
Unconditionally Secure Computation with
Reduced Interaction

Ivan Damg̊ard and Jesper Buus Nielsen?

Dept. of Computer Science, Aarhus University

Abstract. We study the question of how much interaction is needed
for unconditionally secure multiparty computation. We first consider the
number of messages that need to be sent to compute a non-trivial func-
tion (such as the AND of several input bits), assuming that all players
have input and get output. We show that for n players and t corruptions,
n(t + 3)/2 messages is necessary, this holds already for semi-honest and
static corruption. Note that for functions that can be securely computed
in constant round, this bound is tight up to a constant factor. For the
case t = 1 and semi-honest security, we show that 2n messages is also
sufficient to compute a rich class of functions efficiently, showing that
the bound is exact for t = 1.
Next, we consider round complexity. It is a long-standing open prob-
lem to determine whether all efficiently computable functions can also
be efficiently computed in constant-round with unconditional security.
Providing a positive answer seems to require completely new ideas for
protocol design. Motivated by this, we consider the question of whether
we can compute any function securely, while minimizing the interaction
of some of the players? And if so, how many players can this apply
to? Note that we still want the standard security guarantees (correct-
ness, privacy, termination) and we consider the standard communication
model with secure point-to-point channels. We answer the questions as
follows: for passive security, with n = 2t + 1 players and t corruptions,
up to t players can have minimal interaction, i.e., they send 1 message
in the first round to each of the t + 1 remaining players and receive one
message from each of them in the last round. Using our result on message
complexity, we show that this is (unconditionally) optimal. For malicious
security with n = 3t + 1 players and t corruptions, up to t players can
have minimal interaction, also this is shown to be optimal.

1 Introduction

In Multiparty Computation n players want to compute an agreed function on
privately held inputs, such that the desired result is correctly computed and is

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.
Partially supported by the European Research Commission Starting Grant 279447.

the only new information released. This should hold, even if t players have been
actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function
can be computed with unconditional (perfect) security, against a passive adver-
sary if n ≥ 2t+ 1 and against an active adversary if n ≥ 3t+ 1.[BGW88,CCD87]
If we assume a broadcast channel and accept a small error probability, n ≥ 2t+1
is sufficient to get active security.[RB89]

The protocols behind these results require a number of communication rounds
that is proportional to the depth of an (arithmetic) circuit computing the func-
tion. One would of course like to compute any function with unconditional secu-
rity, in constant round and efficiently in the circuit size of the function, but this
is a long-standing open problem (note that this is indeed possible if one makes
computational assumptions).

This is not only a theoretical question: the methods we typically use in in-
formation theoretically secure protocols tend to be computationally much more
efficient than the cryptographic machinery we need for computational security.
So unconditionally secure protocols are very attractive from a practical point of
view, except for the fact that they seem to require a lot of interaction.

It is therefore very natural to ask whether this state of affairs is inherent.
How much interaction do we actually need for unconditional security, and can
we reduce the interaction needed compared to existing protocols?

In this paper, we study this question with respect to two related but differ-
ent measures of interaction: message complexity and round complexity, and we
consider synchronous networks throughout.

Message complexity seems like a very simple measure at first sight: simply
count how many messages are sent in the protocol. However, a moment’s thought
will show that things are a bit more tricky. For instance, what if the protocol
varies its communication pattern, so that Pi sometimes (but not always) sends
a message to Pj in a certain round? One way to handle this is to declare that
the absence of a message is also a signal. This leads to what we call conservative
message complexity, i.e., we say that if Pi sometimes sends a message to Pj in a
certain round, then we consider it to be the case that Pi always sends a message
to Pj in this round. In this way, we force protocols to have a fixed communication
patterns.

However, using this measure to prove lower bounds is not satisfying. After all,
it could be that one could do protocols with a very small number of messages by
using tricks such as waiting for a certain time before a message is sent, and using
the amount of elapsed time as an implicit signal. In real life such an approach
could be interesting, as there may be some cost involved in physically moving a
message, that is not incurred if one stays silent. Put differently, we should worry
that using conservative messages complexity makes it too easy to prove lower
bounds. Therefore, we also define liberal message complexity, where the protocol
is only charged for messages that are explicitly sent, and where we also consider
the expected number of messages rather than the maximum. We discuss these
measures in more detail later, when we define them formally.

2

Our results are as follows: We show that for n players and t semi-honest
and static corruptions, d(n(t+ 3)− 1)/2e messages is necessary to compute the
AND of input bits from all players, where all players receive output. This holds
also for other functions with combinatorial properties similar to the AND. Note
that for functions that can be securely computed in constant round, this bound
is tight up to a constant factor. For t = 1 and semi-honest security, we show
that 2n messages are sufficient to compute any function in non-deterministic
log-space, thus the bound is exact for this case. In particular, for n = 3 and
t = 1, 6 messages is necessary and sufficient to compute the AND of three input
bits. Note that we use conservative message complexity for our upper bounds
and liberal for our lower bound – it may therefore be slightly surprising that we
nevertheless get tight bounds.

Next, we consider round complexity: As mentioned, computing any function
with unconditional security, in constant round and efficiently in the circuit size
of the function is an open problem1, and providing a positive answer seems to
require completely new ideas for protocol design. Motivated by this, we consider
the question of whether we can minimize the interaction of some of the players?
And if so, how many players can this apply to? Note that we still want the
standard security guarantees (correctness, privacy, termination). We answer this
question as follows: for passive security, with n = 2t+1 players and t corruptions,
up to t players can have minimal interaction, i.e., they send 1 message in the
first round to each of the t+ 1 remaining players and receive one message from
each of them in the last round. Using our result on message complexity, we show
that this is (unconditionally) optimal. For malicious security with n = 3t + 1
players and t corruptions, up to t players can have minimal interaction. Also this
we prove to be optimal.

For the purpose of proving the positive result for malicious security, we show a
result of independent interest: For the case n = 3t+1 and t malicious corruptions,
we design a broadcast protocol of the following special form: we can select any
subset of t players, who only need to send one message to the other n− t players.
After this point, we can do broadcast among the remaining n− t players. Note
that we are not guaranteed that we have at most a third corruptions among the
n − t players, so we cannot do broadcast from scratch in this set. We find it
slightly surprising that we need so little involvement from the t selected players.
In particular, they might all be corrupt and hence send completely garbled setup
values – then, of course, we are saved by the fact that the remaining players are
all honest (but they do not know this yet).

