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Abstract

Many cryptographic schemes have been established based on the
hardness of lattice problems. For the asymptotic efficiency, ideal lat-
tices in the ring of cyclotomic integers are suggested to be used in
most such schemes. On the other hand in computational algebraic
number theory one of the main problem is called principle ideal prob-
lem (PIP). Its goal is to find a generators of any principle ideal in the
ring of algebraic integers in any number field. In this paper we es-
tablish a polynomial time reduction from approximate shortest lattice
vector problem for principle ideal lattices to their PIP’s in many cy-
clotomic integer rings. Thus if a polynomial time quantum algorithm
for PIP of arbitrary number fields could be proposed, this would im-
plies that approximate SVP problem for principle ideal lattices within
a polynomial factor in some cyclotomic integer rings can be solved by
polynomial time quantum algorithm.

1 Introduction

A lattice L is a discrete subgroup in Rn generated by several linear in-
dependent vectors b1, ...,bm where m ≤ n. L := {a1b1 + · · · + ambm :
a1 ∈ Z, ..., am ∈ Z}. The volume vol(L) of this lattice is

√
det(B ·Bτ ),

where B := (bij) is the m × n generator matrix of this lattice, where
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bi = (bi1, ..., bin) ∈ Rn are the base of this lattice. The length of the
shortest non-zero lattice vector is denoted by λ1(L). The famous shortest
vector problem (SVP) is: given a Z basis of an arbitrary lattice L to find
a lattice vector with length λ1(L). The approximate SVP is to find some
lattice vectors of length within f(n)λ1(L) where f(n) is some approximate
factor ([17]). A breakthrough result of M. Ajtai [1] showed that SVP is NP-
hard under the randomized reduction. Another breakthrough by Micciancio
proved that approximate SVP within some constant factor is NP-hard un-
der the randomized reduction ([17]). For the latest development we refer
to Khot [14]. It has been proved that approximate SVP within a quasi-
polynomial factor is NP-hard under the randomized reduction.

Because lattice-based cryptography has been very active in recent years,
some spacial structured lattices such as ideal lattices have been used for
example in Gentry’s fully homomorphic encryption scheme [11], collision-
resistant hash functions [18] and multi-linear maps [12]. In particular prin-
ciple ideal lattices in cyclotomic integer rings have been considered suitable
for efficient implementation. Lattice based cryptography has been consid-
ered suitable for post-quantum cryptography because of the belief that there
is no polynomial time quantum algorithm for approximate SVP problem
(conjecture 1.2 in [19] and [11, 12, 15, 16, 16, 18, 19, 21, 22]).

Let ξn be a primitive n-th root of unit, the n-th cyclotomic polyno-
mial Φn is defined as

∏n
j=1,gcd(j,n)=1(x − ξjn). This is a monic irreducible

polynomial in Z[x] of degree φ(n), where φ is the Euler function. The n-
th cyclotomic field is Q(ξn) = Q[x]/(Φn(x)) and the ring of integers in
Q(ξn) is exactly Z[ξn] = Z[x]/(Φn(x)) (see [8, 23]). For example when

n = 2k, the n-th cyclotomic polynomial is Φ2k(x) = x2
k−1

+ 1. When n = p
is an odd prime Φp(x) = xp−1 + xp−2 + · · · + x + 1 and when n = pk,

Φpk(x) = Φp(x
pk−1

) = (xp
k−1

)p−1 + · · ·+ xp
k−1

+ 1. Interestingly there have
been many works on the forms of cyclotomic polynomials (see [20, 23]).

Let K be an algebraic number field and OK is its ring of integers, it
is well-known there is a positive definite inner product on the lattice OK

defined by < u, v >= trK/Q(uv∗) where v∗ is its complex conjugate (see [8,
15]). If we can find one generator of an ideal I ⊂ OK , I is called a principle
ideal. The following principle ideal problem is a main problem in computa-
tional number theory.
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Principle Ideal Problem. Given a Z-basis of a principle ideal I, find
one generator of this principle ideal.

This problem has been studied by many authors and we refer to [2, 3
, 4, 5, 6, 9, 13] for the latest development. A polynomial time quantum
algorithm to solve the PIP for all algebraic number fields have been worked
by some authors. This would implies that approximate SVP for principle
ideal lattices in some cyclotomic integer rings within a polynomial factor is
easy in quantum computing setting.

In this paper we will show the following results.

Reduction to PIP. Let p be a prime. For cyclotomic integer rings Z[ξn] =
Z[x]/(Φn(x)) where n = pk, if a generator of a principle ideal I ⊂ Z[ξn] has

been found, then we find a lattice vector v ∈ I of length within (cd4)
d−1
2d λ1(I)

by using at most d2 operations in Z. Here d = φ(n) = (p − 1)pk−1 is the
degree of the extension.

