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Abstract. The Trusted Platform Module (TPM) version 2.0 provides an authenticated key ex-
change functionality by a single key exchange primitive, which can be called to implement three
key exchange protocols (denoted as two-phase key exchange protocols in TPM 2.0): the Full Uni-
fied Model, the MQV, and the SM2 key exchange protocols. However, some vulnerabilities have
been found in all of these protocols. Fortunately, it seems that protections provided by the TPM
can deal with vulnerabilities of these protocols. This paper investigates whether the TPM key ex-
change primitive provides a secure key exchange functionality under protections of the TPM. We
first perform an informal analysis of the TPM key exchange primitive which helps us to model in
a precise way. Then we formally analyze the TPM key exchange primitive in a security model for
AKE, based on which all the protocols adopted by TPM 2.0 can be analyzed in a unified way. Our
analysis indicates under what conditions the TPM 2.0 can provide a provable secure key exchange
functionality. In the end, we give suggestions on how to leverage the TPM key exchange primitive
properly, and suggestions on how to improve the security of current TPM key exchange primitive
to enable its wide use in practice.
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1 Introduction

Authenticated key exchange (AKE) is a very important public key primitive in modern cryptography,
which allows two parties to establish a shared secret session key via the public insecure communication
while providing mutual authentication. To achieve security against active attackers, who control the pub-
lic communication channels, AKE protocols commonly use digital signatures or message authentication
codes (MAC) to explicitly authenticate the messages exchanged. Some typical examples include: STS
[5], SIGMA [8], TLS [11], and JFK [3]. However, the authentication mechanism to resist active attacks
incurs a significant increase in both the computation and communication complexity compared to the
basic Diffie-Hellman key exchange protocol.

In 1986, Matsumoto et al. first put forth the design of implicitly AKE protocols [21] which on-
ly required basic Diffie-Hellman exchanges while providing identities authentication by combining the
ephemeral keys and long-term keys in the derivation of the session key. The implicitly AKE protocols

? An extended abstract of this paper appears in Trust’15.
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Â : (a,A = ga) B̂ : (b,B = gb)

X = gx
X−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Y = gy

Y←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ZA = (Y Be)h(x+da), ZB = (XAd)h(y+eb)

Full Unified Model: K = H1(Z1, Z2, Â, B̂,X, Y ), where Z1 = gab, Z2 = gxy

Full MQV: K = H2(ZA, Â, B̂) = H2(ZB , Â, B̂), where

d = avf(X)
def
= 2l + (X.x mod 2l), e = avf(Y )

def
= 2l + (Y.x mod 2l), l = dq/2e

SM2 Key Exchange: ZA = (BY e)h(a+dx), ZB = (AXd)h(b+ey)

K = H2(ZA, Â, B̂) = H2(ZB , Â, B̂), where

d = avf ′(X)
def
= 2l + (X.x mod 2l), e = avf ′(Y )

def
= 2l + (Y.x mod 2l), l = bq/2c

Fig. 1. The Full Unified Model, Full MQV, and SM2 key exchange Protocols

achieve efficiency in both communication and computation, so they are widely studied and many pro-
tocols are proposed [22, 25, 20, 14, 17, 19, 18, 29, 13, 31–33]. Among these protocols, the HMQV protocol
[17] marks the milestone of the development of the implicitly AKE protocols because it provides the
first formal analysis of implicitly AKE protocols within a modern AKE security model (the CK model).
By now, it becomes a basic requirement for AKE protocols to achieve the security defined by modern
AKE security models, such as the CK [7] model or eCK [18] model. The core security property defined
by modern AKE security models guarantees that the corruption of one session would not compromise
the security of other sessions. In modern AKE security models, a session of implicitly AKE protocols is
identified by a quadruple (Â, B̂,X, Y ) where Â is the identity of the holder of the session, B̂ the peer,
X the outgoing ephemeral public key, and Y the incoming ephemeral public key.

In this work, we focus on the two-phase key exchange primitive defined in the new released TPM 2.0
specification [27], which supports three implicitly AKE protocols: the Full Unified Model and Full MQV
protocols described in SP800-56A [4], and the SM2 key exchange protocol [31]. The three protocols are
described as two-phase key exchange protocols in TPM 2.0 as they require two phases. In the first phase,
the TPM generates an ephemeral DH key to be sent to the other party. In the second phase, the TPM
generates the unhashed shared secret by combining ephemeral keys and long-term keys, and then the
host of the TPM uses the unhashed shared secret to derive the session key.

We first introduce some preliminaries used in the three protocols. Let G′ be a finite Abelian group
of order N , G ⊆ G′ be a subgroup of prime order q. Denote by g a generator of G, by 1G the identity
element, by G\1G = G− {1G} the set of elements of G except 1G and by h = N/q the cofactor. We use
multiplicative notation for the group operation in G′. Let u ∈R Zq denote randomly selecting an integer
u between 1 and q − 1. Note that G actually is an elliptic curve in this work as all the three protocols
are based on elliptic curve cryptography. Let P.x denote the x-coordinate of point P . The party having
A as its public key will be denoted by Â. The Full Unified Model, Full MQV and SM2 key exchange
protocols are described in Figure 1. H1() and H2() are cryptographic hash functions. The Full Unified
Model protocol analyzed in this paper includes the ephemeral public keys exchanged as suggested by [15].
The Full MQV protocol is a variant of the original MQV protocol [22] (which doesn’t include parties’
identifiers in the session key derivation, i.e., K = H2(ZA) = H2(ZB)).
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1.1 Weaknesses of AKE protocols in TPM 2.0

Unfortunately, all the three AKE protocols adopted by TPM 2.0 are not secure1. We summarize their
weaknesses in the following.

We find that the Full Unified Model key exchange protocol is completely insecure if an attacker is able
to learn the intermediate information Z1 = gab of some session established by Â with B̂: the attacker
transmits an ephemeral key X ′ = gx

′
generated by himself to party B̂ and receives an ephemeral public

key Y ′ from B̂, then he can compute the session key K = H(Z1, Y
′x′ , Â, B̂,X ′, Y ′), i.e., the attacker is

able to impersonate Â to B̂ indefinitely.
Kaliski presented an unknown-key share (UKS) attack [16] on the original MQV protocol in which the

attacker M interfaces with the session establishment between two honest parties Â and B̂ such that Â
is convinced that he is sharing a key with B̂, but B̂ believes that he is sharing the same session key with
M. M can mount Kaliski’s UKS attack by (a) registering with the CA a specific key C = gc, and (b)
sending a specific ephemeral public key X ′ to B̂. c and X ′ are cleverly computed byM such that session
keys of sessions (Â, B̂,X, Y ) and (B̂,M, Y,X ′) are identical. A detailed description of the UKS attack
can be found in Appendix A. Although the Full MQV protocol tries to overcome the UKS weakness by
including identities in the session key derivation, we find that it still cannot achieve the security defined
by modern AKE models if M is able to learn the unhashed shared Z value: M performs the same
steps above, learns ZB by corrupting the session (B̂,M, Y,X ′), then M can compute the session key of
session (Â, B̂,X, Y ), i.e., corruption of the session (B̂,M, Y,X ′) helpsM to compromise another session
(Â, B̂,X, Y ). In the following of this paper, we use MQV to denote the Full MQV.

Xu et al. introduced two attacks [31] on the SM2 key exchange protocol in which an honest party
Â is coerced to share a session key with the attacker M, but Â thinks that he is sharing the key with
another party B̂. Both attacks requires M to reveal the unhashed shared ZB in B̂. Besides, the first
attack requires M to register with the CA a specific key C = Age where e ∈R Zq, and the second
attack requires M to perform some computations using his private key after obtaining ZB . A detailed
description of the two attacks can be found in Appendix B.

From above attacks we can see that the three AKE protocols cannot achieve the security property
defined by modern AKE security models if the attacker is able to get the unhashed Z values. Unfortu-
nately, this is exactly how the TPM 2.0 two-phase key exchange primitive implements these three AKE
protocols: Z1 of the Full Unified Model, unhashed Z value of the MQV and SM2 key exchange protocols
are returned to the host, whose memory is vulnerable to attacks. So it seems that the TPM 2.0 key
exchange primitive is not secure.

