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Abstract

We propose a new voting scheme, BeleniosRF, that offers both strong receipt-freeness
and end-to-end verifiability. It is strongly receipt-free in the sense that even dishonest voters
cannot prove how they voted. We give a game-based definition capturing this property,
inspired by and improving the original receipt-freeness definition by Benaloh and Tuinstra.
Built upon the Helios protocol, BeleniosRF inherits from its simplicity.

1 Introduction

Electronic voting protocols should achieve two antagonistic security goals: privacy and verifia-
bility. Additionally, they must be practical, from a usability, operational and efficiency point of
view. Privacy can be expressed via several, increasingly demanding security properties.

• Basic ballot privacy guarantees that no one can learn how a voter voted.

• Receipt-freeness ensures that a voter cannot prove to anyone how he voted. While privacy
protects honest voters, receipt-freeness aims at protecting vote privacy even when voters
willingly provide information to an attacker.

• Coercion-resistance should allow an honest voter to cast his vote even if he is, during
some time, fully under the control of an attacker. Coercion-resistance typically requires
revoting.

To our knowledge, Civitas [JCJ05,CCM08] is the only scheme that achieves both verifiability
and coercion-resistance, without requiring a great deal of interaction between the ballot box or
the election authorities and the voter (such as [BT94]). While the scheme is a foundational
work, it seems difficult to use it in large-scale elections for two main reasons. First, the tally
phase requires O(n2) operations where n is the number of received ballots, which opens the
way to denial-of-service attacks. Second, to achieve verifiability, a voter should both be able
to recognize his ballot and lie about it. This either requires cryptographic skills or a heavy
infrastructure (e.g. in person registration).

In contrast, Helios [Adi08,AdMPQ09] is a scheme that “only” achieves privacy and verifiabil-
ity. Helios is based on a classical voting system proposed by Cramer, Gennaro and Schoenmak-
ers [CGS97] with variants proposed by Benaloh [Ben07]. It has been used in several real-world
elections such as that of the president of the University of Louvain-la-Neuve in Belgium. It is
also used by the International Association for Cryptographic Research (IACR) for its elections
since 2011 [IAC]. As emphasized by its authors, Helios should only be used in low-coercion
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environments. Indeed, a voter may easily reveal how he voted by exhibiting the randomness
used by his computer to compute his ballot.

Our contribution. Building upon a recent variant of Helios, called Belenios [CGGI14], and
a new malleable signature scheme that we introduce here (and which could be of independent
interest), we propose a receipt-free version of Helios, which we call BeleniosRF.

Blazy et al. [BFPV11] introduced a primitive called signatures on randomizable ciphertexts.
It consists of a signature scheme and a public-key encryption scheme that is randomizable (that
is, given a ciphertext, anyone can create a fresh ciphertext of the same plaintext—without know-
ing it). The primitive provides an additional functionality: given a signature on a ciphertext,
anyone can randomize the ciphertext and adapt the signature to the new ciphertext; that is,
produce a signature that is valid on the new ciphertext; and all that without knowing neither
decryption key nor signing key nor the plaintext. On the other hand, it is infeasible to compute
a signature on a ciphertext that encrypts a message of which no encryption has been signed.

We adapt this primitive to propose a non-interactive1 receipt-free e-voting scheme, which
works as follows:

• As in Belenios, each voter is provided with a signature key pair, in addition to authenti-
cation means to the ballot box (typically a login and password).

• Each voter encrypts and signs his ballot. He additionally includes a proof of knowledge to
prevent ballot malleability.

• Upon receiving a ballot, the ballot box re-randomizes the ballot and adapts the corre-
sponding signature and proof before publishing the ballot.

Receipt-freeness comes from the fact that a voter no longer has control nor knowledge of the
randomness used to form the final ballot stored in the ballot box. However, she can still verify
that her vote is present, as the re-randomized ciphertext comes with a signature that is valid
under her verification key. As she is the only one to know the signing key, by unforgeability of
the signature primitive, the vote cannot have been altered by the ballot box.

We show that our scheme BeleniosRF is strongly receipt-free in the sense that even a dishonest
voter cannot prove how he voted. We formalize this property via a game-based definition building
on the ballot privacy definition recently proposed in [BCG+15], adapting it to the case of ballot
submission by dishonest voters. In doing so we give a new formulation for the receipt-freeness
definition by Benaloh and Tuinstra [BT94].

Interestingly, BeleniosRF inherits the simplicity of Helios and Belenios: the voting procedure
is entirely unchanged compared to Belenios. Moreover, BeleniosRF accommodates revoting as
well as no revoting (note that revoting is typically forbidden in real-world elections since it
represents an important change w.r.t. traditional paper-based procedures).

Related work. Another receipt-free scheme has been recently proposed at Eurocrypt’15
[KZZ15]. However, its receipt-freeness should be understood w.r.t. honest voters that are under
corruption after the ballot casting phase. Under this definition for example Helios is declared
receipt-free. In contrast, we achieve receipt-freeness even w.r.t. to voters that act maliciously
during the voting phase (i.e. that may be willing to run a specially crafted malicious software
that provides a receipt for their vote).

We have already discussed Helios and Civitas. Other well-known and deployed schemes
include Prêt-à-voter [RBH+09] and Scantegrity [CEC+08]. These systems however are designed
for elections with physical voting booths. The system used in Estonia [SFD+14] as well as the
one deployed in Norway [AC11, Gjø13] might possibly satisfy some level of receipt-freeness, as
the corresponding ballot boxes are not publicly available. But, because of this, they do not
achieve universal verifiability (in contrast to BeleniosRF).

1After a successful authentication between the voter and the ballot box, ballot casting is non-interactive.
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Our scheme builds on previous work by Blazy et al. [BFPV11], who introduce the primitive
of signatures on randomizable ciphertexts. The authors sketch a receipt-free e-voting scheme
similar to ours, although no definition nor security reduction for receipt-freeness is given. In
Section 5 we present a ballot-replay attack against their e-voting protocol, effectively showing
that it does not provide ballot privacy. Our proposal for ballot casting is about k+3 times more
efficient than the one from [BFPV11] in terms of space and computation, where k is the bit
length of the vote v to be encrypted. This benefit comes at the cost of assuming a random
oracle and mixnet-based tallying.

