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Abstract

Recent results of Cascudo, Cramer, and Xing on the construction of
arithmetic secret sharing schemes are improved by using some new bounds
on the torsion limits of algebraic function fields. Furthermore, new bounds
on the torsion limits of certain towers of function fields are given.

Keywords: Algebraic function fields, torsion limits, Riemann-Roch
systems of equations, arithmetic secret sharing schemes.

1 Introduction

Secret sharing is a cryptographic mechanism allowing to distribute shares among
different parties. This is achieved by a trusted dealer in such a way that only
authorized subset of parties can determine the secret [3]. Unlike conventional
cryptographic schemes, secret sharing schemes enable the user to eliminate the
root of trust problem [3, 21]. Furthermore, secret sharing has plenty of pri-
vacy preserving real-life applications ranging from access controls [20], oblivous
transfers [23] to biometric authentication schemes [13].

If the authorized subset has the cardinality larger than a predetermined lower
bound, then secret sharing schemes have the property of threshold access struc-
ture [9]. Moreover, a secret sharing scheme is called ideal if the shares have
the same size as secrets [3]. Shamir’s secret sharing scheme is a classical exam-
ple of an ideal secret sharing scheme having threshold access structure. Since
the shares are computed and reconstructed by using only linear algebra [18],
it is also an example of linear secret sharing schemes (LSSS). Ito et al. [16]
introduced secret sharing schemes for general access structures. Moreover, an
LSSS can be constructed for any access structure [17]. However, the shares grow
exponentially in the number of parties, and the optimization of secret sharing
schemes for arbitrary access structures is a difficult problem [3].
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Chen and Cramer [6] introduced an LSSS defined over a finite field using
algebraic-geometry codes (AG-codes). Unlike the general case, this scheme has
the advantage that shares are much smaller than the number of parties since
one uses algebraic curves with many rational points. Therefore, this achieves
larger information rate by generalizing Shamir’s secret sharing scheme into an
algebra-geometric setting. One inevitable disadvantage (due to the bounds on
MDC [6]) is that this scheme is an ideal ramp secret sharing scheme, i.e. a
quasi-threshold scheme. In particular, one has the property that the scheme
has t-rejecting and t + 1 + 2g-accepting structure, where g is the genus of the
underlying maximal algebraic curve.

Cascudo, Cramer, and Xing [4] introduced arithmetic secret sharing schemes
which are special quasi-threshold Fq-linear secret sharing schemes based on
AG-codes. They can be used as the main algorithmic primitives in realizing
information theoretically secure multi-party computation schemes (in particu-
lar, communication-efficient two-party cryptography) and verifiable secret shar-
ing schemes [5, 7]. More precisely, it is shown in [6] that asymptotically good
arithmetic secret sharing schemes can be used to achieve constant-rate com-
munication in secure two-party communication by removing logarithmic terms
which appears if one instead uses Shamir’s secret sharing scheme [21]. As ar-
gued in [4], these schemes can be also used as an important primitive in plenty
of other useful applications in cryptography including zero-knowledge for circuit
satisfiability [14] and efficient oblivous transfers [15].

Constructing asymptotically good arithmetic secret sharing schemes is based on
some special families of algebraic function fields. Besides the well-known notion
of Ihara limits for constructing asymptotically good function field towers, the
notion torsion limits for algebraic function fields is introduced in [4]. Geomet-
rically, in order to construct arithmetic secret sharing schemes with asymptot-
ically good properties, we need not only to have algebraic curves with many
rational points but also to have jacobians (of corresponding algebraic curves)
having comparably small d-torsion subgroups. On the algebraic side, the tor-
sion limit for a function field tower with a given Ihara limit gives information on
the size of d−torsion subgroups of the corresponding degree-zero divisor class
groups. In [4], the authors give asymptotical results improving the classical
bounds of Weil [26] on the size of torsion subgroups of abelian varieties over
finite fields. For this purpose, the existence of solutions for certain Riemann-
Roch systems of equations is investigated. The authors further give new bounds
on the torsion limits of certain families of function fields. Consequently, they
use these bounds in constructing asymptotically good arithmetic secret-sharing
schemes by weakening the lower bound condition on the Ihara constant.

