the plaintext (see the proof of cor-
rectness of the scheme). In this simplified setup, one may also set q prime, which
allows to avoid several technical hurdles (linear algebra arguments simplify for
q prime).

Setup(1n, p, 1`): Set integers m, q, real α and distribution τ over Z(k`)×m as
explained below. Sample A ←↩ Zm×nq and Z ←↩ τ . Compute U = Z · A ∈
Zk`×nq . Define mpk := (A,U) and msk := Z.

Keygen(msk,x): Given a vector x ∈ V, generate a private key as follows. Com-
pute and return skx = zx := BitDecomp(x)T · Z ∈ Zm.

Encrypt(mpk,y): To encrypt a vector y ∈ P, sample s←↩ Znq , e0 ←↩ Dm
Z,αq and

e1 ←↩ Dk`
Z,αq and compute

c0 = A · s+ e0 ∈ Zmq ,

c1 = U · s+ e1 + (q/p) · PowersOfTwo(y) ∈ Zk`q .

Then, return C := (c0, c1).

Decrypt(mpk,x, skx, C): Given C := (c0, c1) and a secret key skx = zx for
x ∈ V, compute µ′ = 〈BitDecomp(x), c1〉 − 〈zx, c0〉 mod q and output the
value µ ∈ {−p+ 1, . . . , p− 1} that minimizes |(q/p) · µ− µ′|.

Setting the parameters. Let Bτ be such that with probability ≥ 1− n−ω(1),
each sample from τ has norm Bτ . As explained just below, correctness may be
ensured by setting q = pp′ with p′ 6= p prime, and:

α−1 ≥ 8`kBτω(
√

log n)p, and q ≥ 2p.

The choice of τ is driven by the reduction from LWE to mheLWE, as summa-
rized in Theorem 3 (the precise description of τ is given in Lemma 2). Each entry
coefficient of matrix τ is an independent discrete Gaussian τi,j = DZ,σi,j ,ci,j , with

σi,j ≥ Ω(
√
mn logm) for all i, j, and we have Bτ ≤ O(n4m2 log5/2 n).

To ensure security based on LWEq,α′,m in dimension ≥ n/2 via Theorems 2
and 3 below, one may further impose that k` ≤ n/2, q ≤ nO(1) and m =

Θ(n log n), to obtain α′ = Ω(α/(n6 log9/2 n)).

Decryption correctness. To show the correctness of the scheme, we first ob-
serve that, modulo q:2

µ′ = 〈BitDecomp(x), c1〉 − 〈zx, c0〉
= 〈BitDecomp(x), e1〉+ (q/p) · 〈BitDecomp(x),PowersOfTwo(y)〉 − 〈zx, e0〉
= (q/p) · 〈x,y〉+ 〈BitDecomp(x), e1〉 − 〈zx, e0〉.

2 In this sequence of equalities, we use the fact that p divides q. If we had chosen a
modulus q that is not a multiple of p, the inner product 〈x,y〉 would “spill over”
and lead to an extra noise term. This phenomenon could be easily taken care of for
decryption correctness, but may lead to security issues.
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Note that the term e′ := 〈BitDecomp(x), e1〉 − 〈zx, e0〉 is an inner product
between an integer Gaussian vector of dimension (k`+m) and standard deviation
parameter αq, and a vector of norm ≤ 2k`Bτ with probability ≥ 1 − n−ω(1).
Standard techniques show that |e′| ≤ k`Bταq·ω(

√
log n) holds with probability≥

1−n−ω(n). Thanks to the choices of α and q, the latter upper bound is ≤ (q/p)/4.
This suffices to guarantee decryption correctness.

Full security. In order to prove the security of the scheme, we use the extended-
LWE problem introduced by O’Neill, Peikert and Water [63] and further inves-
tigated in [4, 18]. At a high level, the extended-LWE problem can be seen as
LWEα,q with a fixed number m of samples, for which some extra information on
the LWE noises is provided: the adversary is provided a given linear combination
of the noise terms. More concretely, the problem is to distinguish between the
distributions (

A, A · s+ e, z, 〈e, z〉
)

and
(
A, u, z, 〈e, z〉

)
,

where A ←↩ Zm×nq , s ←↩ Znq , b ←↩ Zmq , e ←↩ Dm
Z,αq, and z is sampled from a

specified distribution. Note that in [63], a noise was added to the term 〈e, z〉.
The LWE to extended-LWE reductions from [4, 18] do not require such an extra
noise term.

We will use a variant of extended-LWE for which multiple hints (zi, 〈e, zi〉)
are given, for the same noise vector e.