2 Preliminaries

We use N to denote the non-negative integers. For n ∈ N we let [n] = {1, . . . , n}.

1 Using randomising polynomials [IK00] one can get unconditional security and con-
stant round efficiently in the branching program size of the function, but this does
not seem to help much towards handling any efficient function efficiently.

3

We prove security in the model from [Can00] with unconditional security and
an adaptive adversary. We consider a synchronous model with point-to-point
perfectly secure channels between each pair of parties. We consider function
evaluation between n parties P1, . . . ,Pn with inputs x1, . . . , xn and common
output y = f(x1, . . . , xn) for a poly-time n-party function f . We refer to [Can00]
for the details of the model.

We say that a protocol has perfect correctness if it always computes the
correct result when all parties follow the protocol. We say that a protocol has
perfect privacy against t semi-honest corruptions if the ideal world and the real
world models have the same distributions even when t parties are passively
corrupted, i.e., they follow the protocol but might pool their views of the protocol
to learn more than they should. We say that a protocol has statistical privacy
against t semi-honest corruptions if the view of the corrupted partes in the ideal
world and the real world models have distributions that are statistically close
in some security parameter s even if t parties are passively corrupted. We say
that a protocol has perfect privacy against t malicious corruptions if the view
of the corrupted parties in the ideal world and the real world models have the
same distributions even when t parties might deviated from the protocol in a
coordinated manner. If the distributions are only statistically close we talk about
statistical security against t malicious corruptions.

It is possible implement secure function evaluation of any poly-time n-party
function with perfect correctness and perfect privacy against t semi-honest cor-
ruptions when n ≥ 2t + 1. It is possible implement secure function evaluation
of any poly-time n-party function with perfect correctness and perfect privacy
against t malicious corruptions when n ≥ 3t+ 1, see [BGW88,CCD87].

We will use secure function evaluation protocols for the so-called preprocess-
ing model as tools. In these protocols an incorruptible trusted third party will
sample a distribution D to get an n-tuple (d1, . . . , dn)← D. Then it gives di to
Pi. After this the n parties engage in a normal protocol where they communi-
cate over secure channels. In such pre-processing models there exist appropriate
distributions D which will allow to get perfect correctness and perfect privacy
against t active corruptions out of n = t + 1 parties. See, e.g., [DZ13] and the
references therein.

We also use protocols for the private simultaneous message (PSM) model.
For this model an n-party protocol for an n-party function f is given by

(R,M1, . . . ,Mn, g) ,

where R is a distribution with finite support, each Mi is a function, called the
message function of party i, and g is function called the reconstruction function.

By perfect correctness of a PSM protocol for an n-party function f we mean
that for all r in the support of R and all inputs (x1, . . . , xn) for f it holds that
f(x1, . . . , xn) = g(M1(x1, r), . . . ,Mn(xn, r)).

By ε-privacy of a PSM we mean that there exists a poly-time simulator S
such that for all inputs (x1, . . . , xn) for f , y = f(x1, . . . , xn) and a random
sample r ← R it holds that (M1(x1, r), . . . ,Mn(xn, r)) and S(y) have statis-
tical distance at most ε. If ε = 0, then we talk about perfect privacy. If ε is

4

negligible we talk about statistical security. Privacy ensures that a party seeing
(M1(x1, r), . . . ,Mn(xn, r)) learns nothing extra to y = g(M1(x1, r), . . . ,Mn(xn, r)).

The PSM model was introduced in [IK97], where they also gave perfectly
secure PSM protocols for a large class of functions including non-deterministic
log-space, modp L and]L. In [IK97] privacy is not formulated via poly-time
simulation: the notion only asks that (M1(x1, d1), . . . ,Mn(xn, dn)) depends only
on f(x1, . . . , xn). We need the simulation based notion here, as we prove security
in [Can00], which is phrased via efficient simulation. We note that if for a given
function f it is always possible to compute in poly-time from an output y =
f(x1, . . . , xn) an input (x′1, . . . , x

′
n) such that y = f(x′1, . . . , x

′
n) then the notions

are equivalent for f . The simulator will simply compute (x′1, . . . , x
′
n), sample

r ← R and output (M1(x1, r), . . . ,Mn(xn, r)). We will only use such efficiently
invertible functions f in the following.

We also use additive secret sharing of bits strings x ∈ {0, 1}m. An additive
secret sharings of x between P1, . . . ,Pn consists of sampling shares s1, . . . , sn ∈
({0, 1}m)n uniformly at random under the only restriction that x = ⊕ni=1si,
where ⊕ denote bit-wise exclusive or. It is easy to show that the distribution of
any n−1 of the shares is the uniform one on ({0, 1}m)n−1 and hence independent
of x.

3 Message Complexity

Defining the message complexity of a protocol for the synchronous model with
secure channels appropriately is slightly more tricky than one might expect at
first, so we address this issue in its own section.

We will first of all need to allow parties to not send a message to some party
in a given round. Since all parties send messages to all parties in all rounds in
[Can00], we need to hack the model a bit for this. We will say that if a party
sends the empty string then this counts as not having sent a message. Think of
receiving the empty string from Pi as meaning ”no message was received from
Pi in this round”.

This builds up to a subtler point that we demonstrate by an example. Con-
sider the problem where a dealer D is to deal an additive secret sharing of a bit
d between n parties P1, . . . ,Pn. What is the average message complexity of this
problem? It turns out that if we ignore security for a second, then it is at most
n/2 if one is not careful. The dealer samples a secret sharing d = d1 ⊕ · · · ⊕ dn.
Then for i = 1, . . . , n, if di = 0 he does not send a message to Pi. If di = 1,
then he sends 42 to Pi. Since di is uniformly random it follows from linearity of
expectation that he sends an expected n/2 messages.

If we consider security the bound changes. It is the case in [Can00] that
the adversary can see the length of a message sent securely. This in particular
means that in our setting here, the adversary can see if a message was sent or
not between any two parties—it can see the communication pattern. This is a
reasonable model, as hiding the presence of a communication is not practical,

5

in particular when we actually do not want to transmit any information when
there is no message to be sent.