In this work, we made some modifications and improvements on their results
by using the bound on class number given by [19]. Moreover, we estimated the
torsion limit of an important class of towers of function fields introduced by
Bassa et al. depending on the Ihara limit given in [2]. For example for the case
d > 2, these new bounds can easily be adapted to improve the communication
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complexity of zero knowledge protocols for multiplicative relations introduced
in [8].

In Section 2 we revisit the preliminaries about algebraic function fields together
with algebraic-geometry codes and Riemann-Roch systems of equations. We
further investigate the bounds on the torsion limits in Section 2. Then, we
apply the result for the bounds on the torsion limits for function field towers
in Section 3. In Section 4 new conditions for the construction of arithmetic
schemes are investifated and the results are proven. We construct families of
arithmetic secret sharing schemes with uniformity in Section 5. Moreover, we
give examples yielding to infinite families of arithmetic secret sharing schemes
in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

Let F/Fq be a function field over the finite field Fq with q elements, where q
is a power of a prime number p. We denote by g := g(F ) its genus, by Bi(F )
its number of places of degree i for any i ∈ N, and by P(F ) its set of rational
places.

An asymptotically exact sequence of algebraic function fields F = Fii≥0 over a
finite field Fq is a sequence of function fields such that for all m ≥ 1 the following
limit exists:

βm(F) = lim
i→∞

Bm(Fi)

gi
.

It is well-known that any tower of function fields over any finite field is an exact
sequence, see for instance [11].

We will use the following notations frequently:

• An: The number of effective divisors of degree n, for n ≥ 1.

• hi: The class number of Fi/Fq for any family of function fields F =
(Fi)i≥1.

• P(k)(F ): The set of places of F/Fq having degree k ∈ N.

• log := ln.

• CI(F ) := Div(F )/Prin(F ): The divisor class group of F/Fq.

• CIs(F ) := {[D] : degD = s}, where [D] ∈ CI(F ) stands for the divisor
class containing D.

• Div0(F ): The group of divisors of F with degree zero,

• JF = Div0(F )/Prin(F ): The zero divisor class group of F with cardinality
|JF | = h(F ), which is called the class number.
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• C(D,G)L : The image of the map φ : L(G)→ Fkq × Fnq ,
f 7→ (f(Q1), · · · f(Qk), f(P1), · · · f(Pn)), where L(G) is the Riemann-Roch
space of G, k, n ∈ N, n ≥ k, G is a divisor of F , Q1, · · · , Qk, P1, · · ·Pn ∈
P(1)(F ) are pairwise distinct Fq-places with D =

∑k
j=1Qj +

∑n
i=1 Pi and

supp D ∩ supp G = ∅.

For a positive integer r, let

JF [r] := {[D] ∈ JF : r · [D] = O}

be the r-torsion subgroup of JF , where O denotes the identity element of JF .
For each family F = {F/Fq} of function fields with g(F )→∞, the limit

Jr(F) := lim inf
F∈F

logq |JF [r]|
g(F )

is called the r-torsion limit of the family F . Let a ∈ R and F be the set of
families {F} of function fields over Fq such that in each family genus tends to
infinity and the Ihara limit

A(F) = lim
g(F )→∞

B1(F )

g(F )
≥ a for every F ∈ F.

Then the asymptotic quantity Jr(q, a) is defined by

Jr(q, a) := lim inf
F∈F

Jr(F).

We note that we only consider the Ihara limit for function field families F for
which this limit exists following the lines of [4, Remark 2.1].

