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Abstract. Commitment schemes are among cryptography’s most im-
portant building blocks. Besides their basic properties, hidingness and
bindingness, for many applications it is important that the schemes ap-
plied support proofs of knowledge. However, all existing solutions which
have been proven to provide these protocols are only computationally
hiding or are not resistant against quantum adversaries. This is not
suitable for long-lived systems, such as long-term archives, where com-
mitments have to provide security also in the long run. Thus, in this
work we present a new post-quantum unconditionally hiding commit-
ment scheme that supports (statistical) zero-knowledge protocols and
allows to refreshes the binding property over time. The bindingness of
our construction relies on the approximate shortest vector problem, a
lattice problem which is conjectured to be hard for polynomial approxi-
mation factors, even for a quantum adversary. Furthermore, we provide
a protocol that allows the commitment holder to prolong the binding-
ness property of a given commitment while showing in zero-knowledge
fashion that the value committed to did not change. In addition our con-
struction yields two more interesting features: 1) the ability to “convert”
a Pedersen commitment into a lattice-based one, and 2) the construction
of a hybrid approach whose bindingness relies on the discrete logarithm
and approximate shortest vector problems.

Keywords: unconditionally hiding commitments, post-quantum, lattice-based
cryptography, long-term security, proof of knowledge

1 Introduction

Commitment schemes are arguably one of cryptography’s most basic and im-
portant primitives. Indeed, they can be found as building blocks within many
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cryptographic concepts and services, such as zero-knowledge protocols [6, 8], se-
cret sharing [22], key exchange [5], and others. A commitment scheme allows one
to publicly commit to a hidden value which may be later revealed. It is required
that 1) once the value has been committed to, it can no longer be changed by
its owner, and 2) the value remains hidden until the owner chooses to reveal it.
A scheme possessing the first property is said to be binding, and one with the
second property is called hiding.

Especially for long-lived systems such as long-term archiving (e.g., [14]), one
would like these security properties to both hold perfectly, i.e. even in the pres-
ence of computationally unbounded adversaries. However, it is well-known (and
easy to see) that this is impossible. Thus, the best one can hope for is a scheme
that is computationally binding and unconditionally (i.e. statistically or per-
fectly) hiding, or vice-versa. In other words, given a fixed commitment scheme,
at least one of these two properties will fail for this scheme, given enough time.

In addition to the basic properties (bindingness and hidingness), many appli-
cations require commitment schemes with additional functionalities. Arguably
one of the most important among those are proof of knowledge protocols. They
allow, for instance, a commitment holder to convince a challenger that it can
open a commitment, without revealing any additional information about the
opening value or secret.

Benhamouda et al. [4] presented an interesting lattice-based commitment
scheme supporting proofs of knowledge. The authors show that the scheme
is unconditionally binding and computationally hiding even for a polynomial
time quantum adversary. This scheme can consequently be considered as post-
quantum secure. Nevertheless, since it is only computationally hiding, it can
not be used in a long-term setting. This is due to the fact that an attacker can
simply store the commitment, wait until it has access to enough resources to
solve the computational problem providing the hiding property, and recover the
secret. Therefore, long-term secure commitment schemes must provide uncon-
ditional hidingness from the very beginning. In addition, since in a long-term
setting it is not reasonable to dismiss the future existence of efficient quan-
tum computers, the schemes must also be post-quantum secure. Developing an
unconditionally hiding commitment scheme supporting proofs of knowledge pro-
vides another valuable property for long-lived systems. They allow to prolong
the computational binding property over time while allowing the committed to
prove in zero-knowledge that the value committed to did not change. How to
achieve this for the Pedersen commitment scheme has been shown by Demirel et
al. [10]. In this work we show how this can be transferred to the post-quantum
world.

1.1 Contribution and roadmap

In this work we present LPCom, a Long-term Post-quantum Commitment
scheme. Our construction can be seen as a modification of the scheme presented
by Benhamouda et al. [4]. To the best of our knowledge LPCom is the first
unconditionally hiding and computationally binding lattice-based commitment
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scheme, which so far has been proven to support proofs of knowledge and offers
prolongable bindingness.

In Section 3 we introduce LPCom and prove that correctly instantiated it
is unconditionally hiding and computationally binding under standard lattice
assumptions. Section 4 shows how to perform proof of knowledge protocols for
LPCom. These protocols are used in Section 5 to construct proof of message
equality protocols, from which we build a protocol for prolonging the bindingness
of LPCom. Finally, in Section 6 we discuss how the proofs of message equality can
also be used to transform a Pedersen commitment into an LPCom commitment,
allowing to provide double-hardness (i.e. the security is based on two different
hardness assumptions). This is desired in long-term systems, since it can prevent
a loss in security in case of a sudden breakthrough on cryptanalysis.

2 Background and Notation

2.1 General Notation

Throughout the paper, vectors will be denoted by small bold letters (e.g. v),
while matrices will be denoted by capital bold letters (e.g. A). We will write
‖v‖ for the euclidian norm of the vector v. Furthermore, for q ∈ Z we write
Zq instead of Z/qZ. Sometimes, abusing notation, we identify elements in Zq
with elements in Z. For this, we will identify a residue class in Zq with its
representative of smallest absolute value whenever necessary. We also extend
this identification coordinate-wise to elements of Znq . It should always be clear
from the context when an element in Zq is viewed as an element in Z. Using this
notation, we define the length ‖v‖ for an element v ∈ Znq , by taking the norm of
the corresponding element in Zn. Notice that this length function still satisfies
the triangular inequality.

A function f : Z→ R is said to be negligible (in x) if for every positive integer
c, we have | f(x)| < 1/xc for every sufficiently large x. Based on this notation,
a (probability) function p : Z → [0, 1] is called overwhelming (in x) if 1 − p is
negligible (in x). The statistical distance is a measure for the difference of two
probability distributions. For a precise definition we refer to [11].

2.2 Lattices

A subset Λ ⊂ Rn is called a lattice in Rn if there exists an m ∈ [0, n] and m
R-linearly independent vectors b1, . . . , bm such that Λ = Zb1 + . . . + Zbm. In
this case, the vectors b1, . . . , bm are called a basis of the lattice Λ. The funda-
mental parallelepiped of a basis is defined as P = {

∑m
i=1 αibi | αi ∈ [0, 1)}. The

dimension dim(Λ) of a lattice Λ is denoted by the maximal number of R-linearly
independent lattice vectors. A lattice Λ ⊆ Rn has full rank if dim(Λ) = n. A
lattice Λ ⊆ Rn is called an integer lattice if Λ ⊂ Zn. The determinant det(Λ) of
a full rank lattice Λ is defined as the n-dimensional volume of the fundamental
parallelepiped. Note that the determinant of the lattice does not depend on the
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basis chosen but only on the lattice itself. A lattice Λ ⊆ Rn is called q-ary for
some integer q if it is an integer lattice containing qZn as a sublattice. In the
following, we will only be dealing with q-ary lattices, which by definition are full
ranked. Typically, a q-ary lattice is given in form of a matrix A ∈ Zm×n. More
precisely, for a matrix A ∈ Zm×n we define the q-ary lattice

Λq(A) = {y ∈ Zm | ∃x ∈ Znq : Ax = y mod q}.