Definition 6 (Multi-hint extended-LWE). Let q,m, t be integers, α be a real
and τ be a distribution over Zt×m, all of them functions of a parameter n. The
Multi-hint extended-LWE problem mheLWEq,α,m,t,τ is to distinguish between the
distributions of the tuples(

A, A · s+ e, Z, Z · e
)

and
(
A, u, Z, Z · e

)
,

where A←↩ Zm×nq , s←↩ Znq ,u←↩ Zmq , e←↩ Dm
Z,αq, and Z←↩ τ .

Theorem 2. Assume that k` ≤ nO(1) and m ≥ 2n log2 q. Then the functional
encryption scheme above is fully secure, under the mheLWEq,α,m,k`,τ hardness
assumption.

Proof. The proof proceeds with a sequence of games that starts with the real
game and ends with a game in which the adversary’s advantage is negligible. For
each i, we call Si the event that the adversary wins in Game i.

Game 0: This is the genuine full security game. Namely: the adversary A is
given the master public key mpk; in the challenge phase, adversary A comes
up with two distinct vectors y0,y1 ∈ P and receives an encryption C of yβ
for β ←↩ {0, 1} sampled by the challenger; when A halts, it outputs β′ ∈ {0, 1}
and S0 is the event that β′ = β. Note that any vector x ∈ V queried by A to
the secret key extraction oracle must satisfy 〈x,y0〉 = 〈x,y1〉 mod p if A is a
legitimate adversary.
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Game 1: We modify the generation of C = (c0, c1) in the challenge phase.
Namely, at the outset of the game, the challenger picks s ←↩ Znq , e0 ←↩ Dm

Z,αq
(which may be chosen ahead of time) as well as Z ←↩ τ . The master public
key mpk is computed by setting U = Z · A mod q. In the challenge phase,
the challenger picks a random bit β ←↩ {0, 1} and encrypts yβ by computing
(modulo q)

c0 = A · s+ e0,

c1 = Z · c0 − Z · e0 + e1 + (q/p) · PowersOfTwo(yβ),

with e1 ←↩ Dk`
Z,αq.

As the distribution of C is the same as in Game 0, we have Pr[S1] = Pr[S0].

Game 2: We modify again the generation of C = (c0, c1) in the challenge phase.
Namely, the challenger picks u←↩ Zmq , sets c0 = u and computes c1 using c0,Z
and e0 as in Game 1.

Under the mheLWE hardness assumption with t = k`, this modification has
no noticeable effect on the behavior of A. Below, we prove that Pr[S2] ≈ 1/2,
which completes the proof of the theorem.

In Game 2, we have c1 = Zu − f + (q/p) · PowersOfTwo(yβ), with f :=
−Ze0 + e1. Let xi ∈ V be the vectors corresponding to the secret key queries
made by A. As A is a legitimate adversary, we have 〈xi,y0〉 = 〈xi,y1〉 mod p for

all i. This implies that 〈xi,y0 − y1〉 = 0 mod p, for all i. Let X
(p)
top ∈ Z(k`−1)×k`

p

be a uniformly chosen basis of the Zp-vector subspace

{x ∈ Zk`p : 〈x,PowersOfTwo(y0 − y1)〉 = 0}.

We choose X
(p′)
top ∈ Z(k`−1)×k`

p′ full-rank, and let Xtop ∈ Z(k`−1)×k`
q be such that

Xtop = X
(p)
top mod p and Xtop = X

(p′)
top mod p′. Let Xbot ∈ Z1×k`

q be such that

the matrix X ∈ Zk`×k`q obtained by putting Xtop on top of Xbot is invertible
(modulo q). We have:

c1 = X−1 ·X · (Zu− f + (q/p) · PowersOfTwo(yβ)) .

We are to show that the distribution of X · c1 is (almost) independent of β. As
we built X so that it is independent of β and invertible, this implies that the
distribution of c1 is (almost) independent of β and Pr[S2] ≈ 1/2.

The first k`−1 entries of X·c1 do not depend on β because we have (modulo q)

(q/p)Xtop · PowersOfTwo(y0) = (q/p)X
(p)
top · PowersOfTwo(y0)

= (q/p)X
(p)
top · PowersOfTwo(y1)

= (q/p)Xtop · PowersOfTwo(y1).

