
Improvements on Efficient Dynamic Provable Data Possession

scheme with Public Verifiability and Data Privacy

Clémentine Gritti, Willy Susilo, Thomas Plantard and Rongmao Chen

Centre for Computer and Information Security Research
School of Computing and Information Technology

University of Wollongong, Australia
{cjpg967,rc517}@uowmail.edu.au, {wsusilo,thomaspl}@uow.edu.au

June 30, 2015

Abstract

An efficient Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy
was recently published in ACISP’15. It appears that three attacks menace this scheme. The first one
enables the server to store only one block of a file m and still pass the data integrity verification on any
number of file blocks. The second attack permits the server to keep the old version of a file block mi

and the corresponding verification metadata Tmi after the client asked to modify them by sending the
new version of these elements, and still pass the data integrity verification. The last attack allows the
Third Party Auditor (TPA) to distinguish files when processing the data integrity checking.

In this paper, we propose several solution to overcome all the aforementioned issues. For the two
first attacks, we give two new constructions of the scheme, one using index-hash tables and the other
based on the Merkle hash trees. We compare the efficiency of these two new systems with the previous
one. For the third attack, we suggest a weaker security model for data privacy without modifying the
current scheme and a new construction to enhance the security and to achieve the strongest data privacy
notion.

1 Introduction

Provable Data Possession (PDP) is a protocol that allows a client to verify the integrity of its data stored
at an untrusted server without the need to retrieve the entire file. In a Dynamic Provable Data Possession
(PDP) system with Public Verifiability and Data Privacy, three entities are involved: a client who is the
owner of the data to be stored, a server that stores the data and a Third Party Auditor (TPA) who may
be required when the client wants to check the integrity of its data stored on the server, without acquiring
any information about these data. The system is publicly verifiable with the possible help of the TPA who
acts on behalf of the client to check the integrity of the data. The system exhibits data dynamicity at
block level such that three essential operations can be done, namely data insertion, data deletion and data
modification. Finally, the system is secure at the untrusted server, meaning that a server cannot successfully
generate a correct proof of data possession without storing all the file blocks, and data private, meaning
that the TPA learns nothing about the data of the client from all available information.

In [4], the authors presented an efficient practical PDP system by adopting asymmetric pairings to gain
efficiency and reduce the group exponentiation and pairing operations. In their scheme, no exponentiation
and only three pairings are required during the proof of data possession check, which clearly outperforms
all the existing schemes in the literature. Furthermore, the TPA on behalf of the client is allowed to request
the server for a proof of data possession on as many data blocks as possible at no extra cost. Hence, the
authors claimed that their scheme was better than the existing schemes in terms of practicality.

Nevertheless, we find two attacks on the Dynamic Provable Data Possession (DPDP) scheme with Public
Verifiability and Data Privacy [4]. The first one enables the server to store only one block of a file m and still
pass the data integrity verification on any number of file blocks. The second attack permits the server to
keep the old version of a file block mi and the corresponding verification metadata Tmi after the client asked
to modify them by sending the new version of these elements, and still pass the data integrity verification.

1

To overcome these two issues, we find a solution that forces us to switch from the standard model to
the random oracle model. However, the practicality of our scheme is not impacted: no exponentiation and
four pairings intead of three are needed during the proof of data possession check.

Another attack threatens the data privacy in [4]. Indeed, in our security model, the TPA plays the role of
the attacker and is allowed to submit two equal-length files m0 and m1 to the challenger. The latter chooses
a bit b ∈ {0, 1} and sends back the verification metatdata corresponding to each block of mb. Given these
elements as well as the public key, the attacker is able to discover which fle was chosen by the challenger.

To overcome this issue, there are two options. The first one is to relax the security notion: instead of
indistinguishability property, we focus on the one-way property. The second one is to employ Index-Hash
Tables (IHTs) at the cost of a loss of the efficiency.

2 Preliminaries

2.1 DPDP: Definition and Construction

The file to be stored is split into n blocks, and each block is split into s sectors. We let each block and sector
be elements of Zp for some large prime p. For instance, let the file be b bits long. Then, the file is split into
n = db/s · log(p)e blocks. The aforementioned intuition comes from [8]. Suppose that the blocks contain
s ≥ 1 elements of Zp. Therefore, a tradeoff exists between the storage overhead and the communtication
overhead. More precisely, the communication complexity rises as s + 1 elements of Zp. Finally, a larger
value of s yields less storage overhead at cost of a high communication. Moreover, p should be λ bits long,
where λ is the security parameter such that n >> λ.

A Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy Π = (KeyGen,
TagGen,PerfOp,CheckOp,GenProof,CheckProof) is as follows:

KeyGen(λ) → (pk, sk). The probabilistic key generation algorithm is run by the client to setup the
scheme. It takes as input the security parameter λ, and outputs a pair of public and secret keys (pk, sk).

Let GroupGen(λ) be an algorithm that, on input the security parameter λ, generates the cyclic groups
G1, G2 and GT of prime order p = p(λ) with bilinear map e : G1 ×G2 → GT . Let g1 and g2 be generators
of G1 and G2 respectively. Then, the client randomly chooses s elements h1, · · · , hs ∈R G1. Moreover, it
selects at random a ∈R Zp and sets its public key pk = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2) and its secret key
sk = a.

TagGen(pk, sk,m) → Tm. The (possibly) probabilistic tag generation algorithm is run by the client
to generate the verification metadata. It takes as inputs the public key pk, the secret key sk and a file
block m, and outputs a verification metadata Tm. Then, the client stores all the file blocks m in an ordered
collection F and the corresponding verification metadata Tm in an ordered collection E. It forwards these
two collections to the server and deletes them from its local storage.

A file m is split into n blocks mi, for i = 1, · · · , n. Each block mi is then split into s sectors mi,j ∈ Zp, for
j = 1, · · · , s. We suppose that |m| = b and n = db/s·log(p)e. Therefore, the file m can be seen a n×s matrix
with elements denoted as mi,j . The client computes the verification metadata Tmi

= (
∏s
j=1 h

mi,j

j)−sk =

(
∏s
j=1 h

mi,j

j)−a =
∏s
j=1 h

−a·mi,j

j for i = 1, · · · , n. Then, it sets Tm = (Tm1 , · · · , Tmn) ∈ Gn1 .
Then, the client stores all the file blocks m in an ordered collection F and the corresponding verification

metadata Tm in an ordered collection E. It forwards these two collections to the server and deletes them
from its local storage.

PerfOp(pk,F,E, info = (insertion, 2i+1
2 ,m 2i+1

2
, Tm 2i+1

2

)) → (F′,E′, ν′). This algorithm is run by the

server in response to a data insertion requested by the client. It takes as inputs the public key pk, the
previous collection F of all the file blocks, the previous collection E of all the verification metadata, the
type “insertion” of the data operation to be performed, the index 2i+1

2 denoting the rank where the data
operation is performed (in the ordered collections F and E), the file block m 2i+1

2
to be inserted, and the cor-

responding verification metadata Tm 2i+1
2

to be inserted, for i = 0, · · · , n. More precisely, m 2i+1
2

is inserted

between the existing blocks mi and mi+1 and Tm 2i+1
2

is inserted between the existing verification metadata

Tmi
and Tmi+1

, for i = 1, · · · , n−1. For i = 0, m 1
2

is appended before m1 and Tm 1
2

is appended before Tm1
.

2

For i = n, m 2n+1
2

is appended after mn and Tm 2n+1
2

is appended after Tmn . Finally, it outputs the updated

file block collection F′ containing m 2i+1
2

, the updated verification metadata collection E′ containing Tm 2i+1
2

,

and the related updating proof ν′. The server sends ν′ to the TPA.

After receiving the elements 2i+1
2 , m 2i+1

2
and Tm 2i+1

2

from the client, for i = 0, · · · , n, the server prepares

the updating proof as follows. It first selects at random u1, · · · , us ∈R Zp and computes U1 = hu1
1 , · · · , Us =

hus
s . It also chooses at random w 2i+1

2
∈R Zp and sets cj = m 2i+1

2 ,j · w 2i+1
2

+ uj ∈ Zp for j = 1, · · · , s, then

Cj = h
cj
j for j = 1, · · · , s, and d = T

w 2i+1
2

m 2i+1
2

. Finally, it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1
1 to

the TPA.

