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Abstract. In the last years, much research work has been invested into
the security analysis of key alternating ciphers in the random oracle
model. These are pseudorandom permutations (PRPs), sometimes also
called iterated Even-Mansour ciphers, which are defined by alternatingly
adding n-bit sub-keys ki and calling public n-bit permutations Pi. Be-
sides the fact, that results of this kind concern the fundamental questions
of understanding the nature of pseudorandomness, a practical motiva-
tion for this study is that many modern block cipher designs correspond
exactly to variants of iterated Even-Mansour ciphers.
In this paper, we study similar construction for pseudorandom functions
(PRFs), where additionally the access to a public n-bit (one-way) func-
tion F is allowed. In particular, we show a sharp n/2-security bound for
the simplest possible construction F (x ⊕ k) and a sharp 2/3 · n-bound
for the FP (1)-construction F (P (x⊕ k)⊕ k), both in the random oracle
model. The latter result contrasts with a sharp bound of the same order
for P (P (x⊕ k)⊕ π(k))⊕ k, recently proved by Chen et. al. in [6].
One practical motivation for our research is due to the fact that operation
modes of key stream generator based (KSG-based) stream ciphers can be
modeled in a very straightforward way by FP-constructions. Our research
shows a way to save KSG inner state length by using operation modes,
which yield provable security beyond the birthday bound against time-
space-data tradeoff attacks. For instance, we demonstrate that a slight
change in the operation mode of the Bluetooth cipher (adding the session
key twice in the initialization phase) raises the security w.r.t. to generic
time-space-data tradeoff attacks from n/2 to 2/3 ·n, where n denotes the
KSG inner state length.

Keywords: Pseudorandom functions, Even-Mansour Constructions, Lower
Bound Proofs in the Random Oracle Model, Stream Ciphers

1 Introduction

1.1 General Motivation

In the last years, many research work has been invested into the security analysis
of iterated Even-Mansour ciphers, EM(r), r ≥ 1 (see, e.g., [11],[4],[14],[7],[1] and
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Fig. 1. The Cipher EM(r).

the citations therein). These are pseudorandom permutations (PRPs) defined as
described in figure 1

over a collection P1, · · · , Pr of publicly known permutations, where x ∈
{0, 1}n denotes the input and (k0, · · · , kr) ∈ ({0, 1}n)r+1 the secret key. The
security is typically analyzed in the random oracle model, where the attacker
tries to reach her goals (e.g., recovery of the secret key or distinguishing from
a truly random permutation) on the basis of oracle queries to Pj/P

−1
j -oracles,

j = 1, · · · , r, and to an E-oracle, which answers queries E(x) =?-queries accord-
ing to EEM(r) (x, (k0, · · · , kr)).

A first result here was a sharp n
2 -bound for the original Even Mansour cipher

EM(1): Daemen found a generic attack finding the secret key with significant
success probability with O(2n/2) oracle queries [8], where Even and Mansour
showed that for all α < 1/2, attacks which make only O(2α·n) oracle queries will
reach this goal only with a success probability exponentially small in n [11]. After
a long series of subsequent papers proving security results for several types of
iterated Even-Mansour ciphers (see e.g. [4], [1] and the citations therein), Chen
and Steinberger were finally able to prove for all naturals r ≥ 1 a sharp r

r+1 -
security bounds of EM(r), the Even-Mansour cipher of iteration depth r, w.r.t.
to distinguishing from a truly random permutation [7].

There are several reasons motivating the analysis of Even-Mansour ciphers.
The first is that results concerning simple generic construction of provable se-
cure cryptographic primitives build quasi the formal foundation of cryptogra-
phy, yielding justification for (or discovering weaknesses of) many designs of
practically used cryptographic algorithms and systems. The concrete practical
motivation for analyzing iterated Even-Mansour ciphers was to gain a better un-
derstanding of the security mechanisms underlying modern block cipher designs.
Many practical block ciphers, like, e.g., AES, are key-alternating ciphers in the
sense that the process of encrypting a given plaintext block x is partitioned into
a number of rounds, where in each round a round function is applied to the
sum of the outcome of the previous round and a round key coming from a key
schedule algorithm. Note that this mechanism is exactly reflected by iterated
Even-Mansour ciphers.

In this paper, we suggest to extend the focus of key alternating ciphers
through the study of similar constructions for pseudorandom functions (PRFs),
where, besides public permutations, a publicly known (one-way) function F :
{0, 1}n −→ {0, 1}n is allowed as an possible additional component. We will use
the name FP-constructions for this kind of generic PRF-constructions.
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Fig. 3. The FP (1)-construction.

We present sharp security bounds for two concrete examples of FP-constructions
in the random oracle model: We show a sharp n/2 security bound for the F (0)-
construction EF (0)(x, k) = F (x ⊕ k) (see figure 2) and a sharp 2/3 · n-security
bound for the FP (1)-construction, where EFP (1)(x, k) = F (P (x ⊕ k) ⊕ k) (see
figure 3). Here, P denotes a public permutation and k a secret n-bit key.

Our motivation for this kind of research can be summarized as follows. In
general, PRFs represent a basic cryptographic primitive, which occur as building
blocks in many cryptographic applications, especially in the context of authen-
tication. Thus, results on provable security of simple PRF-constructions over
simple component operations like adding the secret key or calls to (random
looking) functions and permutations should be of some general interest.

The main practical motivation for our research is due to the fact that opera-
tion modes for key stream generator based (KSG-based) stream ciphers can be
modeled in a straightforward way by FP-constructions. Here, P corresponds to
to the iterated KSG internal state update function, and F = F (x) to the KSG
output function, which assigns to an inner KSG state x ∈ {0, 1}n the block of the
first n keystream bits generated on X. One practical consequence of or result is,
that a slight change in the operation mode of the Bluetooth cipher [17], namely
adding the session key twice in the initialization phase, raises the security w.r.t.
to generic time-space-data tradeoff attackers from n/2 to 2/3 ·n, where n denote
the KSG inner state length (which is 128 for this cipher).

Note that the vulnerability of KSG-based stream ciphers against time-space-
data tradeoff attacks represent an inherent weakness of existing practical stream
ciphers, which yields the well known rule, that for achieving n-bit security by
a stream cipher (in standard operation mode) one has to choose inner state
length of at least 2n for the underlying key stream generator. This has the
implication that practical stream ciphers operate with comparatively large inner
state lengths ( e.g., 288 for TRIVIUM [5] or 160 for GRAIN [13]).

Our research shows a way to save inner state length by using operation modes
which yield provable security beyond the birthday bound against time-space-



data tradeoff attacks. It is related to resent research of Armknecht, Mikhalev
[2] which use another approach to reach this goal. The stream cipher operation
modes we suggest can be seen as a compromise between the one-stream mode
(used e.g. by TRIVIUM and GRAIN), which provides minimal initialization
effort per keystream bit but minimal security w.r.t. generic collision attacks, and
block cipher based modes, (used e.g. by the GSM standard A5/3), which provide
maximal security w.r.t. generic collision attacks but maximal initialization effort
per key stream bit. Concerning a more detailed discussion about the practical
implications of our results for stream ciphers we refer to subsection 1.4 and to a
parallel paper of Hamann and Krause [12].

In the following subsections, we discuss more related results, give a formal
definition of the random oracle model underlying our security analysis, and de-
scribe our results, which are outlined in the subsequent sections, in more detail.

1.2 The Search for Minimal Constructions

Another view of our research in this paper results from the demand of minimality:
What is the minimal construction over a given set of possible components which
reaches a given security goal. Concerning the security bound n/2, for Even-
Mansour ciphers this problem was solved by Dunkelman, Keller and Shamir in
[10], who could show that even the one-key variant P (x⊕ k)⊕ k of the original
Even-Mansour cipher is n/2-secure w.r.t. key-recovery attacks. Note that our
F (0)-construction solves the minimality problem for the security bound n/2 on
the level of FP-constructions for PRFs.

Regarding the security bound 2/3 ·n, the problem of finding a minimal Even-
Mansour construction was completely solved very recently by Chen, Lampe, Lee,
Seurin, Steinberger in [6]. They showed that the EM(2)-variant P (P (x ⊕ k) ⊕
π(k))⊕ k reaches 2/3 · n-security, where the simplest possible variant P (P (x⊕
k)⊕ k)⊕ k reaches only security level n/2. Here, π denotes an orthomorphism,
i.e., an n-bit permutation for which x → x⊕ π(x) is also a permutation, which
even is allowed to be linear. Note that one of the technical tools underlying the
lower bound proof in [6], the Sum-Capture Theorem, plays also an important
role in our lower bound proof for the FP (1)-construction.

On the level of FP-constructions, the 2/3 · n-security can be reached al-
ready by the FP(1)-construction, i.e., by only two key-additions of the same
key. However, it is not clear so far if the FP (1)-construction is really the min-
imal solution for this security level. It is an interesting open questions, if this
can be reached even by the FF (1)-construction F (F (x⊕ k)⊕ k). Note that the
O(2n/2)-attack against P (P (x⊕ k)⊕ k)⊕ k from [6] does not work against the
FF (1)-construction.

1.3 Security Bounds in the Random Oracle Model

Our security bounds refer to the following game between Alice and the adversary
Eve, which we explain at hand of the FP (1)-construction.



We suppose that Alice chooses randomly, independently and w.r.t. the uni-
form distribution a secret function F : {0, 1}n −→ {0, 1}n, a secret permutation
P : {0, 1}n −→ {0, 1}n and a secret key k∗ ∈ {0, 1}n. (In the case of the F (0)-
construction she chooses only k∗ and F )

Eve, who is supposed to be a randomized algorithm, tries to compute the
secret key k∗ ∈ {0, 1}n, on the basis of oracle queries to Alice. In particular, she
is allowed to pose P (u) =?-queries, P−1(v) =?-queries, F (y) =?-queries, and
E(x) =?-queries for arbitrary inputs u, v, y, x ∈ {0, 1}n, which are immediately
answered by P (u), P−1(v), F (y), and E(x) = F (P (x⊕k∗)⊕k∗, respectively, by
Alice. (In the case of the F (0)-construction only F and E-queries are allowed,
where E(x) =?-queries are answered by E(x) = F (x⊕ k∗).

The relevant cost measures of attacks are the number of oracle queries and
the success probability for finding the secret key, the costs are quantified in
dependence of n. We consider an attack to be successfull if it finds the secret
key with constant positive success probability.

Note that the two-way property of P is reflected by the ability of Eve to
ask also P−1-queries, and that the one-way property of F results from the fact,
that queries of this kind are not allowed w.r.t. F . This implies that, for a given
z ∈ {0, 1}, the only way for Eve to find an input y fulfilling F (y) = z, is to run
an exhaustive search in {0, 1}n using F queries.

In section 2 we present first a simple successful collision attack against the
F (0)-construction which needsO(2n/2) oracle queries, and prove then a matching
lower bound.

In section 3 we give a successful O(22/3·n)-attack against the two-key variant
of the FP (1)-construction (i.e., F (P ⊕ k1)⊕ k2)), which uses the Slidex attack
of Dunkelman, Keller, and Shamir (2012) [10] against the Even-Mansour cipher
of iteration depth one as a subprogram.

Note that both attacks are practically efficient in the sense that the overall
running time differs at most by a polynomial factor in n from the number of
oracle queries. Such practically efficient attacks are not known for Even-Mansour
ciphers of iteration depth r ≥ 2 which use more than two different keys. Though
successfull attacks which compute the secret key with O(2r/(r+1)·n) queries are
known here, the overall running time of all these attacks is Ω(2(r+1)n), see [4].

Very recently, Dinur, Dunkelman, Keller and Shamir [9] could prove upper
bounds for all variants of two key Even Mansour ciphers of iteration depth at
most 4, which are practically efficient in the above sense.

Section 4 contains the main technical result of this paper, the proof of a
matching lower bound for the FP (1)-construction. We show that for all α < 2/3
Eve’s success probability of computing the secret key k∗ with O(2α·n) oracle
queries is exponentially small in n.

In both lower bound proofs, this for the F (0)-construction in section 2 and
this for the FP (1)-construction, we follow the same line of argumentation as in
the EM(1)-lower bound proof in [11]. We consider a sequence of queries as a
process which makes an increasing set of keys k ∈ {0, 1}n bad in the sense, that
either the queries prove that k cannot be the secret key, or the queries make



k to a hopeful candidate for being the secret key. We show that, on the one
hand, the probability that the secret key becomes bad during O(2α·n) queries is
exponentially small, and, on the other hand, that after posing O(2α·n) queries
which leave the secret key good, the success probability of guessing the secret
key is also exponentially small.

While the lower bound proof for the F (0)-construction can be done quite
straightforwardly, in the FP (1)-case we have to solve a number of new and
difficult problems. One problem is the formal treatment of the probability space
determining the success probabilities for making the secret key bad. In contrast
to [11], the events that given good keys equal to the secret key are not equally
likely, which complicates the analysis.

Both in the upper bound proof as in the lower bound proof, so-called EF-
collisions play an essential role. EF-collision arises when asking an E(x) =?-query
and an F (y) =? for which E(x) = F (y).

The main technical problem in the lower bound proof is to show that the
probability that the number of EF-collisions exceeds 21/3n after O(2α·n) queries
is exponentially small. This proof would be easy if E and F were independent
random functions. But in our case, each EF-collision increases the success prob-
ability for generating another EF-collision, which causes various difficulties. We
solve this problem by applying an iterated Chernov bound argument, which
could be helpful in other situation and interesting for their own (see lemma 5).

