Unconditionally Secure Computation with Reduced Interaction

Ivan Damgård, Jesper Buus Nielsen, Rafail Ostrovsky, and Adi Rosén
Dept. of Computer Science, Aarhus University; UCLA; CNRS \& Université Paris Diderot

Abstract

We study the question of how much interaction is needed for unconditionally secure multiparty computation. We first consider the number of messages that need to be sent to compute a Boolean function with semi-honest security, where all n parties learn the result. We consider two classes of functions called t-difficult and t-very difficult functions, here t refers to the number of corrupted players. One class is contained in the other. For instance, the AND of an input bit from each player is t-very difficult while the XOR is t - difficult but not t-very difficult. We show lower bounds on the message complexity of both types of functions, considering two notions of message complexity called conservative and liberal, where the conservative one is the more standard one. In all cases the bounds are $\Omega(n t)$. We also show upper bounds for $t=1$ and functions in deterministic log-space, as well as a stronger upper bound for the XOR function. This matches the lower bound for conservative complexity, so we find that the conservative message complexity of 1-very difficult functions in deterministic \log space is $2 n$, while the conservative message complexity for XOR (and $t=1$) is $2 n-1$. Next, we consider round complexity. It is a long-standing open problem to determine whether all efficiently computable functions can also be efficiently computed in constant-round with unconditional security. Motivated by this, we consider the question of whether we can compute any function securely, while minimizing the interaction of some of the players? And if so, how many players can this apply to? Note that we still want the standard security guarantees (correctness, privacy, termination) and we consider the standard communication model with secure point-to-point channels. We answer the questions as follows: for passive security, with $n=2 t+1$ players and t corruptions, up to t players can have minimal interaction, i.e., they send 1 message in the first round to each of the $t+1$ remaining players and receive one message from each of them in the last round. Using our result on message complexity, we show that this is (unconditionally) optimal. For malicious security with

[^0]$n=3 t+1$ players and t corruptions, up to t players can have minimal interaction, and we show that this is also optimal.

1 Introduction

In Multiparty Computation n players want to compute an agreed-upon function on privately held inputs, such that the desired result is correctly computed and is the only new information released. This should hold even if t players have been actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function can be computed with unconditional (perfect) security, against a passive adversary if $n \geq 2 t+1$ and against an active adversary if $n \geq 3 t+1$.[BGW88,CCD87] If we assume a broadcast channel and accept a small error probability, $n \geq 2 t+1$ is sufficient to get active security [RB89].

The protocols behind these results require a number of communication rounds that is proportional to the depth of an (arithmetic) circuit computing the function. One would of course like to compute any function with unconditional security, in constant rounds, and efficiently in terms of the circuit size of the function. This is however a long-standing open problem (note that this is indeed possible if one makes computational assumptions).

This is not only a theoretical question: the methods we typically use in information theoretically secure protocols tend to be computationally much more efficient than the cryptographic machinery we need for computational security. So unconditionally secure protocols are very attractive from a practical point of view, except for the fact that they seem to require a lot of interaction.

It is therefore very natural to ask whether this state of affairs is inherent. How much interaction do we actually need for unconditional security, and can we reduce the interaction needed compared to existing protocols? This type of question was studied in [DPP14] in a specific 3-party model where 2 parties have input and a third gets the output. We further detail below some previous work on secure addition, but in general very little is known on this question.

In this paper, we make some progress with respect to two related but different measures of interaction: message complexity and round complexity, in the context of synchronous networks.

Message complexity seems like a very simple measure at first sight: simply count how many messages are sent in the protocol. However, a moment's thought will show that things are a bit more tricky. For instance, what if the protocol varies its communication pattern, so that P_{i} sometimes (but not always) sends a message to P_{j} in a certain round? One way to handle this is to declare that the absence of a message is also a signal. This leads to what we call conservative message complexity, i.e., we say that if P_{i} sometimes sends a message to P_{j} in a certain round, then we consider it to be the case that P_{i} always sends a message to P_{j} in this round. In this way, we force protocols to have a fixed communication patterns.

However, considering only this measure is not completely satisfying. After all, it could be that one could design protocols with a smaller number of messages by using tricks such as waiting for a certain time before a message is sent, and using the amount of elapsed time as an implicit signal. In real life such an approach could be interesting, as there may be some cost involved in physically moving a message, that is not incurred if one stays silent. Therefore, we also define liberal message complexity, where the protocol is only charged for messages that are explicitly sent, and where we also consider the expected number of messages rather than the maximum. We discuss these measures in more detail later, when we define them formally.

Our results are as follows: We consider n players and t semi-honest and static corruptions. We look at statistically secure computation of Boolean functions, where all parties learn the output. We assume secure point to point channels that leak the length of the message sent to the adversary (as any implementation using crypto would do). The ideal functionality for computing the function leaks the output to the adversary only if some party is corrupted, so essentially we ask that the adversary cannot learn anything by doing only traffic analysis.

We consider two classes of functions, called t-very difficult and a larger class called t-difficult. AND of an input bit from each player, and more generally threshold functions are t-very difficult, whereas the XOR is t-difficult but not t-very difficult.

We show lower bounds for all 4 cases that arise naturally. In all cases the bounds are $\Omega(n t)$. Results are summarised in Figure 1.

	Liberal	Conservative
t-very difficult	$\left\lceil\frac{n(t+1)-1}{2}\right\rceil+\frac{n}{2}$	$\left\lceil\frac{n(t+1)-1}{2}\right\rceil+n$
t-difficult	$\left\lceil\frac{n(t+1)-1}{2}\right\rceil+\frac{n-1}{2}$	$\left.\frac{n(t+1)-1}{2}\right\rceil+n-1$

Fig. 1. Lower Bounds.
For the case of $t=1$ we also show upper bounds using perfectly secure protocols, for all functions in deterministic log-space, as well as a stronger upper bound for the XOR function. Figures 2 and 3 show the lower bounds for $t=1$ and the upper bounds. We see that we have obtained the exact conservative message complexity for all 1-difficult functions in deterministic log-space, and the exact conservative and liberal message complexity for XOR (and $t=1$). Finally we have characterised the liberal message complexity of 1-difficult functions in deterministic log-space up to $1 / 2$ message, the exact characterization is left as an open problem.

	Liberal	Conservative
1-very difficult	$3 n / 2$	$2 n$
1-difficult	$3 n / 2-1 / 2$	$2 n-1$

Fig. 2. Lower Bounds for $t=1$.

	Liberal	Conservative
Det. log-space	$3 n / 2+1 / 2$	$2 n$
XOR	$3 n / 2-1 / 2$	$2 n-1$

Fig. 3. Upper Bounds for $t=1$.
Some remarks on alternative models are in order: we insist that the number of parties is considered to be constant, even if the security parameter grows. This rules out tricks like secret sharing one's input among a small subset of parties, hoping they are not all corrupt. If one is happy with statistical, static, semihonest security for a large number of parties, then this type of trick can be used to compute secure addition with a poly-log (in n) number of messages[GIPR] ${ }^{1}$. In fact, this is the only potential way to circumvent our lower bounds: it holds regardless of the number of parties if perfect or adaptive security is required (and our upper bounds yield perfect security).

Next, we consider round complexity: As mentioned, computing any function with unconditional security, in constant round and efficiently in the circuit size of the function is an open problem ${ }^{2}$, and providing a positive answer seems to require completely new ideas for protocol design. Motivated by this, we consider the question of whether we can minimize the interaction of some of the players? And if so, how many players can this apply to? Note that we still want the standard security guarantees (correctness, privacy, termination). We answer this question as follows: for passive security, with $n=2 t+1$ players and t corruptions, up to t players can have minimal interaction, i.e., they send 1 message in the first round to each of the $t+1$ remaining players and receive one message from each of them in the last round. Using our result on message complexity, we show that this is (unconditionally) optimal. For malicious security with $n=3 t+1$ players and t corruptions, up to t players can have minimal interaction, and we show that this is also optimal.

For the purpose of proving the positive result for malicious security, we show a result of independent interest: For the case $n=3 t+1$ and t malicious corruptions, we design a broadcast protocol of the following special form: we can select any subset of t players, who only need to send one message to the other $n-t$ players. After this point, we can do broadcast among the remaining $n-t$ players. Note that we are not guaranteed that we have at most a third corruptions among the $n-t$ players, so we cannot do broadcast from scratch in this set. We find it slightly surprising that we need so little involvement from the t selected players. In particular, they might all be corrupt and hence send completely garbled setup values - then, of course, we are saved by the fact that the remaining players are all honest (but they do not know this yet).

[^1]
2 Preliminaries

We use \mathbb{N} to denote the non-negative integers. For $n \in \mathbb{N}$ we let $[n]=\{1, \ldots, n\}$.
We prove security in the model from [Can00] with unconditional security and an static adversary. We consider a synchronous model with point-to-point perfectly secure channels between each pair of parties, where the length of each message sent is leaked to the adversary (as would be the case for any cryptographic implementation). We consider function evaluation between n parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$ with inputs x_{1}, \ldots, x_{n} and common output $y=f\left(x_{1}, \ldots, x_{n}\right)$ for a poly-time n-party function f. In the ideal model, we assume that nothing is leaked to the adversary in case no one is corrupted. We refer to [Can00] for the details of the model.

We say that a protocol has perfect correctness if it always computes the correct result when all parties follow the protocol. We say that a protocol has perfect privacy against t semi-honest corruptions if the ideal world and the real world models have the same distributions even when t parties are passively corrupted, i.e., they follow the protocol but might pool their views of the protocol to learn more than they should. We say that a protocol has statistical privacy against t semi-honest corruptions if the view of the corrupted parties in the ideal world and the real world models have distributions that are statistically close in some security parameter s even if t parties are passively corrupted. We say that a protocol has perfect privacy against t malicious corruptions if the view of the corrupted parties in the ideal world and the real world models have the same distributions even when t parties might deviated from the protocol in a coordinated manner. If the distributions are only statistically close we talk about statistical security against t malicious corruptions.