While algebraic problems related to lattices (such as calculating intersections
and sums of lattices or checking whether a certain vector is a lattice vector) are
typically easy, certain geometric problems are believed to be hard, even in the
presence of quantum computers. The arguably most important lattice problem
is the Shortest Vector Problem (SVP): Given a lattice Λ, find a shortest non-
zero lattice vector. The length of a shortest non-zero lattice vector is referred
to as λ1(Λ). More general, for a lattice Λ ⊂ Rn and i ∈ N, by λi(Λ) we denote
the radius of the smallest n-dimensional ball centered around the origin that
contains at least i R-linearly independent lattice vectors. We call λi(Λ) the i-th
successive minimum of Λ.
The Gaussian heuristic is typically considered a good tool for estimating the
size of the successive minima of a lattice and frequently used in lattice-based
cryptography. In its original form, it estimates the number of lattice points in
a given set. We give a version of it that is used to estimate the last successive
minimum of a lattice.

Assumption 1 (Gaussian Heuristic) The m-th successive minimum of an
m-dimensional lattice Λ can be approximated by

λm(Λ) ≈
(

det(Λ)

Vm

)1/m

,

where Vm is the volume of an m-dimensional ball with radius one.

For m big enough, we have

V 1/m
m =

(
πm/2

Γ (m/2 + 1)

)1/m

≥ π1/2(
(m/2)m/2

)1/m =

√
2π

m
.

Combining this with the Gaussian heuristic leads to the assumption

λm(Λ) ≤
√
m

2π
det(Λ)1/m. (1)

Rather than the SVP, the hardness of lattice-based schemes is typically based
on a relaxation denoted by α-SVP: Given a lattice Λ and some α ≥ 1, find a
non-zero lattice vector of norm at most αλ1(Λ). This problem is conjectured
to be hard as long as α is polynomial in the lattice dimension and the lattice
contains no trivial non-zero vectors (in a q-ary lattice, we say vectors in qZn are
trivial) of length at most αλ1(Λ).
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One might ask how hard finding non-trivial short lattice vectors is in practice.
Gama and Nguyen [12] identified the hermite factor δ as the main parameter
determining the hardness of finding a lattice vector shorter than a given length.
The hermite factor δ of a lattice vector v in an m-dimensional lattice Λ is given
by

δm =
det(Λ)1/m

‖v‖
.

Current estimates claim that finding vectors with hermite factor δ = 1.01 is
hard, and already slightly smaller hermite deltas are considered out of reach for
a foreseeable future. Let Λ be a q-ary lattice and q be minimal with this property.
Then the trivial vectors are qZn, and therefore we can conclude that α-SVP on
Λ is considered to be hard as long as α is polynomial in the lattice dimension
and αλ1(Λ) < q.

Lattice-based cryptographic schemes often make use of values that are sam-
pled according to a discrete Gaussian distribution. Recall that the continuous
Gaussian distribution Dσ with Gaussian parameter σ is defined by its density
function ρσ(x) = exp(−πx2/σ2)/σ. Likewise, the n-dimensional discrete Gaus-
sian distributions Dn

v,σ centered around some v ∈ Rn with Gaussian parameter
σ is defined by

Pr[Dn
v,σ = x] =

ρσ(‖x− v‖)∑
w∈Zn ρσ(‖w‖)

.

For a probability distribution D on a set X we use the notation x
$← D in

order to say that x is sampled according to D. If x is sampled uniformly on a

set X, we simply write x
$← X.

2.3 Commitment Schemes

A commitment scheme consists of three probabilistic polynomial-time (PPT)
algorithms (GenCom,Com,Unv) of the following form.

GenCom(1κ, 1k) The generation algorithm GenCom takes as input 1κ and 1k, for
security parameters κ and k, and outputs a public commitment key pk. Note
that pk defines a message space M.

Com(pk, v) The commitment algorithm Com takes as input a value v ∈ M and
a commitment key pk and outputs a commitment c and an opening value r.

Unv(pk, c, v, r) The unveil algorithm takes as input a commitment key pk, a
value v, a commitment c and an opening value r and returns v or ⊥.

We will suppose implicitly the presence of pk in the remainder, omitting it
in the notation.

A commitment scheme is called:

Correct if for all v ∈ M, the unveil algorithm returns v with overwhelming
probability whenever the inputs were computed honestly, i.e.,

Pr[Unv(pk, c, v, r) = v : (c, r)← Com(pk, v)] = 1− ε.
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for some ε negligible in k.
Statistically Hiding if for any pair v, v′ ∈M the distribution of the random-

ized commitments output by Com(pk, v) and Com(pk, v′) is statistically close
in κ.

Computationally Binding if for any probabilistic polynomial-time adversary
P , the probability to find pairs of opening values (v, r) and (v′, r′) with
v 6= v′ to the same commitment value c that get accepted by the unveil
algorithm is negligible, i.e.,

Pr[Unv(pk, c, v, r) = v ∧ Unv(pk, c, v′, r′) = v′ ∧ v 6= v′ :

(c, v, r, v′, r′)← P (pk)] ≤ ε

for some ε negligible in k.

In addition we want to have the following property.

Prolongable Bindingness: A commitment scheme provides prolongable bind-
ingness if for any commitment c1 = Com1(pk1, v) a polynomial time bounded
party that knows the opening values can generate a new commitment
c2 = Com2(pk2, v) with a higher security level, such that it can prove in
statistical zero-knowledge fashion that it can open both commitments to the
same value v.

While statistical and perfect hidingness are typically considered equivalent,
the situation is not so easy when commitments must be valid for a long time.
While perfectly hiding schemes do not provide any information abut the mes-
sage, statistically hiding schemes allow an attacker to gain a negligible amount of
information. One might think that an attacker can store the old commitments,
wait until he has access to enough computational resources and use those re-
sources to amplify this information. However, this would require him to run a
big amount of independent attacks, which is impossible since he has only access
to a polynomial number of commitments.

Our scheme is crafted such that it allows to arbitrarily bound the information
that can be extracted by an outside attacker independent of the hardness of the
complexity assumption that prevents a dishonest comitter from finding a second
message for his commitment. The maximum advantage of the first attacker is
bounded by 2−κ, while the hardness of the underlying computational assumption
is tuned by the security parameter k.

3 LPCom: A new Lattice-Based Commitment Scheme

In this section, we introduce our lattice-based commitment scheme LPCom
(Long-term Post-quantum Commitment scheme). Note that our construction
is similar to the unconditionally binding commitment scheme proposed by Ben-
hamouda et al. in [4]. However, besides the fact that their commitment does not
provide hidingness unconditionally it relies on a different hardness assumption.



7

After giving the definition of LPCom in Figure 1, Section 3.1 provides conditions
on the chosen parameters such that LPCom is statistically hiding and computa-
tionally binding. In Figure 2 of Section 3.2 we propose parameters for LPCom and
prove that, instantiated with this parameter set, LPCom is statistically hiding
and computationally binding.

