
1

Generalised tally-based decoders
for traitor tracing and group testing

Boris Škorić and Wouter de Groot

Abstract—We propose a new type of score function for Tardos
traitor tracing codes. It is related to the recently introduced tally-
based score function [27], but it utilizes more of the information
available to the decoder. It does this by keeping track of sequences
of symbols in the distributed codewords instead of looking at
columns of the code matrix individually.
We derive our new class of score functions from a Neyman-
Pearson hypothesis test and illustrate its performance with
simulation results.
Finally we derive a score function for (medical) group testing
applications.

I. COLLUSION ATTACKS ON WATERMARKING

Forensic watermarking is a means for tracing the origin and
distribution of digital content. Before distribution, the content
is modified by embedding an imperceptible watermark, which
is unique for each recipient. When an unauthorized copy of the
content is found, the watermark present in this copy reveals
information about the identities of those who created the copy.
A tracing algorithm (‘decoder’) outputs a list of suspicious
users. This procedure is known as Traitor Tracing.
The most powerful attacks against watermarks are collusion
attacks: multiple attackers (the ‘coalition’) combine their
differently watermarked versions of the same content; the
observed differences point to the locations of the hidden marks
and allow for an informed attack.
Several types of collusion-resistant codes have been developed.
The most popular type is the class of bias-based codes,
introduced by G. Tardos in 2003. The initial paper [25],
[26] was followed by improved analyses [3], [10], [11], [17],
[23], [31], [30], code modifications [12], [20], [21], more
advanced decoders [1], [5], [19], [22], [9], [27] and various
generalizations [4], [28], [29], [32]. Bias-based codes have the
advantage that they can achieve the asymptotically optimal
relationship ` ∝ c2 between the sufficient code length ` and
the coalition size c.
One of the main advances in recent years was finding the
saddlepoint of the information-theoretic max-min game [12],
[15] in the case of joint decoding. Knowing the location of the
saddlepoint allows the tracer to build a universal decoder that
works optimally against the worst-case attack and that works
well against all other attacks too.

II. CONTRIBUTIONS AND OUTLINE

We generalize the tally-based score function recently intro-
duced by Škorić [27]. We combine a number (s) of neigh-
bouring symbols in a user’s codeword into a single composite
symbol. If the original alphabet is denoted as Q, the composite

symbols are elements of Qs. We apply the tally-based score
system of [27] to the composite symbols. The result is a
Neyman-Pearson score that is based on more information than
the original tally-based score.
The outline of this paper is as follows. In Section III we
introduce notation and briefly review Tardos codes and the
tally-based score function. In Section IV we derive our main
result: a recipe for computing a universal score function for
general s. Unfortunately the generic result is rather cumber-
some; therefore we provide explicit formulas only up to s = 4
(Section V). We show that in the limit c→∞ the composite-
symbol score reduces to a sum of s = 1 scores.
Section VI discusses the performance of our new score func-
tions up to s = 3. ROC curves show a clear improvement
when the collusion attack is Interleaving or Majority Voting.
However, for the Minority Voting attack the performance is
worse than [27].
In Section VII we apply our composite-symbol technique to
the field of group testing. We derive a simple recipe for
computing group-testing score functions for generic s.

III. PRELIMINARIES

A. General notation and terminology

Random variables are written as capitals, and their realisations
in lower-case. Sets are written in calligraphic font. (E.g. ran-
dom variable X ∈ X with realisations x.) The probability of
an event A is denoted as Pr[A], and the expectation over a ran-
dom variable X is denoted as EX [f(X)]

def
=
∑
x∈X Pr[X =

x]f(x). We define [s] = {1, . . . , s}. Vectors are written in
boldface. The 1-norm of a vector v is denoted as |v| = ∑α vα.
Falling factorials are written as x(k) def

= x(x−1) · · · (x−k+1).
The number of users is n. The alphabet is Q, with size
|Q| = q. The length of the code is `. Abstractly speaking,
the content contains positions i ∈ {1, . . . , `}; in each position
a symbol from Q is embedded. The number of colluders is c.
The set of colluders is denoted as C ⊂ [n] with |C| = c. The
coalition size that the code is built to withstand is c0. (We
will not always strictly distinguish between c and c0.) The
term ‘asymptotically’ will be used in the meaning ‘coalition
size going to infinity’.

B. Bias-based fingerprinting codes

The bias vector in position i is denoted as pi = (piα)α∈Q.
It satisfies |pi|

def
=

∑
α∈Q piα = 1. The bias vectors

pi are independently drawn from a probability density F .
The asymptotically optimal F is given by the following

2

Dirichlet distribution (multivariate Beta distribution): F (p) =

Γ(q2)[Γ(1
2)]−q

∏
α∈Q p

−1/2
α . We use the ‘bar’ notation to in-

dicate a quantity in all positions, e.g. p̄ def
= (pi)i∈[`].

The code matrix is a matrix x ∈ Qn×`; the matrix rows are the
codewords. The j’th row is denoted as x̄j

def
= (xji)i∈[`]. The

entries of x are generated column-wise from the bias vectors:
in position i, the probability distribution for user j’s symbol
is given by Pr[Xji = α|P i = pi] = piα.
For i ∈ [`], α ∈ Q, tally variables are defined as follows,

tiα
def
= |{j ∈ [n] : xji = α}|

miα
def
= |{j ∈ C : xji = α}|. (1)

In words: tiα is the number of users who have symbol α in the
i’th position of their codeword; miα is the number of colluders
who have symbol α in the i’th position of their codeword.
We write ti = (tiα)α∈Q and mi = (miα)α∈Q. These tallies
satisfy |ti| = n and |mi| = c.
In the Restricted Digit Model (RDM), in each position the
colluders are allowed to output only a single symbol y ∈ Q
with nonzero tally my , which symbol then gets detected with
100% fidelity by the tracer. As is customary in the literature
on traitor tracing, we will assume that the attackers equally
share the risk. This leads to “colluder symmetry”, i.e. the
attack is invariant under permutation of the colluder identities.
Furthermore we assume that there is no natural ordering on the
alphabet Q. Given these two symmetries, the attack depends
only on m̄, the set of colluder tallies. Any attack strategy can
then be fully characterized by a set of probabilities θȳ|m̄.
The process of generating the matrix x is fully position-
symmetric, i.e. invariant under permutations of the columns
of x. However, that does not guarantee that the optimal
collusion strategy is position-symmetric as well, since the
realisation of x itself breaks the symmetry. Asymptotically the
symmetry is restored (due to `→∞); the attack strategy can
then be parametrized more compactly as a set of probabilities
θy|m applied in each position independently. In the RDM the
asymptotically optimal attack [13], [15] is the Interleaving
attack: a colluder is selected uniformly at random and his
symbol is output.
The process of tracing colluders based on p̄, x and ȳ is referred
to as ‘decoding’. The decoder outputs a list L ⊂ [n] of
suspicious users. Often a thresholding procedure is used: a
score is computed for each user, or tuple of users, and they
whose score exceeds the threshold are accused. In this scenario
a decoder can make two kinds of mistake: (i) Accusation
of one or more innocent users, known as False Positive
(FP); (ii) Not finding any of the colluders, known as False
Negative (FN). The error probabilities of the decoder are
PFP = Pr[L \ C 6= ∅] and PFN = Pr[L ∩ C = ∅].