As is well known, it is possible to implement secure function evaluation of any poly-time n-party function with perfect correctness and perfect privacy against t semi-honest corruptions when $n \geq 2 t+1$. It is possible to implement secure function evaluation of any poly-time n-party function with perfect correctness and perfect privacy against t malicious corruptions when $n \geq 3 t+1$, see [BGW88,CCD87].

We will use secure function evaluation protocols for the so-called preprocessing model as tools. In these protocols an incorruptible trusted third party will sample a distribution D to get an n-tuple $\left(d_{1}, \ldots, d_{n}\right) \leftarrow D$. Then it gives d_{i} to P_{i}. After this the n parties engage in a normal protocol where they communicate over secure channels. In such pre-processing models there exist appropriate distributions D which will allow to get perfect correctness and perfect privacy against t passive corruptions out of $n=t+1$ parties. See, e.g., [DZ13] and the references therein.

We also use protocols for the private simultaneous message (PSM) model. For this model an n-party protocol for an n-party function f is given by

$$
\left(R, M_{1}, \ldots, M_{n}, g\right),
$$

where R is a distribution with finite support, each M_{i} is a function, called the message function of party i, and g is function called the reconstruction function.

By perfect correctness of a PSM protocol for an n-party function f we mean that for all r in the support of R and all inputs $\left(x_{1}, \ldots, x_{n}\right)$ for f it holds that $f\left(x_{1}, \ldots, x_{n}\right)=g\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n}\left(x_{n}, r\right)\right)$.

By ϵ-privacy of a PSM we mean that there exists a poly-time simulator S such that for all inputs $\left(x_{1}, \ldots, x_{n}\right)$ for $f, y=f\left(x_{1}, \ldots, x_{n}\right)$ and a random sample $r \leftarrow R$ it holds that $\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n}\left(x_{n}, r\right)\right)$ and $S(y)$ have statistical distance at most ϵ. If $\epsilon=0$, then we talk about perfect privacy. If ϵ is negligible we talk about statistical security. Privacy ensures that a party seeing $\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n}\left(x_{n}, r\right)\right)$ learns nothing extra to $y=g\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n}\left(x_{n}, r\right)\right)$.

The PSM model was introduced in [IK97], where they also gave perfectly secure PSM protocols for a large class of functions including non-deterministic log-space, $\bmod _{p} \mathrm{~L}$ and $\sharp \mathrm{L}$. In [IK97] privacy is not formulated via poly-time simulation: the notion only asks that $\left(M_{1}\left(x_{1}, d_{1}\right), \ldots, M_{n}\left(x_{n}, d_{n}\right)\right)$ depends only on $f\left(x_{1}, \ldots, x_{n}\right)$. We need the simulation based notion here, as we prove security in [Can00], which is phrased via efficient simulation. We note that if for a given function f it is always possible to compute in poly-time from an output $y=$ $f\left(x_{1}, \ldots, x_{n}\right)$ an input $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ such that $y=f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ then the notions are equivalent for f. The simulator will simply compute $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$, sample $r \leftarrow R$ and output $\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n}\left(x_{n}, r\right)\right)$. We will only use such efficiently invertible functions f in the following.

We also use additive secret sharing of bits strings $x \in\{0,1\}^{m}$. An additive secret sharings of x between $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$ consists of sampling shares $s_{1}, \ldots, s_{n} \in$ $\left(\{0,1\}^{m}\right)^{n}$ uniformly at random under the only restriction that $x=\oplus_{i=1}^{n} s_{i}$, where \oplus denote bit-wise exclusive or. It is easy to show that the distribution of any $n-1$ of the shares is the uniform one on $\left(\{0,1\}^{m}\right)^{n-1}$ and hence independent of x.

3 Message Complexity

Defining the message complexity of a protocol for the synchronous model with secure channels appropriately is slightly more tricky than one might expect at first, so we address this issue in its own section.

We will first of all need to allow parties to not send a message to some party in a given round. Since all parties send messages to all parties in all rounds in [Can00], we need to hack the model a bit for this. We will say that if a party sends the empty string then this counts as not having sent a message. Think of receiving the empty string from P_{i} as meaning "no message was received from P_{i} in this round".

This builds up to a subtler point that we demonstrate by an example. Consider the problem where a dealer D is to deal an additive secret sharing of a bit d between n parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$. What is the average message complexity of this problem? It turns out that if we ignore security for a second, then it is at most $n / 2$ if one is not careful. The dealer samples a secret sharing $d=d_{1} \oplus \cdots \oplus d_{n}$. Then for $i=1, \ldots, n$, if $d_{i}=0$ he does not send a message to P_{i}. If $d_{i}=1$,
then he sends 42 to P_{i}. Since d_{i} is uniformly random it follows from linearity of expectation that he sends an expected $n / 2$ messages.

If we consider security the bound changes. It is the case in [Can00] that the adversary can see the length of a message sent securely. This in particular means that in our setting here, the adversary can see if a message was sent or not between any two parties-it can see the communication pattern. This is a reasonable model, as hiding the presence of a communication is not practical, in particular when we actually do not want to transmit any information when there is no message to be sent.

Of course seeing the communication pattern of the above protocol renders it insecure, but this kind of contrived example shows that in some cases, if we want a very precise measure of message complexity we need to consider protocols with fixed communication patterns, i.e., if P_{1} sometimes sends a message to P_{2} in round 1 , then we consider it the case that $i P_{1}$ always sends a message to P_{2} in round 1, as the absence of the message is a signal.

On the other hand, considering only this measure seems to be not entirely satisfying. We should be intrigued whether or not using tricks as above will allow more efficient protocols, so it makes sense to also consider a notion where we only count messages that are explicitly sent.

This will mean that the number of messages may not be the same in all runs of the protocol. However, we should not count high communication complexity which occurs with a vanishing probability in the complexity. If we can prove that all protocols must with some probability 2^{-s}, where s is the security parameter, send $2^{40} n$ message but that they in all other cases might have to send only $2 n$ messages, then we would not consider $2^{40} n$ a very meaningful lower bound. So when we prove lower bounds we would like to consider expected message complexity, which would turn the lower bound in the just given example into $2 n$, as $2^{-s} 2^{40} n$ is vanishing in s.

We therefore define two measures of message complexity, a conservative one and a liberal one:

Definition 1 (Conservative Message Complexity). Let π be an n-party protocol for a synchronous network. By $\operatorname{Msg}_{\text {con }}(\pi)$ we denote the conservative message complexity of π. For all $r \in \mathbb{N}$ and all $i \in[n]$ and all $j \in[n] \backslash\{i\}$ we define $c_{r, i, j}$ to be 1 if there exists an input for π such that when π is run with that input, P_{i} will send a message to P_{j} in round r with non-zero probability. We let $c_{r, i, j}=0$ otherwise. We let

$$
\operatorname{Msg}_{\text {con }}(\pi)=\sum_{r, i, j} c_{r, i, j}
$$

Definition 2 (Liberal Message Complexity). Let π be an n-party protocol for a synchronous network. By $\operatorname{Msg}_{1 \mathrm{lib}}(\pi)$ we denote the liberal message complexity of π. For a given run of π on input \boldsymbol{x} and some fixed random tapes \boldsymbol{r} of the parties we define $c_{r, i, j}$ to be 1 if P_{i} sent a message to P_{j} in round r. We let
$c_{r, i, j}=0$ otherwise. We let

$$
\operatorname{Msg}(\pi, \boldsymbol{x}, \boldsymbol{r})=\sum_{r, i, j} c_{r, i, j}
$$

and

$$
\operatorname{Msg}_{1 \mathrm{ib}}(\pi)=\max _{\boldsymbol{x}} \mathrm{E}_{\boldsymbol{r}}[\operatorname{Msg}(\pi, \boldsymbol{x}, \boldsymbol{r})]
$$

We extend the above notion to the statistical setting by defining them as above for each fixed value of σ and then taking limsup when this limit is defined. If this limit is not defined, we define the message complexity to be ∞.

4 Lower Bounds

We now proceed to present and prove our lower bounds. We first prove a lower bound on the message complexity of secure function evaluation in the face of semi-honest corruptions. Then we give a lower bound on the individual round complexity in the face of t semi-honest corruptions and then a lower bound on the individual round complexity in the face of t malicious corruptions.

4.1 Message Complexity

We first prove a lower bound on the message complexity of secure function evaluation secure against t semi-honest corruptions. We will prove the bound for a large class of function that we will call t-difficult, and a slightly larger bound for a smaller class called t-very difficult.

First some clarifications: even though we have defined two different ways to count messages, where an empty message counts in one notion and not in the other, in the following, when we say that a message is sent or received, or messages are exchanged, we always refer to non-empty messages.

Very roughly, the intuition we will formalise is as follows: A party whose input matters to the result must somehow communicate his input to the rest of players, in order to enable correct computation of the result by all players. The input cannot be encoded in the communication pattern which is public, so it must follow from the content of messages he exchanges with the players. One the other hand the player has to exchange messages with at least $t+1$ parties before his input becomes determined. Otherwise he may have talked to only corrupted parties and the protocol would not be private. This already indicates a lower bound of $n(t+1) / 2$ messages (we need to divide by 2 since a message counts as communication for both sender and receiver). But we can do more: we show that after the inputs have been fixed, players must receive information allowing them to determine the result (this is where we use that the function is difficult). Under the liberal message complexity notion, this does not necessarily mean that all players must receive another message, but we can show that in expectation most players must receive a message half the time. So this indicates
a lower bound of approximately $n(t+2) / 2$ messages. This is not exactly what we get, due to reasons we explain below - but since the bound turns out to be tight for $t=1$ and t-very difficult functions, these issues are fundamental and not just artefacts of the proof.