PerfOp(pk,F,E, info = (deletion, i))→ (F′,E′, ν′). This algorithm is run by the server in response to
a data deletion requested by the client. It takes as inputs the public key pk, the previous collection F of
all the file blocks, the previous collection E of all the verification metadata, the type “deletion” of the data
operation to be performed, and the index i denoting the rank where the data operation is performed (in the
ordered collections F and E). The server deletes the existing file block mi, and the corresponding verification
metadata Tmi , for i = 1, · · · , n. More precisely, mi is deleted, giving that mi−1 is followed by mi+1 and Tmi

is deleted, giving that Tmi−1
is followed by Tmi+1

, for i = 2, · · · , n−1. For i = 1, m1 is removed, giving that
the file now begins from m2, and Tm1

is removed, giving that the collection of verification metadata now
begins from Tm2

. For i = n, mn is removed, giving that the file now ends at mn−1, and Tmn
is removed,

giving that the collection of verification metadata now ends at Tmn−1
. Finally, it outputs the updated file

block collection F′ that does not contain mi anymore, the updated verification metadata collection E′ that
does not contain Tmi anymore, and the related updating proof ν′. The server sends ν′ to the TPA. The
deletion operation stops when the number of blocks is equal to 0.

After receiving an index i = 1, · · · , n from the client, the server prepares the updating proof as follows.
It first selects at random u1, · · · , us ∈R Zp and computes U1 = hu1

1 , · · · , Us = hus
s . It also chooses at random

wi ∈R Zp and sets cj = mi,j · wi + uj ∈ Zp for j = 1, · · · , s, then Cj = h
cj
j for j = 1, · · · , s, and d = Twi

mi
,

where mi and Tmi
are the existing file block and verification metadata to be deleted respectively. Finally,

it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1
1 to the TPA.

PerfOp(pk,F,E, info = (modification, i,m′i, Tm′i))→ (F′,E′, ν′). This algorithm is run by the server in
response to a data modification requested by the client. It takes as inputs the public key pk, the previous
collection F of all the file blocks, the previous collection E of all the verification metadata, the type “mod-
ification” of the data operation to be performed, the index i denoting the rank where the data operation
is performed (in the ordered collections F and E), the file block m′i which replaces the existing block mi,
and the corresponding verification metadata Tm′i which replaces the existing verification metadata Tmi

, for
i = 1, · · · , n. We assume that the file block m′i and the corresponding verification metadata Tm′i were pro-
vided by the client to the server, such that Tm′i was correctly computed by running the algorithm TagGen.
It outputs the updated verification metadata collection F′ replacing mi by m′i, the updated verification
metadata collection E′ replacing Tmi

by Tm′i , and the related updating proof ν′. The server sends ν′ to the
TPA. We allow the client to make full re-write updates, meaning that all the file blocks m1, · · · ,mn are
replaced by m′1, · · · ,m′n and all the verification metadata Tm1

, · · · , Tmn
are replaced by Tm′1 , · · · , Tm′n .

After receiving the elements i, m′i and Tm′i from the client, the server prepares the updating proof as
follows. It first selects at random u1, · · · , us ∈R Zp and computes U1 = hu1

1 , · · · , Us = hus
s . It also chooses

at random wi ∈R Zp and sets cj = m′i,j · wi + uj ∈ Zp for j = 1, · · · , s, then Cj = h
cj
j for j = 1, · · · , s, and

d = Twi

m′i
. Finally, it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1

1 to the TPA.

CheckOp(pk, ν′) → {“success”, “failure”}. This algorithm is run by the TPA on behalf of the client
to verify the server’s behavior during the data operation (insertion, deletion or modification). It takes as
inputs the public key pk and the updating proof ν′ sent by the server. It outputs “success” if ν′ is a correct
updating proof; otherwise it outputs “failure”. We assume that the answer is then forwarded to the client.
We omit this part of the process.

3

The TPA has to check whether the following equation holds:

e(d, ga2) · e(
s∏
j=1

Uj , g2)
?
= e(

s∏
j=1

Cj , g2) (1)

If Eq. 1 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

GenProof(pk, F, chal,Σ)→ ν. This algorithm is run by the server in order to generate a proof of data
possession. It takes as inputs the public key pk, an ordered collection F ⊂ F of blocks, a challenge chal
and an ordered collection Σ ⊂ E which are the verification metadata corresponding to the blocks in F . It
outputs a proof of data possession ν for the blocks in F that are determined by the challenge chal.

We assume that a first challenge chalC is generated by the client and forwarded to the TPA. Then, the
TPA generates a challenge chal from chalC and sends it to the server. In particular, if the client wants to
check the integrity of its data without the help of the TPA, then chalC = chal. We omit the process done
by the client at this point.

After receiving a challenge chalC from the client, the TPA prepares a challenge chal to send to the
server as follows. First, it chooses a subset I ⊆]0, n + 1[Q, randomly chooses |I| elements vi ∈R Zp and
sets chal = {(i, vi)}i∈I . Second, after receiving the challenge chal which indicates the specific blocks for
which the client, through the TPA, wants a proof of data possession, the server sets the ordered collec-
tion F = {mi}i∈I ⊂ F of blocks and an ordered collection Σ = {Tmi

}i∈I ⊂ E which are the verification
metadata corresponding to the blocks in F . It then selects at random r1, · · · , rs ∈R Zp and computes

R1 = hr11 , · · · , Rs = hrss . It also sets bj =
∑

(i,vi)∈chalmi,j · vi + rj ∈ Zp for j = 1, · · · , s, then Bj = h
bj
j

for j = 1, · · · , s, and c =
∏

(i,vi)∈chal T
vi
mi

. Finally, it returns ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G2s+1
1 to the

TPA.

CheckProof(pk, chal, ν) → {“success”, “failure”}. This algorithm is run by the TPA in order to vali-
date the proof of data possession. It takes as inputs the public key pk, the challenge chal and the proof of
data possession ν. It outputs “success” if ν is a correct proof of data possession for the blocks determined
by chal; otherwise it outputs “failure”. We assume that the answer is then forwarded to the client. We
omit this part of the process.

The TPA has to check whether the following equation holds:

e(c, ga2) · e(
s∏
j=1

Rj , g2)
?
= e(

s∏
j=1

Bj , g2) (2)

If Eq. 2 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

Correctness. We require that a Dynamic Provable Data Possession scheme with Public Verifiability and
Data Privacy Π is correct if for (pk, sk) ← KeyGen(λ), for Tm ← TagGen(pk, sk,m), for (F′,E′, ν′) ←
PerfOp(pk,F,E, info), for ν ← GenProof(pk, F, chal,Σ), then “success”← CheckOp(pk, ν′) and “success”←
CheckProof(pk, chal, ν).

If all the algorithms are correctly generated, then the above scheme is correct. For the updating proof,
we have:

e(d, ga2) · e(
s∏
j=1

Uj , g2) = e(Twi
mi
, ga2) · e(

s∏
j=1

h
uj

j , g2) = e(

s∏
j=1

h
mi,j ·wi+uj

j , g2) = e(

s∏
j=1

h
cj
j , g2) = e(

s∏
j=1

Cj , g2)

For the proof of data possession, we have:

e(c, ga2) · e(
s∏
j=1

Rj , g2) = e

 ∏
(i,vi)
∈chal

T vimi
, ga2

 · e(s∏
j=1

h
rj
j , g2) = e(

s∏
j=1

h

∑
(i,vi)
∈chal

mi,j ·vi+rj

j , g2) = e(

s∏
j=1

h
bj
j , g2) = e(

s∏
j=1

Bj , g2)

4

2.2 Security Models and Proofs

2.2.1 Assumption: Discrete Logarithm (DL) Problem

Let G1 be a multiplicative cyclic group of prime order p = p(λ) (where λ is the security parameter). The
DL problem is as follows: for a ∈ Zp, given g1, g

a
1 ∈ G1, output a. The DL problem holds in G1 if no t-time

algorithm has advantage at least ε in solving the DL problem in G1.