An (n, t, d, r)-arithmetic secret sharing scheme for Fkq over Fq is an n-code C

for Fkq such that t ≥ 1, d ≥ 2, C is t-disconnected, the d powering C∗d is an

n-code for Fkq , and C∗d is r-reconstructing. For further details, the relation of
these codes with C(D,G)L, and the concept of uniformity we refer to [4, pp.
3873-3875].

Firstly, we investigate the bounds on torsion limits in the following theorem by
combining the bounds in Theorems 2.3 and 2.4 of [4]:

Theorem 1. Let Fq be a finite field of characteristic p. For any integer r ≥ 2,
set Jr := Jr(q, A(q)). Write r as r = plr′ for some l ≥ 0 and a positive integer

r′ coprime to p. Let c := gcd(r′, q − 1) and k :=
l
√
q√

q+1 .

(i) If r | q and q is a square, then Jr ≤ 1√
q+1 logq r.

(ii) If r | (q − 1), then Jr ≤ 2 logq r.

(iii) If r - (q − 1) and, q is non-square or c > pk, then Jr ≤ logq r.
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(iv) If r - q, r - (q − 1), q is a square, and c ≤ pk, then

Jr ≤
l

√
q + 1

logq p+ logq(cr
′).

Proof. We give a complete proof by comparing the results of [4]:

(i) Applying [4, Theorem 2.4(ii)] with r = pl and r′ = c = 1 we obtain the
inequality

Jr ≤
l

√
q + 1

logq p.

(ii) This assertion is a direct consequence of [4, Theorems 2.3 and 2.4].

(iii) and (iv) When r - (q − 1), [4, Theorem 2.3(ii)] yields to Jr ≤ logq r.
Furthermore, when q is a square, we obtain

Jr ≤
l

√
q + 1

logqr, (1)

by [4, Theorem 2.3(iii)]. Using [4, Theorem 2.4(ii)], also the following
inequality holds:

Jr ≤
l

√
q + 1

logqp+ logq(cr
′). (2)

Hence, by inequalities (1), (2), and substituting the value r = plr′, we get

A :=
l

√
q + 1

logqp+ logq(cr
′)− logq r

=
−l√q
√
q + 1

logq p+ logq c.

Since A ≥ 0 if and only if c ≥ pk, assertion (iv) follows.

We remark that for Theorem 1(iv) with c < pk, [4, Theorem 2.4] gives a better
upper bound on Jr than [4, Theorem 2.3].

Remark 1. It is well-known from Weil [26] that for any function field F/Fq
with genus g one has |JF [r]| ≤ r2g, and hence Theorem 1(ii) always holds.

The following definition and theorems will be used in the subsequent sections:

Definition 1. Let u ∈ N, mi ∈ Z \ {0}, and Yi ∈ Cl(F ) for i = 1, . . . , u.
The Riemann-Roch system of equations in the indeterminate X is the system
of equations

{`(miX + Yi) = 0}ui=1 (3)

determined by these data. A solution is some divisor class [G] ∈ Cl(F ) satisfying
all equations when substituted for X.
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Theorem 2. [4, Theorem 3.2] Consider the Riemann-Roch system (3). For
i = 1, . . . , u and s ∈ Z, let

di := deg Yi and ri := mis+ di.

If one has

h(F ) >

u∑
i=1

Ari · |JF [mi]|,

then the system (3) has a solution [G] ∈ Cls(F ).

Theorem 3. [4, Theorem 4.11] Let t ≥ 1, d ≥ 2. Define I∗ := {1, . . . , n}. For
∅ 6= A ⊂ I∗ define

PA :=
∑
j∈A

Pj ∈ Div(F ).

Let further a canonical divisor K ∈ Div(F ) be given. If the system

{`(dX −D + PA +Q) = 0, `(K −X + PA +Q) = 0}A⊂I∗,|A|=t

is solvable for X, then there is a solution G ∈ Div(F ) such that the algebraic-
geometry code C = C(D,G)L is an (n, t, d, n − t)-arithmetic secret sharing
scheme for Fkq over Fq with uniformity.