C. Tally-based score function in a single position

Practically all known score functions assign a score in each
position i ∈ [`] and then take a sum over all positions to
obtain a user’s/tuple’s overall score. The tally-based decoder
proposed in [27] also has this structure. It was derived from
the Neyman-Pearson hypothesis test for the hypothesis ‘j ∈

C’ versus ‘j /∈ C’ for a user j ∈ [n], making use of the
properties of hypergeometric-distributed random variables (see
Section III-D). It has the form of a log-likelihood ratio. The
score for user j is given by

∑
i∈[`] h(xji, yi, ti), with

h(x, y, t) = δxy ln(1 +
1

c0 − 1
· n− 1

ty − 1
). (2)

Although the hypothesis concerns a single user, the score
takes into account the symbols received by other users via
the tallies t̄.

D. The multivariate hypergeometric distribution

Consider a single column of the matrix x. Let T be the total
tally vector and M the colluders’ tally vector, as defined in (1).
If a coalition of c users is selected uniformly at random out of
the n users, the probability Lm|t that colluder tally m occurs,
for given t, is

Lm|t
def
= Pr[M = m|T = t] =

1(
n
c

)
∏

α∈Q

(
tα
mα

)
. (3)

(For each symbol α, a number mα of users have to be
selected out of the tα users who have that symbol). Eq. (3)
is known as the multivariate hypergeometric distribution. Let
r = (rα)α∈Q, with rα ∈ N. Moments of the hypergeometric
distribution can be obtained from

EM |t
∏

α∈Q
M (rα)
α =

c(|r|)

n(|r|)
∏

α∈Q
t(rα)
α . (4)

(See e.g. [2]). In particular, the first and second moment are
given by

EM |tM =
c

n
t, (5)

EM |tMαMβ =
c(2)

n(2)
tαtβ +

c(n− c)
n(2)

δαβtα. (6)

IV. GENERALISED TALLY-BASED SCORE

A. Composite symbols

Instead of looking at user codewords symbol-by-symbol, we
consider combinations of s consecutive locations. For simplic-
ity we assume that ` = L · s, with L ∈ N. For a ∈ [L] we
define a sequence of s symbols as follows,

ξj,a
def
= (xj,(a−1)s+1, xj,(a−1)s+2, . . . , xj,as). (7)

I.e. ξj1 is the first s-sequence and ξjL is the last s-sequence
in user j’s codeword. We view ξja as a composite symbol
taking values in the alphabet Qs. In analogy with (7) we define
sequences in y as λa

def
= (y(a−1)s+1, . . . , yas) ∈ Qs. For β ∈

Qs we define the tally taβ as the number of users whose
sequence ξja exactly equals β.
Let ξ ∈ Qs and J ⊆ [s]. Then ξ[J] ∈ Q|J| denotes a length-
|J | sub-sequence of ξ obtained by selecting the components of
ξ indicated by J . For β ∈ Q|J| we define tJaβ as the number
of users whose J-part of ξja equals β. We define a vector eξ
of length qs as (eξ)α = δξα.

3

B. Derivation of the score function for arbitrary s
In [27] it was found that the Neyman-Pearson score for the
hypothesis j ∈ C vs. j /∈ C can be expressed as

ln
EM̄ |x,j∈Cθȳ|M̄
EM̄ |x,j /∈Cθȳ|M̄

= ln
EM̄ |x,j∈C

∏
i∈[`] θyi|Mi

EM̄ |x,j /∈C
∏
i∈[`] θyi|Mi

. (8)

Evaluating the expectations over M̄ for given x involves
computing a sum over all possible candidate coalitions, i.e. all
size-c subsets of [n]. When n is of order 105 or larger, this is
infeasible already for moderate c. In order to get an expression
that can be handled more easily, some of the information
in x has to be ‘forgotten’. In [27] the solution was to discard
everything except the codeword x̄j and the tallies t̄. This leads
to a complete factorization into single-position scores.
Furthermore, in [27] the Interleaving strategy θyi|mi

= miyi/c
was substituted, resulting in (2). For c → ∞ the Interleaving
attack lies in the mutual information maxmin game saddlepoint
[15], [14], and for finite c it lies very close to this point;
substitution of the saddlepoint-θ into the Neyman-Pearson
score results in a universal score function, i.e. a score that not
only performs optimally against the saddlepoint-value of the
attack but also performs well against all other attacks. Hence,
substituting the Interleaving attack into (8) yields an almost
universal score function.
We now follow the same approach with respect to θ, but we
discard less information from x. We ‘remember’ x̄j and the
composite-symbol tallies taζ for a ∈ [`/s], ζ ∈ Qs. This
results in a score that is a sum of s-sequence sub-scores.
Theorem 1: Let ` = s. Let ξ ∈ Qs be shorthand notation for
the codeword x̄j of the user under scrutiny. Let λ ∈ Qs be
the colluders’ output. Then the Neyman-Pearson score (8) for
user j is equivalent to

w(ξ, λ, t)
def
= ln(

(
n
c

)
EM |tθλ|M(

n−1
c

)
EM |t−eξθλ|M

− 1) (9)

where M and t are defined over Qs.
The proof is given in Appendix A.
Eq. (9) can be rewritten in many different ways. The presented
form has the advantage that, once an analytic expression has
(laboriously) been found for the numerator, a formula for the
denominator can simply be obtained by replacing t→ t−eξ.
Note that the fraction

(
n
c

)
/
(
n−1
c

)
in (9) simplifies to n/(n−c).

We now consider ` = Ls, with L > 1, as explained in Sec-
tion IV-A, and look again at the general score expression (8).
On the one hand we will keep track of the composite symbols
tallies within each bunch of s columns, but on the other hand
we ‘forget’, except for user j, how these composite symbols
are organised into codewords.1 According to Theorem 1 this
leads to the following score system,

rj =

L∑

a=1

w(ξja, λa, ta). (10)

1For example, q = 2, s = 3, ` = 9 and a user 6= j has codeword
000111001. We take into account that there is a contribution to t1,000 from
the first bunch of s symbols, a contribution to t2,111 from the second bunch
and to t3,001 from the third. However, we will forget who contributed what
to the tallies, and thus we do not remember that the composite symbols 000,
111 and 001 are connected to each other.

where rj is the score of user j, and the function w is defined
in (9). Our next task is to compute the expectation EM |tθλ|M
for one bunch of columns.
Lemma 1: Let the attack strategy be Interleaving. Then

EM |tθ
Int
λ|M = c−s

∑

z1,...,zs∈Qs
(

s∏

i=1

δzi[i],λ[i])EM |t

s∏

i=1

Mzi . (11)

Proof: The colluders apply the Interleaving strategy indepen-
dently in each position, which yields θλ|m =

∏s
i=1(m

{i}
λ[i]/c).