Of course seeing the communicate pattern of the above protocol renders
it insecure, but this kind of contrived example shows that in some cases, if we
want a very precise measure of message complexity we need to consider protocols
with fixed communication patterns, i.e., if P1 sometimes sends a message to P2

in round 1, then we consider it the case that iP1 always sends a message to P2

in round 1, as the absence of the message is a signal.
On the other hand, proving our lower bounds using the measure hinted above

is not satisfying. We should be intrigued whether or not using tricks as above
will allow more efficient protocols, and we should in lower bounds not count a
message which might sometimes be sent for some given input to the protocol
towards the complexity of the protocol when run on other inputs. It is not clear
this will give sensical bounds, and we should at least worry whether we make it
too easy to prove the lower bounds this way.

For similar reasons, when we prove our lower bounds we should not count
high communication complexity which occurs with a vanishing probability. If
we can prove that all protocols must with some probability 2−s, where s is the
security parameter, send 240n message but that they in all other cases might have
to send only 2n messages, then we would not consider 240n a very meaningful
lower bound. So when we prove lower bounds we would like to consider expected
message complexity, which would turn the lower bound in the just given example
into 2n, as 2−s240n is vanishing in s.

We therefore define two measures of message complexity, a conservative one
and a liberal one. We use the conservative one when we prove upper bounds.
We use the liberal one when we prove lower bounds. It might be surprising in
the light of this that we actually manage to prove matching lower and upper
bounds.

Definition 1 (Conservative Message Complexity). Let π be an n-party
protocol for a synchronous network. By Msgcon(π) we denote the conservative
message complexity of π. For all r ∈ N and all i ∈ [n] and all j ∈ [n] \ {i} we
define cr,i,j to be 1 if there exists an input for π such that when π is run with
that input, Pi will send a message to Pj in round r with non-zero probability.
We let cr,i,j = 0 otherwise. We let

Msgcon(π) =
∑
r,i,j

cr,i,j .

Definition 2 (Liberal Message Complexity). Let π be an n-party protocol
for a synchronous network. By Msglib(π) we denote the liberal message com-
plexity of π. For a given run of π on input x and some fixed random tapes r of
the parties we define cr,i,j to be 1 if Pi sent a message to Pj in round r. We let
cr,i,j = 0 otherwise. We let

Msg(π,x, r) =
∑
r,i,j

cr,i,j

6

and
Msglib(π) = max

x
Er[Msg(π,x, r)] .

We extend the above notion to the statistical setting by defining them as
above for each fixed value of σ and then taking lim sup when this limit is defined.
If this limit is not defined, we define the message complexity to by ∞.

4 Upper Bounds

In this section we give four constructive upper bounds, one for individual round
complexity of secure function evaluation in the face of semi-honest corruptions,
then one for individual round complexity of broadcast in the face of malicious
corruptions, one for individual round complexity of secure functional evaluation
in the face of malicious corruptions, and finally one for message complexity in
the face of semi-honest corruptions.

4.1 Individual Round Complexity, Semi-honest Security

We first give a construction with minimal individual round complexity for a
group of t < n/2 parties in the face of semi-honest corruption.

Theorem 1. For every poly-time n-party function f , there exists a poly-time
function evaluation protocol computing f between n = 2t+ 1 parties with perfect
correctness and perfect privacy against t semi-honest corruptions, where t parties
have round complexity two. Specifically, these t parties first in parallel each send
one message to the n − t other parties and then later each receive one message
from the same n− t parties.

Proof. We design a protocol where it is the parties I = {Pn−t+1, . . . ,Pn} which
have round complexity two. We denote each of the t parties in I generically by
Pi and we denote the parties in J = {P1, . . . ,Pn−t} generically by Pj .

Use D to denote the pre-processing distribution of a secure function evalu-
ation protocol for the pre-processing model with n′ = t + 1 parties and up to
t semi-honest corruptions. Let (D,πpre−pro) be a protocol for this model with
perfect correctness and perfect privacy for t semi-honest corruptions.

Let πhon−maj be a secure function evaluation protocol for the function f for
a model with n = 2t + 1 parties and assume that it has perfect correctness
and perfect privacy against t semi-honest corruptions. Assume that πhon−maj has
round complexity `. We can assume that πhon−maj runs as follows in round r: first
each parties sends one message to each other party which adds this message to
its state. Then it applies a round function Ri,r which computes the new state of
party Pi. The initial state of a party is just its input xi.

Our protocol π proceeds as follows. First each Pi will additively secret share
its input xi among the parties Pj , i.e., it samples uniformly random shares xi,j
for which xi = xi,1⊕· · ·⊕xi,n−t and securely sends xi,j to Pj . At the same time

it will for r = 1, . . . , ` sample (di,r1 , . . . , di,rn−t) ← D and send di,rj to Pj . Notice

7

that at this point the initial state of each Pi is secret shared among the parties
in J . We will keep the invariant that at each round in the protocol πhon−maj the
state of Pi in πhon−maj is secret shared among the parties in J . Each round in
πhon−maj is emulated as follows.

1. If Pj ∈ J is to send a message m to Pk ∈ J , then it sends m over the secure
channel to Pk.

2. If Pj ∈ J is to send a message m to Pi ∈ I, then it additively secret shares
m among the parties J and this secret sharing is added to the secret shared
state of Pi.

3. If Pi ∈ I is to send a message m to Pk ∈ I, then m is by the invariant already
additively secret shared among the parties J . The parties in J can therefore
just add this secret sharing to the secret shared state of Pk.

4. If Pi ∈ I is to send a message m to Pj ∈ J , then m is additively secret shared
among the parties J as part of the secret shared state of Pi. The parties in
J can therefore reconstruct this message towards Pj .

5. If Pj ∈ J is to apply the round function Rj,r, then it simply applies it to its
state.

6. If Pi ∈ I is to apply the round function Ri,r, then the parties in J uses the
the preprocessed values (di,r1 , . . . , di,rn−t) to do secure function evaluation of
the augmented round function R̄i,r which reconstructs the state of Pi from
the secret sharing of the state held by the parties in J , then applies Ri,r and
outputs an additive secret sharing of the new state.

After all ` rounds of πhon−maj has been emulated, the secret shared state of Pi
contains its output yi. The parties in J reconstructs this yi towards Pi. At this
point all n parties received their outputs.