1.2 Motivations and Contributions

Fortunately, protections provided by the TPM improve the security of the TPM key exchange primitive.
We use tpm.KE to denote the TPM key exchange primitive in this paper. First, all long-term keys
are generated by TPM chip randomly, so the attacker cannot use the TPM chip to generate a specific
key such as the cleverly computed key C = gc in Kaliski’s UKS attack or C = Age in Xu’s first
attack. Second, the TPM only provides fixed functionalities through TPM commands [28] in a black-
box manner: when a TPM command is invoked, the TPM chip executes the pre-defined computation
procedure, and returns the computation result. The second feature constrains the attacker from using
the key to perform computations at will. It seems that above two features can prevent Kaliski’s UKS
attack and Xu’s attacks, and Zhao et al. [34] show that protections provided by the TPM indeed help the
SM2 key exchange protocol to resist Xu’s two attacks by an informal analysis. However, Zhao et al. don’t
model the two features above in their formal analysis, but perform their formal analysis by adopting an

1 The TPM 2.0 specification notes that the Full MQV and SM2 key exchange protocols “may be susceptible to
unknown key-share (UKS) attacks” [27].
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easier approach: they modify tpm.KE not to return the unhashed Z value but the session key, thus Z is
not available to the attacker. This leads to our first motivation:

1. How to precisely model protections provided by the TPM, and check whether the protections can help
current tpm.KE to be proven secure?

Although protections provided by the TPM help the MQV and SM2 key exchange protocols to resist
current attacks, the avf() and avf ′() used in the MQV and SM2 key exchange protocols respectively
make that no analysis can prove these two protocols to be secure. Consider such a group G that the
representation of its elements satisfies that the dq/2e least significant bits (LSBs) of the representation
of points’ x-coordinate are fixed. In this case, the attacker can mount the so-called group representation
attacks on MQV and SM2 key exchange protocols, in which the attacker can impersonate Â to B̂ without
knowing the private key of Â. A group representation attack on MQV is described in Appendix C, and
a similar attack on the SM2 key exchange protocol can be found in [34]. To make this type of attacks
more convincing, [34] proposes an approach to construct such an elliptic curve in theory. HMQV, a
variant of MQV proved secure in the CK model, prevents this type of attack by replacing avf() with a
cryptographic hash function. [34] also suggests replacing the avf ′() of the SM2 key exchange protocol
with a cryptographic hash function. However, group representation attacks are not practical as in practice
it’s difficult to find an elliptic curve whose dq/2e LSBs of the representation of points’ x-coordinate are
fixed. On the contrary, the generation of the avf() and avf ′() seems to range in a uniform way over all
possible values. This leads to our second motivation:

2. Can we give a quantitative measure of the amount of randomness (entropy) contained in the practical
output distribution of avf() and avf ′(), and check whether avf() and avf ′() provide enough entropy
to prevent group representation attacks?

The tpm.KE is designed to support three implicitly AKE protocols through a unified interface. How-
ever, current modern AKE security models only consider how to formally analyze one single protocol.
To the best of our knowledge, all AKE protocols proven secure in the literature are analyzed separately.
For example, [34] only analyzes the SM2 key exchange protocol in TPM 2.0, and doesn’t model the other
two protocols. However, this analysis approach is insufficient for tpm.KE. Suppose an honest party Â
tries to establish a secure channel with B̂ through MQV, and the TPM of B̂ has a long-term key of the
type SM2, which is controlled by the attacker. Is the session key of Â still secure if the attacker leverages
the key of the type SM2 to complete the session? In this case, it’s desirable for tpm.KE to protect the
session key of Â. We denote this security property by correspondence property. However, current security
models don’t capture this security property. This leads to our third motivation:

3. Can we build a unified security AKE model, based on which we can give a formal analysis of tpm.KE,
which supports three AKE protocols?

Contributions. We summarize the contributions of this paper as follows:

1. We leverage the min-entropy, a notion from information theory, to give a quantitative measure of
the amount of randomness in the output distribution of avf() and avf ′(). We measure several series
of elliptic curves used in practice, covering all elliptic curves adopted by TPM 2.0 [26]. We also
compare the measurement with a cryptographic hash function, SHA-2. The comparison results show
that avf() and avf ′() provide almost the same level of randomness as cryptographic hash functions.

2. We model the protections provided by the TPM by modeling the interfaces of tpm.KE as oracles,
and present a unified AKE security model for tpm.KE, which captures not only the security property
defined by modern AKE models but also the correspondence property.

3. We give a formal analysis of tpm.KE in our new model, and prove that tpm.KE is secure under
the condition that the unhashed shared secrets are not available to the attacker. This condition
can be achieved by slightly modifying the Full Unified Model functionality of TPM 2.0 or proper
implementation of the host’s software which derives the session key.
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4. The tpm.KE defined by current TPM 2.0 specification opens a window of opportunity to actually
mount impersonate attacks, so we give suggestions on how to avoid such attacks. We also give some
suggestions on how to modify TPM 2.0 specification to achieve a more secure tpm.KE.

1.3 Organization

In the rest of this paper, Section 2 gives some preliminaries. Section 3 introduces the two-phase key
exchange primitive defined by TPM 2.0 specification, gives a quantitative measure of several series of
elliptic curves used in practice, and presents an informal analysis of tpm.KE. Section 4 presents our
unified security model for tpm.KE. Section 5 gives a formal description of tpm.KE. Section 6 proves
the unforgeabilities of the functionalities of MQV and SM2 key exchange provided by tpm.KE, which
can simplify our analysis. Section 7 formally analyzes tpm.KE in our new model. Section 8 discusses
some further security properties, and gives our suggestions on how to implement secure AKE protocols
based on current tpm.KE and how to modify current TPM 2.0 specification to achieve a more secure key
exchange primitive. Section 9 concludes this paper and gives our future work.

2 Preliminaries

This section first introduces the notion of min-entropy and two commonly used methods to calculate
the min-entropy, then introduces CDH (Computational Diffie-Hellman) and GDH (Gap Diffie-Hellman)
assumptions used in this paper.

2.1 Min-entropy

Min-entropy is a notion from information theory, which provides a very strict information-theoretical
lower bound (i.e., worst-case) measure of randomness for a random variable. High min-entropy indicates
that the distribution of the random variable is close to the uniform distribution. Low min-entropy indi-
cates that there must be a small set of outcomes that has an unusually high probability, and the small set
can help the attacker to perform the group representation attack. Take the two extreme cases for exam-
ple: if the min-entropy of a random variable is equal with the length of the outcome, the distribution is
a uniform distribution, and if the min-entropy of a random variable is zero, the outcomes of the random
variable are a fixed value. From the two extreme cases we can see that the higher the min-entropy is,
the harder for the attacker to mount group representation attacks. There are usually two methods to
measure the min-entropy of a random variable:

1. NIST SP 800-90. This method is described in NIST specification 800-90 for binary sources. The
definition for min-entropy of one binary bit is: H = −log2(pmax), where pmax = max{p0, p1}, and
p0, p1 are probabilities of the binary bit outputs zero and one respectively. The min-entropy of an
n-bit binary string is defined by:

Htotal =

n∑
i=1

Hi (1)

2. Context-Tree Weighting compression. Context-Tree Weighting (CTW) [30] is an optimal compression
algorithm for stationary sources and is commonly used for estimate the min-entropy.

2.2 CDH and GDH Assumptions

Definition 1 (CDH Assumption). Let G be a cyclic group of order p with generator g. The CDH
assumption in G states that, given two randomly chosen points X = gx and Y = gy, it is computationally
infeasible to compute Z = gxy.
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Definition 2 (GDH Assumption). Let G be a cyclic group generated by an element g whose order is
p. We say that a decision algorithm O is a Decisional Diffie-Hellman (DDH) Oracle for a group G and
generator g if on input a triple (X,Y, Z), for X,Y ∈ G, oracle O outputs 1 if and only if Z=CDH(X,Y ).
We say that G satisfies the GDH assumption if no feasible algorithm exists to solve the CDH problem,
even when the algorithm is provided with a DDH-oracle for G.

3 The TPM Key Exchange Primitive

This section first presents how tpm.KE is implemented in TPM 2.0 and introduces relevant TPM com-
mands. Then we give an informal analysis of tpm.KE. In our informal analysis, we present our solutions
to prevent impersonation attacks on the Full Unified Model protocol, and a quantitative measure of the
randomness of the output distribution of avf() and avf ′() on a wide range of elliptic curves which have
been widely used in practice.

3.1 Introduction of tpm.KE

tpm.KE consists of two phases. In the first phase, the TPM generates an ephemeral key which is trans-
ferred to the other party. In the second phase, the TPM generates the unhashed secret values according
to the specification of the selected protocol, then the host derives the session key from the unhashed
secret values. Before running the two phases, the Key Generation procedure should be invoked first
to generate the long-term key. As we aim to analyze the whole AKE protocols adopted by TPM 2.0,
tpm.KE introduced below not only includes the key exchange functionality provided by the TPM, but
also the session key derivation procedure performed on the host.