Furthermore, the sub-component tally m
{i}
α , for α ∈ Q, can

be expressed as

m{i}α =
∑

z∈Qs
mzδz[i],α. (12)

We use (12) s times, i.e. for i = 1 . . . s , substituting α = λ[i].

The expectation EM |t
∏s
i=1Mzi in (11) can be computed

using (4). This leads to rather complicated expressions, es-
pecially for large s, since (11) contains powers of tallies Mzi ,
whereas (4) works with falling factorials.
The powers that occur in the product

∏s
i=1Mzi depend on the

structure of the ‘collisions’ between z1, . . . , zs, i.e. whether
some of the zi symbols are equal to each other and if so,
which ones. This information can be captured in the notion of
partitions. A partition of the set [s] into k parts is defined as
a set ζ = {ζ1, . . . , ζk} with ζa ⊆ [s], ζa 6= ∅, ζa ∩ ζb = ∅ for
a 6= b and

⋃
a ζa = [s]. We denote the space of partitions of

[s] as P[s].
Theorem 2: It holds that

EM |tθ
Int
λ|M =

1

csn(s)

∑

ζ∈P[s]

Λnc(ζ)

|ζ|∏

a=1

tζaλ[ζa] (13)

where the Λnc(ζ) are expressions that depend only on n, c
and ζ.
A proof sketch is given in Appendix B.
Corollary 1: The Neyman-Pearson score against the Interleav-
ing attack is given by

gs(ξ, λ, t)
def
= (14)

ln[
n− s
n− c ·

∑
ζ∈P[s]

Λnc(ζ)
∏|ζ|
a=1 t

ζa
λ[ζa]

∑
ζ∈P[s]

Λn−1,c(ζ)
∏|ζ|
a=1(tζaλ[ζa]−δξ[ζa]λ[ζa])

−1].

Proof: Follows from substituting (13) into (9).
In general the parameters Λnc(ζ) are complicated, especially
for large s. For s = 2, s = 3 and s = 4 we will give
explicit results in the coming sections. The Λ parameter for
the ‘easiest’ partition is given below for general s.
Lemma 2: Let ζ = {{1}, {2}, . . . , {s}}. Then Λnc(ζ) = c(s).
Proof: We consider (11) and use (4). For all terms in the
z1, . . . , zs summation, the expectation EM |t

∏
iMzi con-

tains exactly one term that contains s powers of t, namely
c(s)

n(s) tz1 · · · tzs . All the other terms contain fewer powers of t.
Finally, performing the summations

∑
zi

with the constraint
δzi[i],λ[i] yields factors t{i}λ[i].

4

Note that for s = 1 the gs is equivalent to the known single-
position score function h.

g1(ξ, λ, t) = ln(
n− 1

n− c ·
ty

ty − δxy
− 1)

= ln
c− 1

n− c + ln(1 +
n− 1

c− 1
· δxy
ty − δxy

)

= ln
c− 1

n− c + h(x, y, t). (15)

The constant shift ln c−1
n−c does not depend on x, y, t and

therefore does not affect the score system.

C. Computational effort for computing the scores

How much computational effort is involved in computing
the user scores g? First of all, the tally tJλ[J] has to be
computed for each subset J ⊆ [s]. There are 2s − 1 of
these subsets. Each tally can be computed with practically
the same amount of effort. Start with the s n-component
vectors (δξj [1]λ[1])j∈[n] · · · (δξj [s]λ[s])j∈[n] and compute the
t
{i}
λ[i] from them by summing over the users. Then create the(
s
2

)
vectors (δξj [ik]λ[ik])j∈[n] by componentwise multiplication

of the vectors (δξj [i]λ[i])j∈[n] and (δξj [k]λ[k])j∈[n]. Store these
vectors. Compute the t{i,k}λ[ik] from them by summing over j,
etc. Given code length `, the total effort of computing all these
tallies scales as 2sn`/s.
Next the sum over all partitions ζ ∈ P[s] has to be taken.
The number of partitions is given by the Bell number Bs. For
large s one can approximate Bs ≈ (s

e ln s)s [7]. The number of
multiplications needed in the summation terms is proportional
to s. Finally, the number of composite-symbol scores that has
to be computed is n`/s.
In conclusion, for large s the total effort involved in the
computation of all users scores scales as n`(s

ln s)s, and the
main effort lies in multiplying the tallies in each term of the
ζ-summation.

V. SCORES FOR SMALL s

A. Score for s = 2

Theorem 3: For s = 2 the Neyman-Pearson score (9) in the
case of the Interleaving attack is given by

g2(ξ, λ, t) = ln[−1 +
n− 2

n− c · (16)

(c− 1)t
{1}
λ[1]t

{2}
λ[2] + (n− c)tλ

(c−1)(t
{1}
λ[1]−δξ[1]λ[1])(t

{2}
λ[2]−δξ[2]λ[2])+(n−1−c)(tλ − δξλ)

].

Proof: The expectation EM |tMz1Mz2 follows from (6). Sub-
stitution into (11) gives c2EM |tθInt

λ|M = c(2)

n(2) t
{1}
λ[1]t

{2}
λ[2] +

c(n−c)
n(2) tλ. Substitution of this expression, and of its shifted

version with (t→ t−eξ, n→ n− 1), into (9) yields (16).

B. Score for s = 3

Lemma 3: Let α, β, γ be symbols in some alphabet. Let m
and t be the colluder tally and all-user tally respectively for

this alphabet. Then

EM |tMαMβMγ =
c(3)

n(3)
tαtβtγ

+
c(2)(n− c)

n(3)
tα(δαβtγ + δαγtβ + δβγtγ)

+
c(n− c)(n− 2c)

n(3)
δαβδβγtα. (17)

Proof: Follows from (4) after some diligent work.
Theorem 4: For s = 3 the Neyman-Pearson score (9) in the
case of the Interleaving attack is given by

g3(ξ, λ, t) = ln[−1 +
n− 3

n− c ·
A3

B3
], with (18)

A3 = c(3)t
{1}
λ[1]t

{2}
λ[2]t

{3}
λ[3]

+c(2)(n− c)(t{1,2}λ[12] t
{3}
λ[3] + t

{1,3}
λ[13] t

{2}
λ[2] + t

{2,3}
λ[23] t

{1}
λ[1])

+c(n− c)(n− 2c)tλ (19)
B3 = A3 with t→ t− eξ, n→ n− 1 (20)

Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 3.