We start with some notation: For an input vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and a subset $D \subseteq\{1, \ldots, n\}$ and inputs $x_{D}=\left\{\left(j, x_{j}^{\prime}\right)\right\}_{j \in D}$ for the parties in D we use $\boldsymbol{x}\left[x_{D}\right]$ to denote the vector \boldsymbol{x} with x_{j} replaced by x_{j}^{\prime} for $j \in D$.
Definition 3. We say that a function f is t-difficult for P_{i} if the following holds:
influence There exists two inputs $\boldsymbol{x}^{i, 0}$ and $\boldsymbol{x}^{i, 1}$ such that $\boldsymbol{x}_{j}^{i, 0}=\boldsymbol{x}_{j}^{i, 1}$ for all $\mathrm{P}_{j} \neq \mathrm{P}_{i}$ and such that $f\left(\boldsymbol{x}^{i, 0}\right) \neq f\left(\boldsymbol{x}^{i, 1}\right)$.
uncertainty There exists an input $x_{i}^{?}$ such that for all subsets $C \subset\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\} \backslash$ $\left\{\mathrm{P}_{i}\right\}$ with $|C|=t$ and $D=\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\} \backslash\left(\left\{\mathrm{P}_{i}\right\} \cup C\right)$ and all inputs \boldsymbol{x} for f there exists $x_{D}=\left\{x_{j}^{\prime}\right\}_{j \in D}$ such that $f\left(\boldsymbol{x}\left[\left(i, x_{i}^{?}\right)\right]\right)=f\left(\boldsymbol{x}\left[x_{D}\right]\right)$.
We say that f is t-difficult if f is t-difficult for all P_{i}.
Intuitively, if a party has influence, then the function - at least sometimes depends on the input of that party. If a party P_{i} has uncertainty, it means that for some input $x_{i}^{?}$ of P_{i}, if subset C is corrupt, they will not be able to figure out which input P_{i} has, no matter what the other inputs were: we can switch P_{i} 's input to anything else and compensate for this by changing the inputs of the other honest parties such that the output is the same. One may think, for instance of the AND function: if P_{i} has input 0 , the output is 0 , but the adversary cannot know if this is because P_{i} or another honest party has a 0 .

As examples of t-difficult functions consider the functions where each party has as input a bit and where the output is the AND or the XOR of these n bits. Other examples are general threshold functions, which output 1 iff at least some $0<t^{\prime}<n$ parties have input 1 .

For a run of a protocol π and a given party P_{i} and a given point in the protocol we keep track of a set N_{i} which can be thought of as the parties that P_{i} has exchanged messages with, but it is defined with a slight twist. From the beginning we set all $N_{i}=\emptyset$. Whenever P_{i} sends a message, we update N_{i} to be the set of parties P_{i} has sent a message to or received a message from so far in the protocol. Notice that this means that N_{i} is not update in response to receiving a message.

We say that a protocol has t-floating input for P_{i} if at each point in the protocol where $\left|N_{i}\right| \leq t$ it holds that P_{i} still did not read its input x_{i}. More formally, if we model P_{i} as an interactive Turing machine, it means that P_{i} did not access its input tape. We say that π has t-floating input if it has t-floating input for all parties.

For any run of protocol we define a revelation message to be the message (if it exists) where before the message is sent it holds for at least one P_{i} that $\left|N_{i}\right| \leq t$ and after the message is received it holds for all P_{i} that $\left|N_{i}\right| \geq t+1$. Notice that this implies that it is the size of set N_{i} of the sender of the revelation message that crosses the threshold t, as N_{i} is not updated in response to receiving a message.

The communication pattern of an execution $\pi(\boldsymbol{x} ; \boldsymbol{r})$ with input vector \boldsymbol{x} and random tape vector \boldsymbol{r} is the transcript seen by the adversary when no parties are corrupted, i.e., who sent a message to whom at which time and the length of those messages, but no contents of the messages and no input or output of any party. We assume that a communication pattern is encoded as a bit string. Let $Q:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a function on communication patterns. We use $Q(\pi(\boldsymbol{x}))$ to denote the random variable obtained by running π on the input distribution \boldsymbol{x} and uniformly random \boldsymbol{r} and applying Q to the resulting communication pattern and then outputting the output of Q.

Lemma 1 (input-independent communication pattern). If π securely implements f with statistical security for t semi-honest corruptions for some $t \geq 0$, then it holds for any two input distributions \boldsymbol{x}_{0} and \boldsymbol{x}_{1} and all functions Q on communication patterns that $Q\left(\pi\left(\boldsymbol{x}_{0}\right)\right)$ and $Q\left(\pi\left(\boldsymbol{x}_{1}\right)\right)$ are statistically indistinguishable.

Proof. This follows from the fact that when no parties are corrupted, the adversary still sees the communication pattern of $\pi\left(\boldsymbol{x}_{0}\right)$ and $\pi\left(\boldsymbol{x}_{1}\right)$ and hence can compute and output $Q\left(\pi\left(\boldsymbol{x}_{0}\right)\right)$ respectively $Q\left(\pi\left(\boldsymbol{x}_{1}\right)\right)$. However, when no parties are corrupted the simulator has the same view when \boldsymbol{x}_{0} or \boldsymbol{x}_{1} is used. The claim then follows from security against 0 semi-honest corruptions.

Corollary 1 (input-independent communication complexity). If π securely implements f with statistical security for t semi-honest corruptions for some $t \leq 0$, then it holds for any two input distributions \boldsymbol{x}_{0} and \boldsymbol{x}_{1} that $\operatorname{Msg}\left(\boldsymbol{x}_{0}\right)$ and $\operatorname{Msg}\left(\boldsymbol{x}_{1}\right)$ are statistically indistinguishable.

Proof. Consider the function on communication patterns outputting the number of non-empty messages sent and then apply Lemma 1.

Lemma 2 (revelation message). If π has t-floating input and securely implements f with statistical security for t semi-honest corruptions and f is t-difficult, then it holds for all input distributions \boldsymbol{x} that π has a t-revelation message except with negligible probability.

Proof. If π does not have a t-revelation message for input distribution \boldsymbol{x}, then there exist a party P_{i} such that with non-negligible probability P_{i} exchanges messages with at most t parties in $\pi(\boldsymbol{x})$. From Lemma 1 it then follows that it holds for the input distributions $\boldsymbol{x}^{i, 0}$ and $\boldsymbol{x}^{i, 1}$ from the definition of f being t-difficult that with non-negligible probability P_{i} exchanges messages with at most t parties in $\pi\left(\boldsymbol{x}^{i, 0}\right)$ and also in $\pi\left(\boldsymbol{x}^{i, 1}\right)$. But since π has t-floating inputs, this implies that with non-negligible probability $\pi\left(\boldsymbol{x}^{i, 0}\right)=\pi\left(\boldsymbol{x}^{i, 1}\right)$ as the output cannot depend on the input of P_{i} when P_{i} did not read its input, and all other parties have the same inputs in $\boldsymbol{x}^{i, 0}$ and $\boldsymbol{x}^{i, 1}$. However, by assumption $f\left(\boldsymbol{x}^{i, 0}\right) \neq$ $f\left(\boldsymbol{x}^{i, 1}\right)$ and we have a contradiction with correctness of π.

Lemma 3 (another message). If π has t-floating input and securely implements f with statistical security for t semi-honest corruptions and f is t-difficult,
then it holds for all input distributions and all pairs of distinct parties P_{j} and P_{k} that in a random run of $\pi(\boldsymbol{x})$ it holds except with negligible probability that when P_{k} is the sender of the revelation message, then the probability that P_{j} receives another message after P_{k} sent the revelation message is at least $\frac{1}{2}$.

Proof. Assume for the sake of contradiction that there exist \boldsymbol{x} and P_{k} and $\mathrm{P}_{j} \neq \mathrm{P}_{k}$ such that it happens with non-negligible probability that P_{k} is the sender of the revelation message and that when this happens P_{j} will receive another message after the revelation message is sent (but not received) with probability at most $\frac{1}{2}-c$, where c is non-negligible. It is a predicate of the communication pattern whether P_{k} sends the revelation message. It is also a predicate of the communication pattern whether P_{j} receives another message after the revelation message. Therefore it follows from Lemma 1 that it holds for any input distribution \boldsymbol{x} with non-negligible probability that P_{k} is the sender of the revelation message and that when this happens then P_{j} will receive another message after the revelation message is sent (but not received) with probability at most $\frac{1}{2}-c^{\prime}$, where $c^{\prime}=c-$ negl is non-negligible as c is non-negligible.

Consider now the particular input distribution which is $\boldsymbol{x}^{k, b}$ for a uniformly random bit b, where $\boldsymbol{x}^{k, 0}, \boldsymbol{x}^{k, 1}$ are the input vectors guaranteed by the definition of f being t-difficult (P_{k} has influence). In this case the output of all parties allow to determine the bit b, except with negligible probability. Assume without loss of generality that $f\left(\boldsymbol{x}^{i, b}\right)=b$. Let y be the distribution of the output of P_{j} in a random run on $\boldsymbol{x}^{i, b}$ conditioned on P_{j} not receiving another message after the revelation message. Notice that y can be sampled by P_{j} at the time right before the revelation message is sent, by simply assuming that no more messages will be received by P_{j}. However, at the point before the revelation message is sent P_{k} did not read its input x_{k} yet in the protocol, so y is perfectly independent of b. From this it follows that $\operatorname{Pr}[y=0 \mid b=0]=\operatorname{Pr}[y=0 \mid b=1]=1-\operatorname{Pr}[y=1 \mid b=1]$, so either $\operatorname{Pr}[y=0 \mid b=0] \leq \frac{1}{2}$ or $\operatorname{Pr}[y=1 \mid b=1] \leq \frac{1}{2}$. Assume that $\operatorname{Pr}[y=0 \mid b=$ $0] \leq \frac{1}{2}$. Since $b=0$ with probability $\frac{1}{2}$ and P_{j} receives another message with probability $\frac{1}{2}-c$ it happens with non-negligible probability that $b=0$ and at the same time P_{j} does not receive another message and hence outputs according to distribution y, which implies that it happens with non-negligible probability that P_{j} does not output b, contradicting the correctness of the protocol. If we assume that $\operatorname{Pr}[y=1 \mid b=1] \leq \frac{1}{2}$, then a violation of correctness is reached using a symmetric argument. This concludes the proof.

Lemma 4 (floating input). Let f be a t-difficult n-party function and assume that π be an n-party protocol securely implementing f with statistical correctness and statistical privacy against t semi-honest corruptions. Then there exists a protocol π^{\prime} with t-floating input which has the same security and for which $\operatorname{Msg}_{1 \mathrm{ib}}\left(\pi^{\prime}\right)=\operatorname{Msg}_{\text {lib }}(\pi)$.