2.2.2 Security against the server

The definition of the scheme, mentioned below, follows the ones from [1] and [2]. We consider a Dynamic
Provable Data Possession scheme with Public Verifiability and Data Privacy Π = (KeyGen,TagGen,PerfOp,
CheckOp,GenProof,CheckProof). Let a data possession game between a challenger C and an adversary
A be as follows:

KeyGen. (pk, sk)← KeyGen(λ) is run by C. The element pk is given to A.
Adaptive queries. A makes adaptive queries through the intermediary of two oracles. The adversary

is given access to a tag generation oracle OTG as follows. A chooses a first block m1 and forwards it the
challenger. C computes the corresponding verification metadata Tm1

← TagGen(pk, sk,m1) and gives it
to the adversary. The adversary keeps on the same queries process with C for the verification metadata
Tm2 ← TagGen(pk, sk,m2), · · · , Tmn ← TagGen (pk, sk,mn), where the blocks m2, · · · ,mn are chosen
by A. Then, the adversary creates an ordered collection F = {m1, · · · ,mn} of file blocks along with an
ordered collection E = {Tm1

, · · · , Tmn
} of the corresponding verification metadata.

Thereafter, the adversary is given access to a data operation performance oracle ODOP as follows. A
submits to the challenger a block mi, for i = 1, · · · , n, and the corresponding value infoi about the data
operation that the adversary wants to perform. The adversary runs the algorithm PerfOp and outputs a
new file blocks ordered collection F′, a new metadata ordered collection E′, and the corresponding updating
proof ν′. C checks the value ν′ by running the algorithm CheckOp(pk, ν′) and gives back the resulting
answer belonging to {“success”, “failure”} to the adversary. If the answer is “failure”, then the challenger
aborts; otherwise, it proceeds. The above interaction between A and C can be repeated.

Setup. The adversary submits file blocks m∗i along with the corresponding values info∗i , for i ∈ I ⊆
]0, n+1[∩Q. Adaptive queries are again generated by the adversary, such that the first info∗i specifies a full
re-write update (this corresponds to the first time that the client sends a file to the server). The challenger
verifies the data operations.

Challenge. The final version of the blocks mi ∈ I is considered such that these blocks were created
according to the data operations requested by the adversary, and verified and accepted by the challenger
in the previous step. The challenger sets F = {mi}i∈I of these file blocks and E = {Tmi}i∈I of the
corresponding verification metadata. C then takes an ordered collection F = {mi1 , · · · ,mik} ⊂ F and the
corresponding verification metadata ordered collection Σ = {Tmi1

, · · · , Tmik
} ⊂ E, for ij ∈ I, j = 1, · · · , k.

It generates a resulting challenge chal for F and Σ and forwards it to A.
Forge. The adversary generates a proof of data possession ν on chal. Then, the challenger runs

CheckProof(pk, chal, ν) and gives the answer belonging to {“success”, “failure”} to A. If the answer
is “success” then the adversary wins.

The Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy Π = (KeyGen,
TagGen,PerfOp,CheckOp,GenProof,Check- Proof) is said to be secure if for any probabilistic polynomial-
time (PPT) adversary A who can win the above data possession game with non-negligible probability, then
the challenger C can extract at least the challenged parts of the file by resetting and challenging the adversary
polynomially many times by means of a knowledge extractor E .

Proof. For any probabilistic polynomial-time (PPT) adversary A who wins the game, there is a challenger
C that interacts with the adversary A as follows.

KeyGen. C runs GroupGen(λ)→ (p,G1,G2,GT , e) and selects two generators g1 and g2 of G1 and G2

respectively. Then, it randomly chooses s elements h1, · · · , hs ∈R G1 and an element a ∈R Zp. It sets the
public key pk = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2) and forwards it to A. It sets the secret key sk = a and
keeps it.

Adaptive queries. A has access to the tag generation oracle OTG as follows. It first adaptively selects
blocks mi, for i = 1, · · · , n. C splits each block mi, for i = 1, · · · , n into s sectors mi,j . Then, it computes
Tmi

= (
∏s
j=1 h

mi,j

j)−sk = (
∏s
j=1 h

mi,j

j)−a, for i = 1, · · · , n, and gives them to A. The adversary sets an
ordered collection F = {m1, · · · ,mn} of blocks and an ordered collection E = {Tm1

, · · · , Tmn
} which are

the verification metadata corresponding to the blocks in F. A has access to the data operation performance
oracle ODOP as follows. Repeatedly, the adversary selects a block ml and the corresponding element infol

5

and forwards them to the challenger. l denotes the rank where A wants the data operation to be performed;
l is equal to 2i+1

2 for an insertion and to i for a deletion or a modification. Moreover, ml =⊥ in the case
of a deletion, since only the rank is needed to perform this kind of operation. Then, A outputs a new file
blocks ordered collection F′ (containing the updated version of the block ml), a new verification metadata
ordered collection E′ (containing the updated version of the verification metadata Tml

) and a corresponding
updating proof ν′ = (U1, · · · , Us, C1, · · · , Cs, d), such that wl is randomly chosen from Zp, d = Twl

ml
, and

for j = 1, · · · , s, uj is randomly chosen from Zp, Uj = h
rj
j , cj = ml,j · wl + uj and Cj = h

cj
j . C runs

the algorithm CheckOp on the value ν′ and sends the answer to A. If the answer is “failure”, then the
challenger aborts; otherwise, it proceeds.

Setup. The adversary selects blocks m∗i and the corresponding elements info∗i , for i ∈ I ⊆]0, n+ 1[∩Q,
and forwards them to the challenger who checks the data operations. In particular, the first info∗i indicates
a full re-write.

Challenge. The challenger chooses a subset I ⊆ I, randomly chooses |I| elements vi ∈R Zp and sets
chal = {(i, vi)}i∈I . It forwards chal as a challenge to A.

Forge. Upon receiving the challenge chal, the resulting proof of data possession on the correct stored
file m should be ν = (R1, · · · , Rs, B1, · · · , Bs, c) and pass the Eq. 2. However, A generates a proof of
data possession on an incorrect stored file m̃ as ν̃ = (R1, · · · , Rs, B̃1, · · · , B̃s, c̃), such that rj is randomly

chosen from Zp, Rj = h
rj
j , b̃j =

∑
(i,vi)∈chal m̃i,j · vi + rj and B̃j = h

b̃j
j , for j = 1, · · · , s. It also sets

c̃ =
∏

(i,vi)∈chal T
vi
m̃i

. Finally, it returns ν̃ = (R1, · · · , Rs, B̃1, · · · , B̃s, c̃) to the challenger. If the proof of

data possession still pass the verification, then A wins. Otherwise, it fails. We define ∆bj = b̃j − bj , for
j = 1, · · · , s. At least one element of {∆bj}j=1,··· ,s is non-zero.

Analysis. We prove that if the adversary can win the game, then a solution to the DL problem is found,
which contradicts the assumption that the DL problem is hard in G1. Let assume that the server wins
the game. Then, according to Eq. 2, we have e(c, ga2) · e(

∏s
j=1Rj , g2) = e(

∏s
j=1 B̃j , g2). Since the proof

ν = (R1, · · · , Rs, B1, · · · , Bs, c) is a correct one, we also have e(c, ga2) · e(
∏s
j=1Rj , g2) = e(

∏s
j=1Bj , g2).

Therefore, we get that
∏s
j=1 B̃j =

∏s
j=1Bj . We can re-write as

∏s
j=1 h

b̃j
j =

∏s
j=1 h

bj
j or even as

∏s
j=1 h

∆bj
j =

1. For two elements g, h ∈ G1, there exists x ∈ Zp such that h = gx since G1 is a cyclic group. Without
loss of generality, given g, h ∈ G1, each hj could randomly and correctly be generated by computing

hj = gyj · hzj ∈ G1 such that yj and zj are random values of Zp. Then, we have 1 =
∏s
j=1 h

∆bj
j =∏s

j=1(gyj · hzj)∆bj = g
∑s

j=1 yj ·∆bj · h
∑s

j=1 zj ·∆bj . Clearly, we can find a solution to the DL problem. More

specifically, given g, h = gx ∈ G1, we can compute h = g

∑s
j=1 yj ·∆bj∑s
j=1

zj ·∆bj = gx unless the denominator is zero.
However, as we defined in the game, at least one element of {∆bj}j=1,··· ,s is non-zero. Since zj is a random
element of Zp, the denominator is zero with probability equal to 1/p, which is negligible. Thus, if the
adversary wins the game, then a solution of the DL problem can be found with probability equal to 1− 1

p ,
which contradicts the fact that the DL problem is assumed to be hard in G1. Therefore, for the adversary,
it is computationally infeasible to win the game and generate an incorrect proof of data possession which
can pass the verification.