3 Torsion-limits of towers

We begin with an application of Theorem 1 when q is a square:

Proposition 1. Suppose that q = pk is a square (with k ≥ 1 and p prime) and

r = plr′ where gcd(r′, p) = 1. We set c := gcd(r′, q − 1) and k :=
l
√
q√

q+1 . Then

there exists a recursive tower of function fields F over Fq such that one has

A(F) ≥ √q − 1−B + Jr(F),

where

B =


1√
q+1 logq r if r | q

2 logq r if r - q but r | (q − 1)

logqr if r - q, r - (q − 1), c ≥ pk
l√
q+1 logq p+ log(cr′) otherwise.

Proof. We know from [10] that there exists a recursive tower of function fields
F over Fq with A(F) =

√
q − 1. As q is a square, the proof follows easily from

Theorem 1.

We now need the following result of Bassa et al. [2]:
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Theorem 4. [2, Theorem 1.2] Let n = 2m + 1 ≥ 3 be an integer and q = pn

with a prime p. There exists a recursive tower of function fields F over Fq such
that

A(F) ≥ 2(pm+1 − 1)

p+ 1 + ε
, where ε =

p− 1

pm − 1
.

Next, the torsion limit of the tower given in Theorem 4 can be estimated by
using the lower bound on the Ihara limit A(F):

Proposition 2. Let n and q be given as in Theorem 4. There exists a recursive
tower of function fields F over Fq with the following properties:

(i) If p is odd, then A(F) ≥ A+ J2(F), where

A =
2(pm+1 − 1)

p+ 1 + ε
− 2 logq 2 with ε =

p− 1

pm − 1
. (4)

(ii) If p is even, then A(F) ≥ A+ logq 2 + J2(F), where A is given as in Eqn.
(4).

The proof of Proposition 2 is obvious; it follows from Theorems 1 and 4, and
Remark 1.

4 New conditions for the construction of arith-
metic secret sharing schemes

For an algebraic function field F/Fq with genus g, we set

∆ := {i : 1 ≤ i ≤ g − 1 and Bi ≥ 1} with δ := |∆|, (5)

fix an integer n ≥ 0, and further set

Un := {b = (bi)i∈∆ : bi ≥ 0 and
∑
i∈∆

i · bi = n}. (6)

It is well-known that the number of effective divisors of degree n of an algebraic
function field F/Fq is given as follows:

An =
∑
b∈Un

[∏
i∈∆

(
Bi + bi − 1

bi

)]
,

see for instance [1]. By combining this formula for An with some results of [4]
and the bound on class number given in [19] we obtained the following theorem.
This improves the sufficient conditions on the existence of arithmetic secret
sharing schemes with uniformity:
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Theorem 5. Let F/Fq be a function field of genus g, d, k, t, n ∈ N with d ≥ 2,
n > 1, and 1 ≤ t < n. Let 1 ≤ m ≤ g−1 be given such that Bm ≥ Bi for all i ∈
{1, . . . , g−1}. Moreover, set f := b g−1

m c. Suppose that Q1, Q2, . . . , Qk, P1, P2, . . . , Pn ∈
P(1)(F ) are pairwise distinct rational places and

d2g ≤
H − 2g

√
q − q − 1(

Bm+f
f

)δ , (7)

where

H :=
qg−1 · (q − 1)2

(q + 1) · (g + 1)

and δ is given as in (5). Assume further that there exists an element s ∈ Z such
that

2g − s+ t+ k − 2 = 1 and 1 ≤ ds− n+ t ≤ g − 1. (8)

Then there exists an (n, t, d, n− t)-arithmetic secret sharing scheme for Fkq over
Fq with uniformity.