Key Generation The relevant commands are TPM2 Create() and TPM2 CreatePrimary(). They take
as input public parameters including an attribute identifying the key exchange scheme for the long-
term key. The scheme should be one of the following three: TPM ALG ECDH, TPM ALG ECMQV,
and TPM ALG SM2. In this procedure, the TPM performs the following steps: if the command
is TPM2 Create(), it picks a random a ∈R Zq and computes A = ga, and if the command is
TPM2 CreatePrimary(), it derives a from a primary seed using a key derivation function and computes
A = ga; finally it returns A, and a key handle identifying a.2

First Phase The relevant command is TPM2 EC Ephemeral(). This command is used to generate an
ephemeral key. The TPM performs the following steps:

1. Generate x = KDFa(Random,Count), where KDFa() is a key derivation function described in
[9], Random is a secure random value stored inside the TPM, and Count is a counter.

2. Set ctr = Count, A[ctr] = 1, Count = Count+ 1, where A[] is an array of bits used to indicate
whether the ephemeral key has been used.

3. Set x = x mod q, and generate X = gx.

4. Return X and ctr.

Note that the TPM doesn’t need to store the ephemeral private key x as it can be recovered using
KDFa() and ctr.

2 Actually TPM2 Create() returns a key blob encrypted by a storage key, and the TPM2 Load() command loads
the key blob and returns the key handle. For simplicity, we let TPM2 Create() directly return the key handle.
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Second Phase The relevant command is TPM2 ZGen 2Phase(), which is the main command of tpm.KE.
This command takes the following items as input:

scheme a scheme selector indicating to the TPM which of the supported schemes is to be
used

keyA the key handle identifying the long-term private key a generated in the Key Gener-
ation procedure

ctr the counter used to identify the ephemeral key generated in the first phase

B the public key of B̂, with which Â wants to establish a session

Y the ephemeral public key received from B̂

1. The TPM first does the following checks:
(a) Whether scheme equals the scheme designated for key A in the key generation procedure.
(b) Whether B and Y are on the curve associated with A.
(c) Whether A[ctr] = 1.

2. If the above checks succeed, the TPM recovers x = KDFa(Random, ctr), and performs the fol-
lowing steps:
(a) Compute unhashed values according to the value of scheme:

Case TPM ALG ECDH:
set Z1 = Ba, Z2 = Y x;

Case TPM ALG ECMQV:
set Z1 = (Y Be)h(x+da), Z2=NULL, where d = avf(X) and e = avf(Y );

Case TPM ALG SM2:
set Z1 = (BY e)h(a+dx), Z2=NULL, where d = avf ′(X) and e = avf ′(Y );

(b) Set A[ctr] = 0.
(c) Return Z1 and Z2.

3. Finally, the host computes the session key after obtaining Z1 and Z2.
Note that when TPM2 ZGen 2Phase() completes successfully, the TPM clears A[ctr], which ensures
that the ephemeral private key x can only be used once.

3.2 Informal Analysis

We have shown that two weaknesses in the design of tpm.KE prevent it from achieving security property
defined by modern AKE security models. One weakness is that tpm.KE returns Z1 of the Full Unified
Model protocol to the host whose memory is vulnerable to attacks, which makes Z1 be available to the
attacker. If the attacker obtains Z1, the Full Unified Model protocol would be completely insecure as we
have shown in Section 1.2. The other one is the weakness caused by the avf() and avf ′(), which results
in group representation attacks on the MQV and SM2 key exchange protocols. Although this type of
attacks is not feasible, it makes the two protocols cannot be proven secure.

We give two solutions to overcome the first weakness:

1. Perform the entire session key computation of Full Unified Model in the secure environment of the
TPM, i.e., modify the TPM2 ZGen 2Phase() command not to return Z1 and Z2 but the session key,
i.e., K = H1(Z1, Z2, Â, B̂,X, Y ).

2. Protect Z1 and Z2 from malicious code running on the host as much as possible such as keeping
them only available in kernel mode, and delete Z1 and Z2 as soon as the session key is derived.

The first solution requires modifying the current TPM 2.0 specification, and the second one requires
that the software code of session key derivation running on the host must be implemented properly and
should be included in the Trusted Computing Base (TCB). The two solutions have the same purpose:
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protecting Z1 from the attacker, which helps us exclude Z1 of Full Unified Model from the session state
which the attacker can obtain in our formal analysis in Section 7.

As it seems that the second weakness only happens in theory, we perform a quantitative measure of
the min-entropy contained in the output distribution of avf() and avf ′() to check whether this weakness
can happen in practice. We measure several series of widely deployed elliptic curves: the NIST series
[12], the BN series [2], the SECG series [24], and an SM2 elliptic curve [1]. Our measure totals 17 elliptic
curves and covers all elliptic curves adopted by TPM 2.0 [26]. We generate 16384 points for each elliptic
curve, apply avf ′() to points of SM2 P256 curve, and apply avf() to points of the rest curves3. We also
apply the cryptographic hash function SHA-2 to the generated points of all curves. Then we measure the
min-entropy of the output distributions of avf() (avf ′()) and SHA-2. The min-entropy results calculated
using method of NIST SP 800-90 (formula 1) and CTW compression are summarized in Table 1. Table
1 also compares the min-entropy of the two output distributions. Figure 2 shows the development of the
min-entropy value calculated using NIST’s method over the number of measurements. To our surprise, the
min-entropy of the output distribution of avf() and avf ′() is very close to the min-entropy of the output
distribution of SHA-2: the former is only about 1 bit less than the latter. What’s more, the measure
results indicate that the output distribution of avf() and avf ′() is close to the uniform distribution.
Take the measurement of BN P256 for example, the min-entropy calculated by the NIST’s method is
126.93, very close to the output length of avf() which is 129=d256/2e+1, and the CTW ratio is 98.08%
which is close to 1. Our practical measure indicates that the outputs of avf() (avf ′()) on different elliptic
curve points are almost independent, and it is impractical for an attacker to mount group representation
attacks on protocols based on practical elliptic curves. So in our formal analysis we model avf() and
avf ′() as random oracles.

NIST 800-89 CTW Ratio
Elliptic Curves avf() SHA-2 avf() SHA-2

NIST Series

P192 95.19 95.94 97.13% 97.92%
P224 111.01 111.99 97.68% 98.33%
P256 126.86 127.89 98.08% 98.65%
P384 190.19 191.30 98.95% 99.31%
P521 258.73 259.80 100.01% 100.11%

BN Series

P192 95.09 96.15 97.13% 97.91%
P224 111.03 111.95 97.67% 98.34%
P256 126.93 127.95 98.08% 98.67%
P384 190.23 191.19 98.95% 99.32%
P512 253.62 254.80 99.35% 99.60%
P638 314.97 316.13 100.04% 100.23%

SECG Series

P192 95.17 95.99 97.13% 97.92%
P224 110.98 111.98 97.68% 98.34%
P256 126.63 127.90 98.07% 98.65%
P384 190.39 191.28 98.95% 99.31%
P521 258.64 259.62 100.08% 100.11%

SM2 P256 125.81 126.89 100.14% 100.17%
Table 1. Min-entropy results

4 A Unified Security Model

This section presents our unified security model for tpm.KE, and describes the attacker model which
models the capabilities of the attacker by some queries.

3 avf ′() is defined only for SM2 key exchange, and avf() is for MQV.



A Unified Security Analysis of KE in TPM 2.0 9

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0
5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Mi
n-e

ntr
op

y (
bit

s)

N u m b e r  o f  M e a s u r m e n t s  ( N I S T )
0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

P 6 3 8

Mi
n-e

ntr
op

y (
bit

s)

N u m b e r  o f  M e a s u r m e n t s  ( B N )

P 1 9 2
P 2 2 4
P 2 5 6

P 3 8 4

P 5 1 2

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0
5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

 h a s h
 a v f

P 2 5 6

Mi
n-e

ntr
op

y (
bit

s)

N u m b e r  o f  M e a s u r m e n t s  ( S E C G )

P 1 9 2
P 2 2 4
P 2 5 6

P 3 8 4

P 5 2 1

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0
5 0

1 0 0

1 5 0

Mi
n-e

ntr
op

y (
bit

s)

N u m b e r  o f  M e a s u r m e n t s  ( S M 2 )

P 1 9 2
P 2 2 4
P 2 5 6

P 3 8 4

P 5 2 1

Fig. 2. Min-entropy evaluation

In our security model, each party has a long-term key generated by the TPM and a certificate (issued
by a Certificate Authority (CA)) that binds the public key to the identity of that party. The long-term
key can be one of the following three types: TPM ALG ECDH, TPM ALG ECMQV, and TPM ALG SM2.
A party can be activated to invoke the interfaces of tpm.KE to run an instance of the protocol supported
by the long-term key, and an instance of a protocol is called a session. In each session, a party can be
activated as the role of initiator to send the first ephemeral public key or responder to send the second
ephemeral public key by invoking the interface of the first phase of tpm.KE, and a party can complete
the session by invoking the interface of the second phase of tpm.KE and computing the session key.