C. Score for s = 4

Lemma 4: Let α, β, γ, ε be symbols in some alphabet. Let m
and t be the colluder tally and all-user tally respectively for
this alphabet. Then

n(4)EM |t[MαMβMγMε] =

c(4)tαtβtγtε

+c(3)(n− c)[δαβtαtγtε + δαγtαtβtε + δαεtαtβtγ

+δβγtαtβtε + δβεtαtβtγ + δγεtαtβtγ]

+c(2)(n− c)(2)[δαβδγεtαtγ + δαγδβεtαtβ + δαεδβγtαtβ]

+c(2)(n− c)(n− 2c+ 1)[δαβδβγtαtε + δαβδβεtαtγ

+δαγδγεtαtβ + δβγδγεtαtβ]

+c(n− c)[(n− 2c)(n− 3c) + (n− c)]δαβδβγδγεtα. (21)

Proof: Follows from (4) after diligent labour.
Theorem 5: For s = 4 the Neyman-Pearson score (9) in the
case of the Interleaving attack has the form (14), with

Λnc({{1}, {2}, {3}, {4}}) = c(4)

Λnc({{12}, {3}, {4}}) = c(3)(n− c)
Λnc({{12}, {34}}) = c(2)(n− c)(2)

Λnc({{123}, {4}}) = c(2)(n− c)(n− 2c+ 1)

Λnc({{1234}}) = c(n− c)[(n− 2c)(n− 3c) + (n− c)]. (22)

The other Λ-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.

5

D. Large-c asymptotics

We now study the large-c asymptotics of the score function
(14). We define ν = E[n/(cTY)]. For most attack strategies
it holds that ν � 1 asymptotically. The Minority Voting
attack is an exception. We look at the case ν � 1. In
Sections V-A to V-C we notice that each ‘disappearance’ of a
factor t is accompanied by a factor ≈ n/c. Thus, the dominant
term in the ζ-summations in (14) comes from the partition
{{1}, . . . , {s}}. The other terms are of relative order ν or
smaller. We have

gs(ξ, λ, t) =

ln(−1 +
n− s
n− c

s∏

i=1

[1 +
δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

][1 +O(
ν

n
)])

= ln(−1 +
n− s
n− c [1 +

s∑

i=1

δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

+O(
ν

n
)])

= ln
c− s
n− c

+ ln(1 +
n− s
c− s

s∑

i=1

δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

+O(
ν

c
))

= ln
c− s
n− c

+ ln(1 +
n− 1

c− 1

s∑

i=1

δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

+O(
ν

c
)). (23)

On the other hand, the sum of single-position scores∑s
i=1 h(ξ[i], λ[i], t{i}) can be written as

s∑

i=1

ln(1 +
n− 1

c− 1

δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

)

= ln

s∏

i=1

(1 +
n− 1

c− 1

δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

)

= ln(1 +
n− 1

c− 1

s∑

i=1

δξ[i]λ[i]

t
{i}
λ[i] − δξ[i]λ[i]

+O(ν2)). (24)

We see that asymptotically the composite-symbol score be-
comes equivalent to the sum of single-position scores, up to
an unimportant term ln c−s

n−c which depends on neither the
code matrix x nor the collusion output ȳ. This result is not
surprising; the s = 1 score is known to reach asymptotic
capacity.

VI. NUMERICS

Fig. 1 shows simulation results. For each shown combination
of parameters we have run the following experiment 106 times:
generate p̄; generate the colluder symbols; apply the attack
strategy to obtain ȳ; generate the δxy-matrix for the innocent
users; compute the tJλ[J] tallies; compute scores using c0 = c.
The ROC curve for each score function is plotted by varying
the threshold Z. An estimate for PFP is computed as the
fraction of simulation runs in which it occurs that innocent
scores exist above Z. Similarly, PFN is estimated as the
fraction of simulation runs in which all colluder scores lie
below Z. Due to the finite number of runs, probabilities of

order 1/#runs and smaller cannot be estimated accurately, as
is evident from the jumps at the bottom of the graphs.
Note that we generated the bias vectors without a cutoff on p-
space. In the graphs we do not show the (symmetrized) Tardos
score and the score of Oosterwijk et al. since they generally
perform worse than the Laarhoven score.
In the ROC curves we notice the following trends:
• In case of the Interleaving attack there is a clear im-

provement in the effectiveness of the tally-based score
when we go from s = 1 (the score introduced in [27]) to
s = 2. The step from s = 2 to s = 3 has far less effect.
All improvements become smaller with increasing c, in
accordance with Section V-D.

• When there is a mismatch between the anticipated attack
(Interleaving) and the actual attack, the composite tally-
based score function is not necessarily the best one.
Furthermore, with increasing s the performance can get
worse. In a sense the mismatch between the actual attack
and the expected attack gets worse with increasing s.
More information is being used in the hypothesis test,
but in the wrong way.

We conclude that our composite tally-based scores improve
on the state of the art, but should be used as part of a battery
of different score functions rather than stand-alone. When the
attack is (close to) Interleaving, the new scores (s ≥ 2) have
the lowest error rates; in case of different attacks another score
function (e.g. s = 1) will catch the attackers.

VII. GROUP TESTING

A. Connection between traitor tracing and group testing

There is a well known link [24], [6], [18], [16] between on
the one hand Traitor Tracing in the Restrictive Digit Model
with the ‘All-1’ attack, and on the other hand (non-adaptive)
Group Testing [8]. The Group Testing scenario is as follows.
There is a population of n people, of which c are infected.
Medical tests are expensive, and there is money to do only
` tests, with `� n. Furthermore the tests take a long time, so
they are done non-adaptively, in parallel. An efficient way has
to be devised to find out who is infected. Luckily it is possible
to combine samples (e.g. blood samples) from multiple people
and run a single test on the combination; if one or more of the
individual samples come from an infected person, the medical
test is positive.
The analogy with Traitor Tracing is straightforward. The user
symbol xji ∈ {0, 1} indicates whether person j’th blood is
included in the i’th test. The result of the i’th test is yi ∈
{0, 1}. The way the combined test works exactly matches the
All-1 strategy: θ1|m1

equals 1 if m1 ≥ 1 and 0 if m1 = 0.

B. Score function for group testing

In order to derive scores for group testing, we start from (9)
and substitute the All-1 attack. The results are much simpler
than for the Interleaving attack.
Theorem 6: Let tJ0 denote the number of users who have
ξ[J] = 0 · · · 0. Let t∅0 = n. Furthermore let Z(λ) ⊆ [s] denote

6

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

The other ⇤-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.

D. Large-c asymptotics

We now study the large-c asymptotics of the score function
(14). We define ⌫ = E[n/(cTY)]. For most attack strategies
it holds that ⌫ ⌧ 1 asymptotically. The Minority Voting
attack is an exception. We look at the case ⌫ ⌧ 1. In
Sections V-A to V-C we notice that each ‘disappearance’ of a
factor t is accompanied by a factor ⇡ n/c. Thus, the dominant
term in the ⇣-summations in (14) comes from the partition
{{1}, . . . , {s}}. The other terms are of relative order ⌫ or
smaller. We have

gs(⇠,�, t) =

ln(�1 +
n � s

n � c

sY

i=1

[1 +
�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

][1 + O(
⌫

n
)])

= ln(�1 +
n � s

n � c
[1 +

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

n
)])

= ln
c � s

n � c

+ ln(1 +
n � s

c � s

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
))

= ln
c � s

n � c

+ ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
)). (23)

On the other hand, the sum of single-position scoresPs
i=1 h(⇠[i],�[i], t{i}) can be written as

sX

i=1

ln(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln
sY

i=1

(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(⌫2)). (24)

We see that asymptotically the composite-symbol score be-
comes equivalent to the sum of single-position scores, up to
an unimportant term ln c�s

n�c which depends on neither the
code matrix x nor the collusion output ȳ. This result is not
surprising; the s = 1 score is known to reach asymptotic
capacity.