It remains to study the last entry of X · c1. Note that, by Lemma 6 in Ap-
pendix A, we have that the distribution of the pair ((A|u),Z(A|u)) is within sta-

tistical distance n−ω(1) from the uniform distribution over Zm×(n+1)
q ×Zk`×(n+1)

q .
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As a consequence, the distribution of the tuple (A,u,ZA,XZu) is within statis-
tical distance n−ω(1) from the uniform distribution over Zm×nq ×Zmq ×Zk`×nq ×Zk`q .
This implies that given A,u,ZA and XtopZu, the distribution of XbotZu is
within statistical distance n−ω(1) from the uniform distribution over Zq. This
completes the security proof. ut

4.1 Hardness of multi-hint extended-LWE

In this section, we prove the following theorem, which shows that for some pa-
rameters, the mheLWE problem is no easier than the LWE problem.

Theorem 3. Let n ≥ 100, q ≥ 2, t < n and m with m = Ω(n log n) and

m ≤ nO(1). There exists ξ ≤ O(n4m2 log5/2 n) and a distribution τ over Zt×m
such that the following statements hold:

• There is a reduction from LWEq,α,m in dimension n− t to mheLWEq,αξ,m,t,τ
that reduces the advantage by at most 2Ω(t−n),
• It is possible to sample from τ in time polynomial in n,
• Each entry coefficient of matrix τ is an independent discrete Gaussian τi,j =
DZ,σi,j ,ci,j for some ci,j and σi,j ≥ Ω(

√
mn logm),

• With probability ≥ 1−n−ω(1), all rows from a sample from τ have norms ≤ ξ.

Our reduction from LWE to mheLWE proceeds as the reduction from LWE
to extended-LWE from [18], using the matrix gadget from [55] to handle the
multiple hints. We first reduce LWE to the following variant of LWE in which the
first samples are noise-free. This problem generalizes the first-is-errorless LWE
problem from [18].

Definition 7 (First-are-errorless LWE). Let q, α,m, t be functions of a pa-
rameter n. The first-are-errorless LWE problem faeLWEq,α,m,t is defined as fol-
lows: For s←↩ Znq , the goal is to distinguish between the following two scenarios.
In the first, all m samples are uniform over Znq × Zq. In the second, the first t
samples are from Aq,{0},s (where {0} denotes the distribution that is determin-
istically zero) and the rest are from Aq,α,s.

Lemma 1. For any n > t, m, q ≥ 2, and α ∈ (0, 1), there is an efficient
reduction from LWEq,α,m in dimension n − t to faeLWEq,α,m,t in dimension n
that reduces the advantage by at most 2−n+t+1.

The proof, postponed to the appendices, is a direct adaptation of the one
of [18, Le. 4.3].

In our reduction from faeLWE to mheLWE, we use the following gadget matrix
from [55, Cor. 10]. It generalizes the matrix construction from [18, Claim 4.6].

Lemma 2. Let n,m1,m2 with 100 ≤ n ≤ m1 ≤ m2 ≤ nO(1). Let σ1, σ2 >
0 be standard deviation parameters such that σ1 ≥ Ω(

√
m1n logm1), m1 ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2
√
m1σ

2
1 log3/2(m1σ1)). Let m = m1 +m2. There

exists a probabilistic polynomial time algorithm that given n,m1,m2 (in unary)
and σ1, σ2 as inputs, outputs G ∈ Zm×m such that:
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• The top n ×m submatrix of G is within statistical distance 2−Ω(n) of τ =
Dn×m1

Z,σ1
× (DZm2 ,σ2,δ1 × . . .×DZm2 ,σ2,δn)T with δi denoting the ith canonical

unit vector,
• We have |det(G)| = 1 and ‖G−1‖ ≤ O(

√
nm2σ2), with probability ≥ 1 −

2−Ω(n).

Lemma 3. Let n,m1,m2,m, σ1, σ2, τ be as in Lemma 2, and ξ ≥ Ω(
√
nm2σ2).

Let q ≥ 2, t ≤ n, α ≥ Ω(
√
n/q). Let τt be the distribution obtained by keeping

only the first t rows from a sample from τ . There is a (dimension-preserving)
reduction from faeLWEq,α,m,t to mheLWEq,2αξ,m,t,τt that reduces the advantage
by at most 2−Ω(n).