In previous AKE security models, a session is identified by a quadruple (Â, B̂,X, Y ) where Â is
the identity of the owner of the session, B̂ the peer party, X the outgoing ephemeral public key from
Â, and Y the incoming ephemeral public key from B̂. This kind of session identifier cannot identify
a session established by tpm.KE as tpm.KE supports more than one scheme (protocol). So we use a
quintuple (sc, Â, B̂,X, Y ) to identify a session where sc denotes the scheme of the session. The ses-
sion (sc, B̂, Â, Y,X) (if it exists) is said to be matching to session (sc, Â, B̂,X, Y ), and the session
(sc′, B̂, Â, Y,X) where sc′ 6= sc (if it exists) is said to be message-matching to session (sc, Â, B̂,X, Y ).

The introduction of sc to the session identifier brings an issue we must address: how about the security
of the session (sc, Â, B̂,X, Y ) if it has a corrupted message-matching session? Previous AKE security
models don’t capture this attack as they don’t support formal analysis of multiple kinds of protocol
in a unified way. However, this attack can happen on tpm.KE as it supports three AKE schemes and
the TPM specification doesn’t force the TPM to check the key type of its peer party. We say tpm.KE
satisfies correspondence property if it can resist above attack, i.e., the session (sc, Â, B̂,X, Y ) is secure if
its message-matching session is compromised.
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4.1 Attacker Model

The experiment involves multiple honest parties and an attacker M connected via an unauthenticated
network. The attacker is modeled as a probabilistic Turing machine and has full control of the communi-
cations between parties.M can intercept and modify messages sent over the network.M also schedules
all session activations and session-message delivery. In addition, in order to model potential disclosure of
secret information, the attacker is allowed to access secret information via the following queries:

– SessionStateReveal(s):M queries directly at session s while still incomplete and learns the session
state for s. In our analysis, the session state includes the values returned by interfaces of tpm.KE and
intermediate information stored and computed in the host.

– SessionKeyReveal(s): M obtains the session key for the session s.
– Corruption(P̂ ): In other AKE security models, this query allows M to learn the plaintext of the

long-term private key of party P̂ . In our model,M doesn’t learn anything about the plaintext of the
private key but obtains the black-box access of the long-term key via TPM interfaces.

– Test(s): This query may be asked only once throughout the game. Pick b
R←− 0, 1. If b = 1, provide

M the session key; otherwise provide M with a value r randomly chosen from the probability
distribution of session keys. This query can only be issued to a session that is “clean”. A completed
session is “clean” if this session as well as its matching session (if it exists) is not subject to above
three queries. A session is called exposed ifM performs any one of above three queries to this session.

Note that our model differs from previous AKE security models in that the Corruption query to
some party doesn’t provide the attacker with the plaintext of the long-term private key of the party, but
the black-box access of the long-term key which is randomly generated and protected by the TPM. This
difference models the two protection features (see description in Section 1.2) provided by the TPM for
tpm.KE.

The security is defined based on a game played byM, in whichM is allowed to activate sessions and
perform SessionStateReveal, SessionKeyReveal, and Corruption queries. At some time,M performs the
Test query to a clean session of its choice and gets the value returned by Test. After that, M continues
the experiment, but is not allowed to expose the test session and its matching session (if it exists).
Eventually M outputs a bit b′ as its guess, then halts. M wins the game if b′ = b. The attacker with
above capabilities is called a KE-attacker. The formal security is defined as follows.

Definition 3. tpm.KE is called secure if the following properties hold for any KE-attacker M defined
above:

1. When two uncorrupted parties complete matching sessions, they output the same session key, and
2. The probability that M guesses the bit b (i.e., outputs b′ = b) from the Test query correctly is no

more than 1/2 plus a negligible fraction.

The first condition is a “consistency” requirement for sessions completed by two uncorrupted parties.
The second condition is the core property for the security of tpm.KE: it guarantees that exposure of one
session doesn’t help the attacker to compromise the security of another session. Note that our security
definition of tpm.KE allows the attacker to expose the message-matching session, that is to say, the test
session is still secure even if the message-matching session is exposed by the attacker. Thus our model
captures the correspondence property.

5 Formal Description of TPM.KE

This section formally describes tpm.KE from the view of how two-phase key exchange protocols can be
implemented leveraging the TPM.
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We use ephemA() to model the interface of the first phase of tpm.KE where A is the long-term key
of Â: once invoked, ephemA() generates an ephemeral private/public key pair (r,R = gr), and returns
an index ctr identifying the private key r in the TPM. We model as oracles the black-box manner of the
key exchange functionalities provided by the second phase of tpm.KE. The Full Unified Model, MQV,
and SM2 key exchange functionalities provided by the second phase of tpm.KE are modeled as oracle
OEC

A , oracle OMQV
A , and oracle OSM2

A respectively. OEC
A takes as input the input of TPM2 ZGen 2Phase(),

and returns the session key generated according to the specification of Full Unified Model. Note that
we model our solutions to the first weakness of tpm.KE by letting OEC

A directly return the session key
but not Z1 and Z2. OMQV

A and OSM2
A take as input the input of TPM2 ZGen 2Phase(), and return the

unhashed value according to specifications of the MQV and SM2 key exchange protocols respectively.
We now formally describe tpm.KE by giving the following three session activations.

1. Initiate(sc, Â, B̂): Â invokes ephemA() of its TPM to obtain an ephemeral public key X and an index
ctrx identifying the ephemeral private key x stored in the TPM, creates a local session which it
identifies as (the incomplete) session (sc, Â, B̂,X) where sc is the key exchange scheme supported
by the long-term key A, and outputs X as its outgoing ephemeral public key.

2. Respond(sc, B̂, Â,X) (sc is the scheme supported by B): After receiving X, B̂ performs the following
steps:
(a) Invoke ephemB() of its TPM to obtain an ephemeral public key Y and an index ctry identifying

the ephemeral private key y stored in the TPM.
(b) With input (sc, keyB, ctry, A,X) where keyB is the key handle of B, invoke corresponding oracle

according to the value of sc:
Case TPM ALG ECDH: Invoke OEC

B , set the session key K to be the return result of OEC
B .

Case TPM ALG ECMQV: Invoke OMQV
B , obtain ZB from the return result, and compute the

session key K = H2(ZB , Â, B̂).
Case TPM ALG SM2: Invoke OSM2

B , obtain ZB from the return result, and compute the session

key K = H2(ZB , Â, B̂).
(c) Complete the session with identifier (sc, B̂, Â, Y,X).

3. Complete(sc, Â, B̂,X, Y ): Â checks that it has an open session with identifier (sc, Â, B̂,X), then
performs the following steps:
(a) With input (sc, keyA, ctrx, B, Y ) where keyA is the key handle of A, invoke corresponding oracle

according to the value of sc:
Case TPM ALG ECDH: Invoke OEC

A , set the session key K to be the return result of OEC
A .

Case TPM ALG ECMQV: Invoke OMQV
A , obtain ZA from the return result, and compute the

session key K = H2(ZA, Â, B̂).
Case TPM ALG SM2: Invoke OSM2

A , obtain ZA from the return result, and compute the session

key K = H2(ZA, Â, B̂).
(b) Complete the session with identifier (sc, Â, B̂,X, Y ).

6 Unforgeability of MQV and SM2 Key Exchange Functionalities

In this section, we first give formal definitions of MQV and SM2 Key Exchange functionalities provided by
tpm.KE, and formally prove their unforgeabilities with a constraint on the attacker. The unforgeabilities
can simplify our formal analysis of tpm.KE.

Definition 4 (MQV Functionality of tpm.KE). The functionality, denoted by OMQV
B , is provided by

a party possessing a private/public key pair (b, B = gb). A challenger, possessing a private/public key
pair (a,A = ga), provides OMQV

B with a challenge X = gx (x is chosen and kept secret by the challenger).

With the pair (A,X), OMQV
B first computes an ephemeral private/public key pair (y, Y = gy), and returns

Z = (XAd)y+eb where d = avf(X) and e = avf(Y ). The challenger can verify the return result (Y, Z)
with respect to challenge X by checking whether Z = (Y Be)x+da.
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Definition 5 (SM2 Key Exchange Functionality of tpm.KE). The functionality, denoted by OSM2
B ,

is provided by a party possessing a private/public key pair (b, B = gb). A challenger, possessing a pri-
vate/public key pair (a,A = ga), provides OSM2

B with a challenge X = gx (x is chosen and kept secret
by the challenger). With the pair (A,X), OSM2

B first computes an ephemeral private/public key pair
(y, Y = gy), and returns Z = (AXd)b+ey where d = avf ′(X) and e = avf ′(Y ). The challenger can verify
the return result (Y,Z) with respect to challenge X by checking whether Z = (BY e)a+dx.

Theorem 1. Under the CDH assumption, with avf() modeled as a random oracle, given a challenge X,
it is computationally infeasible for an attacker to forge a return result of OMQV

B on behalf of a challenger
whose public key is A under the constraint that (a, x) is unknown to the attacker.