Moreover, the simulation of the tag generation oracle OTG is perfect. The simulation of the data
operation performance oracle ODOP is almost perfect except when the challenger aborts. This happens the
data operation was not correclty performed. As previously, we can prove that if the adversary can pass the
updating proof, then a solution to the DL problem is found. Following the above analysis and according
to Eq. 1, if the adversary generates an incorrect updating proof which can pass the verification, then a
solution of the DL problem can be found with probability equal to 1 − 1

p , which contradicts the fact that
the DL problem is assumed to be hard in G1. Therefore, for the adversary, it is computationally infeasible
to generate an incorrect updating proof which can pass the verification. The proof is completed.

2.2.3 Privacy against the TPA

The definition of the scheme, mentioned below, follows the one from [12]. We consider a Dynamic Provable
Data Possession scheme with Public Verifiability and Data Privacy Π = (KeyGen,TagGen,PerfOp,
CheckOp,GenProof,CheckProof). Let a data privacy game between a challenger C and an adversary
A be as follows:

KeyGen. (pk, sk)← KeyGen(λ) is run by C. The element pk is given to A.
Queries. A gives to the challenger two files m0 = m0,1|| · · · ||m0,n and m1 = m1,1|| · · · ||m1,n of equal

length. C randomly selects a bit b ∈R {0, 1}, computes Tmb,i
← TagGen(pk, sk,mb,i) for i = 1, · · · , n and

6

gives them to A. Then, the adversary creates an ordered collection F = {mb,1, · · · ,mb,n} of file blocks along
with an ordered collection E = {Tmb,1

, · · · , Tmb,n
} of the corresponding verification metadata.

Challenge. The adversary forwards chal to C.
Generation of the Proof. The challenger outputs a proof of data possession ν∗ ← GenProof(pk,

F, chal,Σ) for the blocks in F that are determined by the challenge chal, where F = {mb,i1 , · · · , mb,ik} ⊂ F
is an ordered collection of blocks and Σ = {Tmb,i1

, · · · , Tmb,ik
} ⊂ E is an ordered collectection of the

verification metadata corresponding to the blocks in F , for 1 ≤ ij ≤ n, 1 ≤ j ≤ k and 1 ≤ k ≤ n.
Guess. The adversary returns a bit b′. A wins if b′ = b.

The Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy Π = (KeyGen,
TagGen,PerfOp,CheckOp,GenProof,Check- Proof) is said to be data private if there is no proba-
bilistic polynomial-time (PPT) adversary A who can win the above data privacy game with non-negligible
advantage equal to |Pr[b′ = b]− 1

2 |.

Proof. For any probabilistic polynomial-time (PPT) adversary A who wins the game, there is a challenger
C that interacts with the adversary A as follows.

KeyGen. C runs GroupGen(λ)→ (p,G1,G2,GT , e) and selects two generators g1 and g2 of G1 and G2

respectively. Then, it randomly chooses s elements h1, · · · , hs ∈R G1 and an element a ∈R Zp. It sets the
public key pk = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2) and forwards it to A. It sets the secret key sk = a and
keeps it.

Queries. A gives to the challenger two files m0 = m0,1|| · · · ||m0,n and m1 = m1,1|| · · · ||m1,n of equal
length. C randomly selects a bit b ∈R {0, 1} and for i = 1, · · · , n, splits each block mb,i into s sectors mb,i,j .
Then, it computes Tmb,i

= (
∏s
j=1 h

mb,i,j

j)−sk = (
∏s
j=1 h

mb,i,j

j)−a, for i = 1, · · · , n, and gives them to A.
Challenge. The adversary chooses a subset I ⊆ {1, · · · , n}, randomly chooses |I| elements vi ∈R Zp and

sets chal = {(i, vi)}i∈I . It forwards chal as a challenge to C.
Generation of the Proof. Upon receiving the challenge chal, the challenger selects an ordered collection

F = {mi}i∈I of blocks and an ordered collection Σ = {Tmi}i∈I which are the verification metadata corre-
sponding to the blocks in F such that Tmi

= (
∏s
j=1 h

mi,j

j)−sk = (
∏s
j=1 h

mi,j

j)−a, for i ∈ I. It then randomly
chooses r1, · · · , rs ∈R Zp and computes R∗1 = hr11 , · · · , R∗s = hrss . It also randomly selects b1, · · · , bs ∈ Zp
and computes B∗1 = hb11 , · · · , B∗s = hbss . It sets c∗ =

∏
(i,vi)∈chal T

vi
mi

as well. Finally, the challenger returns

ν∗ = (R∗1, · · · , R∗s , B∗1 , · · · , B∗s , c∗).
Guess. The adversary returns a bit b′.

Analysis. The probability Pr[b′ = b] must be equal to 1
2 since the verification metadata Tmb,i

, for i =
1, · · · , n, and the proof ν∗ are independent of the bit b. We now prove that the verification metadata and
the proof of data possession given to the adversary are correctly distributed. The value Tmb,i

is equal to

(
∏s
j=1 h

mb,i,j

j)−sk = (
∏s
j=1 h

mb,i,j

j)−a. Since sk = a is kept secret from A, the above simulation is perfect.
For a block file mb, there exists vb,i, for (i, vb,i) ∈ chalb, such that bb,j =

∑
(i,vb,i)∈chalb mb,i,j · vb,i + rb,j . In

addition, Rb,1, · · · , Rb,s, Bb,1, · · · , Bb,s are statically indistinguishable with the actual outputs corresponding
to m0 or m1. Thus, the answers given to the adversary are correctly distributed. The proof is completed.

3 Replace and Replay Attacks

3.1 Replace Attack

As usual, the client generates the verification metadata for a file m that it wants to upload on the server.

TagGen(pk, sk,m) → Tm. A file m is split into n blocks mi, for i = 1, · · · , n. Each block mi is
then split into s sectors mi,j ∈ Zp, for j = 1, · · · , s. We suppose that |m| = b and n = db/s · log(p)e.
Therefore, the file m can be seen a n × s matrix with elements denoted as mi,j . The client computes the

verification metadata Tmi = (
∏s
j=1 h

mi,j

j)−sk = (
∏s
j=1 h

mi,j

j)−a =
∏s
j=1 h

−a·mi,j

j for i = 1, · · · , n. Then, it
sets Tm = (Tm1

, · · · , Tmn
) ∈ Gn1 .

Then, the client stores all the file blocks m in an ordered collection F and the corresponding verification
metadata Tm in an ordered collection E. It forwards these two collections to the server and deletes them
from its local storage.

Then, the server is asked to generate a proof of data possession. However, it only stores the first block
m1 of the file m (it deleted all other blocks) and we show that it can still pass the verification process.

7

GenProof(pk, F, chal,Σ) → ν. After receiving a challenge chalC from the client, the TPA prepares a
challenge chal to send to the server as follows. First, it chooses a subset I ⊆]0, n+ 1[Q, randomly chooses
|I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . Second, after receiving the challenge chal which indicates
the specific blocks for which the client, through the TPA, wants a proof of data possession, the server sets
the ordered collection F = {m1}i∈I ⊂ F of blocks and an ordered collection Σ = {Tm1}i∈I ⊂ E which are the
verification metadata corresponding to the blocks in F . It then selects at random r1, · · · , rs ∈R Zp and com-

putes R1 = hr11 , · · · , Rs = hrss . It also sets bj =
∑

(i,vi)∈chalm1,j ·vi+rj ∈ Zp for j = 1, · · · , s, then Bj = h
bj
j

for j = 1, · · · , s, and c =
∏

(i,vi)∈chal Tm1
vi . Finally, it returns ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G2s+1

1 to
the TPA.

CheckProof(pk, chal, ν) → {“success”, “failure”}. The TPA has to check whether the following equa-
tion holds:

e(c, ga2) · e(
s∏
j=1

Rj , g2)
?
= e(

s∏
j=1

Bj , g2) (3)

If Eq. 3 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

Correctness. For the proof of data possession, we have:

e(c, ga2) · e(
s∏
j=1

Rj , g2) = e

 ∏
(i,vi)
∈chal

Tm1

vi , ga2

 · e(s∏
j=1

h
rj
j , g2)

= e

 ∏
(i,vi)
∈chal

s∏
j=1

h
m1,j ·(−a)·vi
j , ga2

 · e(s∏
j=1

h
rj
j , g2)

= e(

s∏
j=1

h

∑
(i,vi)∈chalm1,j ·vi

j , g2)a−a · e(
s∏
j=1

h
rj
j , g2)

= e(

s∏
j=1

h

∑
(i,vi)
∈chal

m1,j ·vi+rj

j , g2)

= e(

s∏
j=1

h
bj
j , g2) = e(

s∏
j=1

Bj , g2)

N.B. This attack is not due to the dynamicity property of our scheme. Such attack could happen even
on static data.