It should be clear that this protocol has perfect correctness, as πpre−pro and
πhon−maj both have perfect correctness.

As for perfect privacy, note that if at most t parties are corrupted, then the
additive secret sharings among the t parties in J leaks no information, and can
indeed be efficiently simulated by just giving all corrupted parties uniformly
random shares.

Furthermore, if Pi ∈ I is honest, then the emulation of Pi in πhon−maj is
perfectly private, as Pi is perfectly acting as the trusted third party of the
preprocessing model. We can in particular replace the emulation of Pi by an
ideal function evaluation of the augmented round function.

Since the additive secret sharing of the inputs and outputs of the augmented
round function can be efficiently simulated towards the t corrupted parties with-
out knowing the inputs or outputs, we can replace the ideal evaluation of the
augmented round function by an ideal evaluation of the actual round function
on the actual state of Pi and then just simulate the secret sharing of the inputs
and outputs using uniformly random shares. But having an ideal evaluation of
the round function of an honest Pi is exactly the same as just having Pi partic-
ipate in the protocol. So at this point we have arrived at the protocol πhon−maj.
Since there are at most t corrupted parties we can then appeal to the security
of πhon−maj.

8

Constructing an explicit simulator of π from the simulators of πpre−pro and
πhon−maj along the lines of the above sketch is straight forward and we skip the
technical details. ut

4.2 Individual Round Complexity, Broadcast

We now turn our attention to the individual round complexity of secure broad-
cast. Secure broadcast from Pi to the parties P1, . . . ,Pn is defined to be the
secure function evaluation of the function xi = f(x1, . . . , xn) in the face of ma-
licious corruptions, i.e., Pi communicates xi to all parties and it is guaranteed
that all parties receive the same xi even if Pi and/or some of the other parties
are malicious. By secure broadcast we mean a protocol which allows any of the
n parties to broadcast to all the other parties.

It is possible to implement broadcast securely against t < n/3 maliciously
corrupted parties in a synchronous network with authenticated channels (note
that secure channels are not needed for broadcast). It is furthermore possible
to do so using a protocol where the honest parties are deterministic. See for
instance [BDGK91].

The above protocol is for the setting with t < n/3 maliciously corrupted
parties. We later need to do broadcast in a setting with t < n/2 maliciously
corrupted parties. It is actually known that broadcast is impossible in such a
setting. We can, however, implement broadcast if we assume t < n/3 for just
the first round. To show this we need the following lemma.

Lemma 1. Consider any protocol π for n parties which is perfectly correct
and has statistical privacy against t maliciously corrupted parties computing a
function f . Assume that Pn−t+1, . . . ,Pn have no inputs, i.e., f(x1, . . . , xn) =
g(x1, . . . , xn−t). Assume also that these parties are not to receive outputs. As-
sume furthermore that the protocol remains secure even if all messages sent and
received by Pn−t+1, . . . ,Pn are given to the adversary and assume that these par-
ties are deterministic. Then there also exists a protocol π′ which is statistically
correct and has statistical privacy against t maliciously corrupted parties com-
puting the function f in which Pn−t+1, . . . ,Pn each send a message to each of
the parties P1, . . . ,Pn−t in the first round and the send or receive no further
messages.

Proof. The parties I = {P1, . . . ,Pn−t} will simply emulate the parties J =
{Pn−t+1, . . . ,Pn}. Each Pi ∈ I will run a copy of each Pj ∈ J . Since Pj has no
input, the parties Pi will agree on the initial states of all Pj . Whenever Pj wants
to send a message, all Pi will know this message and the appropriate receiver
will just take that message as if having been sent by Pj . If the receiver is a party
Pj ∈ J all Pi ∈ I will input the message to their local copy of Pj . In each round
all parties Pi ∈ I apply the deterministic round function of each Pj to their own
local copy. This maintains agreement on the state of all the emulated Pj .

The only problematic case is when some Pi ∈ I wants to send a message m
to some Pj ∈ J . In that case Pi must send m to all parties in I such that they

9

can input m to Pj . We have to ensure that Pi sends the same m to all parties
in I, or they might end up with inconsistent versions of Pj . We ensure this by
letting Pi broadcast the message m. The only problem is that we do not have a
broadcast channel. We will therefore let Pj create one using pre-processing. This
will be done using the one round of messages that Pj sends in the first round,
as detailed now.

It is shown in [PW92] that there exists a protocol (P, π) for the pre-processing
model which implements broadcast between n′ parties secure against t mali-
cious corruptions for any t < n′. We can therefore let each Pj ∈ J sample
(pj,1, . . . , pj,n′) ← P and send pj,i securely to Pi. Whenever Pi ∈ I is to send
m to all parties in I, the parties when then run π on the pre-processed values
(pj,1, . . . , pj,n′) and with Pi having input m. Note that each Pj ∈ J prepro-
cessed his own broadcast channel. This is the broadcast channel that is to be
used when message are sent to Pj in the emulated protocol. If Pj is honest, the
pre-processing is computed as it should, and thus the broadcast protocol will
indeed ensure that m is delivered consistently, and hence the emulated Pj will
be run correctly and consistently by all honest parties in I. If Pj is corrupted,
it might deliver incorrect pre-processed values. In that case the broadcast might
not work correctly. In that case the parties in I might get inconsistent views of
Pj and might therefore later see inconsistent values of what Pj is sending. This,
however, is no worse than the emulated Pj being corrupted and this case only
happens when the actual Pj is maliciously corrupted, so the emulated protocol
can tolerate this. ut

If we plug the protocol from [BDGK91] into the above lemma we get this
corollary.

Corollary 1. There exists a protocol πbroad for n parties which is statistically
correct and which allows any party Pi (with i ≤ n− t) to broadcast to the parties
P1, . . . ,Pn−t. It is secure against t malicious corruptions for t < n/3. The parties
Pn−t+1, . . . ,Pn each send one message to each of the parties P1, . . . ,Pn−t in the
first round and otherwise have no communication.

4.3 Individual Round Complexity, Secure Function Evaluation

We then turn our attention to secure function evaluation in the face of malicious
corruptions.