Proof. We first note that |JF [d]| ≤ d2g by Remark 1. Let A be a subset of
{1, 2, . . . , n} with t elements, and

PA :=
∑
i∈A

Pi, Q :=

k∑
i=1

Qi, and D := Q+

n∑
i=1

Pi

be divisors of F/Fq. Let K be a canonical divisor of F/Fq. Consider the
following system of Riemann-Roch equations:

{`(dX −D + PA +Q) = 0, `(K −X + PA +Q) = 0}. (9)

We apply Theorems 2 and 3 with

r1 = 2g − s+ t+ k − 2, r2 = ds− n+ t, m1 = −1, m2 = d,

and an s ∈ Z satisfying that ri := mis + di for i = 1, 2. Hence, it is enough to
show that

h = h(F ) > Ar1 · |JF [m1]|+Ar2 · |JF [m2]|.
This guarantees that there exists a solution G ∈ Div(F ) of (9) with deg(G) = s.
Again by Theorems 2 and 3, this solution yields to an AG-code C(G,D)L ⊆
Fkq × Fnq which is an (n, t, d, n− t)-arithmetic secret sharing scheme for Fkq over
Fq with uniformity. We now set

H :=
qg−1(q − 1)2

(q + 1)(g + 1)
.

It follows from [19] that h ≥ H. We set uj := |Urj |, with Urj as in (6), for
j = 1, 2. Let m ∈ ∆ such that(

Bm + b g−1
m c

b g−1
m c

)
:= max

{(Bi + b g−1
i c

b g−1
i c

)
| i ∈ ∆

}
. (10)
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Note that r1 = 1 implies Ar1 = A1 = B1. We obtain the following inequality
by using the bound on Ar2 given in [1, Theorem 3.5]:

Ar1 +Ar2 · JF [d] ≤ B1 +
∏
i∈∆

(
Bi + b g−1

i c
b g−1

i c

)
· |JF [d]|

≤ B1 +

(
Bm + f

f

)δ
· |JF [d]|

≤ B1 +

(
Bm + f

f

)δ
· d2g

≤ H. (11)

Hence, Inequality (11) holds by the assumption (7) due to Hasse-Weil bound
[22].

Firstly, we give an estimatition for An. Our aim is to estimate the cardinality
of Un. We know that the partitions of a number n is correspond to the set of
solutions (j1, j2, ..., jn) to the Diophantine equation

1j1 + 2j2 + 3j3 + ...+ njn = n.

For example, two distinct partitions of 4 can be given by (1, 1, 1, 1), (1, 1, 2) corre-
sponding to the solutions (j1, j2, j3, j4) = (4, 0, 0, 0), (2, 1, 0, 0), respectively. To
compute |Un|, we need to find the number of partitions p(n, δ) of n into at most
δ partitions, where δ = |∆|. It follows from [12, p.9] that p(n, δ) = pδ(n + δ),
where pδ(n+ δ) is defined to be the number of partitions of n+ δ into exactly δ
partitions. Each δ parts must contain at least 1 item. Thus, it remains n which
needs to be distribute into the δ parts. It is enough to choose how many to
put in the first δ − 1 parts, since the number going into the last part is fixed.
Hence, there are δ−1 choices, within the range [0, n]. This means we have n+1
choices. Therefore,

pδ(n+ δ) ≤ (n+ 1)δ−1. (12)

Theorem 6. Let F/Fq be a function field, d, k, t, n ∈ N with d ≥ 2, n > 1, and
1 ≤ t < n. Let 1 ≤ m ≤ g − 1, be such that Bm ≥ Bi for all i ∈ {1, . . . , g −
1}. Suppose that Q1, Q2, . . . , Qk, P1, P2, . . . , Pn ∈ P(1)(F ) are pairwise distinct
rational places and

d2g ≤ H −B1

(r2 + 1)δ−1 ·
(
e ·
(

1 + r2−1
Bm−1

)r2)δ , (13)

where

H :=
qg−1 · (q − 1)2

(q + 1) · (g + 1)

and δ is given as in (5). Assume further that there exists an s ∈ Z such that

2g − s+ t+ k − 2 = 1 and ds− n+ t ≥ 1.
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Then there exists an (n, t, d, n− t)-arithmetic secret sharing scheme for Fkq over
Fq with uniformity.