GenCom(1κ, 1k) Set appropriate parameters n,m, q ∈ Z and B, σ ∈ R+ and

sample two matricesA1
$← Zm×nq ,A2

$← Zm×kq such thatA =
(
A1 A2

)
∈

Zm×(n+k)q has trivial kernel. Furthermore, define the message spaceM as
a subgroup of Znq .

Com(v ∈M) Sample r
$← Zkq and e

$← Dm
σ , calculate

c = com(v, r, e) = A1v +A2r + e ∈ Zmq ,

and output c, r.
Unv(c,v, r) Return v if ‖c−A1v −A2r‖ ≤ B, and ⊥ if not.

Fig. 1. LPCom

3.1 Correctness, Hidingness and Bindingness

The unveil function obviously accepts an honestly created commitment as long
as the sampled error term e has norm less or equal than B. Since the Gaussian
distribution is not bounded, in theory it might happen that an honestly created
commitment gets rejected by the unveil funtion. However, the following theorem
provides a condition on the parameters such that the chance of this happening
is negligible.

Theorem 1 (correctness) Let n, k,m, q ∈ Z, σ ∈ R+, and A1 ∈ Zm×nq ,A2 ∈
Zm×kq . Let B ∈ R with B > σ

√
m/2π. For a value v ∈ M, the probability that

the commitment algorithm defined in Figure 1 with input v generates r and a
commitment c such that (c,v, r) gets accepted by the unveil algorithm defined in
Figure 1 is bounded by

Pr[Unv(com(v, r, e), v, r) = v : r
$← Znq , e

$← Dm
σ ]

> 1− (
B

σ
√
m

√
2πe exp(−π(

B

σ
√
m

)2))m.

Proof: Follows directly from Lemma 2.10 in Micciancio and Regev [19]. Using
Lemma 2.10 Micciancio and Regev [19], we can bound the probability that a valid
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commitment of a message v ∈ Znq gets accepted by

Pr(‖e‖ ≤ B | e $← Dm
σ ) > 1−

(
B

σ
√
m

√
2πe exp

(
−π(

B

σ
√
m

)2
))m

.

�
In Section 1 we established that in order to guarantee long-term security of

a commitment scheme it is necessary to have an unconditional hiding property.
We show in the following that with the correct instantiation LPCom possesses
this very property.

For this, we need the following two auxiliary lemmas about the so called
smoothing parameter [19]. Roughly speaking, the smoothing parameter bounds
the necessary size of a Gaussian error one has to add to a random lattice vectors
to completely hide the lattice.

Lemma 1 (Micciancio and Regev [19]) For any m-dimensional lattice Λ
and ε > 0,

ηε(Λ) ≤
√

ln(2m(1 + 1/ε))

π
· λm(Λ).

Lemma 2 (Gentry, Peikert and Vaikuntanathan [13]) Let Λ′ be an m-
dimensional integer lattice. Then for any ε ∈ (0, 1/2), any σ ≥ ηε(Λ

′), the
distribution of (Dσ mod Λ′) is within statistical distance at most 2ε of uniform
over (Zm mod Λ′).

In the following theorem we provide conditions under which LPCom is sta-
tistically hiding.

Theorem 2 (hiding) LPCom is statistically hiding if σ >
√

ln(2m(1+1/ε))
π ·

λm(Λq(A2)) for some ε negligible in κ.

Proof: Since Zmq is a group, it suffices to show that for r
$← Zkq and e

$← Dm
σ ,

the distribution of A2r + e mod q is statistically close to uniform. For x ∈ Zmq
we define

pA2
(x) := Pr[A2r + e = x mod q : r

$← Zkq , e
$← Dm

σ ].

Note that

pA2
(x) ∼

∑
r∈Zkq

Pr[A2r + e = x mod q : e
$← Dm

σ ]

∼
∑
r∈Zkq

∑
v∈Zm

Pr[A2r + e+ qv = x : e
$← Dm

σ ].

By definition we have Λq(A2) = {A2r | r ∈ Zk} + qZm. In order to make this
representation as a sum unique, we can write Λq(A2) = {A2r | r ∈ {0, 1, . . . , q−
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1}k}+qZm, sinceA has trivial kernel and thus the columns ofA2 are Zq-linearly
independent. Consequently, summing over all elements in {A2r + qw2 | r ∈
Zkq ,w2 ∈ Zm} is equivalent to iterating all lattice vectors in Λq(A2). This leads
to

pA2
(x) ∼

∑
w∈Λq(A2)

Pr[w + e = x : e
$← Dm

σ ]

= Pr[e = x mod Λq(A2) : e
$← Dm

σ ].

The constant of proportionality can be determined via

1 = c
∑
x∈Zmq

Pr[e = x mod Λq(A2) : e
$← Dm

σ ]

= c · qm

det(Λq(A2))

∑
x∈P (Λq(A2))

Pr[e = x mod Λq(A2) : e
$← Dm

σ ]

= c · qm

det(Λq(A2))
,

where P (Λq(A2)) denotes the fundamental parallelepiped of an arbitrary but
fixed basis of Λq(A2). This shows that

pA2
(x) =

det(Λq(A2))

qm
Pr[Dm

σ = x mod Λq(A2)].

Since

σ >

√
ln(2m(1 + 1/ε))

π
· λm(Λq(A2)),

Lemma 1 shows that σ ≥ ηε(Λq(A2)). Starting from Lemma 2 with Λ′ = Λq(A2),
we can conclude that

2ε > Dist(Dm
σ mod Λ′,Unif(Zmq ) mod Λ′)

=
∑

x∈P (Λ′)

∣∣∣Pr[e = x mod Λ′ : e
$← Dm

σ ]− Pr[e = x mod Λ′ : e
$← Zmq ]

∣∣∣
=

∑
x∈P (Λ′)

∣∣∣∣Pr[e = x mod Λ′ : e
$← Dm

σ ]− 1

det(Λ′)

∣∣∣∣ .
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Therefore, the statistical distance between the distribution Y of A2r+e mod q,

where r
$← Zkq , e

$← Dm
σ and the uniform distribution in Zq is bounded by

2 Dist(Y,Unif(Zmq ))

=
∑

x∈Zmq

∣∣∣Pr[x = y : y
$← Y ]− Pr[x = y : y

$← Zmq ]
∣∣∣

=
qm

det(Λ′)

∑
x∈P (Λ′)

∣∣∣Pr[x = y : y
$← Y ]− q−m

∣∣∣
=

qm

det(Λ′)

∑
x∈P (Λ′)

∣∣∣∣det(Λ′)

qm
Pr[x = y mod Λ′ : y

$← Dm
σ ]− q−m

∣∣∣∣
=

∑
x∈P (Λ′)

∣∣∣∣Pr[x = y mod Λ′ : y
$← Dm

σ ]− 1

det(Λ′)

∣∣∣∣ ≤ 2ε,

which shows that Dist(Y,Unif(Zmq )) ≤ ε. �
Since LPCom with the correct instantiation is statistically hiding it can only

achieve computational bindingness. We show that LPCom is computationally
binding by relating the its binding property to solving the hard lattice problem
α-SVP. In Section 2.2 we already discussed the hardness of this problem.