2 Receipt-Freeness

We now formally define receipt-freeness and start by providing the general syntax of a voting
system, inspired by [CGGI14,BCG+15].

2.1 Syntax of a Voting System

Election systems typically involve several entities. For the sake of simplicity we consider each
entity to consist of only one individual but note that all of them could be thresholdized.

1. Election administrator : denoted by E , is responsible for setting up the election; it publishes
the identities id of eligible voters, the list of candidates and the result function ρ of the
election (typically counting the number of votes every candidate received).

2. Registrar : denoted by R, is responsible for distributing secret credentials to voters and
registering the corresponding public credentials.

3. Trustee: denoted by T , is in charge of tallying and publishing a final result.

4. Voters: the eligible voters id1, . . . , idτ are participating in the election.

5. Ballot-box manager : denoted by B, is responsible for processing ballots and storing valid
ballots in the ballot box BB; it is also responsible for publishing PBB, the public part of
the ballot box, called bulletin board.

We continue by describing the syntax for an electronic voting protocol that we will be using
thorough the paper. The syntax below considers single-pass schemes, that is, systems where
voters only have to post a single message to the board. A voting protocol is always relative
to a family of result functions {ρτ}τ≥1 for τ ∈ N, with ρτ : Vτ → R, where V is the set of
admissible votes and R is the result space. A voting protocol V = (Setup,Register,Vote,Valid,
Append,Publish,VerifyVote,Tally,Verify) consists of nine algorithms whose syntax is as follows:

Setup(1λ), on input a security parameter 1λ, outputs an election public/secret pair (pk, sk),
where pk typically contains the public key of the election and/or a list of credentials L.
We assume pk to be an implicit input of the remaining algorithms.

Register(1λ, id), on inputs a security parameter 1λ and an identifier id, outputs the secret part of
the credential uskid and its public credential upkid, which is added to the list L = {upkid}.

Vote(id, upk, usk, v) is used by voter id to cast his choice v ∈ V. It outputs a ballot b, which
may or may not include the identifier id or the public credential upk. The ballot b is sent
to the bulletin board through a (possibly authenticated) channel.

Valid(BB, b) takes as input the ballot box BB and a ballot b and checks its validity. It returns >
for valid ballots and ⊥ for invalid ones (ill-formed, containing duplicated ciphertext from
the ballot box, etc.).

Append(BB, b) updates the ballot box with the ballot b. Typically, this consists in adding b
as a new entry to BB, but more involved actions might be possible (as in the case of our
scheme).
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Publish(BB) takes as input the ballot box BB and outputs the public view PBB of BB, called
public bulletin board.

VerifyVote(PBB, id, upk, usk, b) is a typically light-weight algorithm run by voters, for checking
that their ballots will be included in the tally. On inputs the public board PBB, a ballot
b, and the voter’s identity and credentials id, usk, upk, it returns > or ⊥.

Tally(BB, sk) takes as input the ballot box BB and the secret key sk. After some checks, it
outputs the tally r, together with a proof of correct tabulation Π. Possibly, r = ⊥, meaning
the election was declared invalid.

Verify(PBB, r,Π), on inputs the public bulletin board PBB and a pair (r,Π), checks whether Π
is a valid proof of correct tallying for r. It returns > if so; otherwise it returns ⊥.

The exact implementation of these algorithms of course depends on the voting protocol under
consideration. In particular, the notion of public and private credentials of a voter varies a lot
depending on the protocol. For example upkid might be simply the identity of the voter or it
may correspond to his signature-verification key.

2.2 Strong Receipt-Freeness

Intuitively, privacy ensures that an adversary cannot learn the vote of an honest voter. In
contrast, receipt-freeness further guarantees that a voter cannot prove how he voted, even if
he willingly provides information to the adversary. This captures the seminal intuition from
Benaloh and Tuinstra [BT94]. Indeed, the latter insisted that a reasonably private electronic
voting protocol shall emulate traditional voting in a voting booth: it should allow voters to
conceal their individual votes and, at the same time, it should prevent them from revealing their
vote. Namely, voters should not be able to give away the privacy of their vote granted by the
voting protocol, even if they are willing to do so.

Building upon a definition of privacy recently introduced in [BCG+15], we simply provide
the adversary with an additional oracle (called OreceiptLR) that allows him to submit his own
ballots on behalf of any voter (honest or dishonest). This simple formalization covers several
important scenarios:

• A voter who wants to convince a vote buyer of how he voted may prepare his ballot in
an arbitrary way that allows him to construct a convincing receipt (e.g., consider the
scenario where the voter uses biased random coins to build his ballot and to prove how he
voted [GGR09]).

• A voter that might have been corrupted before the ballot casting phase may just follow
the instructions given to him by the adversary ( [JCJ05]).

• A voter can record, but also forge, its interaction with the ballot box (as in [BT94]).

Formally, we consider two games, Game 0 and Game 1, defined by the oracles in Figure 1.
In both games BB0,BB1 are ballot boxes that start out empty. Box BB0 corresponds to the real
election (that will be tallied) and BB1 is the fake ballot box with which the adversary interacts
in the second game. In Game β the adversary has indirect access to BBβ, that is, he may see
the public part of the box at any time. The game provides an adversary A access to the oracles
defined in Figure 1, which intuitively proceed as follows:

Oinit: This oracle generates secret and public keys for the election; the public key is returned
to the adversary.

Oboard: This models the adversary’s ability to see the publishable part of the board. The
oracle returns Publish(BBβ). (In many schemes, we simply have Publish(BBβ) = BBβ.)
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Oinit

(pk, sk)← Setup(1k); return pk

Oreg(id)

If id was not previously queried,

then run Register(λ, id) and

update U = U∪{(id, upkid, uskid)};
return upkid and keep uskid secret.

OcorruptU(id)

on a registered voter id, output

the credential pair (upkid, uskid)

and update CU = CU ∪
{(id, upkid)}.

OvoteLR(id, v0, v1)

If v0 /∈ V or v1 /∈ V then return ⊥.

b0 = Vote(id, upkid, uskid, v0)

b1 = Vote(id, upkid, uskid, v1).

Append(BB0, b0); Append(BB1, b1)

Ocast(id, b)

If Valid(BBβ , b) = ⊥ then return ⊥.

Else Append(BB0, b) and Append(BB1, b).

OreceiptLR(id, b0, b1)

If id /∈ CU return ⊥.