Another difficult combinatorial problem to be solved is caused by the fact
that only one key k∗ is used. The question is if, given a permutation P , subsets
X,U, Y of {0, 1}n, |X| ≤ 2αn, |U | ≤ 2αn, |Y | ≤ 2αn, can be constructed in such
a way that for almost all keys k ∈ {0, 1}n there is a pair (x, u) ∈ X × U such
that x ⊕ u = k and P (u) ⊕ k ∈ Y . This would imply a successful information
theoretic attack with O(2αn) oracle queries against the FP (1)-construction.

Chen, Lampe, Lee, Seurin, Steinberger could show in [6] a so-called Sum-
Capture theorem saying that the probability, that such a construction of sets
X,U, Y is possible, is exponentially small, where the probability is taken w.r.t.
the randomization of P . They used this theorem for proving that the 2/3 · n
security lower bound for the P (P (x ⊕ k) ⊕ π(k)) ⊕ k-construction, which was
already mentioned above.

Note that in most lower bound results on iterated Even Mansour ciphers,
the bounds were proved in the stronger setting of distinguishing EEM(r)(.,K)
from a truly random permutation over {0, 1}n ([6],[4][7]), and by using s special
technique called Patarin’s H-coefficient technique [16]. The question if our lower
bound results can be also transformed into this setting remains as a topic for
further research.

Due to their length, some parts of the lower bound proof of section 4 are
outsourced into the appendix.

For obtaining an adequate modelling of stream cipher operation modes by
FP-constructions, we have to consider their security w.r.t. a generalized random
oracle model, where the attacker is able to ask a new type of oracle queries (see
subsection 1.4 for explaination). In section 5 we show that the sharp 2/3 · n-



bound for the FP(1)-construction even holds in the generalized random oracle
model.

1.4 The Connection to KSG-based Stream Ciphers

In this subsection, we will review the basic definitions and security requirements
of keystream generator based (KSG-based) stream ciphers and then describe the
connection of stream cipher operation modes and FP-constructions in a rather
informal manner. For a more detailed and formal description of this topic we
refer to our parallel paper [12].

Stream ciphers are symmetric encryption algorithms intended for encrypting,
in an online manner, plaintext bit streams X, which have to pass an insecure
channel. The encryption is done by adding bitwise a key stream S(k) which is
generated in dependence of a secret key k. The legal recipient, which also knows
k, decrypts the encrypted bitstream Y = X ⊕ S(k) by generating S(k) and
computing X = Y ⊕ S(k).

In the heart of a stream cipher typically lies a key stream generator (KSG).
These are clockwise working devices which can be formally specified by finite
automata. A KSG is defined by an inner state length n, the set of inner states
{0, 1}n, a state update function δ : {0, 1}n −→ {0, 1}n and an output function
out : {0, 1}n −→ {0, 1}∗. Starting from an initial state q1, in each clock cycle
i ≥ 1, the KSG produces a piece of key stream zi = out(qi) (as a rule, one
bit long) and changes the inner state according to qi+1 = δ(qi). The output bit
stream S(q1) is defined by concatenating all the outputs z1z2z3 · · · .

The connection between stream ciphers and FP-constructions is that we
associate the underlying KSG of inner state length n with a public function
F : {0, 1}n −→ {0, 1}n, where F (x) is defined as the first n key bits generated
on inner state x, and with a public permutation P : {0, 1}n −→ {0, 1}n, where
P (x) is defined to be the inner state obtained after clocking the KSG a certain
number of times on state x. (Note that we suppose that the state transition
function δ is bijective and efficiently invertible, which is true for many practical
stream ciphers.)

The main security requirement for key stream generators is that it should be
hard to distinguish a bit stream S(q1), generated by the KSG on a secret initial
state q1 ∈ {0, 1}n, from a truly random bitstream. This implies that it should
be impossible to compute q1 from a prefix of length n of S(q1), i.e., F should be
a cryptographically hard one-way function.

In the last decades, many KSGs for practical use have been suggested and
many different techniques for cryptanalyzing stream ciphers has been developed
(correlation attacks, fast correlation attacks, guess-and-verify attacks, BDD-
attacks, time-memory tradeoff attacks etc.).

In our context we concentrate on a very basic type of time-memory tradeoff
attacks which we call generic collision attacks and which was first described in
papers of Babbage [3]: Suppose that Eve knows a prefix of length D + n − 1 of
S(q1). Then, with high probability, after sampling 2n/D-times a random state
q ∈ {0, 1}n and computing F (q), Eve finds some inner state q such that F (q) is



a substring of S(q1), which allows to compute q1 from q. Note that this yields a
time-memory tradeoff of O(2n/2). The vulnerability of KSG based stream ciphers
against this generic type of attack is a main reason for the rule, that an inner
state length of 2n has to be invested for reaching n bit security. Note that this
rule influenced many practical stream ciphers, which operate with an inner state
length of at least 160.

Stream cipher operation modes for encrypting a plaintext corresponding to
a communication between partners Alice and Bob are usually defined by the
following components:

– In a first phase, the session key generation phase, a common symmetric
session key k for Alice and Bob is generated by running some key exchange
protocol.

– The next phase is the state initialization phase, determined by an state
initialization algorithm StateInit, which computes the initial state q1 =
StateInit(IV, k) from a (public) initial value IV and the secret session key
k.

– Finally, in the keystream generation phase, the keystream S(q1) will be gen-
erated for encrypting the plaintext.

In our context, we concentrate on the state initialization phase. In [12] we list
the specifications of the StateInit algorithm for various practically used stream
ciphers like Trivium, GRAIN, Bluetooth etc. Typically, the KSG itself is used for
performing the state initialization. For instance, the way the Bluetooth systems
computes an initial state q1 from the secret session key k and an initial value
IV can be modeled as

q1 = F (P (IV ′ ⊕ k′)), (1)

where IV ′ and k′ depend linearly on IV and k, respectively [17]1.
Among stream cipher operation modes we distinguish one-stream modes and

packet modes. In a one-stream mode, the whole plaintext stream of the session
is encrypted by a sufficiently long prefix of the keystream S(q1), where in a
packet mode, the plaintext X is partitioned into packets X = X1X2X3 · · · of
a moderate packet length R, and separate pieces of keystream Si = S(qi1) are
produced for each package. Hereby, the initial packet states qi1 will be computed
via

qi1 = StateInit(IV (i), k),

in dependence of the secret session key k and a separate public initial value IV (i)

for each packet.

Note that in the one-stream mode, the above described generic collision at-
tack yields the initial state q1 with O(2n/2) time and memory on the basis of a

1 In particular, k and IV are loaded into the KSG-registers in a GF (2)-linear manner,
then the KSG is clocked a certain number of times without producing output, then
n output bits are generated and reloaded into the KSG registers as initial state q1,
see [12].



piece of keystream O(2n/2). In the packet-mode, we get the same time-memory-
data tradeoff of O(2n/2) for a successful recovery of the initial state of one
packet. However, for a successful attack against all the other packets, one has to
recover the secret session key k.

Consequently, we study the complexity of a session key recovery attack in
dependence of the number of known key stream packets. The corresponding
question is how to design the state initialization algorithm for getting provable
security beyond the birthday bound against generic collision attacks w.r.t. to a
recovery of the secret session key k.

Note that, according to (1), the way the Bluetooth system generates the first
n keystream bits in dependence of the secret session key k and an initial value
x can be modeled as

E(x, k) = F (F (P (x⊕ k))). (2)

Defining F̃ = F ◦ F ◦ P one gets E(x, k) = F̃ (x ⊕ k) which corresponds to the
F (0)-construction. Consequently, the secret key k can be recovered with time
and memory O(2n/2) on the basis of O(2n/2) keystream packets (see the upper
bound results in section 2).

A more promising approach one gets by using a state initialization algorithm
which mimics the FP (1)-construction:

– Load x⊕ k into the inner state registers.
– Run the KSG (which is supposed to have a nonlinear state update function)

a certain number of clock cycles without producing output.
– Add k to the resulting inner state.

1.5 A Generalized Random Oracle Model and Summary

Note that our lower bound argument from section 4 can still not be applied
directly this scenario. The reason is that the packet length R has to be supposed
to be larger than the inner state length n. Consequently, with each package,
Eve gets not only F (P (x⊕ k)⊕ k) (which corresponds to the first n bits of the
keystream package) but even the value

F (δj(P (x⊕ k)⊕ k)),

for j = 0, · · · , R − n, corresponding to the key stream bits j + 1, · · · , j + n of
the packet.

We give a solution of this problem in section 5 by showing a lower bound of the
same order for the FP (1)-construction in a more general setting. In particular,
we show that our lower bound remains valid even against an adversary, which
is allowed to ask an additional kind of oracle queries, called E(j)(x) =?-queries,
j = 0, · · · , R − n, which are answered with F (δj(P (x ⊕ k) ⊕ k)), and if R is
polynomially bounded in n.

Summary: The resistance of KSG-based stream ciphers against generic col-
lision attacks can be raised from n/2 to 2/3 · n, if it works in the packet mode,
and if a state initialization algorithm is used which follows the scheme of the



Even-Mansour cipher P (x ⊕ k) ⊕ k. This is because this implies that the first
n key stream bits per packet depend on the secret session key k and the initial
value x in a way modeled by the FP (1)-construction. Consequently, 80-bit secu-
rity against this type of attack can be already reached with n = 128 KSG inner
state length.

The resistance against generic collision attacks can be raised beyond 2/3 · n
by using a state initialization algorithms corresponding to Even-Mansor ciphers
of higher iteration depth. A hopeful candidate for security level 3/4 ·n would be
the following state initialization algorithm

– Load IV ⊕ k into the inner state registers.
– Run the KSG (which is supposed to have a nonlinear state update function)

a certain number C of clock cycles without producing output.
– Add π(k) to the resulting inner state, where π : {0, 1}n −→ {0, 1}n denotes

an orthomorphism.
– Run the KSG again C clock cycles without producing output.
– Add k to the resulting inner state for obtaining the initial state for the

keystream generation.

This corresponds to the construction P (P (x⊕ k)⊕ π(k))⊕ k, for which a sharp
2/3 · n-security bound was proved in [6]. For getting a provable 3/4 · n-security
lower bound, one had to show a corresponding lower bound for the minimized
FP (2)-construction

E(x, k) = F (P (P (x⊕ k)⊕ π(k))⊕ k)

which is still open.
Note that also block cipher based stream ciphers are used in practical sys-

tems, an example is the A5/3-cipher included in the GSM-standard [15]. A
straightforward approach is to use the block cipher in the counting mode, i.e.,
the stream cipher works in the packet mode, where the packet length equals the
block length length n of the block cipher, and the key stream Si ∈ {0, 1}n for
the encryption of the i-th packet is computed according to

Si = Ek(IV (i)),

where Ek : {0, 1}n −→ {0, 1}n denotes the encryption function of the underlying
block cipher w.r.t. to the secret session key k.

Observe that this kind of stream cipher operation modes seem to be secure
w.r.t. to generic collision attacks of the above described kind. However, the prize
which has to be paid for this security is a much higher computational effort per
key stream bit compared to KSG-based stream ciphers.

Thus, the FP-construction based operation modes suggested in this paper can
be seen as a compromise between the one-stream mode, which provides minimal
initialization effort per keystream bit but minimal security w.r.t. generic collision
attacks, and the block cipher mode, providing maximal security w.r.t. generic
collision attacks but maximal initialization effort per keystream bit.



2 A Sharp Bound on the Security of the
F (x⊕ k∗)-construction

In this section, we present first a key-recovery attacks against the construction

E(x) = F (x⊕ k∗)

which needs time and space and number of oracle queries O(2n/2). We show
then a matching lower bound concerning the minimal number of oracle queries
necessary for computing the secret key k∗ with significant success probability.

We do this in the random oracle model, which was introduced in subsection
1.3.

A straightforward attack is to take subsets X,Y of {0, 1}n, |X| = |Y | = 2n/2,
such X ⊕ Y = {0, 1}n, and ask the oracles for E(x) for all x ∈ X, and for F (y)
for all y ∈ Y .2 This yields a set of candidates for the secret key consisting of all
elements k ∈ {0, 1}n for which there is some x ∈ X and some y ∈ Y such that
k = x ⊕ y and E(x) = F (y). Note that this set of candidates has expected size
less than two and contains the secret key k∗. Note further that this attack uses
O(2n/2) oracle queries but has expected running time of Θ(2n).

For getting an attack of expected running time O(2n/2), take an arbitrary
subset X of {0, 1}n, |X| = 2n/2, and ask the E-oracle for E(x) for all x ∈ X.
Then start to ask for F (y) for randomly chosen elements y ∈ Y . Whenever you
were successful in choosing an y fulfilling F (y) = E(x) for some x ∈ X, test the
hypothesis that k∗ = x⊕y by posing a few further query pairs E(x′), F (x′⊕x⊕y)
and testing their equality. Note that a successful guess corresponds to the event
that y ∈ X ⊕ k∗ which has probability 2n/2 · 2−n = 2−n/2. Consequently, the
expected running time of this attack is O(2n/2).

Now we prove a matching lower bound

Theorem 1. Suppose an attacker Eve who is allowed to pose at most O(2α·n)
oracle queries for some α < 1/2. Then there is some ε > 0 such that Eve’s success
probability to compute the secret key k∗ is bounded from above by O(2−ε·n), if n
is large enough.