3.2 Replay Attack

A client asks the server to modify the file block mi by sending the new version of the block m′i and the cor-
responding verification metadata Tm′i . However, the server does not follow the client’s request and decides
to keep the old version of the block mi and the corresponding verification metadata Tmi , and deletes m′i
amd Tm′i .

PerfOp(pk,F,E, info = (modification, i, m′i, Tm′i)) → (F′,E′, ν′). After receiving the elements i, m′i
and Tm′i from the client, the server prepares the updating proof as follows. It first retrieves the block mi

and the verification metadata Tmi
corresponding to the index i, and once it got these elements, it deletes

m′i and Tm′i . It then selects at random u1, · · · , us ∈R Zp and computes U1 = hu1
1 , · · · , Us = hus

s . It also
chooses at random wi ∈R Zp and sets cj = mi,j · wi + uj ∈ Zp (instead of cj = m′i,j · wi + uj ∈ Zp) for

j = 1, · · · , s, then Cj = h
cj
j for j = 1, · · · , s, and d = Tmi

wi (instead of d = Twi

m′i
). Finally, it returns

ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1
1 to the TPA.

8

CheckOp(pk, ν′)→ {“success”, “failure”}. The TPA has to check whether the following equation holds:

e(d, ga2) · e(
s∏
j=1

Uj , g2)
?
= e(

s∏
j=1

Cj , g2) (4)

If Eq. 7 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

Correctness. If all the algorithms are correctly generated, then the above scheme is correct. For the
updating proof, we have:

e(d, ga2) · e(
s∏
j=1

Uj , g2) = e(Tmi

wi , ga2) · e(
s∏
j=1

h
uj

j , g2)

= e(

s∏
j=1

h
mi,j ·(−a)·wi

j , ga2) · e(
s∏
j=1

h
uj

j , g2)

= e(

s∏
j=1

h
mi,j ·wi

j , g2)a−a · e(
s∏
j=1

h
uj

j , g2)

= e(

s∏
j=1

h
mi,j ·wi+uj

j , g2)

= e(

s∏
j=1

h
cj
j , g2) = e(

s∏
j=1

Cj , g2)

N.B. This attack is due to the dynamicity property of our scheme.

3.3 The First Solution for the Replace and Replay Attacks: Index-Hash Table

3.3.1 Idea of the First Solution

A solution to avoid the first attack is to embed the index i of the file block mi into the verification metadata
Tmi

. When the TPA on behalf of the client checks the proof of data possession generated by the server, it
requires to use all the indices of the challenged file blocks to process the verification. Such idea was proposed
in the publicly verifiable scheme proposed in [8].

A solution to avoid the second attack is to embed the version number vnbi of the file block mi into the
verification metatdata Tmi

. The first time that the client sends the file block mi to the server, the number
vnbi is set to be equal to 1 (meaning that the first version of the file block is uploaded) and is append to
the index i. When the client wants to modify the file block mi with m′i, it specifies the number vnbi = 2
(meaning that the second version of file block is uploaded) when generating the verification metadata Tm′i .
When the TPA on behalf of the client checks that the block was correctly updated by the server, it has to
use both the index i and the version number vnbi of the file block.

We stress that the index i of the file block mi is unique. More precisely, when a block is inserted, a new
index is created that has not been used and when a block is modified, the index does not change. However,
when a block is deleted, its index does not disappear to let the scheme remain secure. To explain why, we
consider that the index of a deleted block is removed. Let m = (m1, · · · ,m10) be a file stored on the server.
The client first requests to the server to delete the file block m5. Thus, the index 5 disappears. Later, the
client asks to insert a block m′4+6

2

= m′5 between the file blocks m4 and m6. However, the server might

have not properly deleted the previous file block m5 when the cliend asked for, and so the server may not
replace the not-yet-deleted block m5 by the block m′5 that the client wants to insert, and can still pass the
data integrity verification using the not-yet-deleted block m5. In order to elude this situation, the index i
is kept as “used” even if the block mi is deleted and when a file block should be added between mi−1 and
mi+1, then the client can choose either an index equal to 2i−1

2 for m 2i−1
2

or 2i+1
2 for m 2i+1

2
.

In our construction, we specify that the client deletes the file blocks and the corresponding verification
metadata from its local storage once these elements are sent on the server. We also implicitly let the TPA
know the indices of the file blocks that are currently stored on the server in order to challenge the server
with a certain percentage of the data. To be quite clear, we let the client conserve a table of indices of the
file blocks that are kept on the server along with their version numbers vnbi. Such a table is then either
forward to the TPA or used when the client sends a challenge chalC to the TPA in order to send a challenge

9

chal to the server. Refering to the aforementioned example with m = (m1, · · · ,m10), we suppose that the
block m5 has been deleted, the block m 4+5

2
= m 9

2
has been added, and the block m6 has been modified

twice. Let the table stored on the client’s local storage be as follows:

Index i Version Number vnbi Comments

1 1 -
· · · · · · · · ·
4 1 -

9/2 1 -
5 - DELETED
6 3 -
7 1 -
· · · · · · · · ·
10 1 -

Such table is called Index-Hash Table (IHT). This table can be seen as a summary of the hash value
of each block as well as a history of the data changes made by the client. Our IHT is composed of several
columns: one for the block index, one for the version number, and one for some comments. A column for
random values can be added, if the verification metadata should be randomized to enhance the data privacy
against the TPA. We stress that each record in the IHT is different from another to ensure that data blocks
and their corresponding verification metadata cannot be forged. An example of an IHT-based PDP scheme
can be found in [?].

The IHT gives a better security level against the untrusted server, although this leads into an increase
of the complexity of our system.

3.3.2 The New Construction

We now explain how overcome the two aforementioned attacks. Let the hash function H : Q× N→ G1 be
a random oracle. Such a hash function H is included in the public key pk during the Setup phase. Then,
the verification metadata Tm = (Tm1

, · · · , Tmn
) of the file m = (m1, · · · ,mn) is generated as follows. For

each block mi, we compute

Tmi
= (H(i, vnbi) ·

s∏
j=1

h
mi,j

j)−sk = (H(i, vnbi) ·
s∏
j=1

h
mi,j

j)−a = H(i, vnbi)
−a ·

s∏
j=1

h
−a·mi,j

j .

This solution is easy to implement and does not devaluate the practicality of our scheme, although the
scheme becomes secure in the random oracle model instead of the standard model.

This time, the server has to use the correct blocks to generate the proof of data possession. Indeed, the
TPA use the hashes of the indices that are challenged to check this proof.

GenProof(pk, F, chal,Σ) → ν. After receiving a challenge chalC from the client, the TPA prepares a
challenge chal to send to the server as follows. First, it chooses a subset I ⊆]0, n+ 1[Q, randomly chooses
|I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . Second, after receiving the challenge chal which indicates
the specific blocks for which the client, through the TPA, wants a proof of data possession, the server sets
the ordered collection F = {mi}i∈I ⊂ F of blocks and an ordered collection Σ = {Tmi

}i∈I ⊂ E which are the
verification metadata corresponding to the blocks in F . It then selects at random r1, · · · , rs ∈R Zp and com-

putes R1 = hr11 , · · · , Rs = hrss . It also sets bj =
∑

(i,vi)∈chalmi,j ·vi+rj ∈ Zp for j = 1, · · · , s, then Bj = h
bj
j

for j = 1, · · · , s, and c =
∏

(i,vi)∈chal T
vi
mi

. Finally, it returns ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G2s+1
1 to the

TPA.