Theorem 2. For every poly-time n-party function f , there exists a poly-time
function evaluation protocol computing f between n = 3t+ 1 parties with statis-
tical correctness and statistical privacy against t maliciously corrupted parties,
where t parties have round complexity two. Specifically, these t parties first each
send one message to the n−t other parties in parallel and then later each receive
one message from the same n− t parties.

Proof. As usual, I = {P1, . . . ,Pn−t} and J = {Pn−t+1, . . . ,Pn}. In [RB89] a sta-
tistically correct and statistically private protocol for secure function evaluation

10

of any function g is given for the setting with n′ parties of which at most t < n′/2
parties are maliciously corrupted. The protocol is for the setting with secure
point-to-point channels plus a broadcast channel allowing any party to broad-
cast to the other parties n′ parties. Denote this protocol by πRB. Set n′ = n− t.
We are going to let the parties I run πRB to compute a particular function g
derived from f . In doing that they will implement the broadcast channel using
πbroad from Corollary 1 with the parties in J providing the pre-processing.

We will use a robust secret sharing scheme (sha, rec) for n′ parties and t < n/2
corruptions to let the parties in J provide inputs. Such a scheme is trivial to
derive from, e.g., the verifiable secret sharing scheme constructed in [RB89], and
has the following properties:

Privacy The joined distribution of any t positions from a random sample (v1, . . . , vn′)←
sha(v) does not depend on the value v.

Robustness Sample (v1, . . . , vn′) ← sha(v) for a value v chosen by the adver-
sary. Now give t of the positions vi to the adversary and let it replace them
by v′i. The positions are chosen by the adversary. For the remaining n′ − t
positions, let v′i = vi. Then rec(v′1, . . . , v

′
n′) = v, except with probability 2−s,

where s is the statistical security parameter.

The function g takes n− t inputs, g(X1, . . . , Xn−t), where each Xi is of the form
(xi, xn−t+1,i, . . . , xn,i). It outputs

f(x1, . . . , xn−t, rec(xn−t+1,1, . . . , xn−t+1,n−t), . . . , rec(xn,1, . . . , xn,n−t)) .

The overall protocol then runs as follows.

1. Each Pj ∈ J sends the pre-processing needed for πbroad to the parties in I
and at the same time samples (xj,1, . . . , xj,n−t)← sha(xj) and sends xj,i to
Pi ∈ I.

2. Each Pi ∈ I computes Xi = (xi, xn−t+1,i, . . . , xn,i).
3. The parties in I use the pre-processing provided in Step 1 to run πbroad and

use the emulated broadcast channel to run πRB(X1, . . . , Xn−t).
4. When Pi ∈ I learns the output y = πRB(X1, . . . , Xn−t) it sends y to all

parties in J .
5. Each party Pj ∈ J receives an output yi from each Pi ∈ I and outputs the

value y which occurs most often in the list (y1, . . . , yn−t).

It follows directly from the security of (sha, rec), πbroad and πRB that the protocol
is private and that the honest parties in I learn the correct output y, except
with negligible probability. Since there are n′ ≥ 2t+ 1 parties in I and at most
t corrupted parties in I it follows that there are a majority of honest parties in
I. Hence the honest parties in J will also learn the correct output y. ut

4.4 Message Complexity, Semi-Honest Security

We now turn our attention to the message complexity of secure function evalu-
ation in the presence of semi-honest corruptions. We consider protocols with n
parties which are perfectly secure against t semi-honest corruptions. We present
an optimal construction for t = 1.

11

Theorem 3. For every poly-time n-party function f in non-deterministic log-
space, there exists a poly-time function evaluation protocol π computing f between
n parties with perfect correctness and perfect privacy against t = 1 semi-honest
corruptions for which Msg(π) = 2n.

Proof. We first look at the restricted setting where Pn has no input and is
the only one to learn the output, i.e., we look at secure function evaluation of
(ε, . . . , ε, y) = f(x1, . . . , xn), where ε is the empty string and y = h(x1, . . . , xn−1)
for an (n− 1)-party function h.

Let (R,M1, . . . ,Mn−1) be a PSM protocol for h and consider the following
protocol π1.

1. P1 samples r ← R.
2. P1 sends r to Pi for i = 2, . . . , n− 1.
3. For i = 1, . . . , n− 1, party Pi sends mi = Mi(xi, r) to Pn.
4. Pn outputs y = g(m1, . . . ,mn−1).

Assume that Pn is corrupted. The view of Pn in the real world is

(M1(x1, r), . . . ,Mn−1(xn−1, r))

for a random sample r ← R. The view of Pn in the ideal model is

y = f(x1, . . . , xn) = h(x1, . . . , xn−1) = g(M1(x1, r), . . . ,Mn−1(xn−1, r)) .

Privacy then follows from the security of the PSM protocol.
Assume that Pi 6= Pn is corrupted. The view of Pi in the real world is (xi, r).

The view of Pi in the ideal model is xi. We can simulate the real world view
from the ideal view simply by sampling r ← R and then outputting (xi, r).

We now extend the above protocol to a protocol π2 which allows Pn to have
an input and where all parties get the output, i.e., we look at secure function
evaluation of y = f(x1, . . . , xn). We first present and analyse a simple solution
and then later modify it slightly. The simple solution is to let Pn additively
secret share xn as xn = s1⊕ s2 and send s1 to P1 and send s2 to P2. Then apply
protocol π1 to the function

h′((x1, s1), (x2, s2), x3, . . . , xn−1) = f(x1, . . . , xn−1, s1 ⊕ s2)

and let Pn send the output to all the other parties. We can do this as h′ clearly
is in non-deterministic log-space if f is in non-deterministic log-space. Note that
this simple protocol adds n+1 more message. Sending the output y to all parties
is obviously secure as this value is also in the view of all parties in the ideal model.
Only P1, P2 and Pn have any further extra values in the view. The extra values
of Pn are s1 and s2 such that xn = s1 ⊕ s2. These are easy to simulate from
the view of Pn in the ideal model which includes xn: simply sample an additive
secret sharing of xn. The extra value of P1 is s1. This value is uniformly random
and independent of xn, so it can be simulated by just sampling it uniformly at
random. Similarly for P2.

12

Since s1 is uniformly random and independent of xn, we can save one message
in the protocol by letting P1 pick s1 uniformly at random and send it to Pn along
with the message that it already sends to Pn. The view of all parties will be the
same in the modified protocol. The only difference is that the direction of one
message was flipped. This gives the following secure protocol.