Proof. We prove Theorem 1 by analyzing Eve’s success probability to win the
following game 1 between Alice and Eve: Alice chooses randomly, independently
and w.r.t. the uniform distribution, a secret function F : {0, 1}n −→ {0, 1}n,
and a secret key k∗ ∈ {0, 1}n.

In phase A of game 1, Eve asks a sequence of at most O(2α·n) oracle queries
to Alice, where E(x) =?-queries are answered according to E(x) = F (x⊕ k∗).

In phase B, Eve publishes a pair (x̃, z̃), where x̃ has not been asked in phase
A in an E-Query. Eve wins if z̃ = E(x̃).

2 Let, e.g., be X and Y the set of all x ∈ {0, 1}n for which the first n/2 components,
resp. the last n/2 components are zero.



Clearly, if Eve succeeds in computing k∗ on the basis of the queries posed in
phase A, then Eve wins in phase B. Thus, Eves success probability in computing
k∗ is bounded from above by the probability that Eve wins game 1.

During asking a sequence of queries, say Q, Eve generates the following sub-
sets X,Y of {0, 1}n:

– X = {x ∈ {0, 1}n ; Q contains an E-query w.r.t. x}.
– Y = {y ∈ {0, 1}n ; Q contains an F -query w.r.t. y}.

At some points, Eve will succeed in generating EF -collisions (x, y), fulfilling
x ∈ X and y ∈ Y , and E(x) = F (y). An EF -collisions (x, y) can occur in
two situations, the first is that y = x ⊕ k∗ which directly yields the secret key
k∗ = x⊕ y. The second is that y 6= x⊕ k∗ but F (y) = F (x⊕ k∗).

Let us call a query successful if it is a query for F (y) =? for some y ∈ X⊕k∗
or it is a query for E(x) =? for some x ∈ Y ⊕ k∗.

We change game 1 to game 2: Whenever, in phase A, Eve succeeds to pose
a successful query, Alice immediately gives up and Eve wins. Note that Eve’s
success probability will not be lowered by changing from game 1 to game 2.

This implies that after each sequence of unsuccessful queries Q, Eve knows
that k∗ 6∈ X ⊕ Y .

Lemma 1. After each sequence of unsuccessful queries Q, from Eve’s point of
view, for all k ∈ {0, 1}n \ (X ⊕ Y ) the events that k = k∗ are equally likely.

Proof. Note that the corresponding probability space is formed by the elemen-
tary events (k, F̃ ), where k ∈ {0, 1}n \ (X ⊕ Y ) and F̃ : {0, 1}n \ Y −→ {0, 1}n
denotes a completion of F |Y on {0, 1}n \ Y which is consistent with k and Q.
These elementary events correspond to Eve’s hypotheses which all are equally
likely to be equal to the correct hypothesis (k∗, F |{0,1}n\Y ).

Now observe that for all k ∈ {0, 1}n\(X⊕Y ), a completion F̃ : {0, 1}n\Y −→
{0, 1}n makes (k, F̃ ) consistent with k and Q if and only if F̃ (x⊕ k) = E(x) for
all x ∈ X 3.

This implies that the number of all possible completions F̃ : {0, 1}n \ Y −→
{0, 1}n, which make (k, F̃ ) consistent with k and Q is equal for all k ∈ {0, 1}n \
(X ⊕ Y ).

Consequently, from Eve’s point of view, all elements k ∈ {0, 1}n \ (X ⊕ Y )
are equally likely to be the secret key k∗. ut

For the rest of the proof we fix some positive constant α < 1/2, let M = d2α·ne
and fix some sequence of queries Q = (q1, · · · , qM ) (for simplicity we suppose
that M is integral).

We estimate first the probability of the event E0, that Eve wins game 3 in
phase A with a sequence Q consisting of M P/P−1-queries, M E-queries and
M F -queries.

3 Note that Y ∩ (X ⊕ k) = ∅



For all i, 1 ≤ i ≤ M , let us denote by (qi succ) the event that query qi is
successful, and by Gi the event that q1, · · · , qi are unsuccessful.

Clearly, if Eve wins in phase A then there is some i, 1 ≤ i ≤ M , such that
qi is successful and qj is unsuccessful for all j, 1 ≤ j ≤ i− 1. Consequently, the
success probability of Eve of winning in phase A is bounded from above by

M∑
i=1

Pr[Gi−1 ∧ (qi succ)].

=

M∑
i=1

Pr[qi succ|Gi−1] · Pr[Gi−1]

≤
M∑
i=1

Pr[qi succ|Gi−1].

Here, G0 denotes an event of probability one.
Let us estimate the probability for the event that qi is successful under the

condition Gi−1 that this is not the case for q1, · · · , qi−1. Note first that this
probability equals zero for i = 1. Now fix some i > 1 and let X and Y denote
the input sets generated by q1, · · · , qi−1 in the way described above.

Consider first the case that query qi asks for F (y) for some y 6∈ Y . The
event that this query is successful corresponds to the event that k∗ ∈ y ⊕ X
which, by Lemma 1, has probability |X|/(2n − |X ⊕ Y |) which is not greater
than M/(2n − 22αn) ≤ 2 · 2(α−1)n, if n is large enough.4

In the case that query qi asks for E(x) for some x 6∈ X, the event that this
query is successful corresponds to the event that k∗ ∈ x ⊕ Y which yields the
same bound for the success probability.

We obtain that the probability for the event E(A), that Eve wins in phase
A, is bounded by 2αn · 2(α−1)n = 2(2α−1)n if n is large enough.

Let us now estimate the probability for the event E(B) that Eve wins in
phase B. Note first that

Pr[E(B)] = Pr[E(B) ∩ (¬E(A))] = Pr[E(B)|¬E(A)] · Pr[¬E(A)]

≤ Pr[E(B)|¬E(A)] = Pr[E(B)|GM ],

i.e., we estimate the the probability for the event E(B) that Eve wins in phase
B under the condition that all queries in Q = (q1, · · · , qM ) were unsuccessful.

Let again X and Y denote the input sets generated by q1, · · · , qM in the way
described above.

According to game 1 and 2, Eve has to submit a pair (x̃, z̃). Eve wins if and
only if z̃ = E(x̃) = F (x̃⊕ k∗).

We change again the rules of the game by allowing Eve to submit first only
x̃. Then, Alice gives k∗ to Eve, and only then Eve has to submit z̃.

4 Here we used the fact that 22αn ≤ 2n−1 if n is large enough.



Clearly, if Eve manages to choose x̃ in Y ⊕ k∗ then Eve wins, as then x̃⊕ k∗
belongs to Y and Eve can determine z̃ = F (x̃ ⊕ k∗) herself. The event that
x̃ ∈ Y ⊕ k∗ corresponds to the event that k∗ ∈ x̃ ⊕ Y which, by Lemma 1,
has probability |Y |/(2n − |X ⊕ Y |), which is not greater than M/(2n − 22αn) ≤
2 · 2(α−1)n if n is large enough.

If Eve chooses x̃ outside of Y ⊕ k∗ then x̃ ⊕ k∗ is outside of Y , and the
probability that Eve guesses for z̃ the correct value F (x̃ ⊕ k∗) without asking
the F -oracle is 2−n.

Consequently, the probability that Eve wins in phase B is bounded by 2 ·
2(α−1)n + 2−n, which yields that the overall winning probability is bounded by
2 · 2(2α−1)n + 2 · 2(α−1)n + 2−n which proves our theorem.

3 Attacks against the FP (1)-Construction and the
Sum-Capture Theorem of Chen et.al.

In this section, we present nontrivial key-recovery attacks against the FP(1)-
construction

E(x) = F (P (x⊕ k∗)⊕ k∗).

We do this in the random oracle model, i.e., we refer to an attacker, Eve, who
aims to compute the secret key k∗ ∈ {0, 1}n behind E by running a randomized
algorithm and who has access to a P -oracle, a P−1-oracle, an F -oracle and an
E-oracle in a black box way.

In a first step, we present two attacks against the two-key variant of the
FP (1)-construction

E(x) = F (P (x⊕ k∗1)⊕ k∗2)

which compute the secret key (k∗1 , k
∗
2) with high probability by using O(22/3·n)

oracle queries. We then discuss an approach for finding more efficient attacks for
the one-key variant.

3.1 An attack against the two-key variant with O(22/3·n) oracle
queries but Θ(22n) running time

We sketch only the idea of the attack and omit any detailed analysis of the
success probability. Note that Bogdanov et.al. [4] used the same idea for proving
similar upper bounds on iterated Even-Mansour ciphers.

Suppose that Eve poses a sequence Q of oracle queries containing

– |X| E-queries yielding a set {(x,E(x))|x ∈ X} for some X ⊆ {0, 1}n,
– |U | P -queries yielding a set {(u, P (u))|u ∈ U} for some U ⊆ {0, 1}n,
– |Y | F -queries yielding a set {(y, F (y))|y ∈ Y } for some Y ⊆ {0, 1}n.

We call a pair (k1, k2) ∈ {0, 1}2n to be bad w.r.t. Q if there is some triple
(x, u, y) ∈ X × U × Y such that

– k1 = x⊕ u,



– k2 = P (u)⊕ y.

Note that if E(x) 6= F (y) then (k1, k2) can not be the secret key as it computes
a wrong value on x. If E(x) = F (y) then (k1, k2) is a promising candidate for
being the secret key, which can be tested by only a few further queries.

Note further that if X,U, Y are randomly chosen and |X| = |Y | = |U | ∈
O(22/3·n) then allmost all pairs (k1, k2) become bad with high probability. In
this case, Q contain all information for finding the secret key with high proba-
bility. However, the effort for deriving this information from Q corresponds to
exhaustive key search in {0, 1}2n.

3.2 An attack against the two-key variant with O(22/3·n) oracle
queries and O(22/3·n) running time

We now present an alternative attack which requires asymptotically the same
number of queries but significantly less computation. It uses the slidex attack
against the Even-Mansour cipher of iteration depth one,

EM(x) = P (x⊕ k∗1)⊕ k∗2 .

Note that for our FP (1)-construction it holds E(x) = F (EM(x)). Let us first
recall the slidex attack as it occurs in [10]. We recall also the proof, as we later
need some details of it.

Theorem 2 (Slidex Attack [10]). For any set of T pairs (x,EM(x)) the se-
cret key (k∗1 , k

∗
2) can be computed with constant success probability using O(2n/T )

P -queries. �

Proof (Theorem 2). Suppose we have a pair x, x′ and a known difference ∆ such
that

x⊕ x′ = k∗1 ⊕∆.
This implies EM(x) = P (x⊕ k∗1)⊕ k∗2 = P (x′ ⊕∆)⊕ k∗2 and EM(x′) = P (x⊕
∆)⊕ k∗2 . Consequently,

EM(x)⊕ EM(x′) = P (x⊕∆)⊕ P (x′ ⊕∆), i.e.,

EM(x)⊕ P (x⊕∆) = EM(x′)⊕ P (x′ ⊕∆).

Now suppose that we have a set Z of D pairs (xi, yi), where yi = EM(x) for
i = 1, · · · , D. The probability that the set of corresponding pairs

M(Z,∆) = {(xi, yi ⊕ P (xi ⊕∆))}

contains a collision is in Ω(D2/2n).
Let T ′ = 2n/D2 and fix T ′ differences ∆1, . . . ,∆T ′ . Then, with constant

probability, one of the sets M(Z,∆j) contains a collision. Suppose that this
happens with difference ∆t and for x, x′. Then the hypothesis k∗1 = x⊕ x′ ⊕∆t

is true with constant probability. The remaining key k∗2 can be computed via
k∗2 = P (x ⊕ k∗1) ⊕ E(x). Note that, for mounting this attack, we have to pose
T = D · T ′ = 2n/D P -queries. ut



The idea for a corresponding attack against the FP (1− construction is as
follows. We construct a sufficiently large set Z of pairs (x,EM(x)) by generating
a sufficiently large number of EF-collisions (x, y), fulfilling E(x) = F (y), and
apply the the slidex attack to Z.

Theorem 3. The secret key (k∗1 , k
∗
2) can be computed with constant success prob-

ability using O(22/3·n) P -queries, O(22/3·n) E-queries, and O(22/3·n) F -queries.

Proof (Theorem 3). The corresponding attack proceeds as follows. First, ran-
domly choose a subset X ⊆ {0, 1}n and build the set {(x,E(x)) | x ∈ X}.
Likewise, choose a random Y ⊆ {0, 1}n and set up {(y, F (y)) | y ∈ Y }.

Let Z ⊆ X × Y denote the set of pairs (x, y) for which E(x) = F (y).
Note that, for a random y added to Y , there are two different events that yield

(x, y) ∈ Z for some x ∈ X. The first event is that y = P (x⊕ k∗1)⊕ k∗2 = EM(x)
for some x ∈ X. This occurs with probability |X| ·2−n. The second event is that
y 6∈ P (X ⊕ k∗1) ⊕ k∗2 but F (y) ∈ E(X). This occurs with probability at most
(1− |X| · 2−n) · |X| · 2−n, which is smaller than the probability of the first event.

Consequently, the expected value of |Z| is near 2 · |X| · |Y | · 2−n and the
expected number D of pairs (x, y) in Z which satisfy y = EM(x) is at least
|X| · |Y | · 2−n.

Now fix a set of 2n/D2 = 23n/(|X|2 · |Y |2) differences an build the sets
M(Z,∆) for all differences ∆ in this set. Then check for all collisions if they
yield the correct subkey k∗1 in the manner described above. This will happen
with constant probability.