CheckProof(pk, chal, ν) → {“success”, “failure”}. The TPA has to check whether the following equa-
tion holds:

e(c, ga2) · e(
s∏
j=1

Rj , g2)
?
= e(

∏
(i,vi)
∈chal

H(i, vnbi), g2) · e(
s∏
j=1

Bj , g2) (5)

If Eq. 8 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

10

Correctness.

e(c, ga2) · e(
s∏
j=1

Rj , g2) = e

 ∏
(i,vi)
∈chal

T vimi
, ga2

 · e(s∏
j=1

h
rj
j , g2)

= e

 ∏
(i,vi)
∈chal

(H(i, vnbi)
−a ·

s∏
j=1

h
mi,j ·(−a)·vi
j), ga2

 · e(s∏
j=1

h
rj
j , g2)

= e(
∏

(i,vi)
∈chal

H(i, vnbi)
−a, ga2) · e(

s∏
j=1

h

∑
(i,vi)∈chalmi,j ·vi

j , g2)a−a · e(
s∏
j=1

h
rj
j , g2)

= e(
∏

(i,vi)
∈chal

H(i, vnbi), g2) · e(
s∏
j=1

h

∑
(i,vi)
∈chal

mi,j ·vi+rj

j , g2)

= e(
∏

(i,vi)
∈chal

H(i, vnbi), g2) · e(
s∏
j=1

h
bj
j , g2)

= e(
∏

(i,vi)
∈chal

H(i, vnbi), g2) · e(
s∏
j=1

Bj , g2)

This also works for the operation “modification” and the updating proof: the verification metadata Tm′i
of the modified block m′i contains the version number vnb′i = vnbi + 1, where vnbi is the version number of
the file block mi to be modified.

PerfOp(pk,F,E, info = (modification, i,m′i, Tm′i)) → (F′,E′, ν′). After receiving the elements i, m′i
and Tm′i from the client, the server prepares the updating proof as follows. It first selects at random
u1, · · · , us ∈R Zp and computes U1 = hu1

1 , · · · , Us = hus
s . It also chooses at random wi ∈R Zp and sets

cj = m′i,j · wi + uj ∈ Zp for j = 1, · · · , s, then Cj = h
cj
j for j = 1, · · · , s, and d = Twi

m′i
. Finally, it returns

ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1
1 to the TPA.

CheckOp(pk, ν′)→ {“success”, “failure”}. The TPA has to check whether the following equation holds:

e(d, ga2) · e(
s∏
j=1

Uj , g2)
?
= e(H(i, vnb′i), g2) · e(

s∏
j=1

Cj , g2) (6)

If Eq. 7 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

11

Correctness. If all the algorithms are correctly generated, then the above scheme is correct. For the
updating proof, we have:

e(d, ga2) · e(
s∏
j=1

Uj , g2) = e(Twi

m′i
, ga2) · e(

s∏
j=1

h
uj

j , g2)

= e(H(i, vnb′i)
−a ·

s∏
j=1

h
m′i,j ·(−a)·wi

j , ga2) · e(
s∏
j=1

h
uj

j , g2)

= e(H(i, vnb′i))
−a, ga2) · e(

s∏
j=1

h
m′i,j ·wi

j , g2)a−a · e(
s∏
j=1

h
uj

j , g2)

= e(H(i, vnb′i), g2) · e(
s∏
j=1

h
m′i,j ·wi+uj

j , g2)

= e(H(i, vnb′i), g2) · e(
s∏
j=1

h
cj
j , g2)

= e(H(i, vnb′i), g2) · e(
s∏
j=1

Cj , g2)

The security of our model still holds, but in the random oracle model instead of the standard model.

3.3.3 Security against the server

During the KeyGen phase, the challenger B gives A the public key pk that contains a hash function
H : Q×N→ G1, such that H is controlled by B as follows. Upon receiving a query (il, vnbil) to the random
oracle H for some l ∈ [1, qH]:

• If ((il, vnbil), ωl,Wl) exists in LH , return Wl.

• Otherwise, choose ωl ∈R Zp at random and compute Wl = gωl
1 . Put ((il, vnbil), ωl,Wl) in LH and

return Wl as answer.

During the Adaptive Queries phase, A has access to the tag generation oracle OTG as follows. It first
adaptively selects blocks mi, for i = 1, · · · , n. C splits each block mi, for i = 1, · · · , n into s sectors
mi,j . Then, it computes Tmi

= (W ·
∏s
j=1 h

mi,j

j)−sk = (W ·
∏s
j=1 h

mi,j

j)−a, for i = 1, · · · , n, such that if
((i, vnbi), ω,W) exists in LH , then the value W is returned. Otherwise, an element ω ∈R Zp is chosen at
random, and W = gω is computed, and ((i, vnbi), ω,W) is put in LH . It gives them to A. The adversary
sets an ordered collection F = {m1, · · · ,mn} of blocks and an ordered collection E = {Tm1 , · · · , Tmn}
which are the verification metadata corresponding to the blocks in F. A has access to the data operation
performance oracle ODOP as follows. Repeatedly, the adversary selects a block ml′ and the corresponding
element infol′ and forwards them to the challenger. l′ denotes the rank where A wants the data operation
to be performed; l′ is equal to 2i+1

2 for an insertion and to i for a deletion or a modification. Moreover,
ml′ =⊥ in the case of a deletion, since only the rank is needed to perform this kind of operation. The version
number vnbl′ increases by one in the case of a modification. Then, A outputs a new ordered file blocks
collection F′ (containing the updated version of the block ml), a new ordered verification metadata collection
E′ (containing the updated version of the verification metadata Tml

) and a corresponding updating proof
ν′ = (U1, · · · , Us, C1, · · · , Cs, d), such that wl is randomly chosen from Zp, d = Twl

ml
, and for j = 1, · · · , s,

uj is randomly chosen from Zp, Uj = h
rj
j , cj = ml,j ·wl +uj and Cj = h

cj
j . C runs the algorithm CheckOp

on the value ν′ and sends the answer to A. If the answer is “failure”, then the challenger aborts; otherwise,
it proceeds.

Analysis. The simulation of the random oracle H is not entirely perfect. Let’s consider the event that A
has queried before the Challenge phase (i∗, vnb∗i) to H. Except for the case above, the simulation of H is
perfect. This event happens with probability 1/p. We recall that the adversary makes at most qH random
oracle queries.

Adding the above analysis step into the paragraph 2.2.2, we obtain that the advantage of the adversary
in winning the Data Possession Game is still negligible. The proof is completed.

3.3.4 Data Privacy against the TPA

We give the Data Privacy proof in Section 4, since other modifications and explanations have to be brought.

12

3.3.5 Performance

First, the client and the TPA obviously have to store more information by keeping the IHT. Nevertheless,
we stress that in any case, the client and the TPA should maintain an index list. Indeed, they need some
information about the stored data in order to select some data blocks to be challenged. We recall that the
challenge consists of pairs (index,random element). By appending an integer and sometimes a comment
(only in case of deletions) to each idnex, the extra burden does not seem excessive. Therefore, such a table
does slightly affect the client’s as well as the TPA’s local storage and the communication between the client
and the TPA increases a little bit since the client should send more elements to the TPA in order to keep
the table updated.

Second, the client has to perform extra computation when generating the verification metatdata: for
each file block mi, it has to compute H(i, vnbi). However, the communication between the client and the
server overhead does not inscrease.

Third, the TPA need to compute an extra pairing e(H(i, vnbi), g2) in order to check the server correclty
performed a data operation requested by the client. The TPA also has to compute |I| multiplications in G1

and one extra pairing when checking the proof of data possession: for each challenge chal = {(i, vi)}i∈I , it
calculates

∏
(i,vi)∈chalH(i, vnbi) as well as the pairing e(

∏
(i,vi)∈chalH(i, vnbi), g2). This gives a constant

total of four pairings in order to verify the data integrity instead of three, that is not a big loss in term of
efficiency and practicality.

Finally, apart the storage of a light table and the computation of an extra pairing by the TPA for
the verification of both the updating proof and proof of data possession, the new version of our PDP
scheme is still practical by adopting asymmetric pairings to gain efficiency and by still reducing the group
exponentiation and pairing operations. In addition, our fresh protocol still allows the TPA on behalf of the
client to request the server for a proof of data possession on as many data blocks as possible at no extra
cost.

3.4 The Second Solution for the Replace and Replay Attacks: Merkle Hash
Tree

3.4.1 Idea of the Second Solution

The second solution to avoid the replace and replay attacks is to implement a Merkle Hash Tree (MHT)
for each file to order the file blocks. The MHT [7] is similar to a binary tree in the way that each node nd
has at most two children. Following the update algorithm, each internal (non-leaf) node has always two
children. We construct the MHT as follows. For leaf node ndi based on the file block mi, the assigned value
is equal to H ′(mi), where the hash function H ′ : {0, 1}∗ → {0, 1}∗ is seen as a random oracle. Note that
hashed values are affected to leaf nodes in the ascending order of the blocks, i.e. nd1 corresponds to the
hash of the first block m1, nd2 corresponds to the hash of the first block m2, and so on. A parent node of
ndi and ndi+1 has a value computed as H ′(H ′(mi)||H ′(mi+1)). The auxiliary information Ωi of a leaf node
ndi for a file block mi is a set of hash values chosen from its upper levels, so that the root value rt can be
computed through (mi,Ωi).