Proof. The proof is similar to that of Theorem 5. The main difference is that
instead of (refmax) we the bound (14) for binomial coefficients. Note that bi ≤ n
for all i ∈ ∆. By applying induction on n the following inequality can be proven:(

Bm + n− 1

n

)
=

(
Bm + n− 1

Bm − 1

)
(14)

≤
(
e · (Bm + n− 1)

n

)n
.

Hence, by using (12) with n = r2 and (14) and definition of An, we obtain that

Ar1 +Ar2 · JF [d] ≤ B1 +
∑
b∈Ur2

∏
i∈∆

(
Bi + bi − 1

Bi − 1

)
· |JF [d]|

≤ B1 +
∑
b∈Ur2

(
Bm + n− 1

Bm − 1

)δ
· |JF [d]|

≤ B1 + (n+ 1)δ−1

(
Bm + n− 1

Bm − 1

)δ
· d2g

= B1 +
[(n+ 1)

(
Bm+n−1
Bm−1

)
]δ

n+ 1
· d2g

= B1 +
((n+ 1)e(1 + n−1

Bm−1 )n)δ

n+ 1
· d2g

≤ H.

This inequality holds by Assumption (13).

5 Construction of families of schemes with uni-
formity

We now consider exact sequences of function fields over finite fields. The suffi-
cient conditions on the existence of families of arithmetic secret sharing schemes
with uniformity [4, Theorems 4.15 and 4.16] can be given by imposing certain
conditions on the sequences of F = {Fi/Fq}i≥1 of function fields. We first need
the following results:

Proposition 3. [25, Corollary 2] Let F = {Fi}i≥0 be an exact sequence of
function fields over a finite field Fq. Then the following limit exists:

h(F) := lim
i→∞

log hi
gi

.

10



Theorem 7. [25, Theorem 6] The following limit exists for an asymptotically
exact family of function fields F over any finite field Fq:

∆(µ) := lim
i→∞

Ani

gi
,

where ni := bµgic and µ ∈ R≥0. Moreover, for

µ0 :=

∞∑
m=1

mβm(F)

qm − 1
and µ ≥ µ0 (15)

we have
∆(µ) = h(F)− (1− µ) · log q.

The main result concerning exact sequences of function fields and good artih-
metic secret sharing schemes is given with the following theorem.

Theorem 8. Let d ≥ 2 be a positive integer and F = {Fi}i≥0 be an asymp-
totically exact family of function fields over Fq. Let further µ be given as in
Condition (15). For any ni, ki ∈ N, with i ≥ 0, suppose that the following
assertions hold:

(i) Jd(F) ≤ (1− µ) log q,

(ii) B1(Fi) ≥ ni + ki.

Then there exist ti ∈ N depending on ni satisfying 1 ≤ ti < ni, and an infinite
family of {(ni, ti, d, ni − ti)}i≥0 arithmetic secret sharing schemes for Fkiq over
Fq with uniformity.

Proof. For a fixed i ≥ 0 let

Qi,1, Qi,2, . . . , Qi,k, Pi,1, Pi,2, . . . , Pi,ni

be distinct rational places of Fi/Fq. For simplicity we write k := ki, n := ni,
and t := ti. Assume that I = {1, 2, . . . ni} and A ⊆ I with |A| = t. Define

Pi,A :=
∑
j∈A

Pi,j ∈ Div(Fi) and Qi :=

k∑
j=1

Qi,j ∈ Div(Fi).

Let Ki ∈ Div(Fi) be a canonical divisor of Fi/Fq and

Di := Qi +

n∑
j=1

Pi,j ∈ Div(Fi).