If Valid(BB0, b0) = ⊥ or Valid(BB1, b1) = ⊥
return ⊥.

Else Append(BB0, b0) and Append(BB1, b1)

Oboard()
return Publish(BBβ)

Otally() for β = 0

(r,Π)

← Tally(BB0, sk)

return (r,Π)

Otally() for β = 1

(r,Π)← Tally(BB0, sk)

Π′ ← SimProof(BB1, r)

return (r,Π′)

Figure 1: Oracles defining experiments Expsrf,β
A,V (λ) for β = 0, 1. The games differ in the way the

tallying oracle creates auxiliary data, in which board is displayed to the adversary in response
to Oboard queries and against which board ballots are validated.

OvoteLR: The left-or-right oracle OvoteLR takes two potential votes (v0, v1) for an honest user
id, produces ballots b0 and b1 for these votes and places them in the ballot box (one in
BB0 and one in BB1), provided that v0, v1 ∈ V.

Ocast: This oracle allows the adversary to cast a ballot b on behalf of any party. If the ballot
is valid with respect to BBβ, it is placed in both ballot boxes.

OreceiptLR: This oracle allows an adversarial voter id to cast a ballot b1 in BB1 and a ballot b0
in BB0. If each ballot b0, b1 is valid with respect to their respective ballot boxes, then
the ballots are appended to the corresponding boxes by running Append(BB0, b0) and
Append(BB1, b1). This allows the adversary to encode special instructions in the ballots
that could later serve as the basis for a vote receipt.

Otally: This oracle allows the adversary to see the result of the election. In both games the
result is obtained by tallying a valid BB0; the additional information is however simulated
in the second world.

We demand that the adversary first calls Oinit, then oracles OvoteLR,Ocast,Oboard,OreceiptLR
in any order, and any number of times. Finally, A can call Otally; after it receives the answer
to this, A must return a guess of the bit β. The guess bit is the result returned by the game.

Definition 1 (sRF). Consider a voting protocol V = (Setup, Register, Vote, Valid, Append,
VerifyVote, Publish, Tally,Verify) for a set ID of voter identities and a result function ρ. We
say the scheme has strong receipt-freeness if there exists an algorithm SimProof such that no ef-
ficient adversary can distinguish between games Expsrf,0

B,V (λ) and Expsrf,1
B,V (λ) defined by the oracles

in Figure 1, that is, for any efficient algorithm A∣∣ Pr
[
Expsrf,0

A,V (λ) = 1
]
− Pr

[
Expsrf,1

A,V (λ) = 1
] ∣∣

is negligible in λ.
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As expected, strong receipt-freeness2 (sRF) trivially implies privacy (as defined by the
BPRIV definition in [BCG+15]). This is because BPRIV is defined as strong receipt-freeness
except that the adversary does not have access to OreceiptLR. We call this notion strong receipt-
freeness to distinguish it from the notion of receipt-freeness recently introduced in [KZZ15], which
accounts only for honest voters: having (honestly) voted, a voter should not be able to provide
a receipt to the adversary. Let us now consider receipt-freeness of two voting protocols.

Helios. Under the definition provided in [KZZ15] the Helios protocol would be declared receipt-
free. In contrast, under our definition Helios is not receipt-free. Indeed, if the adversary is
allowed to cast different ballots b0, b1 to the ballot boxes BB0,BB1 respectively, then distin-
guishing Game 0 from Game 1 is trivial. This is due to the fact that in Helios PBB contains
the encryption of the votes under the public key of the election, so it suffices for an adversary
to produce different encryptions c, d of the same vote and to see which one is showing up when
calling oracle Oboard.

Civitas. Maybe surprisingly, Civitas [CCM08] is not strongly receipt-free either. Indeed, as
for Helios, if the adversary is allowed to cast different ballots b0, b1 to the ballot boxes BB0,BB1

respectively, then distinguishing Game 0 from Game 1 is trivial. This reflects the fact that a
voter may prove to a third party that, if his ballot is to be included in the final tally, then it
corresponds to some candidate chosen by the adversary.

The fact that Civitas still enjoys coercion-resistance relies on the fact that the voter has
a strategy to fake a credential and fool his coercer with a ballot that will be accepted in the
voting phase but discarded in the tally phase. Depending on the voter’s abilities, it is not always
possible to follow the intended strategy. For example, if re-voting is forbidden (as is usually the
case in practice) then Civitas is no longer coercion-resistant, as the only way a voter can defeat
the coercer is by casting a ballot that will not be part of the final tally. So if a coerced voter
wants to vote in the election and re-voting is not possible then the voter must abide to the choice
made by the coercer, even if the coercer is not present at the time of ballot casting.

In contrast, our notion of strong receipt-freeness simply captures whether an advesary can
detect whether a voter runs the honest program or the adversary’s program. This scenario gives
less power to the voter, but it is also more realistic with respect to what an average voter can
understand and perform.

3 Building Blocks

Before describing our voting scheme, we first present the necessary cryptographic building blocks.

3.1 Assumptions

We will work in symmetric bilinear groups and assume the existence of a bilinear-group generator
GrpGen, which on input 1λ outputs (p,G,GT , e, g), where p is a prime of length λ, G and GT

are cyclic groups of order p, g is a generator of G, and e is a bilinear map e : G×G→ GT such
that e(g, g) generates GT .

Definition 2 (CDH). The computational Diffie-Hellman assumption holds for GrpGen if for
all G = (p,G,GT , e, g)←$ GrpGen(1λ), for a, b←$ Zp, and every probabilistic polynomial-time
(p.p.t.) adversary given (G, ga, gb), the probability that it outputs gab is negligible in λ.

2Let us emphasize that the sRF definition requires some setup assumptions (like the CRS or the RO model),
which we do not include in this section for simplicity. We refer to Appendix C in [BCG+15] for an explicit RO
model setup.

6



Definition 3 (DLIN). The decisional linear assumption holds for GrpGen if for G = (p,G,GT , e,
g)←$ GrpGen(1λ) and for x, y, a, b, c←$ Zp, no p.p.t. adversary can distinguish (G, gx, gy, gxa,
gyb, ga+b) from (G, gx, gy, gxa, gyb, gc) with advantage non-negligible in λ.