Note that we have to pose 22n/(|X| · |Y |) P -queries, which implies an overall
number of oracle queries of Θ(22/3·n) if |X| = |Y | ∈ Θ(22/3·n).

3.3 An approach for a more efficient attack to the one-key variant

Let us discuss an approach to finding more efficient key recovery attacks for
the case that the same key is used in both rounds of the FP-construction. We
then show nontrivial limitations of this approach by applying the sum-capture
theorem of Chen et.al. [6].

Consider again the situation after Eve having asked a sequence of queries Q,
which yields subsets X,U, Y of {0, 1}n as described in subsection 3.1.

Again, we call a potential key k ∈ {0, 1}n to be bad w.r.t. Q if there are
inputs x ∈ X, u ∈ U and y ∈ Y such that

k = x⊕ u = P (u)⊕ y. (3)

Note here that Bad(P,U,X, Y ) depends only on U , and P and X and Y , and
does not depend on F , resp. E.

As described in subsection 3.1, if Eve manages to pose the queries Q in such
a way that Bad(P,U,X, Y ) contains almost all k ∈ {0, 1}n then Eve is done, as
the remaining keys can be probed one by one in a straightforward way.

This yields the following attack with 3M oracle queries, which we shortly
will call M -strategy:



– Fix an appropriate set U = {u1, · · · , uM} ⊆ {0, 1}n

– Determine P (ui) by posing P -queries for all ui, i = 1, · · · ,M
– Determine subsetsX,Y of {0, 1}n, |X| = |Y | = M , such that |Bad(P,U,X, Y )|

is maximal.

Eve can be considered to be successfull if |Bad(P,U,X, Y )| ≥ 2n −M , as
then the secret key can be found with O(M) queries.

Note that in the two-key case, for any α < 2/3, O(2αn) queries can make only
an exponentially small part of all 22n possible keys bad, as |Bad(P,U,X, Y )| ≤
|X × U × Y | ∈ O(23αn and 3α < 2.

However, this argument does not work in the one-key case. The following
example shows that, under certain circumstances, Eve can be successful even for
M = 2n/2, which can never happen in the two-key case:

Example: We choose X = {x1, · · · , xM} and U = {u1, · · · , uM} in such
a way that X ⊕ U = {0, 1}n.5 Consider the case that P (ui) = ui for all i =
1, · · · ,M and let Y = X.

We know that for all k ∈ {0, 1}n there is a pair (i, j), 1 ≤ i, j ≤M , such that
k = xi⊕uj . But this implies that P (uj)⊕k = xi ∈ Y , i.e., k ∈ Bad(P,U,X, Y ).

Clearly, this example says almost nothing about Eve’s success probability for
M = 2n/2, as the event that P (ui) = ui for all i = 1, · · · ,M has extremely small
probability.

However, the question remains open if there is a successful M -strategy for
some M ∈ O(2αn, α < 2/3.

The following Theorem, which is a straightforward consequence of the Sum-
Capture Theorem of Chen et.al. in [6] (it is Theorem 1 in section 3), gives a
negative answer to this question.

Theorem 4. Let P denote a uniformly random permutation over {0, 1}n, let
N = 2n, and fix an arbitrary number M , 9n ≤M ≤ N/2. Suppose that Eve (who
is supposed to be a probabilistic algorithm) poses a sequence U = {u1, · · · , uM}
of M P -queries. For any subsets X,Y ⊆ {0, 1}n let

µ(P,U,X, Y ) = |{(u, x, y) ∈ U ×X × Y, x⊕ u = y ⊕ P (u)}| .

Then the probability for the event that there are subsets X,Y ⊆ {0, 1}n such that

µ(P,U,X, Y ) ≥ M · |X| · |Y |
N

+
2M2 ·

√
|X| · |Y |
N

+ 3
√
n ·M · |X| · |Y | (4)

is at most 2
N , where the probability is taken over the random choice of P and

the internal randomization of Eve. �

This has the following consequence

5 Take, for instance X and U as the set of inputs having zero at the first resp. last
n/2 components.



Corollary 1. Let 9n ≤M ≤ 2α·n for some α < 2/3 and let Q denote a sequence
of queries posed by Eve consisting of M E-queries, M P -queries, and M F -
queries, yielding subsets X,U, Y as described above. Then there is a number
ε0 > 0 such that the probability for the event that

|Bad(P,X,U, Y )| ≥ 2(1−ε0)·n

is, if n is large enough, at most 2
N , where the probability is taken over the random

choice of P and the internal randomization of Eve.

Proof: Note that a key k ∈ {0, 1}n is bad if and only if there is some
tripel (u, x, y) ∈ U × X × Y such that k = x ⊕ u = P (u) ⊕ y. Consequently,
|Bad(P,X,U, Y )| ≤ µ(P,U,X, Y ). The claim of Corollary 1 follows from the
observation that, under the condition that |U | = |X| = |Y | = M ≤ 2α·n for
α < 2/3, all three summands of (4) belong to O

(
2(1−ε0)·n

)
for some ε0 > 0, if n

is large enough. �

4 A Matching Lower Bound for the FP (1)-Construction

In this section, we prove a matching lower bound on the security of the FP (1)-
construction

E(x) = F (P (x⊕ k∗)⊕ k∗)

in the random oracle model.

Theorem 5. Suppose an attacker Eve who has black-box access to a P/P−1-
oracle, an F -oracle and an E-oracle, and who is allowed to pose at most O(2α·n)
oracle queries for some α < 2/3. Then there is some ε > 0 such that Eve’s success
probability to compute the secret key k∗ is bounded from above by O(2−ε·n), if n
is large enough.

We prove Theorem 5 by analyzing Eve’s success probability to win the fol-
lowing game 1 between Alice and Eve: Alice chooses randomly, independently
and w.r.t. the uniform distribution a secret function F : {0, 1}n −→ {0, 1}n, a
secret permutation P : {0, 1}n −→ {0, 1}n and a secret key k∗ ∈ {0, 1}n.

In phase A of game 1, Eve asks a sequence of at most O(2α·n) oracle queries
to Alice, where E(x) =?-queries are answered according to F (P (x⊕ k∗)⊕ k∗).

In phase B, Eve publishes a pair (x̃, z̃), where x̃ has not been asked in phase
A in an E-Query. Eve wins if z̃ = E(x̃).

Clearly, if Eve succeeds in computing k∗ on the basis of the queries posed in
phase A, then Eve wins in phase B. Thus, Eves success probability in computing
k∗ is bounded from above by the probability that Eve wins game 1.

During asking a sequence of queries Q, Eve generates the following subsets
X,Y, U, V of {0, 1}n:

– X = {x ∈ {0, 1}n ; Q contains an E-query w.r.t. x}.
– Y = {y ∈ {0, 1}n ; Q contains an F -query w.r.t. y}.



– U = {u ∈ {0, 1}n ; Q contains a P -query w.r.t. u, or a P−1-query w.r.t.
P (u)}.

– V = P (U).

As the size of Q is allowed to be beyond the birthday bound, with high
probability Eve will succeed in generating EF -collisions (x, y), fulfilling x ∈ X,
y ∈ Y , and E(x) = F (y). We have seen already in subsection 3.2 that EF -
collisions (x, y) can be induced by a collision of F , or they can be structural in
the sense that y = P (x⊕ k∗)⊕ k∗.

Alice simplifies Eve’s life by changing game 1 to game 2: Whenever, in phase
A, Eve succeeds to generate an EF -collision, Alice gives Eve the information if
it structural or not. If yes, then Alice gives additionally a pointer to the collision
partner. In particular, if Eve succeeds to pose an F -query for some y ∈ P (X ⊕
k∗)⊕k∗ then Alice gives a pointer to x = P−1(y⊕k∗)⊕k∗ ∈ X. Correspondingly,
If Eve succeeds to pose an E-query for some x ∈ P−1(Y ⊕ k∗) ⊕ k∗ then Alice
gives a pointer to y = P (x⊕ k∗)⊕ k∗ ∈ Y .

Note that Eve’e success probability will not be lowered by changing from
game 1 to game 2.

The EF -collisions of type 1 induce the following sets X∗ ⊆ X and Y ∗ ⊆ Y :

– X∗ = {x ∈ X;∃y ∈ Y, s.t. (x, y) is EF -collision of type (1)},
– Y ∗ = {y ∈ Y ;∃x ∈ X, s.t. (x, y) is EF -collision of type (1)}.

Note that, due to the rules of game 2, it holds |X∗| = |Y ∗|, and that Eve
knows a 1:1-correspondence between X∗ and Y ∗ saying for each x ∈ X∗ which
y ∈ Y ∗ fulfills y = P (x⊕ k∗1)⊕ k∗2 .

How queries help Eve to find the secret key?
Let k ∈ X ⊕ U , i.e., there are x ∈ X and u ∈ U such that k = x⊕ u.
Consider first the case that x ∈ X∗ and remember that Eve knows the partner

y = P (x⊕ k∗)⊕ k∗ in Y ∗. If P (u)⊕ k 6= y implies that k can not be the secret
key. If P (u) ⊕ k = y then k = k∗ with high probability. Consequently, for all
k ∈ X∗ ⊕ U , Eve gains nontrivial information from Q.

Now consider the case that x ∈ X \ X∗ and y := P (u) ⊕ k belongs to Y .
We know that (x, y) is not a structural collision, otherwise we had x ∈ X∗. This
implies that k can not be the secret key.

A similar classification can be done for all potential keys which are differences
between elements of V and Y .

This observations motivate the following definition.

Definition 1. A key k ∈ {0, 1}n is called to be bad w.r.t. a sequence of queries
Q if

b.1 k = x ⊕ u for some x ∈ X∗ and u ∈ U or k = v ⊕ y for some v ∈ V and
y ∈ Y ∗, or,

b.2 k = x⊕ u for some x ∈ X \X∗ and u ∈ U and it holds that P (u)⊕ k ∈ Y ,
or,



b.3 It holds that |(X ⊕ k) ∩ U | > 2(1/3)·n or |(Y ⊕ k) ∩ V | > 2(1/3)·n.

A key k which does not fulfil any of the conditions b.1, b.2, b.3 is called to
be good w.r.t. Q

Items b.1 and b.2 correspond to the observations made above. Item b.3 en-
sures that all good keys have, from Eve’s point of view, approximately the same
probability to be the secret key (see lemma 6 below).

Note that the set Bad(P,X,U, Y ) defined in subsection 3.3 contains exactly
those keys which satisfy condition b.2.

Definition 2. A key k ∈ {0, 1}n is called to be consistent with Q, if, from
Eve’s point of view, F can be completed on {0, 1}n \ Y and P on {0, 1}n \ U in
such a way that no contradiction with Q occurs, i.e. E(x) = F (P (x⊕k)⊕k) for
all x ∈ X.

An important property of good keys is given in

Lemma 2. Each k ∈ {0, 1}n, which is good w.r.t. Q, is consistent with Q.

Proof. We construct completions P ′ of P |U on {0, 1}n \ U and F ′ of F |U on
{0, 1}n \ Y which make a good key k consistent with Q.

We run with u through {0, 1}n in a certain order and define (if still necessary)
the function values P ′(u) and F ′(P (u) ⊕ k) (resp. F ′(P ′(u) ⊕ k) in a manner
which makes k consistent with Q. We dynamically maintain a set Target(P ′)
which is initially set to {0, 1}n \ V . Whenever we define P ′(u) for a new u, we
delete P ′(u) from Target(P ′).

– Phase 1, we define P ′(u) for all u ∈ {0, 1}n for which u⊕k = x ∈ X∗. As k is
good, it holds u 6∈ U . We fix the unique y ∈ Y ∗ for which y = P (x⊕k∗)⊕k∗.
As k is good, it holds y ⊕ k 6∈ V . Thus, we can define P ′(u)← y ⊕ k.

– Phase 2 concerns all u ∈ U for which u⊕ k ∈ X for some r, 0 ≤ r ≤ R− 1.
Note that u ⊕ k 6∈ X∗, otherwise, k would be bad via definition 4, b.1.
Moreover, P (u)⊕ k 6∈ Y , otherwise k would be bad via definition 1, b.2. We
set

F ′(P (u)⊕ k)← E(u⊕ k).

– Phase 3 concerns all u 6∈ U for which x = u⊕ k ∈ X \X∗. Eve knows that
for all y ∈ Y , (x, y) is not a structural collision. Consequently, P ′(u) has to
be chosen in such a way that P (x ⊕ k) ⊕ k 6∈ Y . Corresponding to this we
choose

P ′(u) ∈ Target(P ′) \ (Y ⊕ k),

and set F ′(P ′(u)⊕ k) = E(x).
Note that Target(P ′) \ Y has definitely enough elements for doing this, as
Target(P ′) ≥ 2n −O(2αn) after phase 2 and 3.



For all ll remaining u ∈ {0, 1}n and y ∈ {0, 1}n, the values of P ′(u) ∈
Target(P ′) and F (y) ∈ {0, 1}n can be freely chosen without generating contra-
dictions with the E-queries occuring in Q. �

Note that the proof of Lemma 2 gives some valuable information about how
completions P ′ of P |U on {0, 1}n \ U and F ′ of F |U on {0, 1}n \ Y , which are
consistent with the assumption that a good key k is the secret key, are looking
like. In particular,

– Q determines the values of P ′ on X∗ ⊕ k, a set of size |X∗| (Phase 1).
– Q implies that the function values of P ′ on the set ((X \X∗) ⊕ k) \ U are

forbidden to be in Y ⊕ k (Phase 3).
– Q determines the values of F ′ on a set of size |X \X∗|, in particular on

Z = (P (U ∩ ((X \X∗)⊕ k))⊕ k) ∪ (P ′(((X \X∗)⊕ k) \ U)⊕ k) .