Let (R,M1, . . . ,Mn−1) by a PSM protocol for the function h′ described
above.

1. P1 samples r ← R.
2. P1 sends m1 = M1(x1, r) to Pn along with a uniformly random share s1.
3. Pn sends s2 = xn ⊕ s1 to P2.
4. P1 sends r to Pi for i = 2, . . . , n− 1.
5. For i = 2, . . . , n− 1, party Pi sends mi = Mi(xi, r) to Pn.
6. Pn sends y = g(m1, . . . ,mn−1) to P1, . . . ,Pn−1

To further reduce the message complexity, we will now apply another message
reduction trick. We are going to reduce the 2(n− 2) messages in Steps 4 and 5
to just n− 1 messages. We replace the two steps by the following procedure:

1. P1 samples uniformly random bit strings p2, . . . , pn−1 where pi has the same
length as mi. Then P1 sends (p2, . . . , pn−1) to Pn. This can be done in Step 2
above and therefore does not add another message.

2. P1 sends (r, p2, . . . , pn−1) to P2.
3. Then for i = 2, . . . , n− 1 party Pi receives (r, c2, . . . , ci−1, pi, pi+1, . . . , pn−1)

from Pi−1 and sends (r, c2, . . . , ci−1, ci, pi+1, . . . , pn−1) to Pi+1, where ci =
Mi(xi, r)⊕ pi, except that Pn−1 does not send r along to Pn.

4. Then Pn receives (c2, . . . , cn−1) from Pr−1 and for i = 2, . . . , n− 1 computes
mi = ci ⊕ pi.

It is easy to see that this is perfectly correct. As for perfect security against one
semi-honest corruption, consider the values ci seen by Pj for i < j < n. Since Pj
does not know pi, ci is a one-time pad encryption of mi. All other values seen
by a single party clearly leaks no information.

It is easy to count that the total number of messages sent is 2n. ut

From Theorem 4 we have the lower bound n(t + 3)/2 on the message com-
plexity when t is odd. If we set t = 1 in this bound we get n(1 + 3)/2 = 2n,
matching the upper bound of Theorem 3. We leave it as an open problem to find
matching bounds for any t > 1.

5 Lower Bounds

We now proceed to present and prove our lower bounds. We first prove a lower
bound on the message complexity of secure function evaluation in the face of
semi-honest corruptions. Then we give a lower bound on the individual round
complexity in the face of t semi-honest corruptions and then a lower bound on
the individual round complexity in the face of t malicious corruptions.

13

5.1 Message Complexity

We first prove a lower bound on the message complexity of secure function
evaluation secure against t semi honest corruptions. We prove the bound for the
AND function, but it easily generalises to most non-trivial functions.

Theorem 4. Let f be the n-party function where the input of Pi is a bit bi and
f(b1, . . . , bn) = b1 ∧ · · · ∧ bn. Let π be a protocol which securely computes f with
statistical correctness and statistical privacy against t semi-honest corruptions,
where t > 0 and n ≥ 2t+ 1. Then

Msglib(π) ≥ d(n(t+ 3)− 1)/2e .

Another way of phrasing the bound is that when n is even or t is odd, then
Msglib(π) ≥ n(t+ 3))/2 and otherwise Msglib(π) ≥ n(t+ 3))/2− 1.

Proof. For each party Pi in the protocol, define a counter ci initialised to 0.
Whenever Pi sends or receives a message, increment the counter ci. Since we are
not interested in round complexity we can assume that in each round at most
one party sends at most one message2. We can simply say that Pi may send a
message to Pj only in rounds r where r mod n2 = (i− 1) + (j − 1)n.

We use point in a protocol to designate a round r at the time between the
message that might have been sent in round r − 1 was received and before
the message sent in round r is sent. This means that at a point in a protocol,
no message is in transit. Note that this means that at a point in a protocol
(
∑n
i=1 ci) mod 2 = 0. We use the round numbers r to denote points in protocols.
A communication pattern C is an ordered list of pairs of players specifying

sent a message to who and in which ordered this happened. As an example, if no
messages are sent in rounds 1 and 2 and P1 sends a message to P7 in in round 3
and no message is sent in round 4 and P5 sends a message to P2 in in round 5,
then the communication pattern is ((1, 7), (5, 2)). For a given round r a a given
run of a protocol we use Cr to denote the communication pattern of the run
protocol up to round r. Notice that the counters ci for all parties at round r can
be computed from just Cr. Is it just the number of times i occur in a pair in the
list Cr. We denote this number by ci(Cr).

We say that a point r in a protocol with communication pattern C is pre-
mature if there exists Pi such that ci(Cr) < t+ 1. We use r0 to denote the last
premature point, letting r0 = ∞ if all points are premature 3. We say that Pj
is abandoned in C if he does not receive a message after point r0. Notice that
it can be computed from just the communication pattern C whether Pj was

2 Our result does cover protocols that send several messages in one round, the as-
sumption made here is simply a way to enforce an order in which we will consider
the messages in our proof.

3 The intuition behind the terminology is that, at a premature point, we should not
be able to compute the output yet: if a player has only talked to t players they could
all be corrupt and hence his input should not be uniquely defined.

14

abandoned. We use Ab(C) ⊆ {1, . . . , n} to denote the set of parties that where
abandoned in C.

We now argue that if a protocol never abandons anyone, then the complexity
is as stated in the theorem. This follows since, in every communication pattern
that occurs, all parties receive at least one message after point r0. Since no
message is in transit at point r0, it follows that at least n messages were sent
after point r0. Before point r0 we had that there is at most one i for which ci = t
and for j 6= i it holds that cj ≥ t + 1. The sum of the counters is therefore at
least (n − 1)(t + 1) + t = n(t + 1) − 1. If either n or t + 1 is even, then this
number is odd, which is impossible at any point in a protocol, so since it is a
lower bound, we can lift it to n(t+ 1) when n is even or t is odd. The number of
message before r0 is therefore d(n(t+ 1)− 1)/2e. This gives the desired bound.