We recall that the client generates the verification metadata for each block of a file m = m1|| · · · ||mn,
and sends both the file blocks and the corresponding verification metadata to the server. Now, the client has
to also construct a MHT for such a file: given a hash function H ′ : {0, 1}∗ → {0, 1}∗, it computes H ′(mi)
for i = 1, · · · , n and assigns the values H ′(mi) to each leaf of the MHT in the increasing order. Then, it
calculates the hash values of the internal nodes until the root rt of the MHT, following the construction
definition of such a tree. Given a digital signature scheme SS = (SS.KeyGen,SS.Sign,SS.Verify), it
signs the root rt using the signing secret key SS.sk ← SS.KeyGen and obtains the signature σrt ←
SS.Sign(rt,SS.sk). Finally, it sends H ′, the verifying public key SS.pk ← SS.KeyGen and σrt to the
server.

Upon receiving the file blocks {mi}i=1,··· ,n, the corresponding verification metadata {Tmi
}i=1,··· ,n, the

hash function H ′, the verifying public key SS.pk and signature σrt, the server first constructs the MHT
such that each hash value H ′(mi) is assigned to each leaf of the MHT in the increasing order. It then
runs SS.Verify(σrt,SS.pk) and sends the answer to the client. If the answer is equal to 1, then the client
knows that the server correctly downloaded its files (the roots of their respective MHTs are the same), and
proceeds. Otherwise, then the client knows that the server did not obtain the same MHT, thus does not
correctly stores the data, and aborts.

We stress that the hash function H ′ is an element only shared between the client and the server. If such
a function is made public, then the scheme is no longer data private: the TPA may use the hash function on

13

random data blocks and compare the hash result with the one received through the proof of data possession.

We now explain how the operations are performed.

Insertion. When the client wants to add a block m after the block mi for i = 1, · · · , n, it first sends
a request to the server telling that it wants to insert a block and where. Second, the server sends
back the auxiliary information that is needed to update the MHT. This auxiliary information contains
some hash values. Then, the client computes the value H ′(m) and using the auxiliary information,
calculates the root rt′ of the update MHT. In this new version of the MHT, the block m “takes” the
position of and “becomes” the block mi+1, the block mi+1 “takes” the position of and “becomes” the
block mi+2 and so on, until the block mn that has a new position and “becomes” the block mn+1.
It signs the root rt′ to obtain the signature σrt′ and forwards m, Tm and σrt′ to the server. Later,
the server reconstructs the MHT following the request of the client and gives back the answer from
SS.Verify(SS.pk, σrt′ , rt

′
server) to the client. If the answer is equal to 1, then the client knows that

the server correctly updated the data (the roots of their respective MHTs are the same), and proceeds.
Otherwise, then the client knows that the server did not obtain the same MHT, thus did not correctly
perform the operation on the data, and aborts.

Deletion. When the client wants to remove the block mi for i = 1, · · · , n, it first sends a request to the
server tellin which block it wants to delete. Second, the server sends back the auxiliary information
that is needed to update the MHT. This auxiliary information contains some hash values. In this case,
the client does need to compute H ′(m). Then, the client calculates the root rt′ of the update MHT
using the auxiliary information. In this new version of the MHT, the block mi+1 “takes” the position
of and “becomes” the deleted block mi, the block mi+2 “takes” the position of and “becomes” the
block mi+1 and so on, until the block mn that “takes” the position of and “becomes” the block mn−1.
It signs the root rt′ to obtain the signature σrt′ and forwards m, Tm and σrt′ to the server. Later,
the server reconstructs the MHT following the request of the client and gives back the answer from
SS.Verify(SS.pk, σrt′ , rt

′
server) to the client. If the answer is equal to 1, then the client knows that

the server correctly updated the data (the roots of their respective MHTs are the same), and proceeds.
Otherwise, then the client knows that the server did not obtain the same MHT, thus did not correctly
perform the operation on the data, and aborts.

Modification. This is the simplest operation. When the client wants to modify a block mi by replacing it
with m′i for i = 1, · · · , n, it first sends a request to the server telling which block it wants to modify.
Second, the server sends back the auxiliary information that is needed to update the MHT. This
auxiliary information contains some hash values. Then, the client computes the valueH ′(m′i) and using
the auxiliary information, calculates the root rt′ of the update MHT. It signs the root rt′ to obtain the
signature σrt′ and forwards m′i, Tm′i and σrt′ to the server. Later, the server reconstructs the MHT
following the request of the client and gives back the answer from SS.Verify(SS.pk, σrt′ , rt

′
server) to

the client. If the answer is equal to 1, then the client knows that the server correctly updated the data
(the roots of their respective MHTs are the same), and proceeds. Otherwise, then the client knows
that the server did not obtain the same MHT, thus did not correctly perform the operation on the
data, and aborts.

3.4.2 The New Construction

Let Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof) be a Dynamic Provable Data
Possession scheme with Public Verifiability and Data Privacy. Let SS = (SS.KeyGen,SS.Sign,SS.Verify)
be a secure digital signature scheme. The Merkle Hash Tree based Dynamic Provable Data Possession scheme
with Public Verifiability and Data Privacy MHT.Π = (MHT.KeyGen,MHT.TagGen,MHT.PerfOp,
MHT.CheckOp,MHT.GenProof,MHT.CheckProof) is as follows:

MHT.KeyGen(λ) → (pk, sk). The client first runs KeyGen(λ) → (pk, sk) and SS.KeyGen(λ) →
(SS.pk,SS.sk). It sets its public key pk = (pk,SS.pk) = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2 ,SS.pk) and its
secret key sk = (sk,SS.sk) = (a,SS.sk).

MHT.TagGen(pk, sk,m) → Tm. The client runs TagGen(pk, sk,m) → Tm = (Tm1
, · · · , Tmn

) ∈ Gn1
such that Tmi = (

∏s
j=1 h

mi,j

j)−sk = (
∏s
j=1 h

mi,j

j)−a =
∏s
j=1 h

−a·mi,j

j for i = 1, · · · , n. Then, it creates the
Merkle Hash Tree (MHT) according to the file m as follows. It first chooses a hash function H ′ : {0, 1}∗ →
{0, 1}∗ seen as a random oracle. For i = 1, · · · , n, the client computes H ′(mi) and assigns this value to the

14

i-th leaf. Once the n leaves refer to the n hashed values, the client starts to construct the resulting MHT,
and obtains the root rt. Finally, the client signs the root: SS.Sign(SS.sk, rt)→ σrt.

Then, the client stores all the file blocks m in an ordered collection F and the corresponding verification
metadata Tm in an ordered collection E. It forwards these two collections and (H ′, σrt) to the server.

Once the server received (F,E, H ′, σrt), it generates the MHT corresponding to the uploaded data by the
client. Upon getting the root rtserver, it runs SS.Verify(SS.sk, σrt, rtserver)→ answer and sends answer
to the client. If answer = 0, then the client stops the process. Otherwise, it deletes (F,E, H ′, σrt) from its
local storage.

MHT.PerfOp(pk,F,E, info = (operation, i,mi, Tmi
)) → (F′,E′, ν′). First, the client sends a request

R to the server. Such request should contain at least the type of operation and the position where such
operation will be performed, i.e. R = (operation, i).

Upon receiving the request R, the server selects the auxiliary information Ωi from the MHT that the
client needs in order to generate the root rt′ of the update MHT. It sends Ωi to the client. We give details
about the value Ωi below the construction.

Once the client received Ωi, it constructs the update MHT following the updates that it wants the server
to perform on its stored data. It calculates the new root rt′ and signs it: SS.Sign(SS.sk, rt′)→ σrt′ . Then,
the client sends σrt′ along with info = (operation, i,mi, Tmi)) (note that mi and Tmi are not necessary in
case of deletion).