VI. NUMERICS

Figs. @@ show simulation results. For each shown combi-
nation of parameters we have run the following experiment
106 times: generate p̄; generate the colluder symbols; apply
the attack strategy to obtain ȳ; generate the �xy-matrix for
the innocent users; compute the tJ�[J] tallies; compute scores
using c0 = c. The ROC curve for a given score function is
plotted by varying the threshold Z. An estimate for PFP is

computed as the fraction of simulation runs in which it occurs
that innocent scores lie above Z. Similarly, PFN is estimated
as the fraction of simulation runs in which all colluder scores
lie below Z. Due to the finite number of runs, probabilities of
order 1/#runs and smaller cannot be estimated accurately, as
is evident from the @jumps at the bottom of the graphs.
Note that we generated the bias vectors without a cutoff on
p-space. This means that our results for the Tardos score and
Oosterwijk score are too pessimistic, as they require a cutoff
to perform optimally.

0.0 0.2 0.4 0.6 0.8 1.0

−6
−5

−4
−3

−2
−1

0

interleaving

fn

lo
g1
0(
Pf
p)

log10 PFP

PFN

Interleaving attack
c = 5
n = 1000
` = 864
q = 2

Laarhoven
s=1

s=3

s=2

Fig. 1. .

@*********************
Welke plotjes willen we:

• Interleaving c = 5. Het plotje met n = 1000, L = 1002
zag er leuk uit. Kunnen we een variant maken met een
wat kleinere L, zodat de s = 2 curve de �6 bereikt rond
PFP = 0.5?

• Interleaving c = 12.
• Minority Voting
• Majority Voting. variant op plotje van 22 mei, met wat

grotere L en aantal runs.
@*********************
In the ROC curves we notice the following trends:

• In case of the Interleaving attack there is a clear im-
provement in the effectiveness of the tally-based score
when we go from s = 1 (the score introduced in [27]) to
s = 2. The step from s = 2 to s = 3 has far less effect.
All improvements become smaller with increasing c, in
accordance with Section V-D.

• When the attack is not Interleaving, the composite tally-
based score is not necessarily the best score function.
Furthermore, with increasing s the performance can get
worse. (The mismatch between the actual attack and
the expected attack gets worse with increasing s. More
information is being used in the hypothesis test, but in
the wrong way.)

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

The other ⇤-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.

D. Large-c asymptotics

We now study the large-c asymptotics of the score function
(14). We define ⌫ = E[n/(cTY)]. For most attack strategies
it holds that ⌫ ⌧ 1 asymptotically. The Minority Voting
attack is an exception. We look at the case ⌫ ⌧ 1. In
Sections V-A to V-C we notice that each ‘disappearance’ of a
factor t is accompanied by a factor ⇡ n/c. Thus, the dominant
term in the ⇣-summations in (14) comes from the partition
{{1}, . . . , {s}}. The other terms are of relative order ⌫ or
smaller. We have

gs(⇠,�, t) =

ln(�1 +
n � s

n � c

sY

i=1

[1 +
�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

][1 + O(
⌫

n
)])

= ln(�1 +
n � s

n � c
[1 +

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

n
)])

= ln
c � s

n � c

+ ln(1 +
n � s

c � s

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
))

= ln
c � s

n � c

+ ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
)). (23)

On the other hand, the sum of single-position scoresPs
i=1 h(⇠[i],�[i], t{i}) can be written as

sX

i=1

ln(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln

sY

i=1

(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(⌫2)). (24)

We see that asymptotically the composite-symbol score be-
comes equivalent to the sum of single-position scores, up to
an unimportant term ln c�s

n�c which depends on neither the
code matrix x nor the collusion output ȳ. This result is not
surprising; the s = 1 score is known to reach asymptotic
capacity.

VI. NUMERICS

Figs. @@ show simulation results. For each shown combi-
nation of parameters we have run the following experiment
106 times: generate p̄; generate the colluder symbols; apply
the attack strategy to obtain ȳ; generate the �xy-matrix for
the innocent users; compute the tJ�[J] tallies; compute scores
using c0 = c. The ROC curve for a given score function is
plotted by varying the threshold Z. An estimate for PFP is

computed as the fraction of simulation runs in which it occurs
that innocent scores lie above Z. Similarly, PFN is estimated
as the fraction of simulation runs in which all colluder scores
lie below Z. Due to the finite number of runs, probabilities of
order 1/#runs and smaller cannot be estimated accurately, as
is evident from the @jumps at the bottom of the graphs.
Note that we generated the bias vectors without a cutoff on
p-space. This means that our results for the Tardos score and
Oosterwijk score are too pessimistic, as they require a cutoff
to perform optimally.

0.0 0.2 0.4 0.6 0.8

-6
-5

-4
-3

-2
-1

0

interleaving

fn

lo
g1
0(
P
fp
)

log10 PFP

PFN

Interleaving attack
c = 12
n = 1000
` = 2502
q = 2

From top to bottom:
Laarhoven, s=1, s=2, s=3

Fig. 1. .

@*********************
Welke plotjes willen we:

• Interleaving c = 5. Het plotje met n = 1000, L = 1002
zag er leuk uit. Kunnen we een variant maken met een
wat kleinere L, zodat de s = 2 curve de �6 bereikt rond
PFP = 0.5?

• Interleaving c = 12.
• Minority Voting
• Majority Voting. variant op plotje van 22 mei, met wat

grotere L en aantal runs.
@*********************
In the ROC curves we notice the following trends:

• In case of the Interleaving attack there is a clear im-
provement in the effectiveness of the tally-based score
when we go from s = 1 (the score introduced in [27]) to
s = 2. The step from s = 2 to s = 3 has far less effect.
All improvements become smaller with increasing c, in
accordance with Section V-D.

• When the attack is not Interleaving, the composite tally-
based score is not necessarily the best score function.
Furthermore, with increasing s the performance can get
worse. (The mismatch between the actual attack and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

The other ⇤-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.

D. Large-c asymptotics

We now study the large-c asymptotics of the score function
(14). We define ⌫ = E[n/(cTY)]. For most attack strategies
it holds that ⌫ ⌧ 1 asymptotically. The Minority Voting
attack is an exception. We look at the case ⌫ ⌧ 1. In
Sections V-A to V-C we notice that each ‘disappearance’ of a
factor t is accompanied by a factor ⇡ n/c. Thus, the dominant
term in the ⇣-summations in (14) comes from the partition
{{1}, . . . , {s}}. The other terms are of relative order ⌫ or
smaller. We have

gs(⇠,�, t) =

ln(�1 +
n � s

n � c

sY

i=1

[1 +
�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

][1 + O(
⌫

n
)])

= ln(�1 +
n � s

n � c
[1 +

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

n
)])

= ln
c � s

n � c

+ ln(1 +
n � s

c � s

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
))

= ln
c � s

n � c

+ ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
)). (23)

On the other hand, the sum of single-position scoresPs
i=1 h(⇠[i],�[i], t{i}) can be written as

sX

i=1

ln(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln
sY

i=1

(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(⌫2)). (24)

We see that asymptotically the composite-symbol score be-
comes equivalent to the sum of single-position scores, up to
an unimportant term ln c�s

n�c which depends on neither the
code matrix x nor the collusion output ȳ. This result is not
surprising; the s = 1 score is known to reach asymptotic
capacity.