We now show that a protocol with perfect correctness (but statistical secu-
rity) does not abandon anyone, except with a vanishing probability. At the end
of the proof, we generalise to statistical correctness. In the analysis we fix n,
which we can do as it is the case that if there exists a protocol contradicting the
bound, we can fix one such protocol, making n a constant even if we let the sta-
tistical security parameter s grow. Assume that the statistical distance between
simulation and real protocol is 2−s and let s = 5σ for a secondary parameter σ.

In computing the expected communication complexity we can sum the ex-
pected complexity contributed by each communication pattern C, as

Er[Msg(π,x, r)] =
∑
C

Pr[C] Er[Msg(π,x, r)|C] =
∑
C

Pr[C]|C| ,

where Pr[C] is the probability of observing C in a random run of π(x).
We want to prove that

∑
C Pr[C]|C| ≥ d(n(t+ 3)− 1)/2e− negl(s). We have

that∑
C

Pr[C]|C| =
∑
C∈C

Pr[C]|C|+
∑
C 6∈C

Pr[C]|C| ≤
∑
C∈C

Pr[C]|C|+d(n(t+3)−1)/2e(
∑
C 6∈C

Pr[C]) .

It is there sufficient to prove that
∑
C 6∈C Pr[C] ≥ 1 − negl(s). To prove this it

is by the law of total probability sufficient to prove that
∑
C∈C Pr[C] ≤ negl(s).

Since we can assume without loss of generality that n is a constant (in s) we
can therefore also assume all communication patterns in C have a length which
is bounded by a constant in s, namely d(n(t+ 3)−1)/2e. Hence |C| is a constant
in s. Therefore, to prove that

∑
C∈C Pr[C] ≤ negl(s), it is sufficient to prove

that for all C ∈ C it holds that Pr[C] ≤ negl(s), as a sum of constantly many
negligible functions is again negligible. So, fix any C ∈ C.

Recall that we proved above that if no party is abandoned in C, then |C| ≥
d(n(t+3)−1)/2e. Hence, if C ∈ C, then some party Pj is abandoned in C. For an
input x and a communication pattern C ∈ C for a complete run of the protocol
and a party Pj , let Ex,C,Pj

be the event that in a random run of π(x) that C
occurs and Pj is abandoned in C. Let px,C,Pj

be the probability of this event. We
have that Pr[C] ≤

∑
Pj
px,C,j . Since we again sum over only a constant number

15

of terms it is therefore now sufficient to prove that each px,C,Pj
≤ negl(s). So,

for the sake of contradiction, assume that there exists (x, C,Pj) such that

px,C,Pj
≥ 2−σ .

We first prove that this means that px,C,Pj must be almost this large for any
inout x. This follows because it must hold for all pairs of input x0 and x1 that

|px0,C,Pj
− px1,C,Pj

| ≤ 2−4σ .

If this was not the case, we could guess which input is used without corrupting
anyone: run π on either x0 or x1 and observe if C occurs and Pj is aban-
doned. If this event happens, guess that the input was the one that leads to the
largest probability for abandoning, and otherwise guess uniformly at random.
This would allow to distinguish with advantage 2−4σ > 2−s over a random guess
and would contradict privacy against 0 semi-honest corruptions.

Let Pi be the party who has communicated with at most t parties at point
r0 in C. Use T to denote the set of those parties. Use K to denote the set of
parties that are not Pi nor in T . Below we will always give the same inputs to
all parties in T and we always give the same inputs to all parties in K. For three
bits a, b and c we represent a full input by abc, where a is given to Pi, b is given
to all parties in T and c is given to all parties in K.

We say that Pi is undefined if it is the case that at point r0, he can locally
compute views that are consistent with both bi = 0 and bi = 1 and his commu-
nication with T . Notice the both Pi and the parties in T can compute from the
communication between Pi and T whether Pi is undefined. In particular, if Pi
is not undefined, the parties T can compute the input of Pi with certainty. Use
U to denote the event that Pi is undefined.

We will say that K is undefined if it is the case that at point r0, one can
compute joint views for them that are consistent with both c = 0 and c = 1 and
their communication with T . Notice that if there is no communication between
Pi and K, then the parties in T can compute from their joint communication
with the parties in K whether K is undefined, so if K did not communicate with
Pi and K is not undefined then T can compute whether the inputs of the parties
in K were 0 or 1. Use V denote the event that K is undefined.

We break the analysis into two, one where Pj ∈ T ∪ {Pi} and one where
Pj ∈ K.

Assume first that Pj ∈ T ∪ {Pi}. As we saw above,

Pr[E010,C,Pj
] ≥ 2−σ − 2−4σ ≥ 2−2σ .

From this it follows that

Pr[E010,C,Pj
∧ V] ≥ 2−2σ − 2−4σ ≥ 2−3σ .

To see this, note that if E010,C,Pj
happens, then Pi did not communicate with K

so if V does not occur, then the parties in T can compute the input of the parties

16

in K, which they are not allowed to be able to with advantage 2−4σ > 2−s over
random guessing when the input of Pi is 0. Namely, switching c = 0 to c = 1 does
not change the output in the ideal model when a = 0, so if the view changed
significantly in the real protocol it would give an attack. From this it follows
that

Pr[E110,C,Pj
∧ V] ≥ 2−3σ − 2−4σ ≥ 2−4σ .

If this was not the case we could run with input either 110 or 010 and corrupt
the parties in T . If C occurs and Pj is abandoned, then make a guess at a = 0
if V occurs. Otherwise guess a = 1. If C does not occur or Pj is not abandoned,
then make a random guess. This gives advantage at least 2−4σ > 2−s. Note that
that when E110,C,Pj

occurs and V occurs, we can at point r0 recompute a local
view of the parties in K consistent with input c = 1 which would give a global
run of the protocol consistent with input 111. However, when the input is 110
party Pj should output 0 and when the input is 111, then Pj should output 1.
However, by assumption of Pj being abandoned and Pj 6∈ K, party Pj does not
receive any input after point r0 and neither does it have its input changed when
we go from 110 to 111 and therefore cannot switch its output from 0 to 1.