Proof. We prove the lemma by constructing π^{\prime} from π. We prove the lemma for the weaker case where we construct π^{\prime} where only P_{1} has t-floating input. We can then obtain the general case by symmetry and hybrid arguments.

All parties in π^{\prime} run as in π except P_{1} who runs as follows. Initially, run as in π but with input $\beta_{1}=x_{1}^{?}$ and a uniformly random tape ρ_{1}. Here, $x_{1}^{?}$ is the input value that a exists since f is t-difficult (the uncertainty condition for P_{1}). If about to send a message which would result in $\left|N_{1}\right| \geq t+1$, then first apply the following input patching procedure: Read the input x_{1} and replace ρ_{1} with a new random tape r_{1} consistent with input x_{1} and the communication so far. Specifically, sample r_{1} using rejection sample as follows. Sample r_{1} uniformly at random. Let T be the list of messages sent and received by P_{1} so far, including who the message was exchanged with and in which round. Run the code of P_{1} from π with input x_{1} and random tape r_{1} and feed P_{1} the incoming message from T in the round in which they occurred. If this makes P_{1} send the same messages as in T to the same parties and in the same rounds, then accept r_{1}, otherwise try again. Use $r_{1}=\perp$ to denote that no acceptable r_{1} exists. We now prove that if π is secure, then π^{\prime} is secure.

We will prove something stronger, which also implies that the correctness and the communication complexity is maintained. We will prove that for all input distributions \boldsymbol{x} it holds that the distributions D_{0} and D_{1} are statistically indistinguishable, where D_{0} is obtained by sampling a random run of π on a random input sampled from \boldsymbol{x} and then outputting $\left(\left(x_{1}, r_{1}\right),\left(x_{2}, r_{2}\right), \ldots,\left(x_{n}, r_{n}\right)\right)$, where x_{i} is the input of P_{i} and r_{i} is the random tape used by P_{i}, and where D_{1} is obtained by sampling a random run of π^{\prime} on a random input sampled from \boldsymbol{x} and then outputting $\left(\left(x_{1}, r_{1}\right),\left(x_{2}, r_{2}\right), \ldots,\left(x_{n}, r_{n}\right)\right)$, where for $i=2, \ldots, n$ the value x_{i} is the input of P_{i} and r_{i} is the random tape used by P_{i} and where x_{1} is the input of P_{1} and r_{1} is the random tape sampled in the input patching procedure. From this it clearly follows that if π is correct, then π^{\prime} is correct and it follows for all $t^{\prime} \leq n$ that if π is secure against t^{\prime} corruptions then π^{\prime} is also secure against t^{\prime} corruptions. Notice that to prove the claim for all distributions on \boldsymbol{x} it is sufficient to prove that it holds for all fixed input vectors \boldsymbol{x}, so in the following we assume that \boldsymbol{x} is a fixed value.

Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If $x_{1}=x_{i}^{?}$, then the input patching procedure simply resamples r_{1} with the same distribution as β_{1} and hence D_{0} and D_{1} are identical. So, assume that $x_{1} \neq x_{1}^{?}$ and that D_{0} and D_{1} are not statistically close. We show how to use this to break the t-security of π. Let $\boldsymbol{x}_{0}=\left(x_{1}^{?}, x_{2}, \ldots, x_{n}\right)$ and $\boldsymbol{x}_{1}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\boldsymbol{x}$. We break the analysis into two cases. In case I we assume that $f\left(x_{1} ?, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. To avoid confusion, note that the proof of case II in fact implies the result for case I. However, it is instructive to first see the proof of case I as a mental warm-up.

In case I we will run π on \boldsymbol{x}_{0} or \boldsymbol{x}_{1} and show how to distinguish with nonnegligible advantage by corrupting just t parties which do not include P_{1}. This clearly demonstrates that π is not t-secure, as these t parties have the same inputs and outputs in $f\left(\boldsymbol{x}_{0}\right)$ and $f\left(\boldsymbol{x}_{1}\right)$ as only the input of P_{1} differs and because $f\left(\boldsymbol{x}_{0}\right)=f\left(\boldsymbol{x}_{1}\right)$. So, assume that we attack a run of \boldsymbol{x}_{b} for uniformly random b. The adversary will observe the communication pattern of the protocol. Consider the point where P_{1} sends a message that would make $\left|N_{1}\right|>t$ for the first time, and note that P_{1} has communicated with at most t parties up to now, call this
set of parties C. At this point the adversary corrupts the players in C. Note that all messages sent by P_{1} so far was sent to one of these parties. Use D to denote the set of parties which is not in $\left\{\mathrm{P}_{1}\right\} \cup C$. Now use rejection sampling to sample a random tape r_{1} consistent with the communication between P_{1} and the parties in C and input x_{i} to P_{1}. Note that if $b=1$, this samples a string having the same distribution as the random tape used by P_{1} in the protocol $\pi(\boldsymbol{x})$. If $b=0$, then it samples a string having the same distribution as the random tape r_{1} sampled by the input fixing procedure in $\pi^{\prime}(\boldsymbol{x})$. Note that the parties in D have not communicated with P_{1}, so all the communication leaving the group D is with C. This means that the adversary knows all message going in or out of the group D. It can therefore use rejection sampling to sample a set of uniformly random tapes $\left\{\left(j, r_{j}\right)\right\}_{j \in D}$ for the parties in D consistent with the communication between C sand D and P_{j} for $j \in D$ having input x_{j} (where x_{j} is taken from $\left.\boldsymbol{x}\right)$. This perfectly reconstructs the distribution of the state of the parties in D. Then output $\left(\left(x_{1}, r_{1}\right),\left(x_{2}, r_{2}\right), \ldots,\left(x_{n}, r_{n}\right)\right)$. If $b=0$, this is exactly D_{0} and if $b=1$ it is exactly D_{1}. But we assumed that D_{0} and D_{1} are not statistically close so we arrive at a contradiction with t-security of π : since the output is the same in the two cases, a simulator would see no difference between $b=0$ and $b=1$.

That brings us to case II. In this case, we can prove as above that if D_{0} and D_{1} can be distinguished, then we can also distinguish between $\pi\left(\boldsymbol{x}_{0}\right)$ and $\pi\left(\boldsymbol{x}_{1}\right)$ by just corrupting t parties at a point where $\left|N_{1}\right| \leq t$. The challenge is that $f\left(\boldsymbol{x}_{0}\right) \neq f\left(\boldsymbol{x}_{1}\right)$, so it does not follow easily from the definition of security that an adversary should not be able to distinguish with just this information. We now argue this in a more indirect way.

Consider the following experiment, which is parameterised by an (infinitely powerful) adversary A that outputs 1 bit:

1. Sample b uniformly at random.
2. Run $\pi\left(\boldsymbol{x}_{b}\right)$ until the point where it is about to happen that $\left|N_{1}\right|>t$. If this point does not occur, then perform the following at the end of the execution of the protocol.
3. Let C be the set of at most t parties defined as in case I above. A corrupts the parties in C. Let V be the joint view of these parties (their inputs, random tapes and messages received). Output $A(C, V)$ (here we abuse notation slightly by using A to denote both the adversary and the (arbitrary) function it calculates on the views).

We now claim that for any $A, \operatorname{Pr}[A(C, V)=b]-\frac{1}{2}$ is negligible. This will imply what we want: Note that one possible choice of A is as follows: use rejection sampling to produce a sample of D_{b}, exactly as we described in case I above. Then output the best guess at whether the sample came from D_{0} or from D_{1}. Since the claim holds for this particular A, D_{0} and D_{1} are statistically close.

So assume for the sake of contradiction that there exists A such that $\operatorname{Pr}[A(C, V)=$ $b]-\frac{1}{2}$ is non-negligible.

Note that C may not be the same set in all runs of the protocol. Considering C as a random variable, we have that

$$
\begin{aligned}
\operatorname{Pr}[A(C, V)=b]-\frac{1}{2} & =\sum_{C^{\prime}} \operatorname{Pr}\left[C=C^{\prime}\right] \operatorname{Pr}\left[A(C, V)=b \mid C=C^{\prime}\right]-\left(\sum_{C^{\prime}} \operatorname{Pr}\left[C=C^{\prime}\right]\right) \frac{1}{2} \\
& =\sum_{C^{\prime}} \operatorname{Pr}\left[C=C^{\prime}\right]\left(\operatorname{Pr}\left[A(C, V)=b \mid C=C^{\prime}\right]-\frac{1}{2}\right)
\end{aligned}
$$

Since the number of subsets of the parties is constant as an function of the security parameter, it now follows that we can find a fixed set C^{\prime} of size at most t such that $\operatorname{Pr}\left[C=C^{\prime}\right]$ is non-negligible and such that $\operatorname{Pr}\left[A\left(C^{\prime}, V\right)=b \mid C=\right.$ $\left.C^{\prime}\right]-\frac{1}{2}$ is non-negligible.

We can then construct a new adversary A^{\prime} which always corrupts C^{\prime} and still guesses b with non-negligible advantage: If the set C actually occurring in the protocol equals C^{\prime}, it outputs $A\left(C^{\prime}, V\right)$, otherwise it outputs a uniformly random bit. Note that A^{\prime} makes its guess at a point in time where $N_{1} \subseteq C . A^{\prime}$'s advantage is non-negligible because $\operatorname{Pr}\left[A^{\prime}\left(C^{\prime}, V\right)=b \mid C \neq C^{\prime}\right]-\frac{1}{2}$ is negligible - we can only claim negligible here and not 0 as there might be a difference between $\operatorname{Pr}\left[C \neq C^{\prime} \mid b=0\right]$ and $\operatorname{Pr}\left[C \neq C^{\prime} \mid b=1\right]$. This difference, however, is negligible by Lemma 1.

We now want to show that such A^{\prime} does not exist. To avoid ugly notation in the following, we will now use C to denote the set that A^{\prime} always corrupts.