3.2 Signatures on Randomizable Ciphertexts

The primitive introduced by Blazy et al. [BFPV11] consists of the following algorithms: Setup,
which on input the security parameter 1λ outputs the parameters (such as the bilinear group);
SKeyGen outputs a pair of signing key and verification key (sk, vk), EKeyGen outputs a pair of
encryption and decryption key (pk, dk). SKeyGen together with Sign and Verify constitutes a
signature scheme and EKeyGen with Encrypt and Decrypt a public-key encryption scheme.

As the signature and the encryption scheme are used together, these algorithms have exten-
sions Sign+ and Verify+, which additionally take the encryption key pk as input; and Encrypt+,
Decrypt+, which also take the verification key vk.

Randomizability. The main feature of signatures on randomizable ciphertexts (SRC) is an
algorithm Random+, which takes pk, vk, a ciphertext c under pk and a signature σ on c valid
under vk, and outputs a re-randomization c′ of c together with a signature σ′, valid on c′.

We require that outputs of Random+ are distributed like a fresh encryption of the plaintext
of c and a signature on it: For all (pk,dk)←$ EKeyGen(G), (vk, sk)←$ SKeyGen(G) and messages
m the following two random variables are distributed equivalently:

[
c←$ Encrypt+(pk, vk,m);
σ←$ Sign+(sk, pk, c);

: (c, σ)

]
≈c

 c←$ Encrypt+(pk, vk,m);
σ←$ Sign+(sk,pk, c);
(c′, σ′)←$ Random+(pk, vk, c, σ)

: (c′, σ′)

 (1)

Unforgeability. Unforgeability of signatures on randomizable ciphertext is defined via the
following experiment: The challenger computes a signature key pair and an encryption key
pair (sk, vk), (dk,pk) and runs the adversary on (vk, pk). It is also given access to an oracle
Sign+(sk,pk, ·), which it can query adaptively on ciphertexts c1, . . . , cq of its choice. Finally, it
outputs a pair (c∗, σ∗) and wins if Verify+(vk, pk, c∗, σ∗) = 1 and m = Decrypt+(dk, vk, c∗) is
different from all mi := Decrypt+(dk, vk, ci) and m,m1, . . . ,mq 6= ⊥.

We now construct an efficient scheme for signatures on randomizable ciphertexts based on
Boneh-Lynn-Shacham signatures [BLS04] and linear encryption [BBS04]. We note that our
scheme is not suitable for homomorphic tallying, since we encrypt H(m), where H is hash
function modeled as a random oracle, so the scheme is not additively homomorphic.

3.3 Our SRC Construction

Linear encryption. Our construction of signatures on randomizable ciphertexts uses linear
encryption, which is semantically secure under DLIN (Definition 3). For simplicity, we give the
scheme in symmetric bilinear groups, but note that it could be transferred to (more efficient)
asymmetric groups, by giving certain values in both groups G1 and G2.

Linear encryption is defined over a bilinear group (p,G,GT , e, g) and secret keys (x, y) are
drawn from Z2

p; they define a public key in G2 as X = gx, Y = gy. A message M ∈ G is
encrypted by choosing r, s←$ Zp and returning c = (Xr, Y s,M · gr+s). Decryption is done by

computing M = c3 · c−1/x
1 · c−1/y

2 .
We now extend the scheme to be combined with BLS signatures, which we introduce below.

We will use three hash functions H : {0, 1}log λ → G, and I, J : G → G, which will be modeled
as random oracles. Our scheme only supports polynomial-size message spacesM, which suffices
perfectly when encrypting votes. We can thus define encryption of a message m as linear
encryption of M = H(m) and decrypt by decrypting M and then performing an exhaustive
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search on the message space to recover m. Encryption moreover adds “tags” which depend on
the verification key vk (which is an additional input to Encrypt+); this will ensure a form of
non-malleability, which in our voting protocol will bar vote-copying.

EKeyGen(G): Choose dk = (x, y)←$ Z2
p and define pk = (X,Y ) = (gx, gy).

Encrypt+((X,Y ), vk,m; r, s): Return c1 = Xr, c2 = Y s, c3 = H(M) · gr+s, c4 = I(vk)r and
c5 = J(vk)s.

Decrypt+((x, y), vk, (c1, c2, c3, c4, c5)): If e(c4, X) 6= e(I(vk), c1) or e(c5, Y ) 6= e(J(vk), c2), re-

turn ⊥. Else compute M := c3 · c−1/x
1 · c−1/y

2 , search the message space M and output m
with M = H(m).

BLS signatures on ciphertexts. BLS signatures [BLS04] consist of one bilinear-group el-
ement and are secure under CDH (Definition 2) in the random-oracle model. Given a bilinear
group (p,G, g,GT , e), a secret key is an element z ∈ Zp and defines the verification key as Z = gz.
A signature on a message m is defined as H(m)z, where H is a random oracle. A signature σ
is verified by checking e(σ, g) = e(H(m), Z). We now define a signature on a linear ciphertext
c = (Xr, Y s, H(m) · gr+s) as σ = (cz1, c

z
2, c

z
3). This yields (Xrz, Y sz, H(m)z · grz+sz), which is

a linear encryption (using randomness (rz, sz)) of a signature H(m)z. In order to allow for
re-randomization, we add two more elements, namely Xz and Y z to the signature.

SKeyGen(G): Choose sk = z←$ Zp and define vk = Z = gz.

Sign+(z, (X,Y ), (c1, . . . , c5)): If e(c4, X) 6= e(I(gz), c1) or e(c5, Y ) 6= e(J(gz), c2), return ⊥.
Else return σ1 = cz1, σ2 = cz2, σ3 = cz3, σ4 = Xz, σ5 = Y z.

Verify+(Z, (X,Y ), (c1, . . . , c5), (σ1, . . . , σ5)):

– check consistency of c: If e(c4, X) 6= e(I(Z), c1) or e(c5, Y ) 6= e(J(Z), c2), return 0;
– check σ: if ∃i ∈ {1, 2, 3}: e(σi, g) 6= e(ci, Z); or e(σ4, g) 6= e(X,Z) or e(σ5, g) 6= e(Y,Z)

then return 0; else return 1.