Theorem 3 (binding) LPCom is computationally binding as long as for any
probabilistic polynomial-time algorithm the probability of solving α-SVP in the
m-dimensional q-ary lattice Λq(A) with approximation factor α = 2B

λ1(Λq(A)) is

negligible in the security parameter k.

Proof: Assume to the contrary that one can find two different opening triples
that lead to the same (valid) commitment in polynomial time, i.e. one can find
distinct (v1, r1, e1), (v2, r2, e2) ∈ Znq × Zkq × Zmq with ‖e1‖ ≤ B, ‖e2‖ ≤ B such
that A1v1 +A2r1 + e1 = A1v2 +A2r2 + e2. We can rewrite this equation as

A

(
v1 − v2
r1 − r2

)
= A1(v1 − v2) +A2(r1 − r2) = e2 − e1.

Since A has trivial kernel and the triples (v1, r1, e1) and (v2, r2, e2) are
distinct, we have e2−e1 6= 0. This means we found a non-zero vector e = e2−e1
in the lattice Λq(A) of length at most 2B in polynomial time, a contradiction.

�

3.2 Instantiation

While LPCom allows for many different instantiations that offer trade-offs be-
tween security, commitment size, secret sizes and efficiency, it is useful to have
a specific parameter set in mind. In the case of LPCom this is particularly help-
ful since the parameter selection such that LPCom is statistically hiding and
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computationally binding is non-trivial. Theorem 4 shows that the parameter set
proposed in Figure 2 leads to a secure and correct instantiation. The remaining
parameter to tweak the security is k.

Recall that breaking the binding property of LPCom requires an attacker to
find a non-zero lattice of length at most B =

√
mσ. A straightforward calculation

shows that with the instantiation given in Figure 2 such a vector would have
hermite factor δ = k5/(36k). This value tends to one very fast, which implies that
finding such a vector is considered computationally infeasible even for moderate
values of k. A possible instantiation would be to choose k = 128, which leads to
a hermite factor of approximately δ = 1.005. Lindner and Peikert [15] estimated
the time to find such a vector to be more than 2128 seconds, which is way beyond
what is possible for a foreseeable future. Note, however, that the parameter sets
presented in Figure 2 are not at all optimized for concrete instantiations. Since
this work is mainly dealing with long-term security, we leave the task to find
optimized parameter sets that meet specific security levels as an interesting
future work.

Parameter Meaning
Instantiation

Value Assymptotic
κ statistical distance parameter 100 constant
k security parameter O(k)
n message space rank k O(k)
m lattice dimension 3k O(k)
q modulus k2 O(k2)
σ error size k5/4 O(k5/4)
B error bound

√
mσ O(k7/4)

Fig. 2. Parameter Set for LPCom

Theorem 4 Consider LPCom. Suppose that Equation (1) holds for the lattice
Λq(A), and that for any PPT algorithm the probability of solving α-SVP in
Λq(A) with (polynomial) approximation factor α ≤ 2

√
3 ·k7/4 is negligible in the

security parameter k.
Then for sufficiently large security parameter k, LPCom with the instantiation
from Figure 2 is correct, statistically hiding and computationally binding.

Proof:
Correctness: Following Theorem 1, the probability that a valid commitment

gets rejected is bounded from above by(
B

σ
√
m

√
2πe exp(−π(

B

σ
√
m

)2)

)m
=
(√

2πe exp(−π)
)m

,

which is smaller than 2−κ for sufficiently large m = 3k.
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Hiding: For ε = 2−κ and m big enough, Equation (1) leads to√
ln(2m(1 + 1/ε))

π
· λm(Λq(A)) ≤

√
ln(2m(1 + 2κ))

π
·
√
m

2π
det(Λ)1/m

≤ ln(m) ·
√
m · q1/3.

Inserting the parameters from Figure 2 shows that√
ln(2m(1 + 1/ε))

π
·λm(Λq(A)) ≤ ln(3k)·

√
3k ·k2/3 =

√
3 ln(3k)·k7/6 < k5/4 = σ

for k sufficiently large. The rest follows from Theorem 2.
Binding: By Theorem 3 it suffices to show the upper bound on α = 2B

λ1(Λq(A))

stated in the theorem. Since trivially λ1(Λq(A)) ≥ 1 holds, we have

α =
2
√
mσ

λ1(Λq(A))
≤ 2
√
mσ = 2

√
3 · k7/4.

�

4 Proof of Knowledge for LPCom

In a proof of knowledge, a prover P convinces a verifier V that it has knowledge
of a secret without revealing anything about the secret apart from what
is revealed by the claim itself (see Bellare and Goldreich [2] for a formal
definition). In our case the claim is a commitment and the secret consists of the
corresponding opening values.
Fist, in Section 4.1 we give a definition of Σ∗-protocols. Then in Section 4.2
the proof of knowledge protocol for LPCom is defined. Finally, Section 4.3
provides an instatiation of LPCom such that the proof of knowledge protocol is
a Σ∗-protocol, while still being statistically hiding and computationally binding.

4.1 Σ∗-Protocols

Proofs of knowledge are usually performed using Σ-protocols. Formal definitions
of Σ-protocols have been provided, for instance, by Cramer [7] or Damg̊ard [9].
In [3, 4], Benhamouda et al. introduced a modification of Σ-protocols called
Σ′-protocols and discussed their relation to Σ-protocols. However, there are two
slight differences between the Σ′-protocols used by Benhamouda et al. and our
protocols. The first is due to the fact that LPCom is statistically hiding, therefore
we are able to achieve a statistical zero-knowledge property instead of just the
computational one ofΣ′-protocols. The second is that in consequence LPCom can
only be computationally binding, hence we have to relax the special soundness
condition of Σ′-protocols to computationally special soundness (adapted from
Ambainis et al. [1] and Pass [21]). This leads to the following modified definition.
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Definition 1 Let (P,V) be a two-party protocol, where P and V are PPT, and
let L,L′ ⊆ {0, 1}∗ be languages with witness relations R ⊆ R′ ⊆ {0, 1}∗×{0, 1}∗.
(That is, for all a ∈ {0, 1}∗ we have a ∈ L(′) if and only if there exists some
b ∈ {0, 1}∗ such that (a, b) ∈ R(′). In this case b is called a witness for a ∈
L(′).) Then (P, V ) is called a Σ∗-protocol for R,R′ with completeness error α,
challenge set C = {0, 1}, public input x and private input w, if and only if it
satisfies the following conditions:

Three-move form: The protocol is of the following form: The prover P, on
input (x,w), computes a commitment t and sends it to V. The verifier V, on

input x, then draws a challenge c
$← C and sends it to P. The prover sends a

response s to the verifier. Depending on the public input x and the protocol
transcript (t, c, s), the verifier finally accepts (ok = 1) or rejects (ok = 0)
the proof. The protocol transcript (t, c, s) is called accepting, if the verifier
accepts the protocol run.