We start with some notation. Let D be the set of parties not in $C \cup\left\{\mathrm{P}_{1}\right\}$. Let $x_{1}^{0}=x_{1}^{?}$ and $x_{1}^{1}=x_{1}$ let x_{D}^{1} be the inputs of the parties in D in \boldsymbol{x}. Let x_{D}^{0} be the inputs x_{D} for the parties in D given by the definition of P_{1} having uncertainty. We therefore have have by definition that $f\left(x_{1}^{0}, x_{C}, x_{D}^{1}\right)=f\left(x_{1}^{1}, x_{C}, x_{D}^{0}\right)$.

In this notation we have that $\boldsymbol{x}_{0}=\left(x_{1}^{0}, x_{C}, x_{D}^{1}\right)$ and $\boldsymbol{x}_{1}=\boldsymbol{x}=\left(x_{1}^{1}, x_{C}, x_{D}^{1}\right)$. Therefore our job is to prove that A^{\prime} cannot distinguish $\pi\left(x_{1}^{1}, x_{C}, x_{D}^{1}\right)$ from $\pi\left(x_{1}^{0}, x_{C}, x_{D}^{1}\right)$. In the following, for a subset S of the parties, we use $[b, d]_{S}$ to denote the view of the parties S in an execution of $\pi\left(x_{1}^{b}, x_{C}, x_{D}^{d}\right)$. To complete the proof we have to show that at any point in the protocol where $N_{1} \subseteq C$ it holds that $[0,1]_{C} \approx[1,1]_{C}$.

For a subset S of the parties, let $[b, d]_{S}^{c}$ denote the distribution of their views, conditioned on the parties in S having received at most c messages.

Obviously $[0,1]_{C}^{0} \approx[1,1]_{C}^{0}$, since before C communicated with any party the view of players in C is just their own inputs and random tapes. We now prove by induction that $[0,1]_{C}^{c} \approx[1,1]_{C}^{c}$ for all constants c, as long as $N_{1} \subseteq C$. The latter condition is extremely important because it implies that in all cases we consider, there is no communication between P_{1} and D.

We assume that $[0,1]_{C}^{c} \approx[1,1]_{C}^{c}$ and prove that $[0,1]_{C}^{c+1} \approx[1,1]_{C}^{c+1}$. From the communication pattern being known by the adversary and being indistinguishable in $[0,1]_{C}^{c}$ and $[1,1]_{C}^{c}$ by Lemma 1 we can assume that we know which party P_{j} sends a message to C in round $c+1$.

Assume first that $\mathrm{P}_{j} \neq \mathrm{P}_{1}$. Let R_{D} be the procedure which gets input $[b, 1]_{C}^{c}$, and then from the view of the communication between C and D in $[b, 1]_{C}$ samples
a joint state of all parties in D consistent with inputs x_{D}^{1} and that communication and appends this state to $[b, 1]_{C}$. We have that $R_{D}\left([b, 1]_{C}^{c}\right)=[b, 1]_{C, D}^{c}$ by construction and it follows from the induction hypothesis $[0,1]_{C}^{c} \approx[1,1]_{C}^{c}$ that $R_{D}\left([0,1]_{C}^{c}\right) \approx R_{D}\left([1,1]_{C}^{c}\right)$. So we conclude that in this case (where $\mathrm{P}_{j} \in D$) $[0,1]_{C, D}^{c} \approx[1,1]_{C, D}^{c}$. Put another way, given the state of C one can perfectly simulate the state of the parties in D since one knows their inputs and all communication going in and out of D. From the state of the parties in D in $[b, 1]_{C, D}^{c}$ one can then sample a random run consistent with P_{j} being the next party to send a message to a party in C. This gives a sample from $[b, 1]_{C, D}^{c+1}$. Since computation (in this case of the next message function) maintains statistical indistinguishability it follows from $[0,1]_{C, D}^{c} \approx[1,1]_{C, D}^{c}$ that $[0,1]_{C, D}^{c+1} \approx[1,1]_{C, D}^{c+1}$. It clearly follows from $[0,1]_{C, D}^{c+1} \approx[1,1]_{C, D}^{c+1}$ that $[0,1]_{C}^{c+1} \approx[1,1]_{C}^{c+1}$.

Assume then that $\mathrm{P}_{j}=\mathrm{P}_{1}$. Again, by induction hypothesis we have $[0,1]_{C}^{c} \approx$ $[1,1]_{C}^{c}$. It follows from the security of the protocol that $[0,1]_{C} \approx[1,0]_{C}$ as the inputs and outputs of the parties in C are the same in the two executions considered and $|C| \leq t$. So in particular we have $[0,1]_{C}^{c} \approx[1,0]_{C}^{c}$. So we conclude by transitivity that $[1,0]_{C}^{c} \approx[1,1]_{C}^{c}$.

Since the next message comes from P_{1} we can argue $[1,0]_{C}^{c+1} \approx[1,1]_{C}^{c+1}$ as we did for the above case, by sampling the state of P_{1} from its known input and communication. As we noticed above we have $[0,1]_{C} \approx[1,0]_{C}$ and therefore in particular $[0,1]_{C}^{c+1} \approx[1,0]_{C}^{c+1}$. Combining these two we get $[0,1]_{C}^{c+1} \approx[1,1]_{C}^{c+1}$ as desired.

Theorem 1. Let π be the n-party function which securely implements a function f which is t-difficult, with statistical correctness and statistical privacy against t semi-honest corruptions. Then

$$
\operatorname{Msg}_{l \mathrm{ib}}(\pi) \geq\lceil(n(t+1)-1) / 2\rceil+n / 2-\frac{1}{2}
$$

and

$$
\operatorname{Msg}_{\text {con }}(\pi) \geq\lceil(n(t+1)-1) / 2\rceil+n-1
$$

Proof. We start by proving the bound for liberal communication complexity. By Lemma 4 we can assume that π has t-floating inputs. From Lemma 2 we then get that π has a revelation message for all input distributions, except with negligible probability. We now want to count the number of send and receive operations that have been executed just before the revelation message has sent sent. Since $\left|N_{j}\right| \geq t+1$ for all P_{j} after the revelation message is sent, it follows that after it is sent

$$
\sum_{i=1}^{n}\left|N_{i}\right| \geq n(t+1)
$$

Notice that in this sum the revelation message is counted only once, but all other messages might be counted twice. Hence at least $(n(t+1)-1) / 2+1$ messages were sent after the revelation message was sent. Therefore at least $(n(t+1)-1) / 2$ messages were sent before the revelation message was sent. Since the number of
messages sent is an integer, it follows that at least $\lceil(n(t+1)-1) / 2\rceil$ messages were sent. By Lemma 3, after the point where the revelation message is sent by some P_{k} each other party receives at least one more message with probability at least $\frac{1}{2}$ - negl. By linearity of expectation, this gives at least an expected $(n-1)\left(\frac{1}{2}-\operatorname{negl}(s)\right)$ more messages. Since n is a constant in s we have that $n \operatorname{negl}(s)=\operatorname{negl}(s)$, so $\lim _{s \rightarrow \infty}(n-1)\left(\frac{1}{2}-\operatorname{negl}(s)\right)=(n-1) \frac{1}{2}=n / 2-\frac{1}{2}$. It is easy to see that for conservative message complexity we get to add $n-1$ instead of $(n-1) / 2$: when we consider conservative message complexity, receiving a message with probability $\frac{1}{2}$ counts as 1 towards the message complexity.

We say that a function f is t-very difficult if it is t-difficult and in addition for P_{i} there exists P_{j} such that P_{i} and P_{j} has an embedded AND in the following sense: There exists an input vector \boldsymbol{x} and inputs x_{i}^{1} and x_{i}^{0} for P_{i} and inputs x_{j}^{1} and x_{j}^{0} for P_{j} such that if we set $y_{b, c}=f\left(\boldsymbol{x}\left[\left(i, x_{i}^{b}\right),\left(j, x_{j}^{c}\right)\right]\right.$ for $b, c \in\{0,1\}$, then $y_{0,0} \neq y_{1,1}$ and $y_{0,0}=y_{0,1}=y_{1,0}$. If f is t-very difficult we can improve the lower bound by $\frac{1}{2}$ message. An examples of a t-very hard functions are all threshold functions, as they have embedded ANDs for all pairs of parties.

Theorem 2. Let π be the n-party function which securely implements a function f which is t-very difficult, with statistical correctness and statistical privacy against t semi-honest corruptions. Then

$$
\operatorname{Msg}_{1 \mathrm{ib}}(\pi) \geq\lceil(n(t+1)-1) / 2\rceil+n / 2
$$

and

$$
\operatorname{Msg}_{1 \mathrm{ib}}(\pi) \geq\lceil(n(t+1)-1) / 2\rceil+n
$$

Proof (sketch). We start by proving the bound for liberal communication complexity. The proof follows the lines of the proof of Theorem 1, so we will only give a sketch. The extra $\frac{1}{2}$ message comes from the fact that we can now argue that even the sender of the revelation message must receive another bit of information after sending the revelation message and therefore must receive another message with probability at least $\frac{1}{2}$. To see this, note that if this was not the case, then it holds for all input distributions, by Lemma 1. Let P_{k} be the sender of the revelation message and let P_{j} be the party with which P_{k} has an embedded AND. Denote an execution of $\pi\left(\boldsymbol{x}\left[\left(j, x_{j}^{b}\right),\left(j, x_{k}^{c}\right)\right]\right)$ by $[b, c]$. Assume that P_{k} receives a message after sending the revelation message with probability less than $\frac{1}{2}$.

In $[b, 0]$ it holds that the view of P_{k} is independent of b even at the end of the execution as the output and input of P_{k} are the same in the two executions. That implies that until P_{k} sends the revelation message it also holds in $[b, 1]$ that the view of P_{k} is independent of b, as $[b, 0]$ and $[b, 1]$ are perfectly indistinguishable to P_{k} until P_{k} actually reads its input. From this it follows that it also holds in $[b, 1]$ that the view of P_{k} is independent of b after sending the revelation message, as reading the input $x_{j}^{c}=1$ cannot change that dependence on b as 1 is a constant and in particular independent of b and the view of P_{k} so far. But in $[b, 1]$ the output of P_{k} must be b by the correctness of π. Going from a
situation where the view of P_{k} is independent of b to learning b requires that P_{k} receives a message with probability at least $\frac{1}{2}$. When we consider conservative message complexity, receiving a message with probability $\frac{1}{2}$ counts as 1 towards the message complexity.