The following proposition is useful in this paper.

Proposition 1.1. If x ∈ I ⊂ Z[ξn] is an element of an ideal in the ring
of n-th cyclotomic integers. Then (vol(I))1/d ≤ ||x||. Here d = φ(n) is the
degree of the degree of Φn. In particular (vol(I))1/d ≤ λ1(I).

Proof. It is clear trQ(ξn)/Q(gg∗) = trQ(ξn)/Q(gξtng
∗(ξtn)∗) = trQ(ξn)/Q(gg∗ξtn(ξtn)∗).

Thus g,gξn, ...,gξ
d−1
n span a (full-rank) sub-lattice in I and

∏d−1
t=0 ||gξt|| =

||g||d ≥ vol(I). The conclusion follows directly.

2 Reduction

Let u1 ≤ u2 ≤ · · · ≤ us be s real numbers, the biggest positive difference of
the closest non-equal ui’s is defined as Hu1,...,us = max{u2−u1, ..., us−us−1}.

Theorem 2.1. In a principle ideal I of the 2k-th cyclotomic integer ring
Z[ξn] = Z[x]/(Φ2k(x)), if g = g0 + g1ξn+ · · ·+ g2k−1−1ξ

2k−1−1
n is a generator

of I satisfying the following condition.
C) Set H the biggest positive difference of the closest non-equal gi’s and gi0
is the smallest among g0, ..., g2k−1−1. We suppose −dH ≤ gi0 ≤ dH.
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Then there exists a positive constant C such that ||g|| ≤ (Cd3)
d−1
2d ·(vol(I))1/d ≤

(Cd3)
d−1
2d λ1(I) where d = 2k−1 is the degree of the extension.

Proof. First of all in this cyclotomic ring Z[ξn] = Z[x]/(Φ2k(x)) =

Z[x]/(x2
k−1

+1), 1, ξn, ..., ξ
2k−1−1
n is an orthogonal basis, since trQ(ξn)/Q(ξtn(ξtn)∗) =

2k−1 and trQ(ξn)/Q(ξt1n (ξt2n )∗) = 0 for two distinct indices t1, t2 in the set

{0, 1, ..., 2k−1− 1}. We have a Z-basis g,gξn = −g2k−1
1

+ g0ξn + g1ξ
2
n + · · ·+

g2k−1−2ξ
2k−1−1
n ,..., gξ2

k−1−1
n = −g1− g2ξn− · · · − g2k−1−1ξ

2k−1−2
n + g0ξ

2k−1−1
n

of the ideal lattice I. Without loss of the generality we can assume H can
be expressed as g2k−1−1 − gw for an index w ∈ {0, 1, ..., 2k−1 − 1}.

The norms of these vectors are the same 2k−1(g20 + · · · + g2
2k−1−1). For

any two different vectors in the basis, their inner product is < gξt1n ,gξ
t2
n >=

2k−1Σ ± gigi+t1−t2 . Then the difference ||gξt1n || · ||gξt2n ||± < gξt1n ,gξ
t2
n >=

2k−2Σ(gi ± gi−t1+t2)2 ≥ 2k−2(H)2. Actually if not all non-zero g0, ..., g2k−1
1

are equal this is obvious. Therefore |<gξ
t1
n ,gξ

t2
n >|

||gξt1 ||·||gξt2 || ≤ 1− H2

g20+···+g
2
2k−1−1

≤ 1− 1
cd3

from the condition in the Theorem if H > 0, since g20 + · · · + g2
2k−1−1 ≤

g2i0 + (gi0 +H)2 + (gi0 + 2H)2 + · · ·+ (gi0 + (d− 1)H)2 ≤ Cd3H2 if 0 < gi0
or g20 + · · · + g2

2k−1−1 ≤ g2i0 + (gi0 + h)2 + (gi0 + 2h)2 + · · · + (gi0 + wh)2 +

· · ·+ (gi0 +wh+H) + · · ·+ (gi0 +wh+ (d− 1−w)H)2 ≤ C ′d3H2 if gi0 < 0.
Here h is the smallest positive difference of the closest non-equal gi’s, w is
the biggest positive integer such that gi0 + wh < 0 and C and C ′ are two
universal constants.

If all these non-zero coefficients are equal it is clear |<gξ
t1
n ,gξ

t2
n >|

||gξt1 ||·||gξt2 || ≤

1 − ug2

(d′g2) ≤ 1 − 1
d . Here g is the same non-zero coefficient and u, d′ are

two positive integers satisfying 0 ≤ u ≤ d′ ≤ d.

Since the volume of the principle ideal lattice I = (g) can be com-
puted from the Gram matrix (trQ(ξn)/Q(gξt1n (gξt2n )∗). We have vol(I))2 ≥
||g||2k−1+1 · det(G), where G is a d× d matrix with 1 at the diagonal entries
and 1 − 1

cd3
at the non-diagonal entries (from the following Lemma 2.1).