It’s straight to see that if (a, x) is known to an attacker, it’s feasible for him to forge a return result
of OMQV

B by computing (Y Be)x+da where Y is randomly generated by himself. That’s why we add the
constraint that (a, x) is unknown to the attacker. We prove Theorem 1 by showing that if an attacker
M can forge a return result under our constraint, then we can construct a CDH solver C which uses M
as a subroutine.

Proof. C takes as input a pair (X,B) ∈ G2 and (a,A = ga), and simulates OMQV
B as follows:

1. On receipt input (A′, X ′), choose e, s ∈ Zq randomly.
2. Let Y ′ = gs/Be, and set avf(Y ′) = e.
3. Choose d randomly, and set avf(X ′) = d.
4. Return (Y,Z ′ = (X ′Ad)s).

If M successfully forges a return result (Y,Z) on the pair (A,X) in an experiment, then C obtains
Z = (XAd)y+eb where d = avf(X) and e = avf(Y ). Note that without the knowledge of private key y
of Y , C is unable to compute CDH(X,B). Following the Forking Lemma [23] approach, C runsM on the
same input and the same coin flips but with carefully modified answers to avf() queries. Note that M
must have queried avf(Y ) in its first run, because otherwiseM would be unable to compute Z. For the
second run ofM, C responds to avf(Y ) with a value e′ 6= e selected uniformly at random. IfM succeeds

in the second run, C obtains Z ′ = (XAd)y+e′b, and therefore can compute CDH(X,B) = ( Z
Z′ )

1
e−e′B−da.

ut

Theorem 2. Under the CDH assumption, with avf ′() modeled as a random oracle, given a challenge X,
it is computationally infeasible for an attacker to forge a return result of OSM2

B on behalf of a challenger
whose public key is A under the constraint that (a, x) is unknown to the attacker.

We omit the proof of theorem 2 as it can be easily completed following the proof of theorem 1.

7 Security Analysis of tpm.KE

In this section, we analyze the security of tpm.KE in the security model defined in Section 4. We first
define the session state allowed to be revealed by the attacker.

Session State. In order to simulate the protections provided by the TPM, we specify that a session
state stores the results returned by the TPM and the information stored in the host. For the Full Unified
Model scheme, the session state is the session key; for the MQV and SM2 key exchange schemes, the
session state is the unhashed value returned by the TPM.

Theorem 3. Under the CDH and GDH assumptions, with hash functions H1() and H2(), avf(), and
avf ′() modeled as random oracles, tpm.KE is secure in our unified model.
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The proof of above theorem follows from the definition of secure key exchange protocols outlined in
Section 4 and the following two lemmas.

Lemma 1. If two parties Â and B̂ complete matching sessions, then their session keys are the same.

Lemma 2. Under the CDH and GDH assumptions, there is no feasible attacker that succeeds in distin-
guishing the session key of an unexposed session with non-negligible probability.

Lemma 1 follows immediately from the definition of matching sessions. That is, if Â completes session
(sc, Â, B̂,X, Y ) and B̂ completes the matching session (sc, B̂, Â, Y,X), then it’s easy to verify that the
session key computed by Â is the same as the session key computed by B̂ according to specifications of
the protocols described in Figure 1.

The rest of this section proves Lemma 2. LetM be any attacker against tpm.KE. We observe that the
session key of the test session is computed as: (1) K = H1(σ) for some 4-tuple σ if the TPM ALG ECDH
scheme is selected; (2) K = H2(σ) for some 3-tuple σ if the TPM ALG ECMQV or the TPM ALG SM2
scheme is selected. The attacker M has only two ways to distinguish K from a random value:

1. Forging attack. At some point M queries H1() or H2() on the same tuple σ as the test session.
2. Key-replication attack.M succeeds in forcing the establishment of another session that has the same

session key as the test session.

We will show that if either of the attacks succeeds with non-negligible probability then there exists
an attacker against the GDH problem, or a forger against the MQV Functionality of tpm.KE, or a forger
against the SM2 key exchange Functionality of tpm.KE. The latter two forgers are in contradiction to
the CDH assumption (theorem 1 and theorem 2).

7.1 Infeasibility of Forging Attacks

Consider a successful attack performed by M. Let (sc, Â, B̂,X0, Y0) be the test session for which M
outputs a correct guess for the tuple of the test session. By the convention on session identifiers, we know
that the test session is held by Â, and its peer is B̂, X0 was output by Â, and Y0 was the incoming
message to Â. sc can fall under one of the following three cases:

1. sc = TPM ALG ECDH.
2. sc = TPM ALG ECMQV.
3. sc = TPM ALG SM2.

As we assume that M succeeds with non-negligible probability in the forging attack then there is
at least one of the above three cases that occurs with non-negligible probability. We assume that M
operates in an environment that involves at most n parties and each party participates in at most k
sessions. We proceed to analyze these cases separately.

7.1.1 Analysis of Case 1

For this case, we build a GDH solver S1 with the following property: if M succeeds with non-negligible
probability in this case, then S1 succeeds with non-negligible probability in solving the GDH problem.
S1 takes as input a pair (A,B), creates an experiment which includes n honest parties and the attacker
M, and is given access to a DDH oracle DDH. S1 randomly selects two party Â and B̂ from the honest
parties and sets their public keys to be A and B respectively. All the other parties compute their keys
normally. Furthermore, S1 randomly selects an integer i ∈ [1, ..., k]. The simulation forM’s environment
proceeds as follows:
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0. S1 models ephemP () for all parties except party B̂ following the description in Section 5. M sets
the type of all long-term keys. If the type of A is not TPM ALG ECDH, S1 aborts. S1 creates oracles
modeling the two-phase key exchange functionalities for each party normally except the oracles for
parties Â and B̂ as it possesses the long-term private key of all parties except Â and B̂. H1(), H2(),
avf() and avf ′() are modeled as random oracles described below.

1. Initiate(sc, P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. However, if the session being
created is the i-th session at Â, S1 checks whether sc = TPM ALG ECDH and P̂2 is B̂. If not, S1
aborts.

2. Respond(sc, P̂1, P̂2, Y ): With the exception of Â and B̂ (whose behaviors we explain below), P̂1

executes the Respond() activation of the protocol. However, if the session being created is the i-th
session at Â, S1 checks whether sc = TPM ALG ECDH and P̂2 is B̂. If not, S1 aborts.

3. Complete(sc, P̂1, P̂2, X, Y ): With the exception of Â and B̂ (whose behaviors we explain below), P̂1

executes the Complete() activation of the protocol. However, if the session is the i-th session at Â,
S1 completes the session without computing a session key.

4. With the input (sc, keyA, ctrx, P, Y ), S1 creates the oracle OEC
A as follows:

(a) If P̂ = B̂, OEC
A returns a session key to be Hspec(Â, B̂,X, Y ). Hspec() is simulated as a random

oracle.
(b) If P̂ 6= B̂, returns a session key to be H1(Z1, Z2, Â, B̂,X, Y ) where Z1 = Ap (p is the long-term

private key of party P̂ ) and Z2 = Y x (x is the ephemeral private key indexed by ctrx).
5. Now S1 can simulate all the session activations at Â for M with the help of OEC

A .
6. S1 creates a Table T and models ephemB() according to the type of B:

(a) Case TPM ALG ECDH: Model following the description in Section 5.
(b) Case TPM ALG ECMQV:

i. Choose e, s ∈ Zq randomly.
ii. Set Y = gs/Be and e = avf(Y ).

iii. Randomly choose an index ctr, and add a record (ctr, e, s, Y,−) to T .
iv. Return ctr and Y .

(c) Case TPM ALG SM2:
i. Choose e, s ∈ Zq randomly.

ii. Set Y = (gs/B)e
−1

and e = avf ′(Y ).
iii. Randomly choose an index ctr, and add a record (ctr, e, s, Y,−) to T .
iv. Return ctr and Y .

7. With the input (sc, keyB, ctry, P,X), S1 creates the oracle modeling the two-phase key exchange

functionality for party B̂ according to the type of B:
(a) Case TPM ALG ECDH: OEC

B is modeled similarly to OEC
A which is described in step 4.

(b) Case TPM ALG ECMQV:
i. Check whether (1) sc = TPM ALG ECMQV, and (2) P and X are on the curve associated

with B, and (3) the last element of the record in T indexed by ctry is ‘-’. If above checks
succeed, continue, else return error.

ii. Suppose the record in T indexed by ctry is (ctr, e, s, Y,−), set Z1 = (XP d)s where d =
avf(X).

iii. Return (Z1, Z2=NULL).
(c) Case TPM ALG SM2:

i. Check whether (1) sc = TPM ALG SM2, and (2) P and X are on the curve associated with
B, and (3) the last element of the record in T indexed by ctry is ‘-’. If above checks pass,
continue, else return error.

ii. Suppose the record in T indexed by ctry is (ctr, e, s, Y,−), set Z1 = (PXd)s where d =
avf ′(X).

iii. Return (Z1, Z2=NULL).
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8. S1 simulates all the session activations at B̂ forM with the help of ephemB() and the oracle created
in step 7.