4.2 Individual Round Complexity

Consider now an n-player protocol π that is executed on a synchronous network. We can define a (possibly empty) set M_{π} of players with minimal interaction, consisting of players whose only communication is to each send a message to a subset of the parties not in M_{π} and then later, after all parties in M_{π} have sent all their message, each receive a message from a subset of the parties not in M_{π}.

Theorem 3. Assume $n=2 t+1$ parties, where each party P_{i} holds input bit b_{i}. A protocol π that computes $b_{1} \wedge \cdots \wedge b_{n}$ with perfect correctness and statistical privacy against t semi-honest corruptions must have $\left|M_{\pi}\right| \leq t$.

Proof. Assume for contradiction that M_{π} has size $t+1$. Then we can construct from π a 3 -party protocol for players A, B and C, where player A emulates the t players not in M_{π}, B emulates t of the players in M_{π}, and C emulates the last player in M_{π}. Each party will have a single bit as input and will use that bit as input to each of the parties it is emulating. If π is secure, then clearly the 3 -party protocol securely computes the AND of the inputs from the 3 players, provided at most 1 is passively corrupt, as corrupting any of A, B and C will corrupt at most t emulated parties. Moreover, the 3 party protocol will have only 4 messages. Namely, the one party from M_{π} emulated by C will send one message to A and later receive exactly one message from A, as A emulated exactly the parties not in M_{π}. The same is true for all the emulated players in B, they will all send exactly one message to a player in A and receive back one message from a player in A. Furthermore, since they all send their messages to the players in A before they received any messages from A, we can let B send all the messages as one message. In the same way we can let A return all the messages as one message. Since there is no communication between parties in M_{π}, there is no communication between B and C. Hence all other communication takes place inside A. However, communicating just 4 message is in contradiction to Theorem 2, which says that 6 messages is required.

Theorem 4. Assume $n=3 t+1$ parties, where each party P_{i} holds input bit b_{i}. A protocol π that computes $b_{1} \wedge \cdots \wedge b_{n}$ with statistical correctness and statistical privacy against t malicious corruptions must have $\left|M_{\pi}\right| \leq t$.

Proof. If we assume a contradiction we can as above reduce it to the case with $n=4$ and $t=1$. We let A simulate t parties with optimal communication complexity. We let B simulate the last party with optimal communication complexity. We let C and D each simulate t of the remaining parties. We set the input of D to be 1 and we denote the inputs of A, B and C by a, b and c. The communication pattern is as follows. First A sends two message to C and D.

Denote the message sent to C by g. At the same time B sends two messages to C and D. Denote the message sent to C by h. By privacy against a semi-honest corruption of C we know that g is independent of a. Clearly the message h is independent of a. Furthermore, since g and h were computed by two different parties which did not communicate before sending these messages, and the parties do not have a source of correlated randomness, g ang h are independent. It follows that (g, h) is independent of a. However, by security of one malicious corruption the protocol should still terminate with the correct result if at this point D stops participating in which case C receives no further information. Clearly C cannot alway compute the correct result with good probability when its view is independent of a.

5 Upper Bounds

In this section we give four constructive upper bounds, one for individual round complexity of secure function evaluation in the face of semi-honest corruptions, then one for individual round complexity of broadcast in the face of malicious corruptions, one for individual round complexity of secure functional evaluation in the face of malicious corruptions, and finally one for message complexity in the face of semi-honest corruptions.

5.1 Individual Round Complexity, Semi-honest Security

We first give a construction with minimal individual round complexity for a group of $t<n / 2$ parties in the face of semi-honest corruption.

Theorem 5. For every poly-time n-party function f, there exists a poly-time function evaluation protocol computing f between $n=2 t+1$ parties with perfect correctness and perfect privacy against t semi-honest corruptions, where t parties have round complexity two. Specifically, these t parties first in parallel each sends one message to the $n-t$ other parties and then later each receives one message from the same $n-t$ parties.

Proof. We design a protocol where it is the parties $I=\left\{\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}\right\}$ which have round complexity two. We denote each of the t parties in I generically by P_{i} and we denote the parties in $J=\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-t}\right\}$ generically by P_{j}.

Use D to denote the pre-processing distribution of a secure function evaluation protocol for the pre-processing model with $n^{\prime}=t+1$ parties and up to t semi-honest corruptions. Let $\left(D, \pi_{\text {pre-pro }}\right)$ be a protocol for this model with perfect correctness and perfect privacy for t semi-honest corruptions.

Let $\pi_{\text {hon-maj }}$ be a secure function evaluation protocol for the function f for a model with $n=2 t+1$ parties and assume that it has perfect correctness and perfect privacy against t semi-honest corruptions. Assume that $\pi_{\text {hon-maj }}$ has round complexity ℓ. We can assume that $\pi_{\text {hon-maj }}$ runs as follows in round r : first each party sends one message to each other party which adds this message
to its state. Then it applies a round function $R^{i, r}$ which computes the new state of party P_{i}. The initial state of a party is just its input x_{i}.

Our protocol π proceeds as follows. First each P_{i} will additively secret share its input x_{i} among the parties P_{j}, i.e., it samples uniformly random shares $x_{i, j}$ for which $x_{i}=x_{i, 1} \oplus \cdots \oplus x_{i, n-t}$ and securely sends $x_{i, j}$ to P_{j}. At the same time it will for $r=1, \ldots, \ell$ sample $\left(d_{1}^{i, r}, \ldots, d_{n-t}^{i, r}\right) \leftarrow D$ and send $d_{j}^{i, r}$ to P_{j}. Notice that at this point the initial state of each P_{i} is secret shared among the parties in J. We will keep the invariant that at each round in the protocol $\pi_{\text {hon-maj }}$ the state of P_{i} in $\pi_{\text {hon-maj }}$ is secret shared among the parties in J. Each round in $\pi_{\text {hon-maj }}$ is emulated as follows.

1. If $\mathrm{P}_{j} \in J$ is to send a message m to $\mathrm{P}_{k} \in J$, then it sends m over the secure channel to P_{k}.
2. If $\mathrm{P}_{j} \in J$ is to send a message m to $\mathrm{P}_{i} \in I$, then it additively secret shares m among the parties J and this secret sharing is added to the secret shared state of P_{i}.
3. If $\mathrm{P}_{i} \in I$ is to send a message m to $\mathrm{P}_{k} \in I$, then m is by the invariant already additively secret shared among the parties J. The parties in J can therefore just add this secret sharing to the secret shared state of P_{k}.
4. If $\mathrm{P}_{i} \in I$ is to send a message m to $\mathrm{P}_{j} \in J$, then m is additively secret shared among the parties J as part of the secret shared state of P_{i}. The parties in J can therefore reconstruct this message towards P_{j}.
5. If $\mathrm{P}_{j} \in J$ is to apply the round function $R^{j, r}$, then it simply applies it to its state.
6. If $\mathrm{P}_{i} \in I$ is to apply the round function $R^{i, r}$, then the parties in J uses the the preprocessed values $\left(d_{1}^{i, r}, \ldots, d_{n-t}^{i, r}\right)$ to do secure function evaluation of the augmented round function $\bar{R}^{i, r}$ which reconstructs the state of P_{i} from the secret sharing of the state held by the parties in J, then applies $R^{i, r}$ and outputs an additive secret sharing of the new state.

After all ℓ rounds of $\pi_{\text {hon }- \text { maj }}$ have been emulated, the secret-shared state of P_{i} contains its output y_{i}. The parties in J reconstructs this y_{i} towards P_{i}. At this point all n parties received their outputs.

It should be clear that this protocol has perfect correctness, as $\pi_{\text {pre-pro }}$ and $\pi_{\text {hon-maj }}$ both have perfect correctness.

As for perfect privacy, note that if at most t parties are corrupted, then the additive secret sharings among the t parties in J leaks no information, and can indeed be efficiently simulated by just giving all corrupted parties uniformly random shares.

Furthermore, if $\mathrm{P}_{i} \in I$ is honest, then the emulation of P_{i} in $\pi_{\text {hon-maj }}$ is perfectly private, as P_{i} is perfectly acting as the trusted third party of the preprocessing model. We can in particular replace the emulation of P_{i} by an ideal function evaluation of the augmented round function.

Since the additive secret sharing of the inputs and outputs of the augmented round function can be efficiently simulated towards the t corrupted parties without knowing the inputs or outputs, we can replace the ideal evaluation of the
augmented round function by an ideal evaluation of the actual round function on the actual state of P_{i} and then just simulate the secret sharing of the inputs and outputs using uniformly random shares. But having an ideal evaluation of the round function of an honest P_{i} is exactly the same as just having P_{i} participate in the protocol. So at this point we have arrived at the protocol $\pi_{\text {hon-maj }}$. Since there are at most t corrupted parties we can then appeal to the security of $\pi_{\text {hon-maj }}$.

Constructing an explicit simulator of π from the simulators of $\pi_{\text {pre-pro }}$ and $\pi_{\text {hon-maj }}$ along the lines of the above sketch is straight forward and we skip the technical details.

5.2 Individual Round Complexity, Broadcast

We now turn our attention to the individual round complexity of secure broadcast. Secure broadcast from P_{i} to the parties P_{1}, \ldots, P_{n} is defined to be the secure function evaluation of the function $x_{i}=f\left(x_{1}, \ldots, x_{n}\right)$ in the face of malicious corruptions, i.e., P_{i} communicates x_{i} to all parties and it is guaranteed that all parties receive the same x_{i} even if P_{i} and/or some of the other parties are malicious. By secure broadcast we mean a protocol which allows any of the n parties to broadcast to all the other parties.

It is possible to implement broadcast securely against $t<n / 3$ maliciously corrupted parties in a synchronous network with authenticated channels (note that secure channels are not needed for broadcast). It is furthermore possible to do so using a protocol where the honest parties are deterministic. See for instance [BDGK91].