We need this statement later in the proof of lemma 6.

Now we consider again a slightly modified game 3. The difference with game
2 is that Eve wins immediately in phase A if she manages to pose a query which
makes k∗ bad. Clearly, the success probability of Eve for winning game 1 is
bounded from above by the success probability of Eve for winning game 3.

For the rest of the proof we fix some positive constant α < 2/3 and denote
M = 2α·n. For simplicity we suppose that M is an integer.

We estimate first the probability of the event E0, that Eve wins game 3 in
phase A with a sequence Q consisting of M P/P−1-queries, M E-queries and M
F -queries. We know from Theorem 4 and Corollary 1 that there is some ε0 > 0
such that the probability for the event that

|Bad(Q,X,U, Y )| ≥ 2(1−ε0)n

is at most 2−(n−1) if n is large enough.
Correspondingly, we say that Q satisfies the condition E∗ if |Bad2(Q)| <

2(1−ε0)n. Note that

Pr[E0] ≤ Pr[E0|E∗] + Pr[¬E∗] ≤ Pr[E0|E∗] + 2−(n−1).

In the following we estimate Pr[E0|E∗] and consider only sequenceQ = (q1, · · · , qM )
of queries which satisfy E∗.

For all i, 1 ≤ i ≤M , let us denote by (qi bad) the event that query qi makes
k∗ bad, and by Gi the event that k∗ remained good after q1, · · · , qi.

Clearly, if Eve wins in phase A then there is some i, 1 ≤ i ≤ M , such that
qi is bad and qj is good for all j, 1 ≤ j ≤ i − 1. Consequently, the success
probability of Eve of winning in phase A is bounded from above by

M∑
i=1

Pr[Gi−1 ∧ (qi bad)].



=

M∑
i=1

Pr[qi bad|Gi−1] · Pr[Gi−1]

≤
M∑
i=1

Pr[qi bad|Gi−1].

Here, G0 denotes an event of probability one. We will show

Lemma 3. There is some ε1 > 0 such that

M∑
i=1

Pr[qi bad|Gi−1] ≤ O
(
2−ε1·n

)
.

This implies an exponentially small upper bound for Eve’s success probability
for winning game 3 in phase A.

Our way to prove lemma 3 is to prove it under the condition that |X∗| grows
only moderately during Q and to prove that the probability that |X∗| grows
too fast is exponentially small. In particular, let us denote by Hi the event that
|X∗| ≤ 2(1/3)n after q1, · · · , qi. We show

Lemma 4. There is some ε3 > 0 such that

M∑
i=1

Pr[qi bad|Gi−1 ∩Hi−1] ≤ O
(
2−ε3·n

)
.

and

Lemma 5. For all i, 1 ≤ i ≤ M , it holds Pr[¬Hi|Gi] < e−n if n is large
enough.

Lemma 3 can be derived from lemmata 4 and 5 by using that

Pr[A|B] ≤ Pr[A|B ∩ C] + Pr[C̄|B]

for all events A,B,C. 6

6 Note that

Pr[A|B] =
Pr[A ∩B
Pr[B]

=
Pr[A ∩B ∩ C

Pr[B]
+
A ∩B ∩ C̄
Pr[B]

≤ Pr[A ∩B ∩ C
Pr[B ∩ C]

+
B ∩ C̄
Pr[B]

= Pr[A|B ∩ C] + Pr[C̄|B]. �



Consequently

M∑
i=1

Pr[qi bad|Gi−1] ≤
M∑
i=1

Pr[qi bad|Gi−1 ∩Hi−1] + Pr[¬Hi−1|Gi−1]

≤
M∑
i=1

Pr[qi bad|Gi−1 ∩Hi−1] + 2α·n · e−n,

which can be easily shown to be in O (2−ε2·n) for some ε2 > 0, as log2(e) > 2/3.
We have shown

Corollary 2. Eve’s success probability of winning game 3 in phase A is bounded
by O (2−ε·n) for some constant ε > 0. �

For proving lemma 4 we specify first the underlying probability space. Sup-
pose that Eve has posed a sequence Q of ≤ 2α·n queries, α < 2/3, that E∗ holds
after Q and that the secret key k∗ is still good after Q.

The relevant probability space ΩQ, which models Eve’s knowledge after Q,

is formed by all triples (k, P̃ , F̃ ) such that k is good w.r.t. Q, and P̃ and F̃ are
completions of P and F , resp., which make k consistent with Q. From Eve’s point
of view, all these triples have the same probability to be equal to (k∗, P ∗, F ∗),
where P ∗ and F ∗ are the completions of the real P and F on {0, 1}n \ U and
{0, 1}n \ Y , resp.

Consider the induced probability distribution on the set Kg ⊆ {0, 1}n of
good keys. For each k ∈ Kg it holds that

Pr [k = k∗] =
|{(P̃ , F̃ ); (k, P̃ , F̃ ) ∈ ΩQ}|

|ΩQ|
.

Let us denote this value by PrQ(k).
The following lemma is the basis for all our estimations around determining

Eve’s success probability.

Lemma 6. (i) The PrQ-values of two arbitrarily fixed keys in Kg differ by a

factor of at most e2·2
(α− 2

3
)n

, which tends to one for increasing n.
(ii) Suppose that E∗ holds and that |X∗| ≤ 2(1/3)n after performing a sequence Q

of at most 2α·n queries. Then Q yields, for some ε3 > 0, at most O(2(1−ε3)n)
bad keys.

Note that lemma 6 implies the following corollary

Corollary 3. If E∗ holds and |X∗| ≤ 2(1/3)n after performing Q then PrQ(k) ≤
2−(n−1) for all k ∈ Kg if n is large enough.



Proof of corollary 3: Lemma 6, part (ii), implies, that after performing Q,
we have that

|Kg| ≥ 2n − 2(1−ε)n

(under the assumptions of lemma 6, (ii)). We obtain that |Kg| ≥ 2n√
2

if n is large

enough.

On the other hand, lemma 6, part (i), yields that all PrQ-values of elements
from Kg differ only by a factor of at most

√
2 if n is large enough.

This implies that PrQ[k] ≤ 2 · 2−n = 2−(n−1) for all k ∈ Kg. �

The Proof of lemma 6: The proof of part (i) is based on deriving an exact
formula for PrQ(k) for k ∈ Kg. It will become clear that PrQ(k) depends on
the values |Y ∩ (V ⊕ k)| and |X ∩ (U ⊕ k)|. The claim of part (i) will follow from
the fact that none of these values exceeds 2(1/3)n (see condition b.3 of definition
1). The whole proof of lemma 6, part (i), can be found in section A.

For proving part (ii) of lemma 6 note first that it follows directly from
the definition 1 that there are at most 2 · |X∗| · |U | ≤ 2((1/3+α)n bad keys of type
b.1. As α < 2/3 it holds that 1/3 +α < 1. As E∗ is true, it follows directly that
the number of keys which are bad w.r.t. b.2 is bounded by O(2(1−ε0)n).

For upper bounding the number of bad keys of type b.3 note that∑
k∈{0,1}n

|(X ⊕ k) ∩ U | =
∑

k∈{0,1}n
|{(x, u) ∈ X × U ;x⊕ u = k}|

= |U ×X| ≤ 22αn.

This implies that∣∣∣{k; |(X ⊕ k) ∩ U | > 2(1/3)n}
∣∣∣ ≤ 2(2α−(1/3))n.

In exactly the same way one can prove that∣∣∣{k; |(Y ⊕ k) ∩ V | > 2(1/3)n}
∣∣∣ ≤ 2(2α−(1/3))n.

Consequently, the number of keys k which fulfill b.3 is bounded by

2 · 2(2α−(1/3))n.

As 2α− (1/3) < 1, this proves Lemma 6, part (ii), for bad keys of type b.3. ut
From lemma 6 we obtain the following important tool for proving lemma 4.

Lemma 7. Suppose that E∗ holds and that |X∗| ≤ 2(1/3)n after performing a
sequence Q of at most 2α·n queries, and that the secret key k∗ is good after Q.
Let X ′ ⊆ X, Y ′ ⊆ Y , U ′ ⊆ U , V ′ ⊆ V be subsets of a fixed size t. Then the
success probabilities of Eve when trying to choose



(1) an element u from X ′ ⊕ k∗,
(2) an element x from U ′ ⊕ k∗,
(3) an element v from Y ′ ⊕ k∗,
(4) an element y from V ′ ⊕ k∗

are all bounded by 2 · t · |Kg|−1.
The success probabilities of Eve when trying to choose

(5) an element y from P (X ′ ⊕ k∗)⊕ k∗,
(6) an element x from P−1(Y ′ ⊕ k∗)⊕ k∗

are all bounded by 86 · t · |Kg|−1, respectively.

Proof (Lemma 7). We prove first the probability corresponding to item 1, the
probabilities corresponding to items 2,3,4 can be proved similarly.

Note that u ∈ X ′ ⊕ k∗ is equivalent to k∗ ∈ u⊕X ′ (a set of size |X ′|). This
event has, by lemma 6, part (i), a probability at most 2 · |X ′| · |Kg|−1 if n is large
enough.

The proof corresponding to items 5 and 6 is more complicated and can be
found in section B. ut

Remember that corollary 2 states that the probability that Eve wins in phase
A with a sequence Q of at most 2α·n queries, α < α∗ ≤ 2/3, is bounded from
above by O(2(1−ε)n for some ε > 0. For proving this claim we have still to prove
Lemma 4 and Lemma 5.

Lemma 4 gives an exponentially small upper bound for Eve’s success proba-
bility (conditioned to |X∗| ≤ 21/3·n and condition E∗) in making the secret key
bad with during Q. It is proved by listing all possible situations, in which, after a
sequence of good queries, a new query makes the secret key bad, and then upper
bounding the corresponding probabilities using lemma 7. Concerning condition
b.3 we have to show that under the given assumptions, the probability that
|(X ⊕ k∗1)∩U | or |(Y ⊕ k∗2)∩ V | exceeds 21/3·n, is exponentially small. This will
be done using a Chernov Bound argument. The complete proof of lemma 4 can
be found in section C.

At the end we have to show Lemma 5 saying that the probability that |X∗|
exceeds 21/3·n during a sequence Q of 2α·n, α < α∗ ≤ 2/3, queries, is exponen-
tially small, if condition E∗ holds and the secret key k∗ is good after Q. The
technical problem here is that Chernov Bound arguments can not be applied in
a direct way. The solution we found is to partition the sequence of queries in
subintervals and to apply a Chernov Bound argument in a recursive way. The
whole proof can be found in section D.

Completing the proof of Theorem 5:
If Eve did not win in phase A, then the secret key k∗ is still good after

phase A. We estimate now Eve’s success probability to win in phase B under the
additional condition, that |X∗| ≤ 2(1/3)n and that E∗ holds after phase A.



Remember that Eve has to submit a pair (x̃, z̃) with x̃ 6∈ X and that Eve
wins if E(x̃) = z̃.

We again increase Eve’s chance to win by a slight change of the rules of game
3, phase B:

– Eve is allowed to first submit only x̃.
– After this, Alice gives k∗ and P (x̃⊕ k∗) to Eve.
– Now, Eve has to submit z̃ without posing any further oracle query and wins

if E(x̃) = z̃.

Denote ỹ = P (x̃⊕ k∗)⊕ k∗. Note that E(x̃) = F (ỹ).
Clearly, if x̃ ∈ P−1(Y ⊕ k∗2) ⊕ k∗1 (which, by lemma 7, has probability ≤

86 · 2−(n−1)|Y |), then Eve wins with probability one, as then ỹ ∈ Y and Eve can
derive the correct answer z̃ = F (ỹ) from the answers of phase A.

Consider now the case that x̃ 6∈ P−1(Y ⊕ k∗)⊕ k∗ (i.e. if ỹ 6∈ Y ). Here, from
Eve’s point of view, F (ỹ) is uniformly distributed. Consequently, Eve’s success
probability in this case is 2−n.

Altogether, Eve’s chance to win in phase B is at most 86 · 2(α−1)n + 2−n if
|X∗| ≤ 2(1/3)·n and E∗ holds after phase A.

Let us now put things together and denote by

– E1 the event that Eve wins game 3 with the sequence of queriesQ, |Q| ≤ 2α·n,
α < α∗ ≤ 2/3,

– E2 the event that the secret key k∗ is good after phase A
– E3 the event that |X∗| ≤ 2(1/3)·n after phase A.

Then
Pr [E1] ≤ Pr [E1 |E2 ∩ E3 ∩ E∗ ] + Pr [¬E2 ∪ ¬E3 ∪ ¬E∗]

≤ Pr [E1 |E2 ∩ E3 ∩ E∗ ] + Pr [¬E2] + Pr [¬E3] + Pr [¬E∗]

≤ Pr [E1 |E2 ∩ E3 ∩ E∗ ] + Pr [¬E2] + Pr [¬E3 |E2 ] + Pr [¬E2] + Pr [¬E∗]

= Pr [E1 |E2 ∩ E3 ∩ E∗ ] + 2 · Pr [¬E2] + Pr [¬E3 |E2 ] + Pr [¬E∗] . (5)

Consequently, there is some ε∗ > 0 such that the probability that Eve wins
game 3 with the sequence of queries Q, |Q| ≤ 2α·n, α < α∗ ≤ 2/3, is bounded
by O(2−ε

∗·n as this is true for all terms occuring in relation 5. ut
if n is large enough. �

5 A Lower Bound for the FP-construction in a
generalized Random Oracle Model

In this section we prove a stronger lower bound on the security of the FP (1)-
construction E(x) = F (P (x ⊕ k∗) ⊕ k∗), which has the same order as this in
Theorem 5, but which refers to a more powerful attacker, who is allowed to pose
additional kinds of oracle queries, so called E(r)-oracle, where 0 ≤ r ≤ R− 1.