By [4, Theorem 4.11] it is enough to show that the system of Riemann-Roch
equations

`(Ki −X + Pi,A +Qi) = 0,

`(dX −Di + Pi,A +Qi) = 0 (16)
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has a solution Gi ∈ Div(Fi) such that degGi = si so that the AG-code
C(Gi, D)L ⊆ Fkq × Fnq is an (n, t, d, n − t) arithmetic secret sharing scheme

for Fkq over Fq with uniformity. We have the property that

d1,i := 2gi + ti + k − 2 = deg(Ki + Pi,A +Qi) and

d2,i := ti − ni = deg(−Di + Pi,A +Qi).

Notice that A1(Fi) = B1(Fi) and |JFi [−1]| = 1. We set hi := h(Fi) for all i ≥ 1.
We now apply Theorems 2 and 3 with m1 = −1, m2 = d, and choose si ∈ Z so
that

r1,i := m1 + d1,i = 2gi − si + ti + k − 2 = 1 and

r2,i := m2si + d2,i = dsi − ni + ti = bµgic ≥ 1.

This implies that if

hi ≥ 2Ar2(Fi)|JFi [d]| > B1(Fi) +Ar2(Fi)|JFi [d]| (17)

holds, then the system of equations (9) has a desired solution Gi ∈ Div(Fi). To
finish the proof, we need to verify Inequality (17). Taking logq of both sides of
(17) and dividing them by gi yield to

logq hi

gi
≥

logq 2

gi
+ logq

Ar2(Fi)

gi
+

logq |JFi
[d]|

gi
. (18)

Since the sequence F = {Fi}i≥0 is exact, it follows from Proposition 3 and
Theorem 7 that taking limit infimum of both sides of Inequality (18) gives that

h(F) = lim
i→∞

logq hi

gi

≥ lim
i→∞

logq Ar2,i(Fi)

gi
+ lim inf

i→∞

logq |JFi [d]|
gi

= ∆(µ) + Jd(F). (19)

We know from [24, Proposition 4.1] that the following inequality holds:

∆(µ) = lim inf
i→∞

logAr2,i
gi

= µ log q +

∞∑
m=1

βm log
qm

qm − 1

≥ µ log q. (20)

Now it follows from Theorem 7 and Assertion (ii) that Equation (19) holds,
which implies that Inequality (17) holds for sufficiently large i.

Remark 2. Suppose that q is a square. Then there are many function field
towers F = {Fi}i≥0 over Fq with

β1(F) = A(F) =
√
q − 1 and
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βi(F) = lim
i→∞

Bi(Fi)

gi
= 0 for all i 6= 1,

see for instance [10]. Moreover, we know from [25, Corollary 2] that for any
asymptotically exact sequence F = {Fi}i≥0 of function fields (which includes
towers), the following equality holds:

lim
i→∞

log hi
gi

= log q +

∞∑
i=1

βi(F) log
( qi

qi − 1

)
.

By Remark 2 and Theorem 8, we obtain:

Proposition 4. Suppose that q is a square and d ≥ 2 is a positive integer. Let
further µ be given as in Condition (15). There exists a tower F = {Fi}i≥0 of
function fields over Fq with ni, ki ∈ N such that the following conditions hold:

(i) µ+ Jd(F) ≤ √q + (
√
q − 1) log

(
q−1
q

)
,

(ii) B1(Fi) ≥ ni + ki for sufficiently large i.

An immediate consequence of Proposition 4 is the following corollary whose
proof follows from Remark 2, and is similar to that of Theorem 8:

Corollary 1. Suppose that q is a square and d, ki, ni ∈ N with d ≥ 2. Then
there exist ti ∈ N depending on ni satisfying 1 ≤ ti < ni, and an infinite family
of {(ni, ti, d, ni− ti)}i≥0 arithmetic secret sharing schemes for Fkiq over Fq with
uniformity.