Thus (vol(I))2 ≥ ||g||2k · ( 1
Cd3

)d−1. The conclusion follows directly.

Lemma 2.1. Let a1, ...,an be n linear independent vectors in RN

(N ≥ n) with the same Euclid norms. If | <ai,aj>
||ai||·||aj || | ≤ cosθ where 0 < θ < π

4 .
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Then the volume of the lattice spanned by a1, ...,an is bigger than or equal
to the volume of the lattice spanned by b1, ...,bn satisfying ||b1|| = · · · =

||bn|| = ||aj || and
<bi,bj>
||bi||·||bj || = cosθ.

Proof. If n = 2 the conclusion is obvious. We can adjust these vec-
tors a1, ...,an−1 in Rn−1 (spanned by these vectors) to decrease the volume.
Actually we can adjust a1, ...,an−1 such that their angles are θ and keep
the inner products of < an,a1 >,...,< an,an−1 > the distance of an to the
real subspace spanned by a1, ...,an−1 unchanged. Then the Gram matrix of
a1, ...,an−1 is fixed and of the following M(1, cosθ) form. The conclusion
follows from the following fact and the volume decreasing if we only adjust
an.

We denote the following s(M) × s(M) matrix by M(1, α) . It is not
hard to verify that the inverse of M(1, α) is of the form cM(1, β) where
0 < α < 1, c is a positive constant and β = − α

1+(s(M)−2)α . From this simple
computation the conclusion that adjusting only an will decrease the volume
can be proved.


1 α α · · · α
α 1 α · · · α
· · · · · · · · · · · · · · ·
α α α · · · 1


Theorem 2.2. Let n = p be an odd prime. In a principle ideal I of the

p-th cyclotomic integer ring Z[ξn] = Z[x]/(Φp(x)), if g = g0 + g1ξn + · · · +
gp−2ξ

p−2
n is a generator of I satisfying the following condition.

C) Set H the biggest positive difference of the closest non-equal gi’s and gi0
is the smallest among g0, ..., gp−2. We suppose −dH ≤ gi0 ≤ dH.

Then there exists a positive constant C such that ||g|| ≤ (Cd4)
d−1
2d (vol(I))1/d ≤

(Cd4)
d−1
2d λ1(I) where d = p− 1 is the degree of the extension.

Proof. It is clear trQ(ξn)/Q(1) = p − 1, trQ(ξn)/Q(ξtn) = −1 for t =
1, ..., p − 1. In this cyclotomic ring Z[ξn] = Z[x]/(Φp(x)) = Z[x]/(xp−1 +
xp−2 + · · ·+x+1), 1, ξn, ..., ξ

p−2
n is a Z- basis. We have trQ(ξn)/Q(ξtn(ξtn)∗) =

p − 1 and trQ(ξn)/Q(ξt1n (ξt2n )∗) = −1 for two distinct indices t1, t2 in the set
{0, 1, ..., p−2}. There is a Z-basis of the ideal lattice I, g = g0 +g1ξn+ · · ·+
gp−2ξ

p−2
n , gξn,..., gξp−2n . We have gg∗ = g20 +g21 + · · ·+g2p−2 +Σp−1

t=1 ξ
t
n(gtg0 +

· · · + gp−2gp−2−t + gp−1gp−1−t + g0gp−t + · · · + gt−2gp−2 + gt−1gp−1). Here
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gp−1 can be understood as zero. Therefore

trQ(ξn)/Q(gg∗) = (p− 1)(g20 + · · ·+ g2p−2)−
Σp−1
t=1 ξ

t
n(gtg0 + · · ·+ gp−2gp−2−t + gp−1gp−1−t + g0gp−t + · · ·+ gt−2gp−2 + gt−1gp−1)

trQ(ξn)/Q(gg∗ξ−tn ) = −(g20 + · · ·+ g2p−2)+

(p− 1)(gtg0 + · · ·+ gp−2gp−2−t + gp−1gp−1−t + g0gp−t + · · ·+ gt−2gp−2 + gt−1gp−1))

−Σp−1
j 6=t,j=1(gjg0 + · · ·+ gp−2gp−2−j + gp−1gp−1−j + g0gp−j + · · ·+ gj−2gp−2 + gj−1gp−1)

Then

trQ(ξn)/Q(gg∗)− trQ(ξn)/Q(gg∗ξ−tn ) = p[g2t−1 + g2p−1−t]

+p[ (gt−g0)
2

2 + · · ·+ (gp−2−gp−2−t)2

2

+
(g0−gp−t)2

2 + · · ·+ (gp−2−gt−2)2

2 ]

We have trQ(ξn)/Q(gg∗)− trQ(ξn)/Q(gg∗ξ−t) ≥ (p− 1)(H)2.