Completeness: Whenever (x,w) ∈ R, the verifier V accepts with probability at
least 1− α.

Computational special soundness: There exists a PPT algorithm E (the
knowledge extractor) such that for any PPT algorithm A (the adversary),
we have that

Pr[(x,w) /∈ R′) ∧ (ok′ = ok′′ = 1) :

(x, (t, 0, s′), (t, 1, s′′))← A,

ok′ ← V(x, (t, 0, s′)), ok′′ ← V(x, (t, 1, s′′)),

w ← E(x, (t, 0, s′), (t, 1, s′′)]

is negligible.
Special honest-verifier statistical zero-knowledge (HVSZK): There ex-

ists a PPT algorithm S (the simulator) taking x ∈ L and c ∈ C as inputs,
that outputs (t, s) so that the triple (t, c, s) is statistically indistinguishable
from an accepting protocol transcript generated by a real protocol run.

Remark 1 We give a few informal remarks on the properties defined in Defi-
nition 1.

1. The completeness error α accounts for the fact that even an honest prover
is not able to answer all challenges correctly. Note that the same holds true
for the Σ′ protocol defined by Benhamouda et al.

2. The intuitive meaning of computational special soundness is the following.
If a public input x and two accepting transcripts that answer both challenges
to the same commitment are given as an output of a PPT algorithm, one
can extract a witness w for x ∈ L′ in polynomial time (with overwhelming
probability).

3. In the previous remark we mentioned that w is a witness for x ∈ L′ whereas
an honest prover is supposed to know a witness for x ∈ L. However, this is
not a problem as long as finding witnesses for x ∈ L′ is still hard, as it will
be in our case.



14

4. Intuitively, the zero-knowledge property means that real protocol runs with
honest prover and verifier can efficiently be simulated, hence reveal no addi-
tional information about the witness.

4.2 Proof of Knowledge Protocol

One well known approach for proving knowledge in perfect zero-knowledge
fashion is to use a cut-and-choose based proof similar to the one proposed
by Schnorr [23]. Our approach is based on a modification of this proposal
introduced by Benhamouda et al. [3, 4].

Informally, the main idea of the protocol is the following. The prover wants
to show that it can open a commitment c = com(v, r, e). In order to do so it
chooses a random commitment c′ = com(v′, r′, e′) and sends it to the verifier.
The prover is then asked by the verifier to either open c′ or c+c′. Note that the
prover can indeed open c + c′ (with overwhelming probability), since c + c′ =
com(v+v′, r+r′, e+e′). The hidden caveat of this approach is that by opening
c + c′ the verifier learns e + e′, which is Gaussian distributed centered around
e and hence contains information about e, and thus about v. This leakage of
information would violate the hiding property of the commitment scheme. In
order to overcome this problem one uses a technique called rejection sampling,
described in the following.

Rejection sampling is a standard technique used in statistics and well known
in lattice-based cryptography (see [16, 17]). It is used to transform one proba-
bility distribution into another. This is needed for our protocol to transform a
Gaussian distribution that is centered around some e into one that is centered
around zero and independent of e.

Theorem 5 Let V be a subset of Zm in which all elements have norm at most

T , α ∈ R+ and h be a probability distribution on V . For M = exp( 2
√
κ

α + 1
2α2 )

and σ ≤ αT , the statistical distance of the output distribution of

1. v
$← h

2. z
$← Dm

v,σ

3. output (v, z) with probability min
(

Dmσ (z)
MDmv,σ(z)

, 1
)

, else output ⊥

and the output distribution of

1. v
$← h

2. z
$← Dm

σ

3. output (v, z) with probability 1/M , else output ⊥

is bounded by exp(−κ).

Proof: Similar to the proof of Theorem 4.6 by Lyubashevsky [17]. �
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The Protocol

Let n,m, κ, k, q ∈ Z, σ, σ′ ∈ R+, T =
√
mσ,α = σ′/T,M = exp( 2

√
κ

α + 1
2α2 ),

A1 ∈ Zm×nq ,A2 ∈ Zm×kq . Also let M⊂ Znq be a subgroup and

com :M× Zkq × Zmq → Zmq , (v, r, e) 7→ A1v +A2r + e

be the corresponding commitment function described in Figure 1. Furthermore,
let B ∈ R+ and Unv and Unv2B be the corresponding unveil functions with
bound B and 2B respectively as described in Figure 1.
Finally, let Coma be an auxiliary computationally binding and statistically hid-
ing commitment scheme with message space Zmq and Unva be the corresponding
unveil function.

The public input is c ∈ Zmq and the private input is (v, r) ∈M× Zkq .

1. P computes e = c−A1v−A2r. Then P secretly samples v′
$←M, r′

$← Zkq ,

e′
$← Dm

σ′ and computes the commitment c′ = com(v′, r′, e′). P then com-
putes an auxiliary commitment c′a and corresponding opening randomness
value r′a using Coma with input c′ and sends c′a to V.

2. V sends a random bit b ∈ {0, 1} to P.
3. P computes v′b = v′ + bv and r′b = r′ + br.

if b = 0:
P sends (c′, r′a,v

′
b, r
′
b) to V.

if b = 1:
With probability

p = min

(
Dm
σ′(e

′)

MDm
e,σ′(e

′)
, 1

)
,

P sends (c′, r′a,v
′
b, r
′
b) to V, and ⊥ otherwise.

4. V accepts iff P did not send ⊥ and Unva(c′a, c
′, r′a) = c′ and v′b ∈ M and

Unv(c′ + bc,v′b, r
′
b) = v′b.

Fig. 3. Proof of Knowledge

Remark 2 The auxiliary commitment used during the protocol is needed to
guarantee the zero-knowledge property in case of an abort happening. This can
be seen in the proof of Theorem 7.

4.3 Instantiation

In Figure 4 propose a set of parameters that supports the proof of knowledge
protocol (see Theorem 7) while still preserving the statistically hiding and com-
putationally binding properties of LPCom, as shown in the following theorem.



16

Param. Meaning
Instantiation

Value Assymptotic
κ statistical distance parameter 100 constant
k security parameter O(k)
n message space rank constant
m lattice dimension 3k O(k)
q modulus k3 O(k3)
σ error size k1.75 O(k1.75)
σ′ error size in protocol 4

√
κmσ O(k2.25)

B error bound
√
mσ′ O(k2.75)

1
M answering probability e−

1
2−

1
2κ

1√
e1.01

Fig. 4. Parameter Set for Proof of Knowledge

Theorem 6 Consider LPCom. Suppose that Equation (1) holds for the lattice
Λq(A), and that for any PPT algorithm the probability of solving α-SVP in
Λq(A) with (polynomial) approximation factor α ≤ 2

√
3 ·k7/4 is negligible in the

security parameter k.
Then for sufficiently large security parameter k, LPCom with the instantiation
from Figure 4 is correct, statistically hiding and computationally binding.

Proof: Similar to the proof of Theorem 4. �
The following theorem shows that the protocol defined in Figure 3 is in fact

a Σ∗-protocol for the instantiation proposed in Figure 4.