The above protocol is for the setting with $t<n / 3$ maliciously corrupted parties. We later need to do broadcast in a setting with $t<n / 2$ maliciously corrupted parties. It is actually known that broadcast is impossible in such a setting. We can, however, implement broadcast if we assume $t<n / 3$ for just the first round. To show this we need the following lemma.

Lemma 5. Consider any protocol π for n parties which is perfectly correct and has statistical privacy against t maliciously corrupted parties computing a function f. Assume that $\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}$ have no inputs, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=$ $g\left(x_{1}, \ldots, x_{n-t}\right)$. Assume also that these parties are not to receive outputs. Assume furthermore that the protocol remains secure even if all messages sent and received by $\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}$ are given to the adversary and assume that these parties are deterministic. Then there also exists a protocol π^{\prime} which is statistically correct and has statistical privacy against t maliciously corrupted parties computing the function f in which $\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}$ each send a message to each of the parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-t}$ in the first round and the send or receive no further messages.

Proof. The parties $I=\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-t}\right\}$ will simply emulate the parties $J=$ $\left\{\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}\right\}$. Each $\mathrm{P}_{i} \in I$ will run a copy of each $\mathrm{P}_{j} \in J$. Since P_{j} has no input, the parties P_{i} will agree on the initial states of all P_{j}. Whenever P_{j} wants
to send a message, all P_{i} will know this message and the appropriate receiver will just take that message as if having been sent by P_{j}. If the receiver is a party $\mathrm{P}_{j} \in J$ all $\mathrm{P}_{i} \in I$ will input the message to their local copy of P_{j}. In each round all parties $\mathrm{P}_{i} \in I$ apply the deterministic round function of each P_{j} to their own local copy. This maintains agreement on the state of all the emulated P_{j}.

The only problematic case is when some $\mathrm{P}_{i} \in I$ wants to send a message m to some $\mathrm{P}_{j} \in J$. In that case P_{i} must send m to all parties in I such that they can input m to P_{j}. We have to ensure that P_{i} sends the same m to all parties in I, or they might end up with inconsistent versions of P_{j}. We ensure this by letting P_{i} broadcast the message m. The only problem is that we do not have a broadcast channel. We will therefore let P_{j} create one using pre-processing. This will be done using the one round of messages that P_{j} sends in the first round, as detailed now.

It is shown in [PW92] that there exists a protocol (P, π) for the pre-processing model which implements broadcast between n^{\prime} parties secure against t malicious corruptions for any $t<n^{\prime}$. We can therefore let each $\mathrm{P}_{j} \in J$ sample $\left(p_{j, 1}, \ldots, p_{j, n^{\prime}}\right) \leftarrow P$ and send $p_{j, i}$ securely to P_{i}. Whenever $\mathrm{P}_{i} \in I$ is to send m to all parties in I, the parties when then run π on the pre-processed values $\left(p_{j, 1}, \ldots, p_{j, n^{\prime}}\right)$ and with P_{i} having input m. Note that each $\mathrm{P}_{j} \in J$ preprocessed his own broadcast channel. This is the broadcast channel that is to be used when message are sent to P_{j} in the emulated protocol. If P_{j} is honest, the pre-processing is computed as it should, and thus the broadcast protocol will indeed ensure that m is delivered consistently, and hence the emulated P_{j} will be run correctly and consistently by all honest parties in I. If P_{j} is corrupted, it might deliver incorrect pre-processed values. In that case the broadcast might not work correctly. In that case the parties in I might get inconsistent views of P_{j} and might therefore later see inconsistent values of what P_{j} is sending. This, however, is no worse than the emulated P_{j} being corrupted and this case only happens when the actual P_{j} is maliciously corrupted, so the emulated protocol can tolerate this.

If we plug the protocol from [BDGK91] into the above lemma we get this corollary.

Corollary 2. There exists a protocol π_{broad} for n parties which is statistically correct and which allows any party P_{i} (with $i \leq n-t$) to broadcast to the parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-t}$. It is secure against t malicious corruptions for $t<n / 3$. The parties $\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}$ each sends one message to each of the parties $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-t}$ in the first round and otherwise have no communication.

5.3 Individual Round Complexity, Secure Function Evaluation

We now turn our attention to secure function evaluation in the face of malicious corruptions.

Theorem 6. For every poly-time n-party function f, there exists a poly-time function evaluation protocol computing f between $n=3 t+1$ parties with statistical correctness and statistical privacy against t maliciously corrupted parties, where t parties have round complexity two. Specifically, these t parties first each sends one message to the $n-t$ other parties in parallel and then later each receives one message from the same $n-t$ parties.

Proof. As usual, $I=\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-t}\right\}$ and $J=\left\{\mathrm{P}_{n-t+1}, \ldots, \mathrm{P}_{n}\right\}$. In [RB89] a statistically correct and statistically private protocol for secure function evaluation of any function g is given for the setting with n^{\prime} parties of which at most $t<n^{\prime} / 2$ parties are maliciously corrupted. The protocol is for the setting with secure point-to-point channels plus a broadcast channel allowing any party to broadcast to the other parties n^{\prime} parties. Denote this protocol by π_{RB}. Set $n^{\prime}=n-t$. We are going to let the parties I run π_{RB} to compute a particular function g derived from f. In doing that they will implement the broadcast channel using $\pi_{\text {broad }}$ from Corollary 2 with the parties in J providing the pre-processing.

We will use a robust secret sharing scheme (sha, rec) for n^{\prime} parties and $t<n / 2$ corruptions to let the parties in J provide inputs. Such a scheme is trivial to derive from, e.g., the verifiable secret sharing scheme constructed in [RB89], and has the following properties:

Privacy The joined distribution of any t positions from a random sample $\left(v_{1}, \ldots, v_{n^{\prime}}\right) \leftarrow$ sha (v) does not depend on the value v.
Robustness Sample $\left(v_{1}, \ldots, v_{n^{\prime}}\right) \leftarrow$ sha (v) for a value v chosen by the adversary. Now give t of the positions v_{i} to the adversary and let it replace them by v_{i}^{\prime}. The positions are chosen by the adversary. For the remaining $n^{\prime}-t$ positions, let $v_{i}^{\prime}=v_{i}$. Then $\operatorname{rec}\left(v_{1}^{\prime}, \ldots, v_{n^{\prime}}^{\prime}\right)=v$, except with probability 2^{-s}, where s is the statistical security parameter.

The function g takes $n-t$ inputs, $g\left(X_{1}, \ldots, X_{n-t}\right)$, where each X_{i} is of the form $\left(x_{i}, x_{n-t+1, i}, \ldots, x_{n, i}\right)$. It outputs

$$
f\left(x_{1}, \ldots, x_{n-t}, \operatorname{rec}\left(x_{n-t+1,1}, \ldots, x_{n-t+1, n-t}\right), \ldots, \operatorname{rec}\left(x_{n, 1}, \ldots, x_{n, n-t}\right)\right)
$$

The overall protocol then runs as follows.

1. Each $\mathrm{P}_{j} \in J$ sends the pre-processing needed for $\pi_{\text {broad }}$ to the parties in I and at the same time samples $\left(x_{j, 1}, \ldots, x_{j, n-t}\right) \leftarrow \operatorname{sha}\left(x_{j}\right)$ and sends $x_{j, i}$ to $\mathrm{P}_{i} \in I$.
2. Each $\mathrm{P}_{i} \in I$ computes $X_{i}=\left(x_{i}, x_{n-t+1, i}, \ldots, x_{n, i}\right)$.
3. The parties in I use the pre-processing provided in Step 1 to run $\pi_{\text {broad }}$ and use the emulated broadcast channel to run $\pi_{\mathrm{RB}}\left(X_{1}, \ldots, X_{n-t}\right)$.
4. When $\mathrm{P}_{i} \in I$ learns the output $y=\pi_{\mathrm{RB}}\left(X_{1}, \ldots, X_{n-t}\right)$ it sends y to all parties in J.
5. Each party $\mathrm{P}_{j} \in J$ receives an output y_{i} from each $\mathrm{P}_{i} \in I$ and outputs the value y which occurs most often in the list $\left(y_{1}, \ldots, y_{n-t}\right)$.

It follows directly from the security of (sha, rec), $\pi_{\text {broad }}$ and π_{RB} that the protocol is private and that the honest parties in I learn the correct output y, except with negligible probability. Since there are $n^{\prime} \geq 2 t+1$ parties in I and at most t corrupted parties in I, it follows that there is a majority of honest parties in I. Hence, the honest parties in J will also learn the correct output y.

5.4 Message Complexity, Semi-Honest Security

We now turn our attention to the message complexity of secure function evaluation in the presence of semi-honest corruptions. We consider protocols with n parties which are perfectly secure against t semi-honest corruptions. We present an optimal construction for $t=1$.

Theorem 7. For every poly-time n-party function f in non-deterministic logspace, there exists a poly-time function evaluation protocol π computing f between n parties with perfect correctness and perfect privacy against $t=1$ semi-honest corruptions, for which $\operatorname{Msg}_{\text {lib }}(\pi)=3 n / 2+1 / 2$.

Proof. We first look at the restricted setting where P_{n} has no input and is the only player to learn the output, i.e., we look at secure function evaluation of $(\epsilon, \ldots, \epsilon, y)=f\left(x_{1}, \ldots, x_{n}\right)$, where ϵ is the empty string and $y=h\left(x_{1}, \ldots, x_{n-1}\right)$ for an $(n-1)$-party function h.

Let $\left(R, M_{1}, \ldots, M_{n-1}\right)$ be a PSM protocol for h and consider the following protocol π_{1}.

1. P_{1} samples $r \leftarrow R$.
2. P_{1} sends r to P_{i} for $i=2, \ldots, n-1$.
3. For $i=1, \ldots, n-1$, party P_{i} sends $m_{i}=M_{i}\left(x_{i}, r\right)$ to P_{n}.
4. P_{n} outputs $y=g\left(m_{1}, \ldots, m_{n-1}\right)$.