Proof. Let us first describe the reduction. Let (A, b) ∈ Zmq × Zq be the in-
put, which is either sampled from the uniform distribution, or from distribu-
tion Atq,{0},s ×A

m−t
q,α,s for some fixed s←↩ Znq . Our objective is to distinguish be-

tween the two scenarios, using an mheLWE oracle. We compute G as in Lemma 2
and let U = G−1. We let Z ∈ Zt×m denote the matrix formed by the top t rows
of G, and let U′ ∈ Zm×(m−t) denote the matrix formed by the right m − t
columns of U. By construction, we have ZU′ = 0. We define A′ = U ·A mod q.
We sample f ←↩ Dαq(ξ2I−U′U′T )1/2 (thanks to Lemma 2 and the choice of ξ, the

matrix ξ2I −U′U′T is positive definite). We sample e′ from {0}t × Dm−t
αq and

define b′ = U · (b + e′) + f . We then sample c ←↩ DZm−b′,
√
2αξq, and define

h = Z(f + c).
Finally, the reduction calls the mheLWE oracle on input (A′, b′+c,Z,h), and

outputs the reply.
Correctness is obtained by showing that distribution Atq,{0},s × Am−tq,α,s is

mapped to the mheLWE “LWE” distribution and that the uniform distribution
is mapped to the mheLWE “uniform” distribution, up to 2−Ω(n) statistical dis-
tances (we do not discuss these tiny statistical discrepancies below). The proof
is identical to the reduction analysis in the proof of [18, Le. 4.7]. ut

Theorem 3 is obtained by combining Lemmas 1, 2 and 3.
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A Missing material from Section 4

Let Λ be a non-zero lattice. We recall that the smoothing parameter of Λ is
defined as ηε(Λ) = min(s > 0 :

∑
b̂∈Λ̂ exp(−π‖b̂‖2/s2) ≤ 1 + ε), where Λ̂ refers

to the dual of Λ. Further, for a matrix A ∈ Zm×nq for some integers m,n, q, we

define the lattice Λ⊥(A) = {x ∈ Zm : xT ·A = 0 mod q}.

Lemma 4 (Adapted from [57, Le. 2.4]). Let n,m, q ≥ 2 be positive integers,
and ε, δ > 0. Assume that q = p · p′ for p 6= p′ primes, and that

m ≥ max

(
n+

log(12/(δε))

log min(p, p′)
,
n log q + log(4/(δε))

log 2

)
.

Then ηε(Λ
⊥(A)) ≤ 2

√
ln(2m(1 + 2/(δε)))/π, except with probability ≤ δ over

the uniform choice of A ∈ Zm×nq .

Lemma 5 (Adapted from [37, Le. 5.2]). Assume the rows of A ∈ Zm×nq

generate Znq and let ε ∈ (0, 1/2), si ≥ ηε(Λ
⊥(A)) for i ∈ [m], and c ∈ Zm.

Then for e ∈ Zm with each coordinate sampled independently from DZ,si,ci , the
distribution of the syndrome eT · A mod q is within statistical distance 2ε of
uniform over Znq .

Using the two lemmas above, we obtain the following result, that we use in
the proof of Theorem 2.

Lemma 6. Let n,m, q ≥ 2 be positive integers. Assume that q = p ·p′ for p 6= p′

primes, and that m ≥ 2n log2 q. Let si ≥ ω(
√

logm) for i ∈ [m], and c ∈ Zm.
Then for A ∈ Zm×nq sampled uniformly and e ∈ Zm with each coordinate sampled

independently from DZ,si,ci , the distribution of the pair (A, eT · A) is within
statistical distance n−ω(1) of uniform over Zm×nq × Znq .

Proof of Lemma 1. The reduction from LWE to faeLWE starts by sampling
A′ ←↩ Zt×nq . It aborts if it is not full-rank (modulo q): this happens with proba-
bility

≤
∏

p prime,p|q

1−
∏

0≤i<t

(1− p−n+i)

 ≤ ∏
p prime,p|q

(4p−n+t−1) ≤ 2−n+t+1.

Else, the reduction computes R ∈ Zn×nq which is invertible and whose top t× n
submatrix is A′. The reduction also samples s′ ←↩ Ztq. The first t output samples
are (a′i, s

′
i) (for i ≤ t), where a′i denote the ith row of A′. The remaining samples

are produced by taking a sample (a, b) ∈ Zn−tq ×Zq from the given oracle, picking

a fresh uniformly random d ∈ Ztq, and returning (RT (̇d|a), b+ 〈s′,d〉).
Given uniform samples, the reduction outputs uniform samples up to sta-

tistical distance 2−n+t+1. Given samples from Aq,α,s, the reduction outputs t
samples from Aq,{0},s′′ and the remaining samples from Aq,α,s′′ up to statisti-
cal distance 2−n+t+1, with s′′ = R−1 · (s′|s)T mod q. This proves correctness
since R induces a bijection on Znq . ut
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