Theorem 7 With the parameters as given in Figure 4 and sufficiently large
security parameter k the protocol defined in Figure 3 is a Σ∗-protocol with com-
pleteness error overwhelmingly close to 1

2 −
1

2M for the relations

R = {(c, (v, r)) ∈ Zmq × (M× Zkq ) | v = Unv(c,v, r)} and

R′ = {(c, (v, r)) ∈ Zmq × (M× Zkq ) | v = Unv2B(c,v, r)}.

Proof: Obviously, the protocol is given in the three-move form.
Completeness: Assume P is an honest prover and let c be the public input and
(v, r) with (c, (v, r)) ∈ R be the private input of P. First consider the case
b = 0. In this case P always answers the challenge by sending (c′, r′a,v

′, r′).
Note that v′ ∈ M. We have Unva(c′a,v

′
a, r
′
a) = v′a (with overwhelming proba-

bility), so the first three accepting condition is satisfied. Since c′ = com(v′, r′, e′)

and e′
$← Dm

σ′ , we have Unv(c′,v′, r′) = v′ with overwhelming probability by
Theorem 1.
Now consider the case b = 1. Then by Theorem 5 the prover P answers the
challenge by sending (c′, r′a,v

′+v, r′+r) with probability overwhelmingly close
to 1

M , and ⊥ otherwise. In the following we consider the case that P does not
abort. Note that v′+v ∈M. As before, Unva(c′a,v

′
a, r
′
a) = v′a (with overwhelm-

ing probability), thus the first three accepting condition is satisfied. Notice that,
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after the rejection sampling performed in the protocol, the distribution of e′+e
is statistically close to Dm

σ′ by Theorem 5. Hence it follows from Theorem 1
that Unv(c′ + c,v′ + v, r′ + r) = v′ + v with overwhelming probability, since
c′ + c = com(v′ + v, r′ + r, e′ + e).
In conclusion the verifier V accepts with probability overwhelmingly close to
1
2 (1 + 1

M ), since both cases b = 0 and b = 1 are equally likely.
Computational special soundness: Assume a public input c and two accepting
transcripts (c′a, 0, (c

′, r′a,v
′
0, r
′
0)) and (c′a, 1, (c

′′, r′′a,v
′′
1 , r
′′
1)) are given as an out-

put of a probabilistic polynomial time algorithm A. Since the auxiliary commit-
ment scheme Coma is computationally binding, we have c′ = c′′ with overwhelm-
ing probability, which we will therefore assume from now on. Thus by definition
of the accepting condition of the protocol we have v0,v1 ∈M and

‖c′ −A1v
′
0 −A2r

′
0‖ ≤ B and ‖c′ + c−A1v

′′
1 −A2r

′′
1‖ ≤ B.

Hence v′′1 − v′0 ∈M and by linearity and the triangular inequation we obtain

‖c−A1(v′′1 − v′0)−A2(r′′1 − r′0)‖ ≤ 2B,

and thus (c, (v′′1 − v′0, r′′1 − r′0)) ∈ R′.
HVSZK: Let c and b ∈ {0, 1} be given. The simulator S samples v′

$← M,

r′
$← Zkq , e′

$← Dm
σ′ and computes the commitment c′ = com(v′, r′, e′) − bc.

Then S computes an auxiliary commitment ca and corresponding opening ran-
domness value ra using Coma with input c′.
First consider the case b = 0. In this case S outputs (ca, 0, (c

′, ra,v
′, r′)). Obvi-

ously this is statistically indistinguishable from real protocol runs.
Now consider the case b = 1. With probability 1

M the simulator outputs
(ca, 1, (c

′, ra,v
′, r′)). Otherwise, S computes an auxiliary commitment ĉa and

corresponding opening randomness value r̂a using Coma with input 0 and out-
puts (ĉa, 1,⊥). From the statistical hidingness of the auxiliary commitment and
Theorem 5, it follows that this output is statistically indistinguishable from real
protocol runs. (In order to see this, recall that the rejection sampling performed
in the protocol is used to make e+ e′ Gaussian distributed around zero, which
consequently makes e′ Gaussian distributed around −e.) �

Remark 3 Note that finding witnesses for L′ is nearly as hard as finding wit-
nesses for L. In order to see this notice the following. To find witnesses for x ∈ L
one needs to solve α-SVP in a certain lattice with approximation factor α. This
is exactly what the binding property of LPCom is based on (see Theorem 3) and
addressed in Theorem 6. Finding witnesses for x ∈ L′ implies solving (2α)-SVP
in the same lattice. However, doubling the desired approximation factor does not
make α-SVP considerably easier.

In practice, the probability of a dishonest prover (i.e. one that is not able to
open c) to convince the verifier that it can open c should be negligible. At the
same time, the probability that an honest prover fails to convince the verifier
that it can open the commitment should be negligible as well. To achieve this, it
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is necessary to repeat the proof of knowledge protocol multiple times in order to
amplify the advantage an honest prover has over a dishonest prover. The verifier
then must make a decision whether the prover is honest or not, based on the
percentage of accepting protocol runs.6 We now discuss this in further detail.

In N repetitions of the protocol, an honest prover is expected to be able to
answer N/2(1 + 1/M) challenges, while a dishonest prover is expected to only
give N/2 correct answers. A natural choice for the verifier is therefore to accept
the prover as honest if and only if it receives more than N/2 · (1 + 1/(2M))
correct answers. In the following, we will show that N = 4kM2 is a good choice
for the number of protocol runs that provides the desired resultwhen using this
criterion.

For this, we will model the number of correct answers given by an honest
prover as the output of a binomial distribution with parameters N and p =
(1+1/M)/2. It is well known that for large N , this binomial distribution can be
approximated by a continuous Gaussian distribution with meanNp and standard
deviation

√
Np(1− p). Let p⊥,h denote the probability that, given the natural

accepting condition described above, the verifier does not accept an honest prover
as such after N protocol runs. An easy calculation shows that

p⊥,h ≈ Pr[x ≤ N(1 + 1/(2M))/2 : x
$← D

Np,
√
Np(1−p)]

= Pr[x ≤ −N/(4M) : x
$← D√

N(1−1/M2)/4
].

With N = 4kM2 > 4k(M2 − 1), this leads to the estimation

p⊥,h ≈ Pr[x ≤ −4k(M2 − 1)

4M
: x

$← D√
4k(M2−1)(1−1/M2)/4

]

= Pr[x ≤ −
√
k ·
√
k

(M2 − 1)

M
: x

$← D√
k

(M2−1)
M

]

The well-known fact

Pr[x >
√
kσ : x

$← Dσ] ≤ exp(−πk)

2π
√
k

,

shows that we can estimate the probability of an honest prover to get rejected
to be negligible in k.

The analysis of accepting a dishonest prover is similar. Since it has only a suc-
cess probability overwhelmingly close to p = 1/2, we can estimate its probability
pa,d to get accepted by

pa,d ≈ Pr[x > N(1 + 1/(2M))/2 : x
$← D

Np,
√
Np(1−p)]

= Pr[x > kM : x
$← D√kM ].