Given a ciphertext c under (X,Y ) for verification key Z and a signature σ on c under Z then
the pair (c, σ) can be randomized together:

Random+((X,Y ), Z, c, σ; (r′, s′)): Return c′1 = c1X
r′ , c′2 = c2Y

s′ , c′3 = c3g
r′+s′ , c′4 = c4I(Z)r

′
,

c′5 = c5J(Z)s
′
, σ′1 = σ1σ

r′
4 , σ′2 = σ2σ

s′
5 , σ′3 = σ3Z

r′+s′ , σ′4 = σ4, σ′5 = σ5.

It is easily verified that this yields a signed ciphertext of the same message, but using randomness
(r + r′, s+ s′). Our scheme has thus randomizability, as defined in Equation (1).

We now show that our scheme satisfies the unforgeability notion for SRC from [BFPV11],
as defined in Section 3.2.

Theorem 1. The signature scheme (Setup, EKeyGen, SKeyGen, Encrypt+, Decrypt+, Sign+,
Verify+, Random+) above is unforgeable in the random-oracle model.

Proof. The proof is by reduction to unforgeability of BLS signatures. The simulator is given
vk = Z = gz and access to a signing oracle (which on input m returns H(m)z). It chooses
x, y←$ Zp and runs A on input Z, (X = gx, Y = gy). Random oracles queries to I and J are
answered by choosing random values, except I(Z) := Za and J(Z) := Zb for random a, b←$ Zp.

Sign+ oracle queries for c are answered as follows: if the checks of c4 and c5 fail then
return ⊥; else there exist r, s and M (unknown to the reduction) such that c = (Xr, Y s,M ·
gr+s, I(Z)r, J(Z)s); note that by the programming of I and J we have c4 = Zar and c5 = Zbs.

The simulator computes M = c3c
−1/x
1 c

−1/y
2 , searches m inM with M = H(m) and if no such m
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exists, it aborts (note that in this case c is not a valid ciphertext and ⊥ = Decrypt+(dk, vk, c),
thus the adversary loses the game). Otherwise, the simulator queries m to its signing oracle to

obtain σ̂ = H(m)z. It then computes σ as σ1 = c
x/a
4 = Xrz, σ2 = c

y/b
5 = Y sz, σ3 = σ̂c

1/a
4 c

1/b
5 ,

σ4 = Zx, σ5 = Zy, which is easily seen to be correctly distributed.
Suppose the adversary outputs (c∗, σ∗) such that Verify+(Z, (X,Y ), c∗, σ∗) = 1. Let m∗ =

Decrypt+(dk, vk, c∗), thus for some r∗, s∗, we have c∗1 = Xr∗ , c∗2 = Y s∗ , c∗3 = H(m∗)gr
∗+s∗ .

Moreover, by Verify+, we have σ∗1 = Xr∗z, σ∗2 = Y s∗z, σ∗3 = H(m∗)zgr
∗z+s∗z; thus σ∗3(σ∗1)−1/x

· (σ∗2)−1/y = H(m∗)z, which is a signature on m∗, which was not queried and is thus a valid
forgery.

Remark 1. Note that unforgeability also holds, when the adversary’s forgery need only be of the
form (c1, c2, c3) and (σ1, σ2, σ3) (that is, the components I(Z)r and J(Z)s in c; and Xz and Y z

in σ are not required). This will make our voting protocol more efficient, as publishing these
elements suffices to convince the voter that his vote was counted.

3.4 RCCA-Secure Encryption from SRC

As a next step in the development of our voting protocol in this section we show that our SRC
scheme from the last section yields an RCCA-secure encryption scheme.

CCA-security, the standard notion for public-key encryption, states that for an efficient
adversary that after choosing m0,m1 receives c, it should be impossible to decide whether c
encrypts m0 or m1, even when given an oracle that decrypts any ciphertext c′ 6= c. For random-
izable schemes this notion is unachievable, as the adversary could simply submit a randomization
of the challenge ciphertext to the decryption oracle. The strongest achievable notion for such
schemes is RCCA, where every time the oracle receives an encryption of m0 or m1, it returns a
special symbol >.

Based on our SRC scheme we define the following encryption scheme:

KeyGen is defined as EKeyGen.

Encrypt(pk,m): Choose (vk, sk)←$ SKeyGen(G);
compute c←$ Encrypt+(pk, vk,m);
set σ←$ Sign+(sk, pk, c) and return C = (c, σ, vk).

Decrypt(dk, C): If Verify+(vk, pk, c, σ) = 0 then return ⊥;
else return m = Decrypt+(dk, vk, c).

Theorem 2. The above scheme is RCCA-secure.

Proof. We distinguish two types of forgers: Type 1 at some point issues a valid decryption
query (that is, one that does not return ⊥ or >) which contains vk that is also contained in
the challenge ciphertext. This is reduced to unforgeability of the underlying SRC scheme. The
simulator receives vk, encrypts mb as c and queries c to its Sign+ oracle to obtain σ (note that
the ciphertext contains a valid message) and sets the challenge ciphertext as (c, σ, vk). If the
adversary issues a valid decryption query containing vk but for a message different from m0 and
m1, then the contained signature σ is a forgery.

Type 2 forgers never issue a valid decryption query containing the vk from the challenge
ciphertext. This case is reduced to the decision linear assumption. Given a DLIN instance
(X,Y,R = Xr, S = Y s, T ), where either T = gr+s or T is random, the simulator defines
pk = (X,Y ) and picks z←$ Zp which it will use in the challenge query. It programs the random
oracles I, J as follows: when queried on Z = gz, it defines I(Z) = Xa and J(Z) = Y b for some
a, b←$ Zp; for any Zi 6= Z, it chooses ai or bi and sets I(Zi) = gai and J(Zi) = gbi .

Decryption queries for (c, σ, vk) are answered as follows: if Verify+(vk, pk, c, σ) = 0 then
return ⊥; else browse the random-oracle queries to find i such that Zi = vk. Let r, s and M

9



(unknown to the reduction) be such that c1 = Xr, c2 = Y s, c3 = Mgr+s. By verification, we have

c4 = I(Zi)
r, c5 = J(Zi)

s, thus c4 = gair, c5 = gbis. The simulator computes M = c3c
−1/ai
4 c

−1/bi
5 ,

looks for m s.t. H(m) = M and returns m (and ⊥ if no m exists). The challenge ciphertext C is
computed as follows:

(
c = (R,S,H(mb)T,R

a = I(Z)r, Sb = J(Z)s), σ = (cz1, c
z
2, c

z
3, X

z, Y z), Z
)
.