VI. NUMERICS

Figs. @@ show simulation results. For each shown combi-
nation of parameters we have run the following experiment
106 times: generate p̄; generate the colluder symbols; apply
the attack strategy to obtain ȳ; generate the �xy-matrix for
the innocent users; compute the tJ�[J] tallies; compute scores
using c0 = c. The ROC curve for a given score function is
plotted by varying the threshold Z. An estimate for PFP is

computed as the fraction of simulation runs in which it occurs
that innocent scores lie above Z. Similarly, PFN is estimated
as the fraction of simulation runs in which all colluder scores
lie below Z. Due to the finite number of runs, probabilities of
order 1/#runs and smaller cannot be estimated accurately, as
is evident from the @jumps at the bottom of the graphs.
Note that we generated the bias vectors without a cutoff on
p-space. This means that our results for the Tardos score and
Oosterwijk score are too pessimistic, as they require a cutoff
to perform optimally.

0.0 0.2 0.4 0.6 0.8 1.0

−6
−5

−4
−3

−2
−1

0

majority voting

fn

lo
g1
0(
Pf
p)

log10 PFP

PFN

Majority Voting attack
c = 12
n = 1000
` = 1998
q = 2

Laarhoven

s=1
s=3

s=2

Fig. 1. .

@*********************
Welke plotjes willen we:

• Interleaving c = 5. Het plotje met n = 1000, L = 1002
zag er leuk uit. Kunnen we een variant maken met een
wat kleinere L, zodat de s = 2 curve de �6 bereikt rond
PFP = 0.5?

• Interleaving c = 12.
• Minority Voting
• Majority Voting. variant op plotje van 22 mei, met wat

grotere L en aantal runs.
@*********************
In the ROC curves we notice the following trends:

• In case of the Interleaving attack there is a clear im-
provement in the effectiveness of the tally-based score
when we go from s = 1 (the score introduced in [27]) to
s = 2. The step from s = 2 to s = 3 has far less effect.
All improvements become smaller with increasing c, in
accordance with Section V-D.

• When the attack is not Interleaving, the composite tally-
based score is not necessarily the best score function.
Furthermore, with increasing s the performance can get
worse. (The mismatch between the actual attack and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

The other ⇤-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.

D. Large-c asymptotics

We now study the large-c asymptotics of the score function
(14). We define ⌫ = E[n/(cTY)]. For most attack strategies
it holds that ⌫ ⌧ 1 asymptotically. The Minority Voting
attack is an exception. We look at the case ⌫ ⌧ 1. In
Sections V-A to V-C we notice that each ‘disappearance’ of a
factor t is accompanied by a factor ⇡ n/c. Thus, the dominant
term in the ⇣-summations in (14) comes from the partition
{{1}, . . . , {s}}. The other terms are of relative order ⌫ or
smaller. We have

gs(⇠,�, t) =

ln(�1 +
n � s

n � c

sY

i=1

[1 +
�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

][1 + O(
⌫

n
)])

= ln(�1 +
n � s

n � c
[1 +

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

n
)])

= ln
c � s

n � c

+ ln(1 +
n � s

c � s

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
))

= ln
c � s

n � c

+ ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(
⌫

c
)). (23)

On the other hand, the sum of single-position scoresPs
i=1 h(⇠[i],�[i], t{i}) can be written as

sX

i=1

ln(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln
sY

i=1

(1 +
n � 1

c � 1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

)

= ln(1 +
n � 1

c � 1

sX

i=1

�⇠[i]�[i]

t
{i}
�[i] � �⇠[i]�[i]

+ O(⌫2)). (24)

We see that asymptotically the composite-symbol score be-
comes equivalent to the sum of single-position scores, up to
an unimportant term ln c�s

n�c which depends on neither the
code matrix x nor the collusion output ȳ. This result is not
surprising; the s = 1 score is known to reach asymptotic
capacity.

VI. NUMERICS

Figs. @@ show simulation results. For each shown combi-
nation of parameters we have run the following experiment
106 times: generate p̄; generate the colluder symbols; apply
the attack strategy to obtain ȳ; generate the �xy-matrix for
the innocent users; compute the tJ�[J] tallies; compute scores
using c0 = c. The ROC curve for a given score function is
plotted by varying the threshold Z. An estimate for PFP is

computed as the fraction of simulation runs in which it occurs
that innocent scores lie above Z. Similarly, PFN is estimated
as the fraction of simulation runs in which all colluder scores
lie below Z. Due to the finite number of runs, probabilities of
order 1/#runs and smaller cannot be estimated accurately, as
is evident from the @jumps at the bottom of the graphs.
Note that we generated the bias vectors without a cutoff on
p-space. This means that our results for the Tardos score and
Oosterwijk score are too pessimistic, as they require a cutoff
to perform optimally.

0.0 0.2 0.4 0.6 0.8

−6
−5

−4
−3

−2
−1

0

minority voting

fn

lo
g1

0(
Pf

p)

Tally
Laarhoven
s = 2
s = 3

log10 PFP

PFN

Minority Voting attack
c = 5
n = 1000
` = 1002
q = 2

From top to bottom:
s=3, s=2, Laarhoven, s=1

Fig. 1. .

@*********************
Welke plotjes willen we:

• Interleaving c = 5. Het plotje met n = 1000, L = 1002
zag er leuk uit. Kunnen we een variant maken met een
wat kleinere L, zodat de s = 2 curve de �6 bereikt rond
PFP = 0.5?

• Interleaving c = 12.
• Minority Voting
• Majority Voting. variant op plotje van 22 mei, met wat

grotere L en aantal runs.
@*********************
In the ROC curves we notice the following trends:

• In case of the Interleaving attack there is a clear im-
provement in the effectiveness of the tally-based score
when we go from s = 1 (the score introduced in [27]) to
s = 2. The step from s = 2 to s = 3 has far less effect.
All improvements become smaller with increasing c, in
accordance with Section V-D.