Example 1. Let q = `2, where ` is a prime power. Consider the tower F =
{Fi}i≥0 over Fq defined by the equation

f(x, y) = y`x`−1 + y − x` ∈ Fq[x, y].

This tower is optimal [10], i.e. β1(F) = ` − 1 and βi(F) = 0 for all i ≥ 2.
Thus, the value of µ0 defined in Condition (15) is

µ0 =
1

`+ 1
.

Choose µ = µ0, d = 2. By[10, Theorem 2.10] we have

g(Fi) =

{
(q + 1)qi − (q + 2)qi/2 + 1 if i is even

(q + 1)qi − 1
2 (q2 + 3q + 2)q(i−1)/2 + 1 if i is odd.

Moreover, by [10, Proposition 3.1], we have

B1(Fi) ≥ (q − 1)`i + 2` for all i ≥ 4.

For each i ≥ 4 we choose ni, ki ∈ N in such a way that B1 ≥ ni + ki. Then
Proposition 4 is satisfied by Theorem 1. Therefore, the tower F can be used to
construct an infinite family of {(ni, ti, d, ni − ti)}i≥0 arithmetic secret sharing

schemes for Fki`2 over F`2 with uniformity.
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Example 2. Consider the example from [1, Proposition 5.20]. Let F = {Fi}i≥0

be the tower over F9 defined by the polynomial

f(X,Y ) = Y 2 + (X + b)2 − 1 ∈ F9[X,Y ], b ∈ F∗3 (21)

and F0 = F9(x0) be the rational function field. Let E = F0(z) with z is a root
of the polynomial

ϕ(T ) = (T 2 + α7)(T 9 − T )− 1

x0
∈ F0[T ],

where α is a primitive element for F9. Then the sequence E = {Ei}i≥0, with
Ei := EFi, over F9 is a composite quadratic tower such that for all i ≥ 0,

(i) B1(Ei) ≥ 9 · 2i and B2(Ei) ≥ 2i,

(ii)

gi =

{
21 · 2i−1 − 33 · 2(i−2)/2 + 6 if i ≡ 0 mod 2,

21 · 2i−1 − 11 · 2(i+1)/2 + 6 if i ≡ 1 mod 2,

where gi = g(Ei).

(iii) β1(E) = 6
7 , β2(E) = 2

21 and βj(E) = 0 for all j ≥ 3.

Thus, the value of µ0 defined in Condition (15) is

µ0 =
23

210
≈ 0.12.

Choose µ = 0.5 ≥ µ0 and for simplicity choose ki = 2, ti = 50 for all i =
1, 2, 3, 4. From the proof of Theorem 1 we obtain

r1,i = 1, r2,1 = 2, r2,2 = 7, r2,3 = 23, r2,4 = 54

for all d = 2, 3, 4, 5. We now have the following table by using the relations
given in the proof of Theorem 1:

si = 2gi + t+ k − 3 and ni = dsi + t− r2,i for i = 1, 2, 3, 4.

Table 1: Some parameters of Example 2

d jd ≤ n1 n2 n3 n4

2 0.8 166 201 309 525
3 0.8 225 280 450 791
4 0.8 288 363 595 1060
5 0.2 343 438 732 1321

Notice that for d = 2, 3, 4, 5 and q = 9 we have

Jd(E) ≤ √q + (
√
q − 1) log

(q − 1

q

)
− µ ≈ 1.9.
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6 Conclusion

In this work some bounds [4] on the construction of arithmetic secret sharing
schemes are improved by using bounds on class number [19]. We here estimated
the torsion limit of an important class of towers of function fields [2] depending
on the Ihara limit. In the case d ≥ 2, these new bounds can easily be adapted to
improve several applications of torsion limits ranging from improving the com-
munication complexity of zero knowledge protocols for multiplicative relations
[8] and bilinear complexity of finite field multiplication to obtain new results on
the asymptotics of frameproof codes.
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