Our extension is based on an additional public permutation π : {0, 1}n −→
{0, 1}n and a natural parameterR, which we suppose to be polynomially bounded
in n. We assume that for all z ∈ {0, 1}n, the period of the sequence (πr(z))∞r=0

is larger than r. We suppose further that Eve can compute function values of π
and π−1 for her own, i.e., without posing oracle queries.

Posing a query E(r)(x) =? yields the answer

E(r)(x) = F (πr(P (x⊕ k∗)⊕ k∗)) .

Note that the E(0)-oracle equals the E-oracle.
The motivation of introducing this extension of the random oracle model is

that it reflects security aspects of stream ciphers which produce the keystream
in a packet mode as described in subsection 1.4.

The main result of this section is that the lower bound of Theorem 5 does
even hold in the extended random oracle model.

Theorem 6. Let α < 2/3 and suppose an attacker Eve who who tries to compute
the secret key k∗ ∈ {0, 1}n on the basis of at most O(2α·n) queries to a P -oracle,
a P−1-oracle, an F -oracle, and to E(r)-oracles for 0 ≤ r ≤ R − 1. Then there
is some ε > 0 such that Eve’s success probability to compute the secret key k∗ is
bounded from above by O(2−ε·n), if n is large enough.

Proof. The proof follows the same line as this in Theorem 5, in a few situa-
tions we have to generalize some definitions. We again analyze Eve’s success
probability to win the following game 1 between Alice and Eve: Alice chooses
randomly, independently and w.r.t. the uniform distribution a secret function
F : {0, 1}n −→ {0, 1}n, a secret permutation P : {0, 1}n −→ {0, 1}n and a
secret key k∗ ∈ {0, 1}n.

In phase A of game 1, Eve asks a sequence of at most O(2α·n) oracle
queries to Alice, where E(r)(x) =?-queries are answered according to E(x) =
F (πr(P (x⊕ k∗)⊕ k∗)).

In phase B, Eve publishes a pair (x̃, z̃), where for all r, 0 ≤ r ≤ R, x̃ has
not been asked in phase A in an E(r)-query. Eve wins if z̃ = E(0)(x̃).

Clearly, if Eve succeeds in computing k∗ on the basis of the queries posed in
phase A, then Eve wins in phase B. Thus, Eve’s success probability in computing
k∗ is bounded from above by the probability that Eve wins game 1.

During asking a sequence of queries Q, Eve generates the following subsets
X, X(r), 0 ≤ r ≤ R− 1, and Y,U, V of {0, 1}n:

– X(r) = {x ∈ {0, 1}n ; Q contains an E(r)-query w.r.t. x},
– X =

⋃R
r=1X

(r),
– Y = {y ∈ {0, 1}n ; Q contains an F -query w.r.t. y}.
– U = {u ∈ {0, 1}n ; Q contains a P -query w.r.t. u, or a P−1-query w.r.t.
P (u)},

– V = P (U).

The main difference to the basic case is that we have to consider an additional
type of collisions.



Definition 3. – A pair (x, y) ∈ X × Y is called to be a structural E(r)F -
collision, 0 ≤ r ≤ R − 1, if x ∈ X(r) and πr(P (x ⊕ k∗) ⊕ k∗) = y (which
implies E(r)(x) = F (y)).

– A pair (x, x′) ∈ X × X, x 6= x′, is called to be a structural E(r)E(r′)-
collision, if x occurs in a E(r)-query, x′ occurs in a E(r′)-query, where r 6= r′,
0 ≤ r, r′ ≤ R − 1, and πr(P (x ⊕ k∗) ⊕ k∗) = πr

′
(P (x′ ⊕ k∗) ⊕ k∗) (which

implies Er(x) = Er
′
(x′)).

Note that there may occur also collision, which are not structural and caused
by collisions of F .

Again, we switch from game 1 to game 2, where in game 2, Alice helps Eve
in recognizing structural collisions and gives additional information.

Whenever Eve asks an E(r)-query or an F -query causing a structural E(r)F -
collision, then Alice informs Eve about this and gives a pointer to the collision
partner.

Whenever Eve asks an E(r)-query x causing a structural E(r)E(r′)-collision
(x, x′) then Alice informs Eve about this and gives a pointer to the collision
partner x′. Moreover, if x′ is not part of an structural E(r′)F -collision, then Alice
gives Eve two structural collisions for free by making y = πr(P (x ⊕ k∗) ⊕ k∗)
and y′ = πr

′
(P (x′ ⊕ k∗) ⊕ k∗) = πr

′−r(y) public for Eve, and putting y and y′

to Y .

Note that, as a result of these rules, each input x, which is part of a structural
collision is automatically part of a structural E(r)F -collision.

Again, the structural collisions occuring during Q build the following set
X∗ ⊆ X, which contain all inputs x ∈ X, which are part of a structural collision,
and the set Y ∗ ⊆ Y , containing all elements y ∈ {0, 1}n for which there is a
structural E(r)F -collision (x, y′) for some r, 0 ≤ r ≤ R−1, such that πr(y) = y′.

Note that the function P (x⊕k∗)⊕k∗ defines again a bijective mapping from
X∗ to Y ∗.

One difference to Theorem 5 is that it can happen that Y ∗ 6⊆ Y . However,
for all y ∈ Y ∗ there is some r, 0 ≤ r ≤ R− 1, such that πr(y) ∈ Y .

How in this scenario, queries help Eve to eliminate key candidates or to find
good candidates for being the secret key?

Let k ∈ X ⊕ U , i.e., there are x ∈ X and u ∈ U such that k = x⊕ u.

Consider the case that x ∈ X \X∗ and that there is some r, 0 ≤ r ≤ R− 1,
such that y′ := πr(P (u)⊕k) belongs to Y . As (x, y′) is not a structural collision,
it holds that y′ 6= πr(P (x⊕ k∗)⊕ k∗), i.e., k cannot be the secret key.

Now consider the case that x ∈ X∗, i.e., x is part of a structural E(r)F -
collision (x, y′). Then Eve checks if P (x ⊕ k) ⊕ k = π−r(y′). If yes, k is a good
candidate, if not, k can be discarded. A similar argumentation holds for all
k ∈ V ⊕ Y ∗.

These observations motivate the following definition.

Definition 4. A key k ∈ {0, 1}n is called to be bad w.r.t. a sequence of queries
Q if



b.1 k = x ⊕ u for some x ∈ X∗ and u ∈ U or k = v ⊕ y for some v ∈ V and
y ∈ Y ∗, or,

b.2 k = x⊕ u, where x ∈ X(r) \X∗ for some r, 0 ≤ r ≤ R− 1, and u ∈ U , and
it holds that πr(P (u)⊕ k) ∈ Y , or,

b.3 It holds that |(X ⊕ k) ∩ U | > 2(1/3)·n or |(Y ⊕ k) ∩ V | > 2(1/3)·n.

A key k which does not fulfilling any of the conditions b.1, b.2, b.3 is called
to be good w.r.t. Q

Items b.1 and b.2 correspond to the observations made above. Item b.3 en-
sures, as in the proof of Theorem 5, that all good keys have, from Eve’s point of
view, approximately the same probability to be the secret key.

Definition 5. A key k ∈ {0, 1}n is called to be consistent with Q, if, F |Y
can be completed on {0, 1}n \ Y and P |U on {0, 1}n \ U in such a way that
no contradiction with Q occurs, i.e. E(r)(x) = F (πr(P (x ⊕ k) ⊕ k)) for all r,
0 ≤ r ≤ R− 1 and x ∈ X(r).

An important property of good keys is given in

Lemma 8. Each k ∈ {0, 1}n, which is good w.r.t. Q, is consistent with Q.

Proof. We construct completions of P ′ of P |U on {0, 1}n \ U and F ′ of F |U on
{0, 1}n \ Y which make a good key k consistent with Q.

We run with u through {0, 1}n in a certain order and define (if still necessary)
the function values P ′(u) and F ′(πr(P (u) ⊕ k)), resp. F ′(πr(P ′(u) ⊕ k)), in
a manner which makes k consistent with Q. We dynamically maintain a set
Target(P ′) which is initially set to {0, 1}n \ V . Whenever we define P ′(u) for a
new u, we delete P ′(u) from Target(P ′).

– Phase 1, we define P ′(u) for all u ∈ {0, 1}n for which u⊕k = x ∈ X∗. As k is
good, it holds u 6∈ U . We fix the unique y ∈ Y ∗ for which y = P (x⊕k∗)⊕k∗.
As k is good, it holds y ⊕ k 6∈ V . Thus, we define P ′(u)← y ⊕ k.

– Phase 2 concerns all u ∈ U for which u⊕k ∈ X(r) for some r, 0 ≤ r ≤ R−1.
Note that u ⊕ k 6∈ X∗, otherwise, k would be bad via definition 4, b.1.
Moreover, πr(P (u)⊕ k) 6∈ Y , otherwise k would be bad via definition 1, b.2.
We set

F ′(πr(P (u)⊕ k))← E(r)(u⊕ k).

– Phase 3 concerns all u 6∈ U for which x = u ⊕ k ∈ X(r) \ X∗ for some
r, 0 ≤ r ≤ R − 1. Here, it is not allowed that πr(P (x ⊕ k) ⊕ k) ∈ Y .
Corresponding to this, we define a set

Forbidden(x) = {y ∈ {0, 1}n ;∃r(0 ≤ r ≤ R−1)∧(x ∈ X(r))∧(πr(y) ∈ Y )},

and choose
P ′(u) ∈ Target(P ′) \ (Forbidden(x)⊕ k).



Note that for all remaining u ∈ {0, 1}n and y ∈ {0, 1}n, the values of
P ′(u) ∈ Target(P ′) and F ′(y) ∈ {0, 1}n can be freely chosen without gener-
ating contradictions with the E-queries occuring in Q. �

Note that the proof gives information how completions P ′ of P |U on {0, 1}n\
U and F ′ of F |U on {0, 1}n\Y look like, which are consistent with the assumption
that a good key k is the secret key. In particular,

– Q determines the values of P ′ on X∗ ⊕ k, a set of size |X∗|.
– Q implies that the function values of P ′ on the set ((X \X∗) ⊕ k) \ U are

forbidden to be in a set of at most |Y | elements.
– Q determines the values of F ′ on a set of size |X \X∗|.

We consider again a slightly modified game 3. The difference with game 2
is that Eve wins immediately in phase A if she manages to pose a query which
makes k∗ bad. Clearly, the success probability of Eve for winning game 1 is
bounded from above by the success probability of Eve for winning game 3.

Starting from here, the proof can be completed by exactly the same argu-
ments used in the proof of Theorem 5. At some points, the probabilities for
making the secret key bad when asking queries or for generating a structural
collision increase by a factor of R. But this does not destroy anything as R is
supposed to be polynomially bounded in n. �

6 Conclusion and Acknowledgement

In this work, we studied FP -construction, which are key-alternating PRF con-
struction. We proved sharp security bounds for two basic types of FP-constructions
in the random oracle model, namely a sharp n/2-bound for the F (0)-construction
and a sharp 2/3 · n-bound for the FP (1)-construction. We showed further, how
FP-constructions can be used to model the state initialization mechanisms of
keystream generator based stream ciphers, and how corresponding operation
modes for KSG-based stream ciphers can be defined which provide provable
security w.r.t. taime-space-data tradeoff attacks beyond the birthday bound.

One interesting problem is to find out if a lower bound of the same order
can be shown for distinguishing the FP(1)-PRF from a truly random permu-
tation. Another open problem is to show sharp bounds on the security of FP-
constructions of higher iteration depth. In analogy to Even-Mansour ciphers, we
conjecture that the security level of the FP (r)-construction of iteration depth r
over r independent permutations over {0, 1}n, and r+ 1 independent n-bit keys
(see figure 4) is r+1

r+2n.

Acknowledgments I would like to thank Pavel Pudlak, Stefan Lucks, Andreas
Jakoby, Frederik Armknecht, and Matthias Hamann for many fruitful discus-
sions.
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A Proof of Lemma 6, part (i)

Proof of lemma 6, part (i):
We have to show that the PrQ-values of two arbitrarily fixed keys in Kg

differ by a factor of at most e2·2
(α− 2

3
)n

, which tends to one for increasing n.

For all keys k ∈ Kg let ConsPFQ(k) denote the set of all pairs (P̃ , F̃ ) for

which k, P̃ , F̃ ) ∈ ΩQ.
Note that

PrQ(k) =
|ConsPFQ(k1, k2)|

|ΩQ|
.

Let us further denote by ConsPQ(k) the set of all completions P̃ of P on

{0, 1}n \ U for which there is some completion F̃ of F on {0, 1}n \ Y which
yields (k, P̃ , F̃ ) ∈ ΩQ.