Assume that P_{n} is corrupted. The view of P_{n} in the real world is

$$
\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n-1}\left(x_{n-1}, r\right)\right)
$$

for a random sample $r \leftarrow R$. The view of P_{n} in the ideal model is

$$
y=f\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n-1}\right)=g\left(M_{1}\left(x_{1}, r\right), \ldots, M_{n-1}\left(x_{n-1}, r\right)\right) .
$$

Privacy then follows from the security of the PSM protocol.
Assume that $\mathrm{P}_{i} \neq \mathrm{P}_{n}$ is corrupted. The view of P_{i} in the real world is $\left(x_{i}, r\right)$. The view of P_{i} in the ideal model is x_{i}. We can simulate the real world view from the ideal view simply by sampling $r \leftarrow R$ and then outputting $\left(x_{i}, r\right)$.

We now extend the above protocol to a protocol π_{2} which allows P_{n} to have an input and where all parties get the output, i.e., we look at secure function evaluation of $y=f\left(x_{1}, \ldots, x_{n}\right)$. We first present and analyse a simple solution and then later modify it slightly to reduce the number of messages sent. The
simple solution is to let P_{n} additively secret share x_{n} as $x_{n}=s_{1} \oplus s_{2}$ and send s_{1} to P_{1} and send s_{2} to P_{2}. Then apply protocol π_{1} to the function

$$
h^{\prime}\left(\left(x_{1}, s_{1}\right),\left(x_{2}, s_{2}\right), x_{3}, \ldots, x_{n-1}\right)=f\left(x_{1}, \ldots, x_{n-1}, s_{1} \oplus s_{2}\right)
$$

and let P_{n} send the output to all the other parties. We can do this as h^{\prime} clearly is in non-deterministic log-space if f is in non-deterministic log-space. Note that this simple protocol adds $n+1$ more message. Sending the output y to all parties is obviously secure as this value is also in the view of all parties in the ideal model. Only P_{1}, P_{2} and P_{n} have any further extra values in the view. The extra values of P_{n} are s_{1} and s_{2} such that $x_{n}=s_{1} \oplus s_{2}$. These are easy to simulate from the view of P_{n} in the ideal model which includes x_{n} : simply sample an additive secret sharing of x_{n}. The extra value of P_{1} is s_{1}. This value is uniformly random and independent of x_{n}, so it can be simulated by just sampling it uniformly at random. Similarly for P_{2}.

Since s_{1} is uniformly random and independent of x_{n}, we can save one message in the protocol by letting P_{1} pick s_{1} uniformly at random and send it to P_{n} along with the message that it already sends to P_{n}. The view of all parties will be the same in the modified protocol. The only difference is that the direction of one message was flipped. This gives the following secure protocol.

Let $\left(R, M_{1}, \ldots, M_{n-1}\right)$ be a PSM protocol for the function h^{\prime} described above.

1. P_{1} samples $r \leftarrow R$.
2. P_{1} sends $m_{1}=M_{1}\left(x_{1}, r\right)$ to P_{n} along with a uniformly random share s_{1}.
3. P_{n} sends $s_{2}=x_{n} \oplus s_{1}$ to P_{2}.
4. P_{1} sends r to P_{i} for $i=2, \ldots, n-1$.
5. For $i=2, \ldots, n-1$, party P_{i} sends $m_{i}=M_{i}\left(x_{i}, r\right)$ to P_{n}.
6. P_{n} sends $y=g\left(m_{1}, \ldots, m_{n-1}\right)$ to $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n-1}$

To further reduce the message complexity, we will now apply two additional message-reduction tricks. Using the first one, we reduce the $2(n-2)$ messages in Steps 4 and 5 to just $n-1$ messages. Instead of having all parties send to P_{n}, we will let P_{1} send his "PSM-contribution" to P_{2}, who appends his contribution and sends to P_{3}, etc. until P_{n} receives everything. In order to make sure that only P_{n} learns all contributions P_{1} will send $n-1$ one-time pads to P_{n} and also pass them on to the other players who can use them to one-time pad encrypt their contributions.

With the second trick we reduce the number of messages in Step 6 from $n-1$ to $(n-1) / 2$ in expectation. We let P_{1} choose random bits $w_{1}, \ldots w_{n-1}$ which will be sent to all other players. This can be done as a part of messages we send anyway. Now, P_{n} can communicate the result to the others by either sending a message or not. For each P_{i}, the rule is that if $y \oplus w_{i}=1$ then P_{n} sends a message to P_{i}. Note that the random choice of the $w_{i} \mathrm{~s}$ is not there to hide the result which everyone learns anyway, this is just to randomise the communication pattern so we get a better expected message complexity.

Both tricks can be implemented as follows. We replace steps 4,5 and 6 by the following procedure:

1. P_{1} samples uniformly random bit strings p_{2}, \ldots, p_{n-1} where p_{i} has the same length as m_{i}. He also samples random vector of bits $\mathbf{w}=\left(w_{1}, \ldots, w_{n-1}\right)$. Then P_{1} sends $\left(p_{2}, \ldots, p_{n-1}\right)$, \mathbf{w} to P_{n}. This can be done in Step 2 above and therefore does not add another message.
2. P_{1} sends $\left(r, p_{2}, \ldots, p_{n-1}\right)$, \mathbf{w} to P_{2}.
3. Then for $i=2, \ldots, n-1$ party P_{i} receives $\left(r, c_{2}, \ldots, c_{i-1}, p_{i}, p_{i+1}, \ldots, p_{n-1}\right), \mathbf{w}$ from P_{i-1} and then sends $\left(r, c_{2}, \ldots, c_{i-1}, c_{i}, p_{i+1}, \ldots, p_{n-1}\right)$, \mathbf{w} to P_{i+1}, where $c_{i}=M_{i}\left(x_{i}, r\right) \oplus p_{i}$, except that P_{n-1} does not send r and \mathbf{w} along to P_{n}.
4. Then P_{n} receives $\left(c_{2}, \ldots, c_{n-1}\right)$ from P_{r-1} and for $i=2, \ldots, n-1$ computes $m_{i}=c_{i} \oplus p_{i}$.
5. P_{n} computes the result y using the PSM protocol. Now, for $i=1 \ldots n-1$, do the following: if $y \oplus w_{i}=1$, send a 0 to P_{i} (and otherwise send nothing). Each P_{i} will observe if a message was received from P_{n}, hence learns $y \oplus w_{i}$, and then computes $\left(y \oplus w_{i}\right) \oplus w_{i}=y$.
It is easy to see that this is perfectly correct. As for perfect security against one semi-honest corruption, consider the values c_{i} seen by P_{j} for $i<j<n$. Since P_{j} does not know p_{i}, c_{i} is a one-time pad encryption of m_{i}. All other values seen by a single party clearly leak no information on the inout other than y.

Since the w_{i} 's a are random, each $\mathrm{P}_{i}, i<n$ gets a message with probability $1 / 2$, so the expected number of messages is $n+1+(n-1) / 2=3 n / 2+1 / 2$.

If we set $t=1$ in our previous lower bound for liberal message complexity, we get $3 n / 2$, matching the upper bound of Theorem 7 except for $1 / 2$ message. The conservative message complexity of the protocol in Theorem 7 is clearly $2 n$ which matches the lower bound for conservative message complexity of 1 -very difficult functions. So we have matching upper and lower bounds for the conservative message complexities of 1-very difficult functions in non-deterministic log space. We leave it as an open problem to find matching bounds for any $t>1$.

Finally, we consider computing the XOR of one input bit from each player. This is the primary example of a function that is t-difficult but not t-very difficult. We can construct a protocol for this function, secure for $t=1$ from the proof of Theorem 7: We observe that there is no need to for P_{n} to secret share his input, instead we use the PSM protocol to let P_{n} learn $b_{1} \oplus \ldots \oplus b_{n-1}$. This is secure because this value would anyway follow from the output and P_{n} 's own input. P_{n} computes the output $b_{1} \oplus \ldots \oplus b_{n}$ and sends it to the other players in the randomised fashion described in the protocol. The liberal and conservative complexties of this protocol are $3 n / 2-1 / 2$ and $2 n-1$, matching the lower bounds we showed for 1 -difficult functions.

References

[BDGK91] Amotz Bar-Noy, Xiaotie Deng, Juan A. Garay, and Tiko Kameda. Optimal amortized distributed consensus (extended abstract). In Sam Toueg, Paul G. Spirakis, and Lefteris M. Kirousis, editors, Distributed Algorithms, 5th International Workshop, WDAG '91, Delphi, Greece, October 7-9, 1991, Proceedings, volume 579 of Lecture Notes in Computer Science, pages 95107. Springer, 1991.
[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1-10. ACM, 1988.
[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143-202, 2000.
[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (abstract). In Carl Pomerance, editor, Advances in Cryptology - CRYPTO '87, A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 1620, 1987, Proceedings, volume 293 of Lecture Notes in Computer Science, page 462. Springer, 1987.
[CK93] Benny Chor and Eyal Kushilevitz. A communication-privacy tradeoff for modular addition. Information Processing Letters, 45(1), 1993.
[DPP14] Deepesh Data, Manoj M Prabhakaran, and Vinod M Prabhakaran. On the communication complexity of secure computation. In Advances in Cryptology-CRYPTO 2014, pages 199-216. Springer, 2014.
[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In TCC, pages 621-641, 2013.
[GIPR] Mira Gonen, Yuval Ishai, Manoj Prabhabkahan, and Mike Rosulek. private communication. In Unpublished work.
[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applications. In ISTCS, pages 174-184, 1997.
[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with applications to round-efficient secure computation. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 294-304. IEEE, 2000.
[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number of faulty processors. In Alain Finkel and Matthias Jantzen, editors, STACS 92, 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan, France, February 13-15, 1992, Proceedings, volume 577 of Lecture Notes in Computer Science, pages 339-350. Springer, 1992.
[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 73-85. ACM, 1989.

[^0]: * The authors acknowledge support from the Danish National Research Foundation and The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, within which part of this work was performed; and also from the CFEM research center (supported by the Danish Strategic Research Council) within which part of this work was performed. Partially supported by the European Research Commission Starting Grant 279447.

[^1]: ${ }^{1}$ However, if the communication pattern is fixed, then a quadratic number of messages is required[CK93].
 ${ }^{2}$ Using randomising polynomials [IK00] one can get unconditional security and constant round efficiently in the branching program size of the function, but this does not seem to help much towards handling any efficient function efficiently.