Assume then that Pj ∈ K. We start again from Pr[E010,C,Pj
] ≥ 2−2σ and

conclude that Pr[E010,C,Pj
∧U] ≥ 2−3σ, because when U does not occur, then the

parties in T can compute the input of Pi which violates privacy since inside this
event, the output is always 0. From this it follows that Pr[E011,C,Pj ∧U] ≥ 2−4σ.
If this was not the case we could run with input either 011 or 010 and corrupt the
parties in T and violate the privacy of the parties in K. Note that when E011,C,Pj

occurs and U occurs, we can at point r0 recompute a local view of Pi consistent
with input a = 1 which would give a global run of the protocol consistent with
input 111. However, when the input is 011 party Pj should output 0 and when
the input is 111, then Pj should output 1. However, by assumption of Pj being
abandoned and Pj ∈ K, party Pj does not receive any input after point r0 and
neither does it have its input changed when we go from 011 to 111 and therefore
cannot switch its output from 0 to 1.

We finally argue how to generalise to statistical correctness. The only change
needed is to change the definition of undefined to mean that not only should
there be views explaining both input 0 and 1. The fraction of random tapes
explaining input 0 should be close to the fraction of random tapes explaining
input 1, say at most 2−5σ apart (and now starting from s = 6σ). If they are
furthermore apart, one can still get a better guess at the input of the parties
with advantage 2−5σ. With this definition, when we look at the case where we
for instance switch from input 011 to 111 and know that Pj is undefined and
cannot have different output distributions in the two cases, we can additionally
from

Pr[E011,C,Pj
∧ U] ≥ 2−4σ

conclude that

Pr[E111,C,Pj ∧ U] ≥ 2−4σ − 2−5σ ≥ 2−5σ

17

as there are almost as many random tapes of Pi consistent with the communi-
cation with T and inputs 0 or 1. This means that the output of Pi for one of the
two inputs must be at least 2−5σ/2 < 2−s away from the correct output. ut

5.2 Individual Round Complexity

Consider now an n-player protocol π that is executed on a synchronous network.
We can define a (possibly empty) set Mπ of players with minimal interaction,
consisting of players whose only communication is to each send a message to a
subset of the parties not in Mπ and then later, after all parties in Mπ have sent
all their message, each receive a message from a subset of the parties not in Mπ.

Theorem 5. Assume n = 2t+ 1 parties, where each party Pi holds input bit bi.
A protocol π that computes b1 ∧ · · · ∧ bn with perfect correctness and statistical
privacy against t semi-honest corruptions must have |Mπ| ≤ t.

Proof. Assume for contradiction that Mπ has size t+ 1. Then we can construct
from π a 3-party protocol for players A, B and C, where player A emulates the
t players not in Mπ, B emulates t of the players in Mπ, and C emulates the last
player in Mπ. Each party will have a single bit as input and will use that bit
as input to each of the parties it is emulating. If π is secure, then clearly the
3-party protocol securely computes the AND of the inputs from the 3 players,
provided at most 1 is passively corrupt, as corrupting any of A, B and C will
corrupt at most t emulated parties. Moreover, the 3 party protocol will have
only 4 messages. Namely, the one party from Mπ emulated by C will send one
message to A and later receive exactly one message from A, as A emulated
exactly the parties not in Mπ. The same is true for all the emulated players in
B, they will all send exactly one message to a player in A and receive back one
message from a player in A. Furthermore, since they all send their messages to
the players in A before they received any messages from A, we can let B send
all the messages as one message. In the same way we can let A return all the
messages as one message. Since there is no communication between parties in
Mπ, there is no communication betweenB and C. Hence all other communication
takes place inside A. However, communicating just 4 message is in contradiction
to Theorem 4, which says that 6 messages is required.

Theorem 6. Assume n = 3t+ 1 parties, where each party Pi holds input bit bi.
A protocol π that computes b1∧· · ·∧bn with statistical correctness and statistical
privacy against t malicious corruptions must have |Mπ| ≤ t.

Proof. If we assume a contradiction we can as above reduce it to the case with
n = 4 and t = 1. We let A simulate t parties with optimal communication
complexity. We let B simulate the last party with optimal communication com-
plexity. We let C and D each simulate t of the remaining parties. We set the
input of D to be 1 and we denote the inputs of A, B and C by a, b and c. The
communication pattern is as follows. First A sends two message to C and D.
Denote the message sent to C by g. At the same time B sends two messages to

18

C and D. Denote the message sent to C by h. By privacy against a semi-honest
corruption of C we know that g is independent of a. Clearly the message h is
independent of a. Furthermore, since g and h were computed by two different
parties which did not communicate before sending these messages, and the par-
ties do not have a source of correlated randomness, g ang h are independent.
It follows that (g, h) is independent of a. However, by security of one malicious
corruption the protocol should still terminate with the correct result if at this
point D stops participating in which case C receives no further information.
Clearly C cannot alway compute the correct result with good probability when
its view is independent of a. ut

References

[BDGK91] Amotz Bar-Noy, Xiaotie Deng, Juan A. Garay, and Tiko Kameda. Opti-
mal amortized distributed consensus (extended abstract). In Sam Toueg,
Paul G. Spirakis, and Lefteris M. Kirousis, editors, Distributed Algorithms,
5th International Workshop, WDAG ’91, Delphi, Greece, October 7-9, 1991,
Proceedings, volume 579 of Lecture Notes in Computer Science, pages 95–
107. Springer, 1991.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In Janos Simon, editor, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illi-
nois, USA, pages 1–10. ACM, 1988.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. J. Cryptology, 13(1):143–202, 2000.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (abstract). In Carl Pomerance, editor, Advances in
Cryptology - CRYPTO ’87, A Conference on the Theory and Applications
of Cryptographic Techniques, Santa Barbara, California, USA, August 16-
20, 1987, Proceedings, volume 293 of Lecture Notes in Computer Science,
page 462. Springer, 1987.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In TCC, pages 621–641, 2013.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols
with applications. In ISTCS, pages 174–184, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In Foun-
dations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 294–304. IEEE, 2000.

[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement
for any number of faulty processors. In Alain Finkel and Matthias Jantzen,
editors, STACS 92, 9th Annual Symposium on Theoretical Aspects of Com-
puter Science, Cachan, France, February 13-15, 1992, Proceedings, volume
577 of Lecture Notes in Computer Science, pages 339–350. Springer, 1992.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In David S. John-
son, editor, Proceedings of the 21st Annual ACM Symposium on Theory of

19

Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 73–85. ACM,
1989.

20