Moreover, for all P̃ ∈ ConsPQ(k) let us denote by ConsFQ(k, P̃ ) the set of

all completion F̃ of F on {0, 1}n \ Y which yields (k, P̃ , F̃ ) ∈ ΩQ. Note that

|ConsPFQ(k)| =
∑

P̃∈ConsPQ(k)

|ConsFQ(k, P̃ )|.

At least note that for all k ∈ Kg and all P̃ ∈ ConsPQ(k) it holds that

|ConsFQ(k, P̃ )| is equal, namely

|ConsFQ(k, P̃ )| = 2µ(Q),

where µ(Q) = 2n − |Y | − |X \X∗|.
This is because the E-queries in Q determine the F̃ -values in P̃ ((X \X∗)⊕

k)⊕ k. Outside of this set, the F̃ -values can be arbitrarily chosen. The fact that
k is good implies that (

P̃ ((X \X∗)⊕ k)⊕ k
)
∩ Y = ∅.

This implies that for all k and k′ from Kg it holds that

PrQ(k)

PrQ(k′)
=
|ConsPQ(k)|
|ConsPQ(k′)|

.

At next observe that for all P̃ ∈ ConsP (k) and u ∈ ((X \X∗)⊕ k) \U it has to
be true that

P̃ (u) 6∈ (Y ⊕ k) \ V.

(See phase 4 of the algorithm described in the proof of lemma 2).

Hence, |ConsPQ(k)| depends on |(X \X∗)⊕k)∩U | and |(Y ⊕k)∩V |, which
can vary between 0 and ∆ := 2(1/3)n (Here, item b.3 of the definition 1 comes
in).



For k ∈ Kg, the value |ConsPQ(k)| is minimal if

|X ⊕ k) ∩ U | = |(Y ⊕ k) ∩ V | = 0.

In this case we have that

|ConsPQ(k)| = T ! · T (T − 1) · · · (T − (t− 1))

for T = 2n − |U | − |X| and t = |X|. (Let us suppose |X| = |Y |.)

On the other hand, |ConsPQ(k)| is maximal if

|(X \X∗)⊕ k) ∩ U | = |(Y ⊕ k2) ∩ V | = ∆,

which implies that

|ConsPQ(k)| = (T +∆)! · (T +∆) · · · (T +∆− (t−∆− 1)).

This implies that the PrQ-values of elements from Kg can differ by a factor
which is at most P1 · P2, where

P1 =
(T +∆)(T +∆− 1) · · · (T +∆− (t−∆− 1))

T (T − 1) · · · (T − (t−∆− 1))
,

P2 =
(T + 1)(T + 2) · · · (T +∆)

(T − t+ 1)(T − t+ 2) · · · (T − t+∆)
.

Note that

P1 =
(T + 1)(T + 2) · · · (T +∆)

(T − (t−∆) + 1) · · · (T − (t−∆) +∆)

and that

P1 · P2 ≤
(

T

T − (t−∆)

)∆
·
(

T

T − t

)∆
≤
(

T

T − t

)2∆

.

We derive a lower bound for the inverse of
(

T
T−t

)2∆
.

Note that (
T − t
T

)2∆

=

((
1− 1

T/t

)T/t)2∆·(t/T )

≈ e− 2∆·t
T ≥ e−4∆·2

(α−1)n

.

Here we used that t ≤ 2α·n and T ≥ 1
22n if n large enough.

Inserting ∆ = 2(1/3)n completes the proof of part (i) of lemma 6. ut
ut



B Completing the Proof of Lemma 7, Items (5) and (6)

Let X ′ ⊆ X, |X ′| = t. We have to estimate the success probability of Eve to
choose an element y from P (X ′ ⊕ k∗) ⊕ k∗ with the next query after Q (which
we suppose to be an F -query).

Therefore, we fix some x ∈ X and estimate Eve’s success probability for the
event Succx that Eve succeeds with choosing y such that y = P (x⊕ k∗)⊕ k∗.

We divide Kg into to subsets Kg
1 and Kg

2 , where

Kg
1 = {k ∈ Kg;x⊕ k 6∈ U},

Kg
2 = {k ∈ Kg;x⊕ k ∈ U}.

Note that

Pr[Succx] = Pr[k∗ ∈ Kg
1 ]·Pr[Succx|k∗ ∈ Kg

1 ]+Pr[k∗ ∈ Kg
2 ]·Pr[Succx|k∗ ∈ Kg

2 ]

≤ Pr[Succx|k∗ ∈ Kg
1 ] + Pr[k∗ ∈ Kg

2 ] · Pr[Succx|k∗ ∈ Kg
2 ].

Note further that for all k ∈ Kg
1 Eve does not know P (x ⊕ k). Consequently,

for all y ∈ {0, 1}n it holds the following. If k = k∗ then Eve succeeds with
y if and only if P (x ⊕ k) = y ⊕ k. The probability for this event is at most
1/(2n − |U |) ≤ 2−(n−1). Consequently,

Pr[Succx|k∗ ∈ Kg
1 ] ≤ 2−(n−1).

For estimating Pr[Succx(y)|k∗ ∈ Kg
2 ] note first that it may happen that P (x⊕

k) ⊕ k = P (x ⊕ k′) ⊕ k′ for different keys k 6= k′. Eve maximizes her success
probability if she chooses a maximal set K ⊆ Kg such that P (x⊕k)⊕k is equal
for all k ∈ K, and guesses that k∗ ∈ K, i.e., that P (x ⊕ k∗) ⊕ k∗ = y where
y = P (x ⊕ k) ⊕ k for some k ∈ K. In this case, Eve’s success probability is at
most 2 · |K| · |Kg|−1.

We estimate Eve’s success probability by showing that the probability that
|K| ≥ 6 is sufficiently small.

Consider the following equivalence relation on U . For all u, u′ ∈ U let us
write

u ≡P u′ ⇐⇒ P (u)⊕ P (u′) = u⊕ u′.

Let us further denote by Max(P,U) the size of the largest equivalence class
w.r.t. ≡P .

Note that if u ≡P u′ and k = u ⊕ x and k′ = u′ ⊕ x then P (x ⊕ k) ⊕ k =
P (x⊕ k′)⊕ k′.

This means, that under the condition that k∗ ∈ Kg
2 , Eve maximizes her

success probability by doing the following:

– computing a maximal set K ⊆ Kg
2 such that x⊕k ≡P x⊕k′ for all k, k′ ∈ K,

– choosing y in such a way that y = P (x ⊕ k) ⊕ k for some (i.e., for all) all
k ∈ K.



We obtain that

Pr[Succx|k∗ ∈ Kg
2 ] ≤ 2 · |K|

|Kg
2 |
,

if n is large enough. Taking into account that |K| ≤Max(P,U) we obtain that

Pr[Succx|k∗ ∈ Kg
2 ] ≤ Pr[Max(P,U) < 6]·Pr[Succx(y)|k∗ ∈ Kg

2 ,Max(P,U) < 6]

+Pr[Max(P,U) ≥ 6] · Pr[Succx(y)|k∗ ∈ Kg
2 ,Max(P,U) ≥ 6]

≤ Pr[Succx(y)|k∗ ∈ Kg
2 ,Max(P,U) < 6] + Pr[Max(P,U) ≥ 6]

≤ 10

|Kg
2 |

+ Pr[Max(P,U) ≥ 6].

Consequently,

Pr[k∗ ∈ Kg
2 ] · Pr[Succx|k∗ ∈ Kg

2 ] ≤ 2
|Kg

2 |
|Kg|

(
10

|Kg
2 |

+ Pr[Max(P,U) ≥ 6]

)

≤ 20

|Kg|
+ 2 · Pr[Max(P,U) ≥ 6].

Clearly, the event Max(P,U) ≥ 6 implies the existence of some U ′ ⊆ U , |U ′| = 6,
such that u ≡P u′ for all u, u′ ∈ U ′. Given a subset U ′ ⊆ U with 6 elements, the
probability for the event that u ≡P u′ for all u, u′ ∈ U ′ equals

5∏
i=1

1

2n − i
≤
(

1

1/2 · 2n

)5

= 25 · 2−5·n.

Consequently,

Pr[Max(P,U) ≥ 6] ≤ |U |6 · 25 · 2−5·n ≤ 25 · 2(2/3)n ·
(

2−(1/3)n
)5
.

Consequently, for r = 6, it holds

Pr[Max(P,U) ≥ 6] ≤ 32 · 2−n.

Putting all things together we obtain that

Pr[Succx(y)] ≤ 2−(n−1) +
20

|Kg|
+ 64 · 2−n ≤ 20

|Kg|
+ 66 · 2−n < 86

|Kg|
.

The proof of item (6) can be done by using exactly the same arguments. ut



C Proof of Lemma 4

Let Q = (q1, · · · , qM ), be a sequence of queries of M ≤ 2α·n queries, which fulfils
E∗. For all i = 1, · · · ,M let Gi denote the event that k∗ remained good after
(q1, · · · , qi) and Hi the event that |X∗| ≤ 2(1/3)n after (q1, · · · , qi). We have to
show that

M∑
i=1

Pr[qibad|Gi−1 ∩Hi−1] ≤ O
(
2−ε2·n

)
for some ε2 > 0.

We estimate first the probabilities that during Q the secret key k∗ becomes
bad via item b.1 of the definition 1 of bad keys, In a last step we then estimate
the probability that during Q the secret key k∗ becomes bad via item b.3. Note
that k∗ can never fulfill item b.2 of definition 1.

We will distinguish four cases corresponding to the four possible types of
queries. We fix an arbitrary i, 1 ≤ i ≤M .

Case 1: Suppose that query qi asks for P (u) for some u 6∈ U :

1.1 If u ∈ X∗ ⊕ k∗ then k∗ becomes bad (due to corollary 2, the probability for
this is at most 2−(n−1) · |X∗| ≤ 2 · 2−(2/3)·n).

1.2 If u ∈ P−1(Y ∗ ⊕ k∗) then k∗ becomes also bad (probability also at most
2−(n−1) · |Y ∗| ≤ 2 · 2−(2/3)·n).

1.3 If u 6∈ X∗ ⊕ k∗ and P (u) 6∈ Y ∗ ⊕ k∗ then k∗ remains good.

The reason for the last item is that from u ∈ (X \X∗)⊕k∗ it follows P (u) 6∈ Y ⊕
k∗. Otherwise we had E(u⊕k∗) = F (P (u)⊕k∗) which would imply u⊕k∗ ∈ X∗.

Case 2: Query qi asks for P−1(v) for some v 6∈ V :

2.1 If v ∈ Y ∗ ⊕ k∗ then k∗ becomes bad (probability at most 2−(n−1) · |X∗| ≤
2 · 2−(2/3)·n).

2.2 If v ∈ P (X∗ ⊕ k∗) then k∗ becomes also bad (probability at most 2−(n−1) ·
|X∗| ≤ 2 · 2−(2/3)·n).

2.3 If v 6∈ (Y ∗ ⊕ k∗) ∪ P (X∗ ⊕ k∗) then k∗ remains good (similar argument as
in case 1.3).

This implies that the overall probability that, during Q, the secret k∗ will be
made to fulfill item b.1 via a P - or a P−1-query is bounded by 2α·n · 2−(2/3)·n
which belongs to O (2−ε·n) for some ε > 0.

Case 3: Query qi asks for E(x) for some x 6∈ X. Let y = P (x ⊕ k∗) ⊕ k∗.
Then k∗ becomes bad if and only if x ⊕ k∗ ∈ U and y = P (x ⊕ k∗) ⊕ k∗ ∈ Y .
(In this case, Eve sees that E(x) = F (y), gets the information from Alice that
y = P (x⊕ k∗)⊕ k∗, and x will be added to X∗ and y to Y ∗.)

Note that this is equivalent to the event that k∗ ∈ Kg
x , where

Kg
x = {k ∈ Kg;x⊕ k ∈ U ∧ P (x⊕ k)⊕ k ∈ Y }



Consequently, the probability that qi makes k∗ bad via item b.1 is bounded by
2 · 2−n|Kg

x |.
This implies that the overall probability that, during Q, the secret k∗ will be

made to fulfill item b.1 via an E-query is bounded by

2 · 2−n ·
∑
x∈X
|Kg

x|.

Note that ⋃
x∈X

Kg
x ⊆ Bad(Q)

and remember that |Bad2(Q)| ≤ 2(1−ε0)n (see corollary 1), as Q fulfills E∗.
Consequently, the probability that k∗ becomes bad via some E-query during Q
is bounded by 2 · 2−(n−1).

The overall probability of Case 4 that, during Q, an F -query makes k∗

fulfilling item b.1 can be estimated in the same way.

We fix now some number N , 1 ≤ N ≤ |Q|, and estimate the probability for
the event Ẽ that k∗ becomes bad via b.3 through query qN under the condition
that k∗ remained good after q1, · · · , qN−1. Note that Ẽ implies that the maxi-
mum of |(X ⊕ k∗) ∩ U | and |(Y ⊕ k∗) ∩ V | is b2(1/3)nc after q1, · · · , qN−1 and
b2(1/3)nc+ 1 after q1, · · · , qN .

For i = 1, · · · , N we denote by Ci ∈ {0, 1} a random {0, 1}-variable for which

Ci = 1 if qi enlarges |(X ⊕ k∗)∩U | or |(Y ⊕ k∗)∩ V |, and denote C =
∑N
i=1 Ci.

We obtain that

Pr[Ẽ] ≤ Pr
[
C > 2(1/3)n

]
.

We complete the proof by showing that Pr
[
C > 2(1/3)n

]
< e−n < 2−(2/3)n.