On the other hand

trQ(ξn)/Q(gg∗) + trQ(ξn)/Q(gg∗ξ−t) =
p
2 ||g + Shiftt(g)||2 − 2(g0 + · · ·+ gp−2 + gp−1)

2 =
1
2(Σi 6=j(gi + gi+t − gj − gt+j)2)

where ||a|| is the ordinary Euclid norm and g = (g0, ..., gp−2, gp−1) ∈ Rp

and Shiftt(g) = (gt, ..., gp−1, g0, ..., gt−1) is the shift of the vector g. The
last equality comes from the identity m(a21 + · · ·+ a2m)− (a1 + · · ·+ am)2 =
Σi 6=j(ai − aj)2.

Then trQ(ξn)/Q(gg∗) + trQ(ξn)/Q(gg∗ξ−t) ≥ 1
2(H ′)2. Here H ′ is a the the

biggest positive difference of the closest non-equal gi + gi−t’s.

Since trQ(ξn)/Q(gg∗) ≤ c(p−1)4(H)2 and trQ(ξn)/Q(gg∗) ≤ c(p−1)4(H ′)2

from the condition in Theorem 2.2, | trQ(ξn)/Q(gg∗)−trQ(ξn)/Q(gg∗ξ−tn )

trQ(ξn)/Q(gg∗) | ≤ 1− 1
cd4

,

where d = p− 1 is the degree of the extension. The conclusion follows from
Lemma 2.1 similarly.

Corollary 2.1. Let p be an odd prime and k be a positive integer.
In a principle ideal I of the n = pk-th cyclotomic integer ring Z[ξn] =
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Z[x]/(Φp(x
pk−1

)), if g = g0 + g1ξn + · · · + gp−2ξ
pk−pk−1−1
n is a generator of

I satisfying the following the condition.
C). Set H the biggest positive difference of the closest non-equal gi’s and gi0
is the smallest among g0, ..., g(p−1)pk−1−1. We suppose −dH ≤ gi0 ≤ dH.

Then there exists a positive constant C such that ||g|| ≤ (Cn4)
d−1
2d (vol(I))1/d ≤

(Cd4)
d−1
2d λ1(I) where d = pk − pk−1 is the degree of the extension.

Main Theorem. If n = pk where p a prime for any principle ideal lat-
tice I in the n-th cyclotomic integer ring, if a generator of I has been found,
then we can can find a generator of I satisfying the condition in Theorem
2.1, 2.2 and Corollary 2.1 with at most d2 operations in the integer ring Z.

Thus we can find a lattice vector v ∈ I satisfying ||v|| ≤ (Cd4)
d−1
2d λ1(I) with

most d2 operations in the integer ring Z. Here d = φ(n) is the degree of the
extension.

Proof. If g = g0 + g1ξn + · · · + gd−1ξ
d−1
n is a generator of I and gi0

is the smallest among all coefficients, we have gi < 0 if gi0 < −dH. Thus
we get a generator of I satisfying gi > 0 with one operation in Z. From
now on we assume that gi > 0 for all i = 0, ..., d − 1. We can get an-
other generator gξn = g0ξn + g1ξ

2
n + · · · + gd−2ξ

d−1
n + gd−1ξ

d
n. If n = 2k,

then gξ = −gd−1 + g0ξn + · · · + gd−2ξ
d−1
n . It is obvious that this gen-

erator satisfies the condition in Theorem 2.1 since it has both positive
and negative coefficients. If n = p, we can assume that gd−1 is not the
biggest among all coefficients (with at most d operations in Z). Then
gξn = −gd−1 + (g0− gd−1)ξn + · · ·+ (gd−2− gd−1)ξd−1n has positive and neg-
ative coefficients. If n = pk a similar argument give us the desired generator.

Remark. 1) The above reduction can be extended to principle ideal lat-
tices in other cyclotomic integer rings. We will give the detail in our future
paper.

2) The main result in [9] showed that under the condition if there is
a ”short” generator of a principle ideal lattice I ⊂ Z[ξpk ], then given any
generator of this principle ideal, this ”short” generator can be found effec-
tively by the using of BDD. Our result showed that given any generator of a
principle in I ⊂ Z[ξpk ], a generator of length with in cd2λ1(I) can be found
with simple reduction

3) In zeroizing attack to multilinear maps of [6] if the generator is found,
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our reduction gives the ”short” vector needed in the attack in [6]. Thus if
a possible polynomial time quantum algorithm for PIP could be proposed,
it would implies that the multilinear maps in [12] is not secure in quantum
computing setting.

Acknowledgement. The author is grateful to Phong Q. Nguyen for
introducing him to this subject.
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