9. SessionStateReveal(s): S1 returns toM the session state of session s. However, if s is the i-th session
at Â, S1 aborts.

10. SessionKeyReveal(s): S1 returns to M the session key of s. If s is the i-th session at Â, S1 aborts.
11. Corruption(P̂ ): S1 gives M the handle of the long-term key P . If M tries to corrupt Â or B̂, S1

aborts.
12. H1(σ) function for some σ = (Z1, Z2, P̂1, P̂2, X, Y ) proceeds as follows:

(a) If P̂1 = Â, P̂2 = B̂, and DDH(A,B,Z1) = 1, then S1 aborts M and is successful by outputting
CDH(A,B)=Z1.

(b) If the value of the function on input σ has been previously defined, return it.
(c) If the value of Hspec() on input (P̂1, P̂2, X, Y ) has been previously defined, return it.
(d) Pick a key k randomly from the key distribution, and define H1(σ) = k

13. Hspec(), H2(), avf(), and avf ′() are simulated as random oracles in the usual way.

Proof. The probability thatM sets the type of A to be TPM ALG ECDH, and selects the i-th session of
Â and the peer of the test session is party B̂ is at least 1

3n2k . Suppose that this indeed the case: the type

of A is TPM ALG ECDH, so S1 doesn’t abort in Step 0; M is not allowed to corrupt Â and B̂, make
SessionStateReveal and SessionKeyReveal queries to the i-th session of Â, so S1 doesn’t abort in Step 1,
2, 9, 10, 11. So S1 simulates M’s environment perfectly except with negligible probability. Thus, if M
wins with non-negligible probability in this case, the success probability of S1 is bounded by:

Pr(S1) ≥ 1
3n2kPr(M).

ut

7.1.2 Analysis of Case 2

Recall that the test session is denoted by (sc, Â, B̂,X0, Y0). We divide case 2 of the forging attack into
the following four subcases according to the generation of Y0:

C1. Y0 was generated by B̂ in a session matching the test session, i.e., in session (sc, B̂, Â, Y0, X0).
C2. Y0 was generated by B̂ in a session message-matching the test session, i.e., in session (sc′, B̂, Â, Y0, X0)

with sc′ 6= sc.
C3. Y0 was generated by B̂ in a session (sc′, B̂, Â∗, Y0, X

∗) with (Â∗, X∗) 6= (Â,X0).
C4. Y0 didn’t appear in any completed sessions activated at B̂, i.e., Y0 was never output by B̂ as its

outgoing ephemeral public key in any sessions or B̂ did output Y0 as its outgoing ephemeral public
key for some session s but it never completed s by computing the session key.

IfM succeeds in Case 2 in its forging attack with non-negligible probability then there is at least one
of the above 4 subcases happens with non-negligible probability in the successful runs ofM. We proceed
to analyze these subcases separately.
Analysis of Subcase C1. For this subcase, we build a GDH solver S2 with the following property: ifM
succeeds with non-negligible probability in this subcase, then S2 succeeds with non-negligible probability
in solving the GDH problem. S2 takes as input a pair (X0, Y0), creates an experiment which includes n
honest parties and the attackerM, and is given access to a DDH oracle DDH. All parties compute their
keys normally. S2 randomly selects two party Â and B̂, and randomly selects two integers i, j ∈ [1, ..., k].
The simulation for M’s environment proceeds as follows:

0. S2 models ephemP () for all parties following the description in Section 5. M sets the type of all
long-term keys. If the type of A and B is not TPM ALG ECMQV, S2 aborts. S2 can create oracles
modeling the two-phase key exchange functionalities for each party normally as it possesses the
long-term private key of all parties.
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1. Initiate(sc, P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. However, if the session being
created is the i-th session at Â (or the j-th session at B̂), S2 checks whether sc = TPM ALG ECMQV
and P̂2 is B̂ (or P̂2 is Â). If so, S2 sets the ephemeral public key to be X0 (or Y0), else S2 aborts.

2. Respond(sc, P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol. However, if the ses-
sion being created is the i-th session at Â (or the j-th session at B̂), S2 checks whether sc =
TPM ALG ECMQV, P̂2 is B̂ (or P̂2 is Â), and Y = Y0 (or Y = X0). If so, S2 sets the ephemeral
public key to be X0 (or Y0), else S2 aborts.

3. Complete(sc, P̂1, P̂2, X, Y ): P̂1 executes the Complete() activation of the protocol. However, if the
session is the i-th session at Â (or the j-th session at B̂), S2 completes the session without computing
a session key.

4. SessionStateReveal(s): S2 returns toM the session state of session s. However, if s is the i-th session
at Â (or the j-th session at B̂), S2 aborts.

5. SessionKeyReveal(s): S2 returns to M the session key of s. If s is the i-th session at Â (or the j-th
session at B̂), S2 aborts.

6. Corruption(P̂ ): S2 gives M the handle of the long-term key P . If M tries to corrupt Â or B̂, S2
aborts.

7. H2(σ) function for some σ = (Z, P̂1, P̂2) proceeds as follows:
(a) If P̂1 = Â, P̂2 = B̂, and DDH(X0A

d, Y0B
e, Z) = 1 where d = avf(X0) and e = avf(Y0), then

S2 aborts M and is successful by outputting CDH(X0, Y0)= Z
Xeb

0 Y da
0 gdeab .

(b) If the value of the function on input σ has been previously defined, return it.
(c) Pick a key k randomly from the key distribution, and define H2(σ) = k

8. H1(), avf(), and avf ′() are simulated as random oracles in the usual way.

Proof. The probability that M sets the type of A and B to be TPM ALG ECMQV, and selects the
i-th session of Â and the j-th session of B̂ as the test session and its matching session is at least
1
3 ×

1
3 ×

2
(nk)2 = 2

9(nk)2 . Suppose that this is indeed the case: the type of A and B is TPM ALG ECMQV,

so S2 doesn’t abort in Step 0; M is not allowed to corrupt Â and B̂, make SessionStateReveal and
SessionKeyReveal queries to the i-th session of Â or the j-th session of B̂, so S2 doesn’t abort in Step
1, 2, 4, 5, 6. So S2 simulates M’s environment perfectly except with negligible probability. Thus, if M
wins with non-negligible probability in this case, the success probability of S2 is bounded by:

Pr(S2) ≥ 2
9(nk)2Pr(M).

ut

Analysis of Subcase C2. For this subcase, we show thatM can break the unforgeability of the MQV
functionality proved in theorem 1 if it succeeds with non-negligible probability. We build a simulator
S3 which simulates M’s environment. S3 takes as input a challenge X0, creates an experiment which
includes n honest parties and the attacker M. All parties compute their keys normally. S3 randomly
selects two party Â and B̂, and randomly selects two integers i, j ∈ [1, ..., k]. The simulation for M’s
environment proceeds as follows:

0. S3 models ephemP () for all parties following the description in Section 5. M sets the type for all
long-term keys. If the type of A is not TPM ALG ECMQV and the type of B is TPM ALG ECMQV,
S3 aborts. S3 can create oracles modeling the two-phase key exchange functionalities for each party
normally as it possesses the long-term private key of all parties.

1. Initiate(sc, P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. However, if the session being
created is the i-th session at Â, S3 checks whether sc = TPM ALG ECMQV and P̂2 is B̂. If so, S3
sets the ephemeral public key to be X0, else S3 aborts. If the session being created is the j-th session
at B̂, S3 checks whether sc 6= TPM ALG ECMQV and P̂2 is Â. If so, S3 calls ephemB() to create an
ephemeral key, denoted by Y0, and sets the outgoing ephemeral key of this session to be Y0, else S3
aborts.
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2. Respond(sc, P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol. However, if the session
being created is the i-th session at Â, S3 checks whether sc = TPM ALG ECMQV, P̂2 is B̂, and
Y = Y0. If so, S3 provides M with the value X0, else S3 aborts. If the session being created is the
j-th session at B̂, S3 checks whether sc 6= TPM ALG ECMQV, P̂2 is Â, and Y = X0. If so, S3 calls
ephemB() to create an ephemeral key, denoted by Y0, and sets the outgoing ephemeral key of this
session to be Y0, else S3 aborts.

3. Complete(sc, P̂1, P̂2, X, Y ): P̂1 executes the Complete() activation of the protocol. However, if the
session is the i-th session at Â, S3 completes the session without computing a session key.

4. SessionStateReveal(s): S3 returns toM the session state of session s. However, if s is the i-th session
at Â, S3 aborts.