6 An obvious modification of the protocol is to identify a dishonest prover as soon as
it does not provide a valid answer to challenge b=0. However, we do not expect a
big improvement, since we have to repeat the protocol often enough to ensure that
an honest prover gets accepted.
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5 Prolonging the Security of LPCom

This section shows how to prolong the bindingness of our unconditionally hiding
commitment scheme LPCom in the following way. Given an old commitment
to a certain value the commitment owner generates a new commitment - with
renewed parameters - to the same value. The owner then proves in perfect zero-
knowledge fashion that it can open the old and the new commitment to the same
value. This effectively rejuvenates the owner’s bind to the value in question,
without damaging secrecy in any way, as long as both commitment schemes are
unconditionally hiding.

A protocol for the proofs of message equality needed in the prolonging pro-
cedure is presented in Section 5.1. Details on the prolonging procedure itself are
described in Section 5.2.

5.1 Proof of Message Equality

In a proof of message equality protocol, a prover P convinces a verifier V that
it can unveil two commitments generated using two (different) instantiations of
LPCom to the same value. As long as the two commitments are computationally
binding, the verifier then can be assured that the prover committed to the same
value in both commitments. The basic idea of our approach is to run two proof
of knowledge protocols in parallel using the same auxiliary value and is based
on the methods of [6] and [20].

Let n,m1,m2, k1, k2, q1, q2 ∈ Z, σ1, σ2, σ
′
1, σ
′
2 ∈ R+, T1 =

√
m1σ1, α1 =

σ′1/T1, M1 = exp( 2
√
κ

α1
+ 1

2α2
1
), T2 =

√
m2σ2, α2 = σ′2/T2, M2 = exp( 2

√
κ

α2
+ 1

2α2
2
),

A1,1 ∈ Zm1×n
q1 ,A1,2 ∈ Zm1×k1

q1 , A2,1 ∈ Zm2×n
q2 , A2,2 ∈ Zm2×k2

q2 . Also let
M1 ⊂ Znq1 and M2 ⊂ Znq2 be two isomorphic subgroups, ϕ : M1 → M2 be
a group isomorphism, and

com1 :M1 × Zk1q1 × Zm1
q1 → Zm1

q1 , (v, r, e) 7→ A1,1v +A1,2r + e

com2 :M2 × Zk2q2 × Zm2
q2 → Zm2

q2 , (v, r, e) 7→ A2,1v +A2,2r + e

be the corresponding respective commitment functions described in Figure 1.
We say two values v1 ∈ M1 and v2 ∈ M2 are equal (with respect to ϕ) if
v2 = ϕ(v1).
Also let B1, B2 ∈ R+ and Unv1, Unv2 be the unveil functions corresponding
to the respective commitment functions with bound B1 and B2 respectively,
as described in Figure 1. Furthermore, let Unv1,2B1

, and Unv2,2B2
denote the

unveil functions corresponding to the respective commitment functions with
bound 2B1 and 2B2 respectively.
Finally, let Com1,a and Com2,a be two auxiliary computationally binding and
statistically hiding commitment schemes with message space Zm1

q1 and Zm2
q2

respectively, and Unv1,a and Unv2,a be the corresponding unveil functions.
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The public input is (c1, c2) ∈ Zm1
q1 ×Z

m2
q2 and the private input is (v1, r1, r2) ∈

M1 × Zk1q1 × Zk2q2 .

1. P secretly samples v′1
$←M1 and sets v′2 := ϕ(v′1). Then for all i ∈ {1, 2}

it does the following. P computes ei = ci − Ai,1vi − Ai,2ri. Then P

secretly samples r′i
$← Zkiqi , e

′
i

$← Dmi
σ′i

and computes the commitment

c′i = com(v′i, r
′
i, e
′
i). P then computes two auxiliary commitments c′i,a and

corresponding opening randomness values r′i,a using Comi,a with input c′i.
Then P sends (c′1,a, c

′
2,a) to V.

2. V sends a random bit b ∈ {0, 1} to P.
3. P computes v′i,b = v′i + bvi and r′i,b = r′i + bri for all i ∈ {1, 2}, where
v2 = ϕ(v1).
if b = 0:
P sends (c′1, r

′
1,a,v

′
1,b, r

′
1,b, c

′
2, r
′
2,a,v

′
2,b, r

′
2,b) to V.

if b = 1:
With probability

p = min

(
Dm1

σ′1
(e′1)

M1Dm
e1,σ′1

(e′1)
, 1

)
·min

(
Dm2

σ′2
(e′2)

M2Dm
e2,σ′2

(e′2)
, 1

)
,

P sends (c′1, r
′
1,a,v

′
1,b, r

′
1,b, c

′
2, r
′
2,a,v

′
2,b, r

′
2,b) to V, and ⊥ otherwise.

4. V accepts iff P did send ⊥ and v′2,b = ϕ(v′1,b) and Unvi,a(c′i,a, c
′
i, r
′
i,a) = c′i

and v′i,b ∈Mi and Unvi(c
′
i + bci,v

′
i,b, r

′
i,b) = v′i,b for all i ∈ {1, 2}.

Fig. 5. Proof of Message Equality

Theorem 8 With the indexed parameters as given in Figure 4 and sufficiently
large security parameters k1 and k2 the protocol defined in Figure 5 is a Σ∗-
protocol with completeness error overwhelmingly close to 1

2 −
1

2M1M2
for the re-

lations

R = {((c1, c2), (v1, r1, r2)) ∈ (Zm1
q1 × Zm2

q2 )× (M× Zk1q1 × Zk2q2 ) |
v1 = Unv1(c1,v1, r1) ∧ ϕ(v1) = Unv2(c2, ϕ(v1), r2)} and

R′ = {((c1, c2), (v1, r1, r2)) ∈ (Zm1
q1 × Zm2

q2 )× (M× Zk1q1 × Zk2q2 ) |
v1 = Unv1,2B1

(c1,v1, r1) ∧ ϕ(v1) = Unv2,2B1
(c2, ϕ(v1), r2)}.

Proof: Similar to the proof of Theorem 7, since this is essentially the protocol
defined in Figure 3 run twice in parallel. �

As in the proof of knowledge, it is necessary to repeat the message equality
proof often enough to amplify the success probability of an honest and a dishon-
est prover. Similar to the analysis presented in Section 4.3, we propose to accept
the prover if it answers at least N/2 · (1 + 1/(2M1M2)) challenges correctly, and
estimate the necessary number of rounds to be N = 4k(M1M2)2.
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5.2 Prolonging the Bindingness

In the prolonging algorithm presented in Figure 6 we show how to prolong the
bindingess of a commitment c1 to a message v. Possible instantiations of LPCom
that can be used for prolonging are ones according to Figure 4. However, since
other parameter choices are possible we give the more general result here.

The first step to prolong the bindingness of a commitment c1 is to generate a
new commitment c2 to the same (or an equivalent) value. Two values are consid-
ered equivalent if a signalized isomorphism between the two message spaces maps
one value to the other. A possible way to achieve isomorphic message spaces is
to use message spaces isomorphic to Zn2 , i.e. M = {0, q/2}2 (see Remark 4 for
more details).