If T = gr+s then this game simulates the RCCA game for bit b; however, if T is random
then the game is independent of b. Since under DLIN these two games are indistinguishable,
the adversary cannot win the RCCA game with non-negligible probability.

3.5 Verifiable Secret Shuffle of Linear Encryptions

Since our scheme does not support homomorphic tallying, we need a zero-knowledge argument
for proving the correctness of a shuffle of linear encryptions. Roughly speaking, on input a list
of linear encryptions {(Xri , Y si ,mi · gri+si)} for i = 1, . . . , n, a shuffle outputs a list of linear
encryptions of the form {(Xr′i , Y s′i ,mP(i) · gr

′
i+s
′
i)}, where P ←$ Permutation(1, . . . , n). We need

this output to be verifiable and permutation-hiding.

Definition 4. Let (ShufflePermute, ShuffleVerify) be a shuffle scheme. We say it is verifiable
and secret if:

Verifiability: let the input of ShufflePermute be a list of linear encryptions Lin = {(ci,1, ci,2, ci,3)}
of plaintexts mi, and let the output of ShufflePermute be a list of linear encryptions Lout =
{(c′i,1, c′i,2, c′i,3)} of plaintexts m′i, for i = 1, . . . , n, and a proof of correct shuffling Πs.
Then with overwhelming probability there exists a permutation P such that, as multisets,
{m′1, . . . ,m′n} = {mP(1), . . . ,mP(n)}.

Permutation-hiding: a simulator ShuffleSim exists such that on inputs two lists of encryptions
Lin and Lout and any permutation P ∈ Permutation(1, . . . , n), outputs a simulated shuffle
proof Πsim

s such that ShuffleVerify(pk, Lin, Lout,Π
sim
s ) accepts.

Such a shuffle of linear encryptions can be obtained, for instance, by extending the shuffle
scheme for ElGamal encryptions proposed by Bayer and Groth in [BG12].

4 BeleniosRF: Strongly Receipt-Free E-Voting

In this section we define Belenios Receipt-Free (BeleniosRF), a strongly receipt-free voting pro-
tocol that builds on [BFPV11] and [CGGI14]. We start with an overview of our protocol,
which is based on the primitive instantiated in the last section. The election public/secret key
pair (pk, sk) is an encryption/decryption key pair generated via EKeyGen and user key pairs
(upk, usk) are signature keys generated by SKeyGen. A user casts a vote by encrypting it via
Encrypt+ w.r.t. pk and his upk and uses usk to then sign the ciphertext via Sign+ (together, this
corresponds to a ciphertext output by Encrypt of our RCCA encryption scheme from Section 3.4).

When the ballot box receives a valid bulletin, it randomizes it via Random+ and publishes
the resulting ciphertext/signature pair on the public bulletin board PBB. Users can verify that
their vote is present, since they can verify the adaptation of their signature, which is valid
on their randomized ciphertexts. Tallying now follows standard techniques of e-voting: First,
the encrypted votes are re-randomized and shuffled (and a proof of correct execution of this is
generated) via an algorithm Shuffle; finally, the ballots are decrypted (again accompanied with
a proof that this was done correctly) and the result is published. These proofs make the tallying
process publicly verifiable. Let us now give the details.

The scheme BeleniosRF VBeleniosRF consists of the algorithms (Setup, Register, Vote, Valid,
Append, VerifyVote, Publish,Tally, Verify), defined as follows:

Setup(1λ): Run G = (p,G,GT , e, g)←$ GrpGen(1λ), choose hash functions H, I, J : {0, 1}∗ → G
and set param := (G, H, I, J). Pick x, y←$ Zp and define X := gx, Y := gy. Set pk := (X,Y ),

10



dk := (x, y) and output pk ← (G,pk, H, I, J,V), the public key of the election (which is an
implicit input to all following algorithms), and sk = (pk, dk), the secret key of the election.

Register(id): On (implicit) input (G,pk, H, I, J,V) and an identifier id, choose a secret key
uskid = z←$ Zp, and define the public key as upkid = Z = gz.

Vote (id, upk = Z, usk = z, v) is used by a voter with secret key z to create a ballot b for vote
v ∈ V as follows:

– encrypt v w.r.t. (X,Y ) and Z by sampling r, s←$ Zp and setting c ∈ G5 as follows:

c1 = Xr c2 = Y s c3 = H(v) · gr+s c4 = I(Z)r c5 = J(Z)s

– sign c, using z ∈ Zp, computing σ :=
(
σ1 := cz1, σ2 := cz2, σ3 := cz3, σ4 := Xz, σ5 := Y z

)
.

The ballot is defined as b = (id, Z, c, σ). The voter casts the ballot b to the ballot box BB after
a successful authentication. The ballot-box manager runs Append(BB, b) if Valid(BB, b) 6= ⊥.

Valid(BB, b) first checks that the ballot b is valid, i.e., that it is well-formed and the signature is
correct. Formally, it parses b as (id, Z, c, σ) and checks whether

– id corresponds to an eligible voter;

– Z corresponds to upk of an eligible voter;

– c was encrypted w.r.t. Z by testing whether e(c4, X) = e(I(Z), c1) and e(c5, Y ) = e(J(Z), c2);

– σ is valid, i.e., e(σ1, g) = e(c1, Z), e(σ2, g) = e(c2, Z), e(σ3, g) = e(c3, Z), e(σ4, g) = e(X,Z)
and e(σ5, g) = e(Y, Z).

If any step fails, it returns ⊥; otherwise, it returns >.

Append(BB, b) proceeds as follows:

– id corresponds to an eligible voter;

– id has not cast a ballot before.3

If both checks are OK, it updates BB with a fully randomized version of b = (id, Z, c, σ) as
b′ = (id, Z, c′, σ′), computed by choosing r′, s′←$ Zp and setting

c′1 = c1X
r′ c′2 = c2 Y

s′ c′3 = c3 g
r′+s′ c′4 = c4 I(Z)r

′
c′5 = c5 J(Z)s

′

σ′1 = σ1 σ
r′
4 σ′2 = σ2 σ

s′
5 σ′3 = σ3 Z

r′+s′ σ′4 = σ4 σ′5 = σ5

(It is easily verified that if c was encrypted using randomness (r, s) then c′ is an encryption of
the same under randomness (r + r′, s+ s′) and σ′ is a signature on c′.)