5. SessionKeyReveal(s): S3 returns to M the session key of s. If s is the i-th session at Â, S3 aborts.
6. Corruption(P̂ ): S3 gives M the handle of the long-term key P . If M tries to corrupt Â or B̂, S3

aborts.
7. H1(), H2(), avf(), and avf ′() are simulated as random oracles in the usual way.

Proof. The probability thatM sets the type of A to be TPM ALG ECMQV, and the type of B not to be
TPM ALG ECMQV, and selects the i-th session of Â and the j-th session of B̂ as the test session and its
message-matching session is at least 1

3 ×
2
3 ×

1
(nk)2 = 2

9(nk)2 . Suppose that this is indeed the case: the type

of A is TPM ALG ECMQV and the type of B is not TPM ALG ECMQV, so S3 doesn’t abort in Step 0;M
is not allowed to corrupt Â and B̂, make SessionStateReveal and SessionKeyReveal queries to the i-th
session of Â, so S3 doesn’t abort in Step 1, 2, 4, 5, 6. So S2 simulatesM’s environment perfectly except
with negligible probability. By the assumption, M correctly guesses the tuple (Z = (Y0B

e)x0+da, Â, B̂)
of the test session where d = avf(X0) and e = avf(Y0). We now show that (Y0, Z) is a valid forgery
against OMQV

B on input (X0, A) where X0 is the challenge:

1. (Y0, Z) is a valid return result of OMQV
B as Z = (Y0B

e)x0+da = (X0A
d)y0+eb.

2. OMQV
B never returns the result (Y0, Z) on input (X0, A) under S3: OMQV

B has never been created by
S3 as the type of B is not TPM ALG ECMQV in this subcase.

3. SinceM is not allowed to corrupt Â and B̂,M doesn’t know a and b. SoM doesn’t know the private
key pair (a, x0). Thus, M is under the constraint described in theorem 1.

Finally we get: Pr(M succeeds in forging OMQV
B under S3) ≥ 2

9(nk)2Pr(M). ut

Analysis of Subcases C3 and C4. For the two subcases, we show thatM can break the unforgeability
of the MQV functionality proved in theorem 1 if it succeeds with non-negligible probability. We build a
simulator S4 which simulatesM’s environment. S4 takes as input a challenge X0, creates an experiment
which includes n honest parties and the attackerM. All parties compute their keys normally. S4 randomly
selects two party Â and B̂, and randomly selects one integer i ∈ [1, ..., k]. The simulation for M’s
environment proceeds as follows:

0. S4 models ephemP () for all parties following the description in Section 5. M sets the type for all
long-term keys. If the type of A is not TPM ALG ECMQV, S3 aborts. S4 can create oracles modeling
the two-phase key exchange functionalities for each party normally as it possesses the long-term
private key of all the parties.

1. Initiate(sc, P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. However, if the session being
created is the i-th session at Â, S4 checks whether sc = TPM ALG ECMQV and P̂2 is B̂. If so, S4
sets the ephemeral public key to be X0, else S4 aborts.

2. Respond(sc, P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol. However, if the session
being created is the i-th session at Â, S4 checks whether sc = TPM ALG ECMQV and P̂2 is B̂. If so,
S4 provides M with the value X0, else S4 aborts.
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3. Complete(sc, P̂1, P̂2, X, Y ): P̂1 executes the Complete() activation of the protocol. However, if the
session is the i-th session at Â, S4 completes the session without computing a session key.

4. SessionStateReveal(s): S4 returns toM the session state of session s. However, if s is the i-th session
at Â, S4 aborts.

5. SessionKeyReveal(s): S4 returns to M the session key of s. If s is the i-th session at Â, S4 aborts.
6. Corruption(P̂ ): S4 gives M the handle of the long-term key P . If M tries to corrupt Â or B̂, S4

aborts.
7. H1(), H2(), avf(), and avf ′() are simulated as random oracles in the usual way.

Proof. The probability that M sets the type of A to be TPM ALG ECMQV, and selects the i-th session
of Â as the test session is at least 1

3 ×
1

n2k = 1
3n2k . Suppose that this is indeed the case: the type of

A is TPM ALG ECMQV, so S4 doesn’t abort in Step 0; M is not allowed to corrupt Â and B̂, make
SessionStateReveal and SessionKeyReveal queries to the i-th session of Â, so S4 doesn’t abort in Step 1, 2,
4, 5, 6. So S4 simulatesM’s environment perfectly except with negligible probability. By the assumption,
M correctly guesses the tuple (Z = (Y0B

e)x0+da, Â, B̂) of the test session where d = avf(X0) and
e = avf(Y0). We now show that (Y0, Z) is a valid forgery against OMQV

B on input (X0, A) where X0 is
the challenge:

1. (Y0, Z) is a valid return result of OMQV
B as Z = (Y0B

e)x0+da = (X0A
d)y0+eb.

2. We now show that OMQV
B never returns the result (Y0, Z) on input (X0, A) under S4:

(a) If the type of B is TPM ALG ECDH or TPM ALG SM2, then OMQV
B has never been created by

S4.
(b) If the type of B is TPM ALG ECMQV, then S4 must create OMQV

B in step 0. However, if OMQV
B

ever returned the result (Y0, Z) for some Z on input (A,X0), then B̂ must have an session which
is identified by (sc = TPM ALG ECMQV, B̂, Â, Y0, X0), which is exactly the matching session
of the test session. This contradicts that the test session has no matching session in these two
subcases.

3. SinceM is not allowed to corrupt Â and B̂,M doesn’t know a and b. SoM doesn’t know the private
key pair (a, x0). Thus, M is under the constraint described in theorem 1.

Finally we get: Pr(M succeeds in forging OMQV
B under S4) ≥ 1

3n2kPr(M). ut

7.1.3 Analysis of Case 3

The analysis of Case 3 is very similar to Case 2. It is easy to get a full proof by following the analysis
from Section 7.1.2, so we omit the analysis of Case 3.

7.2 Infeasibility of Key-replication Attacks

Consider a successful key-replication attack performed byM against the test session s = (sc, Â, B̂,X0, Y0).
That is to say, M succeeds in establishing a session s′ = (sc′, Â′, B̂′, X ′, Y ′), which is different than s
and (sc, B̂, Â, Y0, X0) (the matching session of s) but has the same key as the test session. sc can fall
under one of the following cases:

1. sc = TPM ALG ECDH.
2. sc = TPM ALG ECMQV.
3. sc = TPM ALG SM2.

Since we assume that M succeeds with non-negligible probability in the key-replication attack then
there is at least one of the above three cases that occurs with non-negligible probability. We proceed to
analyze these cases separately.
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7.2.1 Analysis of Case 1

We show that a key-replication attack is impossible in this case. Note that in this case the session key of
the test session is the value of the random oracle H1() on σ = (Z1, Z2, Â, B̂,X0, Y0). As the session key of
the MQV or SM2 key exchange protocol is the value of the random oracle H2() on some 3-tuple (Z, Â, B̂),
the session s′ must belong to a party whose long-term key is the type of TPM ALG ECDH. So the scheme
of s′ must be TPM ALG ECDH. This means that the session identifier of s′ must be (sc, Â, B̂,X0, Y0) or
(sc, B̂, Â, Y0, X0) where sc = TPM ALG ECDH, i.e., s′ is the test session or its matching session, which
contradicts that s′ is different from s and the matching session of s.

7.2.2 Analysis of Cases 2 and 3

We show that a key-replication attack is impossible by showing that a successful attacker would con-
tradict the GDH assumption, or break the unforgeabilities of MQV functionality or SM2 key exchange
functionality.

Consider the simulators S2, S3, and S4 built above for the four subcases of Case 2 in Section 7.1.2.
In these subcases, S2, S3, and S4 provideM with the session state of all exposed sessions. Note that the
session key of the test session is the value of the random oracle H2(Z, Â, B̂). So s′ must have the same σ
as the test session. Therefore, ifM is able to succeed in a key-replication attack against the test session
s, then it can obtain the 3-tuples of s by exposing s′ (this is allowed in the security model as s′ is not the
matching session of s). This means that M is able to launch forging attacks. However, we have shown
that if M succeeds in a forging attack: S2 would succeed in solving the GDH problem, and under S3
and S4 there would exist an attacker breaking the unforgeability of the MQV functionality of tpm.KE.
By applying above argument and replacing the unforgeability of the MQV functionality of tpm.KE with
the unforgeability of the SM2 key exchange functionality of tpm.KE, we can get the analysis of Case 3.

8 Discussion and Suggestions

In this section, we first discuss some further security properties for AKE protocols, then give suggestions
on how to use tpm.KE securely and suggestions on how to improve the security of tpm.KE.