Note that Ci = 1 if and only if Eve is successful in asking with the i-th query

– for P (u) for some u from X ⊕ k∗ , or

– for P−1(v) for some v from Y ⊕ k∗ , or

– for E(x) for some x from U ⊕ k∗ , or

– for F (y) for some y from V ⊕ k∗.

Here, X,Y, U, V denote the corresponding sets after performing the first i − 1
queries along Q.

Due, to Lemma 7 the probability of each of the four events is bounded by
2 · 2(α−1)n, i.e.,

Pr[Ci = 1] ≤ 2 · 2(α−1)n.

We estimate the probability that
∑N
i=1 Ci exceeds 2(1/3)n by using the following

technique called Chernov Bounds in the literature.



Theorem 7. Let p ∈ (0, 1), and A1, · · · , AN be a set of independent random
variables, where for all i = 1, · · · , N holds that Pr[Ai = 1− p] = p and Pr[Ai =

−p] = 1− p. Let A =
∑N
i=1Ai. Then

Pr[A > a] < e−
2a2

N (6)

for all a > 0.

For a proof see, e.g., Alon, Spencer, Erdos, The Probabilistic Method, Wiley
Interscience 1992, Theorem A4 on page 235. �

We derive from Theorem 7 a corresponding result for random {0, 1}-variables.

Lemma 9. Let Bi = Ai + p. Note that Bi ∈ {0, 1} and Pr[Bi = 1] = p. Let

B =
∑N
i=1Bi. Then, for all δ > 0, it holds

Pr[B > (p+ δ)N ] < e−2δ
2N . (7)

Proof: By definition, B = A + N · p. The proof is completed by putting
a = δ ·N into the relation in Theorem 7. �

We will apply Chernov Bound arguments in the following modified scenario.

Lemma 10. Let C1, · · · , CN denote a collection of (not necessarily indepen-
dent) random {0, 1}-variables fulfilling Pr[Ci = 1] = pi < p for all i, 1 ≤ i ≤ N ,

and some p, 0 < p < 1. Let C =
∑N
i=1 Ci.

We suppose that, for i > 1, the probabilities pi depend deterministically on
(and can be computed from) the outcomes of the experiments E1, · · · , Ei−1 behind
C1, · · · , Ci−1.

Then, for all δ > 0, it holds

Pr[C > (p+ δ)N ] < e−2δ
2N .

At several places we will take δ =
√
∆/(2N) and obtain

Pr[C > (p+ δ)N ] = Pr

[
C > pN +

√
∆ ·N

2

]
< e−∆. (8)

Proof: We construct a collection of mutually independent binary random
variables B1, · · · , BN satisfying

– Ci = 1 implies Bi = 1,
– Pr[Bi = 1] = p.



for all i, 1 ≤ i ≤ N .

This proves our lemma 10, as
∑N
i=1 Ci ≤

∑N
i=1Bi with probability one, and

as lemma 9 can be applied to B =
∑N
i=1Bi.

The experiments Ẽi behind Bi are for all i, 1 ≤ i ≤ N , defined as follows:

– Compute pi from the outcomes of the experiments E1, · · · , Ei−1.
– Perform Ei and output one (i.e. Bi = 1) if Ei is successful (i.e. if Ci = 1).
– If Ei is not successful (i.e. Ci = 0) then perform a completely independent

experiment E′i with success probability qi = p−pi
1−pi and output one (i.e. Bi =

1) if E′i is successful.

Note that Pr[Bi = 1] equals

Pr[Yi = 1|Xi = 1] · Pr[Xi = 1] + Pr[Yi = 1|Xi = 0] · Pr[Xi = 0]

= 1 · pi + qi · (1− pi) = p. �

For completing the proof of lemma 4 we go into relation (8) and set p =
2 · 2(α−1)n and ∆ = n. We obtain that

Pr

[
N∑
i=1

Ci > 2 · 2(α−1)n · 2α·n +
√
n/2 · 2(α/2)n

]
< e−n.

From α < 2/3 it follows that

2 · 2(2α−1)n +
√
n/2 · 2(α/2)n < 2(1/3)n

if n is large enough. Consequently, Pr
[∑N

i=1 Ci ≥ 2(1/3)n
]
< e−n.

This completes the proof of lemma 4. ut

D Proof of Lemma 5

Proof (Lemma 5).
Let α = α∗ − ε for some ε > 0, and let Q = (q1, · · · , qN ), N ≤ 2α·n, denote

a sequence of queries fulfilling E∗. We have to show that if the secret key k∗

is good after Q then the probability that |X∗| exceeds 21/3·n is smaller than
e−n < 2−2/3·n, if n is large enough.

Note first that if F and E were independent random functions then, for each
E- and F -query in Q, the probability to generate an EF -collision is at most
2(α−1)n. Thus, the proof of lemma 5 could be completed with the same Chernov
Bound argument (Lemma 8) used above.

But here the situation is different: Note that an query q generates an EF -
collision of type 1 iff



E1 q asks for E(x) for some x ∈ P−1(Y ⊕ k∗)⊕ k∗, or
E2 q asks for F (y) for some y ∈ P (X ⊕ k∗)⊕ k∗.

The probability for this is at most 86 · |Y ||Kg| in case E1 and 86 · |X||Kg| in case E2

(see lemma 7, items 5,6). The problem is that these probability increases with
|X∗| and |Y ∗|.

We denote by Di, 1 ≤ i ≤ N, a random {0, 1}-variable which outputs one if,
with the i-th query qi, Eve is successfull in asking for some

– x ∈ P−1(Y ⊕ k∗)⊕ k∗, or some
– y ∈ P (X ⊕ k∗)⊕ k∗

We denote by pi the probability that Di = 1 and by ψi the size of |X∗| before
posing query qi. We suppose that n is large enough such that the number of keys
which are bad with respect to b.2 and b.3 of definition 1 is smaller than 1/2 · 2n
(this can be supposed due to lemma 6). It follows that

pi ≤ 86 · 2α·n

1/2 · 2n − 2 · 2α·n · ψi

≤ 174

2(1−α)n − 4 · ψi
.

We have to show that

Pr

[
N∑
i=1

Di > 21/3·n

]
< e−n.

Note that, in the worst case, pi can become 1 if i ≥ 1/4 · 2(1−α)n.

Consequently, for N ≥ 1/4 · 2(1−α)n, the probability that
∑N
i=1Di exceeds

21/3·n cannot be estimated by a direct application of Chernov Bounds.
In the following, we have to estimate probabilities of type

Pr

 j+N∑
i=j+1

Di > M

∣∣∣∣∣
j∑
i=1

≤ R


and of type

Pr

 j+N∑
i=j+1

Di > M

∣∣∣∣∣∣
j∑
i=1

Di ≤ R,
j+N∑
i=j+1

Di ≤ S

 .
Note that these probabilities does not depend on j.

We will use a recursive argument which is based on the following idea. Sup-
pose that we know that

Pr

 j+N∑
i=j+1

Di > 21/3·n

∣∣∣∣∣
j∑
i=1

Di ≤ R · 21/3·n
 < e−C·n



for some N < 2α·n, C > 0, R ≥ 1. Let M < 21/3·n. Then

Pr

 j+N∑
i=j+1

Di > M

∣∣∣∣∣
j∑
i=1

Di ≤ R · 21/3·n
 ≤

Pr

 j+N∑
i=j+1

Di > M

∣∣∣∣∣∣
j∑
i=1

Di ≤ R · 21/3·n,
j+N∑
i=j+1

Di ≤ 21/3·n

+ e−C·n. 7

If
∑j
i=1Di ≤ R · 21/3·n and

∑j+N
i=j+1Di ≤ 21/3·n then we can derive the

following upper bound for all pi, 1 ≤ i ≤ j +N :

pi <
174

2(1/3+ε)n − 4 · (R+ 1) · 21/3·n
< 2−1/3·n

if n large enough. Now, the Chernov Bound argument (Lemma 8) can be applied
directly. For M ≥ (2−1/3·n +

√
∆/(2N))N it holds

Pr

 j+N∑
i=j+1

Di > M

∣∣∣∣∣∣
j∑
i=1

Di ≤ R · 21/3·n,
j+N∑
i=j+1

Di ≤ 21/3·n

 < e−∆.

Now suppose that M < 21/3·n and let a ≤ 21/3·n/M . We obtain

Pr

j+a·N∑
i=j+1

Di > 21/3·n

∣∣∣∣∣
j∑
i=1

Di ≤ (R− 1) · 21/3·n


≤ Pr

j+a·N∑
i=j+1

Di > a ·M

∣∣∣∣∣
j∑
i=1

Di ≤ (R− 1) · 21/3·n


≤ a · Pr

 j′+N∑
i=j′+1

Di > M

∣∣∣∣∣∣
j′∑
i=1

Di ≤ R · 21/3·n


< a · (e−∆ + e−C·n).

For seeing this, we divide the interval j + 1, · · · , j + a · N into a consecutive
intervals of length N .

The event that
∑j+a·N
i=j+1 Di > a ·M , under the condition that

∑j
i=1Di ≤

(R− 1) · 21/3·n, implies that the number of hits in some of these subintervals of
length N has to exceeds M .

If this is not the case for all subintervals, then, additionally, for all subinter-
vals holds, that less then (R−1) ·21/3·n+a ·M ≤ R ·21/3·n hits happened before
starting with the subinterval.

7 as Pr(A) = Pr(A|B)Pr(B) + Pr(A|¬B)Pr(¬B) ≤ Pr(A|B) + Pr(¬B).



This implies a recursive argument.
For all natural k ≥ 0 let

αk =
1

3

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k

)
.

Note that
lim
k→∞

αk = 2/3.

Note further that for all k ≥ 0

αk+1 =
1

3
+
αk
2
.

Define now for all natural k ≥ 0 and δ > 0

α̃k := αk − δ

Note that all α̃k satisfy the recursion

˜αk+1 =
1

3
+
α̃k − δ

2
.

It follows that

α̃k −
1

3
=

˜αk−1 − δ
2

<
˜αk−1
2

<
α̃k
2
. (9)

Lemma 11. For all naturals K ≥ 0 and ∆ > 0 it holds the following. Let

δ = log2(∆)
n and α̃k = αk − δ for all k, 0 ≤ k ≤ K. Then

Pr

2α̃K ·n∑
i=1

Di > 21/3·n

 < e−(∆−(K/3)n).

We show first that the Recursion Lemma proves the Crucial Lemma.
Let K = min{k, αk > α}. Let ∆ = (1 + (K/3)) · n and fix some n0 such that

αK − α > δ = (log2(n) + log2(1 +K/3))/n for n ≥ n0.

We obtain that α̃K = αK − δ ≥ α. Consequently,

Pr

[
2α·n∑
i=1

Di > 21/3·n

]
≤ Pr

2α̃K ·n∑
i=1

Di > 21/3·n

 < e−n. �

We prove the Recursion Lemma by showing the following more general state-
ment per induction over k, 0 ≤ k ≤ K:

Pr

j+2α̃k·n∑
i=j+1

Di > 21/3·n

∣∣∣∣∣
j∑
i=1

Di ≤ (K − k) · 21/3·n
 < e−(∆−(k/3)n).



For k = 0 the claim is obviously true as α̃0 < 1/3. Thus

j+2α̃0·n∑
i=j+1

Di ≤ 2(1/3)·n

is true with probability one.
We fix now some k, 0 ≤ k ≤ K−1, suppose that the more general statement

is true for this k and show the more general statement for k + 1. We repeat our
argumentation above for N = 2α̃k·n. Note that

(2−1/3·n +
√
∆/(2N))N = 2(α̃k−1/3)·n + 2(α̃k/2)·n ·

√
∆/2

≤ 2(α̃k/2)·n + 2(α̃k/2)·n · 1

2
·
√
∆ (cf.(9))

≤
√
∆ · 2(α̃k/2)·n = 2

1
2 log2(∆)+(α̃k/2)·n

= 2
α̃k+δ

2 ·n

We obtain, as argued above, by the induction hypothesis, that

Pr

j+2α̃k·n∑
i=j+1

Di > 2
α̃k+δ

2 ·n

∣∣∣∣∣
j∑
i=1

Di ≤ (K − k) · 2(1/3)·n


< e−∆ + e−(∆−(k/3)·n).

Now divide (as above) the interval 1, · · · , 2α̃k+1·n into 2(α̃k+1−α̃k)·n consecutive
intervals of length 2α̃k·n.

Note that

α̃k+1 − α̃k =
1

3
− α̃k − δ

2
− δ =

1

3
− α̃k + δ

2
.

Consequently,

Pr

j+2α̃k+1·n∑
i=j+1

Di > 2
1
3 ·n

∣∣∣∣∣
j∑
i=1

Di ≤ (K − (k + 1)) · 2 1
3 ·n



≤ 2

(
1
3−

α̃k+δ

2

)
·n · Pr

j′+2α̃k·n∑
i=j′+1

Di > 2
1
3 ·n

∣∣∣∣∣∣
j′∑
i=1

Di ≤ (K − k) · 2 1
3 ·n


≤ 2

(
1
3−

α̃k+δ

2

)
·n
(
e−∆ + e−(∆−(k/3)·n)

)
< e

1
3 ·n−1

(
e−∆ + e−(∆−(k/3)·n)

)
≤ e 1

3 ·n−1 · 2 · e−(∆−(k/3)·n)

< e
1
3 ·n · e−(∆−(k/3)·n) = e−(∆−((k+1)/3)·n).

ut
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