In Section 3.2 we showed that violating the bindingness of LPCom instan-
tiated with parameters according to Figure 2 gets increasingly harder with in-
creasing security parameter k. It is easy to see that the same is true if LPCom is
instantiated according to Figure 4. If both schemes are instantiated according to
Figure 4, violating the binding property of the new commitment (instantiated
with security parameter k2) is in fact harder than violating the bindingness of the
old commitment (instantiated with security parameter k1) as long as k2 > k1.

Let Com1 (and the corresponding unveil function) be a correct, statistically
hiding and computationally binding instantiation of LPCom such that the follow-
ing holds: When using Com1, the protocol for proving message equality defined
in Figure 5 is a Σ∗-protocol. The procedure to prolong the bindingness to a
commitment c1 = Com(v) works as described in Figure 6.

1. Choose a new security parameter k2 for the desired security level.
2. Create a new instantiation Com2 of LPCom with security parameters κ, k2

and parameters (e.g. according to Figure 4) such that the following con-
ditions are satisfied:
• Com2 is correct, statistically hiding and computationally binding.
• The message space M2 of Com2 is isomorphic to the message space
M1 of Com1.

• When using Com2, the proof of knowledge protocol defined in Figure 5
is a Σ∗-protocol.

3. Specify an isomorphism ϕ :M1 →M2. (See Remark 4.)
4. The committer creates a new commitment c2 to the value ϕ(v) using

Com2.
5. Using the protocol defined in Figure 5, the committer shows in statistical

zero-knowledge fashion that it can open c1 and c2 to the same value v
(or ϕ(v)) with the corresponding unveil functions.

Fig. 6. Protocol for Prolonging the Bindingness
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Remark 4 Note that the isomorphism ϕ needs to be publicly stored with the
commitment in order to extract the old value v from the new value ϕ(v). Al-
ternatively, one can choose the message spaces such that there is a canonical
isomorphism between them and specify ”canonical” in the prolonging protocol.
We now provide one possible canonical choice. Always let the message spaces
M ⊆ Znq be of the form M = Gn, where G = {0, q2} is the (uniquely deter-
mined) subgroup of Zq of order two. Note that q is required to be even for this
to be possible. If now M1 = Gn1 and M2 = Gn2 are of this form, then there is
a unique isomorphism ϕ′ : G1 → G2 mapping the non-zero element of G1 to
the non-zero element of G2. Applying this isomorphism in every coordinate, ϕ′

naturally extends to an isomorphism ϕ : Gn1 → Gn2 .

6 Switching from Pedersen Commitment to LPCom

Up until now in practice usually Pedersen commitments are used when an un-
conditionally hiding commitment scheme is required. This is due to the fact
that this commitment scheme is very efficient. In [10], the authors show that
the bindingness of Pedersen commitments can also be prolonged. However, this
is only secure as long as the discrete logarithm problem remains unbroken, in
particular not in the presence of a quantum adversary. Thus, in this section we
want to discuss how to proceed if a Pedersen commitment must be replaced by
a prolongable post-quantum commitment, i.e. by the construction presented in
this work.

We discuss the following approach to switch from Pedersen commitments
to our lattice construction. One creates a new commitment using our lattice
construction and shows in statistical zero-knowledge fashion that one can open
the lattice and the Pedersen commitment to the same value. In order for this to
work, one needs a protocol for proving message equality of two commitments,
where one is created using our construction and the other using the Pedersen
construction. Since our protocol and the protocol for proving message equality for
Pedersen commitments follow essentially the same idea (see [20]), this should be
a straightforward generalization of our protocol proposed in Figure 5. Remember
that for the protocol to work it is crucial that the underlying massage spaces
are isomorphic. In the following, we argue that it is possible to use isomorphic
message spaces in both constructions.

In Pedersen commitments, the message spaceMP is essentially a cyclic group
of order p, where p is a sufficiently large prime. In our lattice construction the
message space ML is a subgroup of Znq for some integers q and n. In order for
MP and ML to be isomorphic, we must have that |ML| = |MP | = p. Since
of course the order of the subgroup |ML| divides the group order |Zmq | = qm,
we obtain p | qm, hence p | q, since p is prime. In particular we have p ≤ q.
Since typical values for p are much larger than typical lattice moduli q, the most
efficient choice is setting q := p and ML = Zq.

Besides being able to “convert” a Pedersen commitment to a lattice-based
commitment, this method also allows to directly generate two commitments
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to the same value v: one generated using the Pedersen commitment scheme
and the second one using LPCom. The advantage of this approach is that the
bindingness of the commitment relies on two hardness problems, namely the
discrete logarithm problem and α-SVP. Notice that since the hidingness of both
commitment schemes is unconditionally, there is no disadvantage regarding the
hiding property. On the downside this instantiation is very inefficient, at least
with respect to the lattice commitment. This is because typical lattice moduli q
have size about 13 bit, while usually the group order p of the message space in a
Pedersen scheme is of size about 190 bits (see [10]). However, this is a first step
in the direction of double hardness for commitment schemes and we leave the
task to find more efficient constructions for future work. One promising direction
is to combine schemes using ideal lattices [18] with Pedersen commitments as
shown for encryption schemes by [3].

7 Conclusion and Future Work

In this paper, we proposed and assessed the security of LPCom, a new lattice-
based, unconditionally hiding commitment scheme with prolongable computa-
tional bindingness. In addition, we provided two asymptotic parameter sets: one
tuned for efficiency and a second one that supports proofs of knowledge and
message equality. Since LPCom is based on α-SVP, it is reasonable to view it
as a good building block for long-term-secure cryptographic services, e.g. digital
document archiving, in the event quantum computation becomes practical. Fur-
thermore, through a simple security prolonging procedure, we are able to convert
a Pedersen commitment into a lattice-based commitment using LPCom.

For future work we plan to improve the efficiency of our construction. One
promising direction is to use ideal lattices in our approach, which are known to
increase efficiency [18, 11]. Note that our construction already performs well since
the commitment and opening value sizes are quasi-linear in the security param-
eter. However, in [3] Benhamouda et al. show how to build an efficient “hybrid”
scheme containing two primitives - Pedersen commitments and an ideal-lattice-
based encryption scheme - such that it can be shown that both are commit-
ting to the same message. Although LPCom already provides this feature, our
approach to build this “hybrid” scheme is still quite inefficient. Furthermore,
we would like to more closely analyse the homomorphic properties of LPCom.
Even though the commitment function is additively homomorphic care should
be taken when working on the commitments. The more commitments are added,
the bigger the error term grows within the result, and the more likely the unveil
algorithm does not accept the input as valid, meaning the resulting commitment
cannot be opened anymore. Therefore, the restriction of this function must be
analysed. Another observation is that in a sum of two commitments the resulting
error term leaks information about the error terms of each summand. Thus, it
must be determined how much information is revealed and how to deal with this
depending on the respective application. Nevertheless, our construction is a very
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promising building block for long-lived systems and we plan to work on these
matters in the future.
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