8.1 Further Security Properties

Besides the basic security property defined by modern security models, it’s desirable for AKE protocols to
achieve the following security properties: (1) the key-compromise impersonation (KCI) resistance prop-
erty; that is, the knowledge of a party’s long-term private key doesn’t enable the attacker to impersonate
other, uncorrupted, parties to the party; and (2) the Perfect Forward Secrecy (PFS) property; that is,
the expired session keys established before the compromise of the long-term key cannot be recovered.

Note that our security model doesn’t capture the KCI resistance property and PFS property as our
model doesn’t allow the attacker to obtain the plaintext of the long-term private key but only allows
the attacker to control the handle of the long-term key. The reason that we put such constraint on
the attacker, which is used to model protections provided by the TPM hardware chip, is that we aim
to check whether the tpm.KE defined by current TPM specification can provide a secure key exchange
functionality (Note that in scenarios where long-term keys can be obtained by the attacker, for example
keys are not protected by hardware tokens, all the three protocols adopted by TPM 2.0 are not secure).

Although tpm.KE cannot achieve the rigorous KCI resistance and PFS properties, it can satisfy
weak forms of the two properties: (1) constrained KCI; that is, the control of a party’s long-term key
handle doesn’t enable the attacker to impersonate other, uncontrolled, parties to the party; and (2) the
constrained PFS property; that is, the expired session keys established before the attacker controls the
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handle of the long-term key cannot be recovered. To prove weak forms of the two properties, all is needed
is to note that the proof of tpm.KE in Section 7 still holds if we allow the attacker to corrupt Â and B̂
which are the related parities of the test session, i.e., all the simulators don’t abort when Â and B̂ are
corrupted. The proof remains valid since the abort operations are never used in the proof.

8.2 Suggestions

TPM 2.0 is an important industrial specification which might be deployed widely in practice, so a formal
analysis of its key exchange primitive is critical. In this work we formally show that tpm.KE can achieve
the basic security property defined by modern AKE models. However, this goal is achieved under some
constraints on the attacker, and if the host of a TPM doesn’t code its software properly, tpm.KE would
be vulnerable to attacks. In order to ensure proper use of tpm.KE, we give the following suggestions:

1. As only in the environment that all long-term keys are protected by the TPM can tpm.KE achieve
rigorous security property, we suggest that the Certificate Authority only issues certificates for keys
that are generated by TPM chips. This can be done via the Privacy CA protocol [10] or the direct
anonymous attestation (DAA) protocol [6] if higher anonymity is required.

2. Note that the Full Unified Model scheme would be definitely insecure if the unhashed value Z1 is
compromised by the attacker. We suggest that the software running on the host which derives the
session key from the return results of the TPM should be well protected, and the software should
delete the return results of the TPM (especially Z1 of the Full Unified Model scheme) immediately
after the session key is derived.

In real world environments, it’s common that some parties are equipped with the TPM and others
are not, and some CAs only issue certificates for keys protected by the TPM (for example, via Privacy
CA or DAA protocol) and some CAs issue certificates for keys no matter whether they are protected
by the TPM. For the keys that are not protected by the TPM, it’s feasible for the attacker to obtain
their plaintexts, and these keys open a window of opportunity to mount Kaliski’s UKS attack and Xu’s
attacks on tpm.KE: the attacker can register specific long-term keys or long-term keys whose plaintexts
are available to him to compromise sessions of other honest parties (see details of these attacks described
in Appendixes A and B). So current tpm.KE is not suitable for use in real world environments. For the
sake of enabling tpm.KE to achieve rigorous security in real world environments, where plaintexts of some
parties’ long-term private keys are vulnerable to attacks, we give the following suggestions:

1. Perform the session key derivation in the TPM rather than on the host, i.e., perform H1() and H2()
in the TPM. This modification to tpm.KE only adds a hash to the TPM which is negligible compared
to the elliptic curve scalar multiplication. We have shown that protecting the unhashed value Z1 is a
basic requirement for the security of the Full Unified Model protocol. Protecting the unhashed value
Z is also necessary for the security of MQV and SM2 key exchange in real world environments: it
has been shown in [17] and [34] that the disclosure of Z of a session can lead to the vulnerability
of other sessions. That’s why Krawczyk mandates the hashing of Z in the HMQV (a proven secure
variant of MQV), and Zhao et al. suggest putting the session key derivation of SM2 key exchange
into the TPM.

2. Replace avf() and avf ′() with cryptographic hash functions. Although we have shown that avf()
and avf ′() can be modeled as random oracles as they provide strong enough randomness, it’s still
preferred to replace them with cryptographic hash functions.

9 Conclusions and Future work

In this paper, we present a formal analysis of the key exchange primitive of TPM 2.0 in a unified way. One
feature of our analysis is that we eliminate specific assumptions on the representation of group elements
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by measuring the entropy contained in the output of the avf() and avf ′(). The entropy measurement
results enable us to model avf() and avf ′() as random oracles convincingly. Another feature of our
analysis is that we consider protections provided by the TPM. Our analysis shows that the TPM 2.0
indeed can provide a proven secure key exchange functionality if the following requirements are satisfied:
all honest parties use the TPM (or other hardware security tokens) to protect their long-term keys, and
the CA only issues certificates for keys from legitimate TPMs. However, these requirements are somewhat
impractical, which limit the use of tpm.KE in real world environments. So we give suggestions on how
to improve the security level of tpm.KE to enable its use in real world environments. A formal security
analysis of the improved tpm.KE based on our unified security model can be done in the future work.
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A Kaliski’s UKS attack

We describe Kaliski’s UKS attack here to show how the attacker M successfully mounts the attack by
cleverly computing its long-term private key c and the ephemeral public key X ′.

1. Â sends an ephemeral public key X to B̂.

2. M intercepts X.

3. M registers with the CA a key C = gc where c is cleverly computed by the following steps:

(a) Choose u ∈R Zq;

(b) Compute d = avf(X), X ′ = XAdg−u, e = avf(X ′), and c = u/e.

4. M then sends X ′ to B̂ as the identity of M.

5. M relays the ephemeral key Y from B̂ to Â.

Note that X ′Ce = XAd, and therefore the keys computed in sessions (Â, B̂,X, Y ) and (B̂,M, Y,X ′)
are identical.

B Xu’s attacks

Here we describe Xu’s two attacks on the SM2 key exchange protocol to show that in the first attack
the attackerM requires to register a specific long-term public key, and in the second attackM needs to
use the private key of Â to perform some computations.
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B.1 Attack I

M selects u ∈R Zq, and registers this cleverly computed public key M = Agu.

1. Â sends an ephemeral public key X to B̂.
2. M intercepts X and sends it to B̂ as the identity of M.
3. B̂ sends its ephemeral public key Y to M, and computes ZB = (MXd)h(b+ey) where d = avf ′(X)

and e = avf ′(Y ).
4. M forwards Y to Â as the identity of B̂. Â computes ZA = (BY e)h(a+dx).
5. M corrupts ZB of session (B̂,M, Y,X), then M can compute ZA of session (Â, B̂,X, Y ): ZA =
ZB/(BY

e)hu, and further derives the session key of (Â, B̂,X, Y ).

Note that above attack shows that corruption of session (B̂,M, Y,X) does affect the security of
session (Â, B̂,X, Y ), so the SM2 key exchange protocol cannot achieve the security defined by modern
AKE security models.

B.2 Attack II

M first registers a legal key M = gm.

1. Â sends an ephemeral public key X to B̂.
2. M intercepts X and sends X ′ = AXd (d = avf ′(X)) to B̂ as the identity of M.
3. B̂ sends an ephemeral public key Y toM, and computes ZB = (MX ′d

′
)h(b+ey) where d′ = avf ′(X ′)

and e = avf ′(Y ).
4. M forwards it to Â. Â computes ZA = (BY e)h(a+dx) where d = avf ′(X) and e = avf ′(Y ).

5. M corrupts ZB of session (B̂,M, Y,X ′) and computes ZA of session (Â, B̂,X, Y ): ZA = (ZA/(BY
e)hm)d

′−1

,
and further derives the session key of (Â, B̂,X, Y ).

C Group Representation Attack on MQV

For the benefit of the reader we present the group representation attack on MQV here. Consider such
a group G that the representation of its elements satisfies that the dq/2e LSBs of the representation of
points’ x-coordinate are fixed. We use c to denote this fixed value. In this case, the Z value of MQV
becomes Z = gh(x+ca)(y+cb). The attacker M can launch the following attack:

1. M randomly chooses x∗ ∈R Zq, and computes X∗ = gx
∗
/Ac.

2. M sends X∗ to B̂ as the identity of Â.
3. B̂ responds with Y = gy, computes Z = (X∗Ac)h(y+cb), and computes its session keyK = H2(Z, Â, B̂).
4. M can also compute the session key K = H2((Y Bc)hx

∗
, Â, B̂).

Above attack shows thatM can impersonate Â without knowing the private key of Â because of the
special representation of the group elements.