Publish(BB) removes from every entry in BB the identifier id and the components c4, c5, σ4, σ5

and publishes the result, called PBB.4

VerifyVote(PBB, id, upk, usk, b) returns > if there exists a valid entry in PBB containing Z =
upk, and ⊥ otherwise. An entry (Z, c1, c2, c3, σ1, σ2, σ3) is valid if we have e(σ1, g) = e(c1, Z),
e(σ2, g) = e(c2, Z) and e(σ3, g) = e(c3, Z).

Tally(BB, sk) consists of the following steps:

– Parse each ballot b ∈ BB as b = (idb, Zb, cb, σb).
3For simplicity, we describe a version of our protocol where revoting is forbidden but it could be easily adapted

to allow revoting. This would require to explicitly introduce the revote policy (e.g. only the last vote counts).
4Note that by Remark 1, even after removing c4 and c5 a user can still be assured that σ, which is valid under

his key, certifies that his vote has not been changed. Moreover, σ4 and σ5 can also be dropped in the bulletin
board, since they are only needed to re-randomize.
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– Update BB by removing any ballot b such that id /∈ ID or cb is not valid w.r.t. Zb or σb is
not valid. Let BBc be the result and N the number of remaining ballots.

– Let BB = {(cb,1, cb,2, cb,3)}b∈BBc . Shuffle BB by running (BBs,Πs)← Shuffle(BB).

– Decrypt the ciphertexts cb = (cb,1, cb,2, cb,3) ∈ BBs and compute proofs of correct decryp-
tion. Let Πd = {(cb, πb, vb)}b∈BBs

, where vb is the decryption of cb under decryption key
dk (contained in sk) and πb is the corresponding proof of correct decryption.

– Compute the result r by applying the result function to valid votes.

– Output (r,PBB,Πs,Πd).

Verify(PBB, r, (Πs,Πd)) simply verifies Πs and Πd w.r.t. PBB and the result r.

Security of BeleniosRF. We now show that BeleniosRF satisfies strong receipt-freeness, as
defined in Definition 1.

Theorem 3. VBeleniosRF is strongly receipt-free.

We first prove the following claim:

Claim 1. DLIN is random self-reducible.

Proof. Given a tuple (X,Y,R = Xr, S = Y s, T ) where T = gr+s or T is random, we choose
z, a, b←$ Zp and define the following:

R′ := Rzga = Xrz+a S′ := Szgb = Y sz+b T ′ := T zgagb = gtz+a+b

With r′ := rz + a and s′ := sz + b, which are both uniformly random, we have

T ′ = g(t−r−s)z+rz+sz+a+b = g(t−r−s)z+r′+s′ .

Thus, if the original challenge was a linear tuple, i.e., t = r+ s then the new tuple is also linear
with randomness r′, s′; however, if t− r − s 6= 0 then R′, S′ and T ′ are uniformly random.

Proof of Theorem 3. We now prove strong receipt-freeness of BeleniosRF. The challenger in the
game sets up all pairs (upkid, uskid), meaning it knows every signing key. The only difference
between Game 0 and Game 1 is that the adversary sees PBB0 in the former and PBB1 in
the latter. Since PBB only contains encryptions of different votes, it seems that PBB0 and
PBB1 should be indistinguishable by semantic security of linear encryption. However, at the
end of both games the adversary receives the result of the election, which is computed using
the secret key—which seems to contradict semantic security. We however show that—similarly
to the proof of our RCCA scheme—by using random-oracle programmability, we can simulate
decryption without knowing the secret key, which will enable use to embed DLIN instances into
PBB.

Entry i in PBBβ is of the form (Zi, c
′
i,β, σ

′
i,β), where (c′i,β, σ

′
i,β) is a randomization of (ci,β, σi,β)

which was submitted at the i-th query of type OvoteLR, Ocast, or OreceiptLR, and which was
stripped off its last two components. Moreover, note that (ci,β, σi,β) must have been valid,
otherwise Valid would have returned ⊥ and the vote would have been discarded. Let (Zj , zj) be
the key pair corresponding to idi. Then by Valid, we have that (ci,β, σi,β) is of the form:

ci,β = (Xr, Y s, H(mi,β) · gr+s, I(Zj)
r, J(Zj)

s) , σi,β = (c
zj
1 , c

zj
2 , c

zj
3 , X

zj , Y zj ) ,

for some r, s. On the other hand, PBBβ contains

c′i,β = (Xr′ , Y s′ , H(mi,β) · gr′+s′) , σ′i,β = ((c′1)zj , (c′2)zj , (c′3)zj ) ,

12



where r′, s′ are uniformly random by randomizability of the used signatures-on-randomizable-
ciphertext scheme.

We program the random oracles I, J so that we can compute Tally without using the decryp-
tion key: When queried for Zj , we set I(Zj) := gaj and J(Zj) := gbj , for uniform aj , bj ←$ Zp.
For every valid ballot b0 = (id, Z, c, σ) sent by the adversary, and therefore included in BB0,
we have c = (Xr, Y s, H(v0) gr+s, I(Zj)

r, J(Zj)
s) for some r, s, v0. We have I(Zj)

r = gajr and

J(Zj)
s = gbjs; we can thus retrieve H(v0) = c3 c

−1/aj
4 c

−1/bj
5 and thereby get v0 for tallying

without knowing the secret key (x, y).
Assume we are given a DLIN challenge (X,Y,Xr, Y s, T ), where either T = gr+s or T is

uniformly random in G. By self-reducibility of DLIN (proved in Claim 1 above), from this
challenge we can create arbitrarily many tuples (X,Y,Ri, Si, Ti), where Ri = Xri and Si = Y si

are uniformly random and where (depending on the original challenge) either Ti = gri+si or it
is uniformly random.

We now simulate Game 0, answering queries to I and J as described above and also simulat-
ing decryption in order to obtain the votes vi,0. Now, instead of rerandomizing the valid ballots
received by the adversary, we include c′i = (Ri, Si, H(vi,0) ·Ti) and σ′i = ((c′i,1)zj , (c′i,2)zj , (c′i,3)zj )
in PBB0. If our DLIN challenge was a linear tuple then this perfectly simulates Game 0, whereas
if T was random (and therefore all Ti are independently uniformly random) then the adversary’s
view is independent of β. This means that in the modified game (which is indistinguishable from
Game 0 and by an analogous argument from Game 1), the bit β is information-theoretically hid-
den from the adversary. This concludes the proof.