• When the attack is not Interleaving, the composite tally-
based score is not necessarily the best score function.
Furthermore, with increasing s the performance can get
worse. (The mismatch between the actual attack and

Fig. 1. ROC curves for the Laarhoven score function, the tally-based score
function (“s = 1”) and the composite-symbol score functions with s = 2 and
s = 3, for various attacks and parameter settings.

the set of indices where λ ∈ Qs contains a ‘0’.2 Then
(
n

c

)
EM |tθ

All1
λ|M =

∑

J⊆[s]: Z(λ)⊆J

(
tJ0
c

)
(−1)|J|−|Z(λ)|. (25)

In case Z(λ) is empty, the term J = ∅ is part of the
summation.
Proof: We introduce the abbreviation Dλ

def
=
(
n
c

)
EM |tθAll1

λ|M .
We use induction on s, starting at s = 1. For s = 1 we get
D0 =

(
n
c

)
PrM |t[M = ce0] =

(
t0
c

)
, and D1 =

(
n
c

)
EM |t[1−

θAll1
0|M] =

(
n
c

)
−
(
t0
c

)
. This is consistent with the right hand

side of (25). Next we assume that (25) holds for some s ≥ 1.
We append a ‘0’ to the (composite) symbol λ ∈ Qs, creating
a composite symbol λ0 ∈ Qs+1. The appended 0 does not
‘do’ anything, in the sense that it only imposes the simple
constraint that all colluders receive a 0 in position s+ 1. The
result Dλ0 is obtained from (25) simply by appending a ‘0’
in the index of the tally tJ0 ,

Dλ0 =
∑

J⊆[s]: Z(λ)⊆J

(
t
J∪{s+1}
0

c

)
(−1)|J|−|Z(λ)|

=
∑

J⊆[s]: Z(λ)⊆J

(
t
J∪{s+1}
0

c

)
(−1)|J∪{s+1}|−|Z(λ0)|

=
∑

J′⊆[s+1]: Z(λ0)⊆J′

(
tJ
′

0

c

)
(−1)|J

′|−|Z(λ0)|. (26)

Eq. (26) exactly matches (25). Furthermore, we can permute
the positions in λ0; this yields Dperm(λ0) expressions that
also satisfy (25). The only symbol in Qs+1 that we have not
covered yet is 11 · · · 1. For this one we use

∑
λ θλ|M = 1.

D1s+1 =

(
n

c

)
−

∑

λ∈Qs+1:λ6=1s+1

Dλ

=

(
n

c

)
−

∑

λ∈Qs+1

λ 6=1s+1

∑

J⊆[s+1]
Z(λ)⊆J

(
tJ0
c

)
(−1)|J|−|Z(λ)|

=

(
n

c

)
−
∑

J⊆[s+1]
J 6=∅

(
tJ0
c

)
(−1)|J|

∑

λ∈Qs+1

λ6=1s+1,Z(λ)⊆J

(−1)−|Z(λ)|.

The λ-summation can be seen as a sum that starts with the
unique λ satisfying Z(λ) = J , and then in increasingly more
positions a 0 is flipped to 1. The number of choices how to flip
b positions is

(|J|
b

)
. Thus the λ-summation can be computed

using the binomial sum rule as
∑|J|−1
b=0

(|J|
b

)
(−1)|J|−b = −1.

The result for D1s+1 is precisely of the form (25), with
(
n
c

)

being the J = ∅ term.
Substitution of (25) into (9) yields a full score system.
Example 1: For s = 2, Theorem 6 yields

D00 =

(
t00

c

)

D01 =

(
t00 + t01

c

)
−
(
t00

c

)
(27)

D11 =

(
n

c

)
−
(
t00 + t01

c

)
−
(
t00 + t10

c

)
+

(
t00

c

)
.

2For example, Z(10110) = {2, 5}; Z(11) = ∅.

7

The D10 follows by permuting the positions in the D01 result.
Note that t00 + t01 = t

{1}
0 , t00 + t10 = t

{2}
0 , t00 = t

{1,2}
0 and

n = t∅0.
We briefly comment on the amount of work required to
compute all user scores. First, all the tallies have to be
computed. The effort is similar to the Interleaving attack case,
of order 2s−|Z(λ)|n`/s.
The number of terms in (25) is 2s−|Z(λ)|, and each term
requires a number of multiplications proportional to c. There
are n users. The number of composite-symbol scores is `/s.
Hence the multiplication effort scales as cn`2s−|Z(λ)|/s.

VIII. SUMMARY

We have introduced a new class of score functions for q-
ary traitor tracing. It is obtained from the tally-based score
function of [27] by combining s consecutive q-ary symbols
from a user’s codeword into a single composite symbol.
For general s the score is given by the rather complicated
expression (14). From our numerical experiments it seems that
in practice one rarely needs more than s = 2. When the attack
is not Interleaving, other scores can perform better. Hence our
new score functions should be used as part of a battery of
different score functions.
We applied the composite-symbol technique to Group Testing;
this yields the general result (25). Future work will show how
much performance is gained. Note that the Neyman-Pearson
approach to obtain score functions is particularly well suited
here since the ‘attack’ θ is known precisely.
As other future work we mention: (i) Going to the Combined
Digit Model [29] instead of the Restricted Digit Model. Eq. (9)
is general enough to accommodate this. (ii) Study q ≥ 3.
(iii) Sorting the columns of the code matrix in order of
increasing ty , and apply a large s to the lowest-ty columns.
This binds the most informative columns (low ty) together.
(iv) Study the case c > c0.

ACKNOWLEDGMENT

Thijs Laarhoven and Benne de Weger are thankfully acknowl-
edged for useful discussions.

REFERENCES

[1] E. Amiri and G. Tardos. High rate fingerprinting codes and the
fingerprinting capacity. In SODA 2009, pages 336–345, 2009.

[2] Y.M.M. Bishop, S.E. Fienberg, and P.W. Holland. Discrete multivariate
analysis: theory and practice. M.I.T. Press, 1975.

[3] O. Blayer and T. Tassa. Improved versions of Tardos’ fingerprinting
scheme. Designs, Codes and Cryptography, 48(1):79–103, 2008.

[4] A. Charpentier, C. Fontaine, T. Furon, and I.J. Cox. An asymmetric
fingerprinting scheme based on Tardos codes. In Information Hiding
2011, volume 6958 of LNCS, pages 43–58. Springer, 2011.

[5] A. Charpentier, F. Xie, C. Fontaine, and T. Furon. Expectation maxi-
mization decoding of Tardos probabilistic fingerprinting code. In SPIE
Media Forensics and Security 2009, page 72540, 2009.

[6] C.J. Colbourn, D. Horsley, and V.R. Syrotiuk. Frameproof codes and
compressive sensing. In 48th Allerton Conference on Communication,
Control, and Computing, pages 985–990, 2010.

[7] N.G. de Bruijn. Asymptotic methods in analysis (3rd ed.). Dover, 1981.
[8] R. Dorfman. The detection of defective members of large populations.

The Annals of Mathematical Statistics, 14(4):436–440, 1943.
[9] T. Furon and M. Desoubeaux. Tardos codes for real. In IEEE Workshop

on Information Forensics and Security (WIFS) 2014, 2014.

[10] T. Furon, A. Guyader, and F. Cérou. On the design and optimization of
Tardos probabilistic fingerprinting codes. In Information Hiding 2008,
volume 5284 of LNCS, pages 341–356. Springer, 2008.

[11] T. Furon, L. Pérez-Freire, A. Guyader, and F. Cérou. Estimating the
minimal length of Tardos code. In Information Hiding 2009, volume
5806 of LNCS, pages 176–190, 2009.