Efficiency of BeleniosRF. Although, as we show in the next section, the voting protocol
proposed in [BFPV11] is not secure, we compare its efficiency with that of BeleniosRF in terms
of ballot size (which also roughly translates to the number of bilinear-group exponentiations a
user must perform when casting his vote). The ballot size in BeleniosRF is independent of the
bit length k of votes v ∈ V, as long as k is logarithmic (as V needs to be polynomial-size to
enable efficient exhaustive search). In contrast, the ballots in [BFPV11] grow linearly in the
bitlength k of the votes.

Table 1: Comparison of ballot size

[BFPV11], DLIN-based 9k + 33 elements from G
[BFPV11], DDH-based 6k + 15 elements from G1

plus 6k + 7 el. fr. G2

BeleniosRF (DLIN based) 10 elements from G

5 The Blazy et al. Voting Protocol is not Ballot-Private

Blazy et al. [BFPV11], who introduced the notion of signatures on randomizable ciphertexts,
propose to use this primitive for a receipt-free e-voting protocol. Their ballot-creation and
-casting protocol workflow is as follows:

• The voter sends ballot

b =
(
vk, c = {v}rpk, σvk,sc , π

t,v ∈{0,1}
pk

)
,

where r, s, t ∈ Zp stand for the local randomness used for encrypting the vote v, signing
the resulting ciphertext c and creating the NIZK proof π, respectively.
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• The server re-randomizes the ballot b to b′ as follows:
(
vk, c = {v}r′pk, σ

vk,s′
c , π

t′,v ∈{0,1}
pk

)
,

where r′, s′, t′←$ Zp.

Thanks to the properties of the involved primitive, the server can only re-randomize legiti-
mate signatures, meaning that any new ballot b′ that contains a valid signature w.r.t. vk must
originate from a ballot b that has been previously created by the voter, and thus b and b′ contain
the same vote. On the other hand, the voter has no control over the final randomness r′, s′, t′

that defines b′. This forms the basis of receipt-freeness as claimed in [BFPV11] (the randomness
used for encrypting the ballot can be used as a receipt to prove how a voter voted, as it suffices
to re-encrypt the vote v using the local randomness).

An attack on ballot privacy. However, the above ballot casting workflow is not receipt-free,
as it is not even ballot private. We prove it by showing a ballot replay attack, which is known
to break ballot privacy [CS11]. Here follows a concise description of the attack:

• Honest voter sends ballot

b =
(
vk, c = {v}rpk, σvk,sc , π

t,v ∈{0,1}
pk

)
.

• Server re-randomizes the ballot

b′ =
(
vk, c = {v}r′pk, σvk,s

′
c , π

t′,v ∈{0,1}
pk

)
and displays it on the public bulletin board

• Dishonest voter with credentials (v̄k, s̄k) and with knowledge of target ballot b′

– copies c = {v}r′pk, π
t′,v ∈{0,1}
pk and re-randomizes this to {v}r̄pk, π

t̄,v ∈{0,1}
pk ;

– signs c̄ with (v̄k, s̄k) yielding σv̄k,s̄c̄ ;

– sends ballot
b̄ =

(
vk, c̄ = {v}r̄pk, σ

v̄k,s̄
c̄ , π̄

t̄,v ∈{0,1}
pk

)
.

These instructions allow any voter with knowledge of a ballot b to produce an independent-
looking ballot b′, that will be accepted by the voting server and effectively contains a copy of
the vote in b. Thus, the voting protocol [BFPV11] is not ballot-private. (Note that due to
randomizability, the ballot box cannot discard copied votes, as they look like legitimate ones.)

6 Conclusions

We introduced the notion of strong receipt-freeness, whereby a malicious voter cannot feasibly
produce a receipt proving how he voted, no matter whether the voter decided to act maliciously
before, during or after casting the ballot. We only require that the actions of the voter during
ballot casting are not visible to the adversary; however the voter can still present the adversary
a plausible record of the actions that he has undertaken when being away from the adversary.

We see our adversarial model close to the spirit of the seminal work in receipt-freeness by
Benaloh and Tuinstra [BT94]. Moreover, our definition builds on the recent work [BCG+15],
and is in particular simple, concise and game-based. These definitions are well-known for easing
the job of conceiving and writing security proofs; a point we confirm by giving a new e-voting
protocol that satisfies our definition in bilinear groups under the Decision Linear assumption.
The protocol is built using ideas from a previous work [BFPV11] that claimed to have solved
this problem. We show however that the previous voting scheme was not even ballot private,
which is considered to be a weaker privacy level than receipt-freeness. Still, our scheme saves
by a factor k+ 3 in space and computational cost, where k is the bit length of the vote, despite
improving the security. We are able to do this by working in the random-oracle model and
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changing to mixnet-based tallying. Although we have not discussed in depth the verifiability of
our protocol, it is not hard to see that this property is inherited from the framework that we
built upon, namely, [CGGI14].

As far as we know, this is the first scheme that is both receipt-free (in a strong sense)
and has universal verifiability, without requiring the existence of an untappable channel, thus
overcoming, with a new paradigm, the impossibility result exposed in [CFP+10]. In the latter,
the authors showed that no scheme could be receipt-free and universally verifiable without an
untappable channel (this is for instance the case of JCJ/Civitas [JCJ05]). Our solution overcomes
this impossibility result by introducing a cryptographically advanced technique, namely, that
the ballot box/bulletin board can re-randomize the ballot without changing its contents, in a
publicly verifiable way.
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verifiable election system. IEEE Transactions on Information Forensics and Secu-
rity, 4:662–673, 2009.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J. Alex Halderman. Security analysis of the estonian
internet voting system. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 14, pages 703–715. ACM Press, November 2014.

16

http://www. iacr.org/elections/
http://www. iacr.org/elections/

	Introduction
	Receipt-Freeness
	Syntax of a Voting System
	Strong Receipt-Freeness

	Building Blocks
	Assumptions
	Signatures on Randomizable Ciphertexts
	Our SRC Construction
	RCCA-Secure Encryption from SRC
	Verifiable Secret Shuffle of Linear Encryptions

	BeleniosRF: Strongly Receipt-Free E-Voting
	The Blazy et al. Voting Protocol is not Ballot-Private
	Conclusions