[12] Y.-W. Huang and P. Moulin. Capacity-achieving fingerprint decoding.
In IEEE Workshop on Information Forensics and Security (WIFS) 2009,
pages 51–55, 2009.

[13] Y.-W. Huang and P. Moulin. On the saddle-point solution and the large-
coalition asymptotics of fingerprinting games. IEEE Transactions on
Information Forensics and Security, 7(1):160–175, 2012.

[14] Y.-W. Huang and P. Moulin. On the fingerprinting capacity games
for arbitrary alphabets and their asymptotics. IEEE Transactions on
Information Forensics and Security, 9(9):1477–1499, 2014.

[15] Ye.-W. Huang and P. Moulin. On fingerprinting capacity games
for arbitrary alphabets and their asymptotics. In IEEE International
Symposium on Information Theory (ISIT) 2012, pages 2571–2575, 2012.

[16] T. Laarhoven. Efficient probabilistic group testing based on traitor
tracing. In 51st Allerton Conference on Communication, Control and
Computing, pages 1458–1465, 2013.

[17] T. Laarhoven and B. de Weger. Optimal symmetric Tardos traitor tracing
schemes. Designs, Codes and Cryptography, pages 1–21, 2012.

[18] P. Meerwald and T. Furon. Group testing meets traitor tracing. In IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP) 2011, pages 4204–4207, 2011.

[19] P. Meerwald and T. Furon. Towards Joint Tardos Decoding: The ‘Don
Quixote’ Algorithm. In Information Hiding 2011, pages 28–42, 2011.

[20] K. Nuida. Short collusion-secure fingerprint codes against three pirates.
In Information Hiding 2010, volume 6387 of LNCS, pages 86–102.
Springer, 2010.

[21] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe,
K. Ogawa, and H. Imai. An improvement of discrete Tardos fingerprint-
ing codes. Designs, Codes, and Cryptography, 52(3):339–362, 2009.

[22] J.-J. Oosterwijk, B. Škorić, and J. Doumen. Optimal suspicion functions
for Tardos traitor tracing schemes. In ACM Information Hiding and
Multimedia Security Workshop (IH&MMSec) 2013, pages 19–28, 2013.

[23] A. Simone and B. Škorić. Accusation probabilities in Tardos codes:
beyond the Gaussian approximation. Designs, Codes and Cryptography,
63(3):379–412, 2012.

[24] D.R. Stinson, T. van Trung, and R. Wei. Secure frameproof codes,
key distribution patterns, group testing algorithms and related structures.
Journal of Statistical Planning and Inference, 86(2):595–617, 2000.

[25] G. Tardos. Optimal probabilistic fingerprint codes. In ACM Symposium
on Theory of Computing (STOC) 2003, pages 116–125, 2003.

[26] G. Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2):1–24,
2008.

[27] B. Škorić. Tally-based simple decoders for traitor tracing and group
testing. IEEE Transactions on Information Forensics and Security,
10(6):1221–1223, 2015.

[28] B. Škorić, S. Katzenbeisser, and M.U. Celik. Symmetric Tardos
fingerprinting codes for arbitrary alphabet sizes. Designs, Codes and
Cryptography, 46(2):137–166, 2008.

[29] B. Škorić, S. Katzenbeisser, H.G. Schaathun, and M.U. Celik. Tardos
Fingerprinting Codes in the Combined Digit Model. IEEE Transactions
on Information Forensics and Security, 6(3):906–919, 2011.

[30] B. Škorić and J.-J. Oosterwijk. Binary and q-ary Tardos codes, revisited.
Designs, Codes, and Cryptography, July 2013.

[31] B. Škorić, T.U. Vladimirova, M.U. Celik, and J.C. Talstra. Tardos
Fingerprinting is Better Than We Thought. IEEE Transactions on
Information Theory, 54(8):3663–3676, 2008.

[32] F. Xie, T. Furon, and C. Fontaine. On-off keying modulation and Tardos
fingerprinting. In Multimedia & Security (MM&Sec) 2008, pages 101–
106. ACM, 2008.

APPENDIX

A. Proof of Theorem 1

The score (8) is invariant under permutation of all the users
other than j. Hence all the relevant information present in
x is contained in the codeword x̄j = ξ ∈ Qs and the tally
vector t (which is now defined over Qs). For ` = s the
M̄ corresponds to the composite-symbol tally M , and the

8

sequence ȳ corresponds to λ ∈ Qs. The expectation EM̄ |x
equals EM |t,ξ. The score (8) now takes the form

ln

∑
m θλ|m

1

(n−1
c−1)

(
tξ−1
mξ−1

)∏
α∈Qs\{ξ}

(
tα
mα

)

∑
m θλ|m

1

(n−1
c)

(
tξ−1
mξ

)∏
α∈Qs\{ξ}

(
tα
mα

) . (28)

Here we have used that for j ∈ C we have to choose c − 1
colluders from n−1 users, while symbol ξ is ‘used up’ once by
a colluder. For j /∈ C we have to choose c colluders from n−1
users, with ξ being used up by an innocent user, which does
not affect mξ. Next we discard the factors

(
n−1
c−1

)
and

(
n−1
c

)
,

since they lead to a constant offset of the logarithm, which
has no effect on the score system. Then we use

(
tξ−1
mξ−1

)
=(

tξ
mξ

)
−
(
tξ−1
mξ

)
, allowing us to simplify the score to

ln(

∑
m θλ|m

∏
α∈Qs

(
tα
mα

)
∑

m θλ|m
∏
α∈Qs

(
tα−δαξ
mα

) − 1)

= ln(

∑
m θλ|m

∏
α∈Qs

(
tα
mα

)
∑

m θλ|m
∏
α∈Qs

(
(t−eξ)α
mα

) − 1). (29)

Finally we use the definition (3) for the conditional probability
Lm|t, taking into account that the tally vector t− eξ pertains
to n− 1 users.

B. Proof (sketch) of Theorem 2

We start from (11). We write
∏s
i=1Mzi as

∏
α∈QsM

rα
α ,

with
∑
α rα = s. Every increase of a counter rα requires

a Kronecker Delta of the form δzizj . Next we express powers
in terms of falling factorials using Stirling numbers of the
2nd kind, Mrα

α =
∑rα
kα=0{ rαkα }M

(kα)
α . Then we compute

the expectation EM |t using (4). If rα = 1 then the result
contains one power of tα. For larger rα, the powers of tα
that occur in the result are trαα , t

rα−1
α , . . . , tα. All of these

contributions can be written as a product of tzi factors, where
the δzizj factors cause the powers ≥ 1. The constraints on the
composite symbols zi, as imposed by the Kronecker Deltas
δzi[i],λ[i] in (11), when summed over in combination with the
tzi tallies and the δzizj factors, yield expressions of the form
tJλ[J]

def
=
∑
z tzδz[J],λ[J] as defined in Section IV-A. For every

i ∈ [s] there is a δzi[i],λ[i] constraint; hence the whole set
[s] is covered and the distribution of the constraints over the
available tzi factors corresponds to a partition of [s].