After receiving the elements σrt′ and info from the client, the server first updates the MHT and calcu-
lates the new root rt′server, it runs SS.Verify(SS.sk, σrt′, rt′server) → answer′ and sends answer′ to the
client. If answer′ = 0, then the client stops the process. Otherwise, it deletes (mi, Tmi

, σrt′) from its local
storage. Then, the server runs PerfOp(pk,F,E, info = (operation, i,mi, Tmi)) → (F′,E′, ν′) such that
ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1

1 . Finally, it returns ν′ to the TPA.

MHT.CheckOp(pk, ν′)→ {“success”, “failure”}. The TPA runs CheckOp(pk, ν′)→ {“success”, “failure”},
i.e. it has to check whether the following equation holds:

e(d, ga2) · e(
s∏
j=1

Uj , g2)
?
= e(

s∏
j=1

Cj , g2) (7)

If Eq. 7 holds, then the TPA returns “success” to the client; otherwise, it returns “failure” to the client.

MHT.GenProof(pk, F, chal,Σ)→ ν. After possibly receiving a challenge chalC from the client or after
a time period to be agreed between the client and the TPA, the TPA prepares a challenge chal to send to
the server as follows: it chooses a subset I ⊆]0, n + 1[Q, randomly chooses |I| elements vi ∈R Zp and sets
chal = {(i, vi)}i∈I .

Then, after receiving the challenge chal which indicates the specific blocks for which the TPA, on behalf
of the client, wants a proof of data possession, the server runs GenProof(pk, F, chal,Σ) → ν such that
ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G2s+1

1 . Finally, it returns ν to the TPA.

MHT.CheckProof(pk, chal, ν) → {“success”, “failure”}. The TPA runs CheckProof(pk, chal, ν) →
{“success”, “failure”}, i.e. it has to check whether the following equation holds:

e(c, ga2) · e(
s∏
j=1

Rj , g2)
?
= e(

s∏
j=1

Bj , g2) (8)

If Eq. 8 holds, then the TPA returns “success” to the client; otherwise. it returns “failure” to the client.

Correctness. Since the correctness holds for the systems Π and SS, if all the algorithms of MHT.Π are
correctly generated, then the above scheme is correct.

Auxiliary Information Ωi. When the client desires to add, remove or change a data block on its stored
data, it has first to inform the server of such wish. The client’s request R contains the type of operation
that has to be performed (insertion, deletion or modification at block level) as well as the position where
the operation will be done. Using such information, the server is able to select the appopriate elements
from the current version of the MHT and set the auxiliary information Ωi as the tuple of all these elements.
More precisely, the elements are the hashed values assigned on the nodes of the MHT: the elements can
be found either on the leaf or the internal nodes, at different level, in function of what needs the client to

15

create the updated version of the MHT according to the data operation. As we mentioned in the first part
of this section, the auxiliary information Ωi of a leaf node ndi for a file block mi is a set of hash values
chosen from every of its upper level, so that the root value rt can be computed through (mi,Ωi).

Let m = (m1, · · · ,m8) be a file stored on the server. In Figure 1, we highlight which leaf/internal nodes
are required in order to insert a data block m′3 after the data block m2, to delete the block m3 and to
modify the block m3 by replacing it with m′3. Each hashed value H ′(mi) is assigned to a leaf node ndi, for
i = 1, · · · , n, in the ascending order. The blocks that sustain the operations are alloted to leaf nodes with
a disk inside. The hashed values that should be included into Ω3 are affected to leaf or internal nodes with
a cross inside. Such values will allow the client to compute the new version of the MHT, including the new
root rt′ that will be then signed.

nd1 nd2 nd3 nd4 nd5 nd6 nd7 nd8

rt

nd1 nd2 nd3 nd4 nd5 nd6 nd7 nd8

rt′

ModificationInitialization

H′(m3)

nd1 nd2

nd3

nd4 nd5 nd6 nd7

rt′

nd1 nd2

nd3 nd4

nd5 nd6 nd7 nd8

rt′

InsertionDeletion

H′(m4)

H′(m2) H′(m5)

nd9

H′(m′
3
)H′(m3)

H′(m2)

H′(m2) H′(m4) H′(m′
3
)H′(m2) H′(m4)

H′(m4)

H′(H′(m1)||H′(m2))

N.B.: H′ = H ′(H ′(H ′(m5)||H ′(m6))||H ′(H ′(m7)||H ′(m8)))

H’

H′(H′(m1)||H′(m2))

H’

H′(H′(m1)||H′(m2))

H’

Figure 1: Merkle Hash Trees for the file m = (m1, · · · ,mn) at the Initialization phase, at the Modification
phase (changing the block m3 into m′3), at the Deletion phase (removing the block m3), and at the Insertion
phase (adding the block m′3 after the block m2).

3.4.3 Performance

Obviously, the communication and the computation overheads grow. First of all, when the client is uploading
the file for the first time, it has to compute all the elements in order to construct the MHT resulting from
the file. However, such elements are only hash values, that is, elements easily computable.

The server stores more elements: the MHT for each file, along with the file itself and the corresponding
verification metadata as previously. In addition, each time that the server is asked to perform an operation,
it has to update the MHT accordingly. Nevertheless, as suggested in [4], the server has huge computation
and storage resources, thus this should not be a constraint for it.

Then, the communication burden increases between the client and the server, especially for data opera-
tion processes. More precisely, the client has first to inform the server that it wants to make an operation on
its data and asks the necessary information. From this request, the server sends some auxiliary information
to the client in order to start the data operation process. Upon receiving such information, the client has to
create the MHT according to the updated version of the data. Then, as for the first upload, the client sends
the resulting information back to the server. Using such elements, the server can perform the operation
on the stored data to obtain a new version of them and gives the updating proof back to the TPA. Upon
receiving the updating proof, the TPA checks it and sends the result to the client. Therefore, implementing
a MHT-based scheme negatively affects the communication overhead.

16

Comparison with the Existing Schemes. In DPD system, three entities are involved: a client, a server
and a TPA. MHT is an authenticated data structure (ADS) that allows the client and the TPA to check
that the server correctly stores and updates the data blocks. With the help of the node and some auxiliary
information, the data block can be authenticated.

Erway et al. [2] proposed the first Dynamic PDP scheme. The verification of the data updates is based
on a modified ADS, rank-based authentication skip list (RASL). This provides authentication of the data
block indices, which ensures security in regards to data block dynamicity. However, public verifiability is
not reached. Note that such ADS with bottom-up levelling limits the insertion operations. For instance, if
leaf nodes are at level 0, any data insertion that creates a new level below the level 0 will bring necessary
updates of all the level hash values and the client might not be able to verify.

Wang et al. [11] gave a dynamic and publicly verifiable PDP system based on BLS signatures. To achieve
the dynamicity property, they employed MHT. Nevertheless, because the check of the block indices is not
done, the server can delude the client by corrupting a challenged block as follows: it is able to compute a
valid proof with other non-corrupted blocks. Thereafter, in a subsequent work [10], Wang et al. suggested
to add randomization to the above system [11], in order to guarantee cannot deduce the contents of the
data files from proofs of data possession.

Liu et al. [6] constructed a PDP protocol based on MHT with top-down levelling. Such protocol satisfies
dynamicity and public verifiability. They opted for such design to let leaf nodes be on different levels. Thus,
the client and the TPA have both to remember the total number of data blocks and check the block indices
from two directions (leftmost to rightmost and vice versa) to ensure that the server does not delude the
client with another node on behalf of a file block during the data integrity checking process.

Counter to the above systems, our dynamic and publicly verifiable PDP scheme is based on MHT with
bottom-up levelling, such that data block indices are authenticated. In the next section, we explain how we
can ensure that the TPA cannot get any information or just few details about the challenged file blocks.
Such notion is called Data Privacy.

4 Attack against Data Privacy

We recalled the security model for Data Privacy against the TPA in Section 2.2.3. The definition of the
model follows the one from [12], that is an enhancement of the model provided in [5]. The data privacy
attack works as follows.

The TPA, who plays the role of the adversary, provides two equl-length messages m0 and m1 to the
challenger, such that m0 = (m0,1, · · · ,m0,n) and m1 = (m1,1, · · · ,m1,n). The challenger chooses a bit
b ∈ {0, 1}, computes Tmb,i

← TagGen(pk, sk,mb,i) for i = 1, · · · , n and gives them to the TPA. We recall

that Tmb,i
is equal to (

∏s
j=1 h

mb,i,j

j)−sk = (
∏s
j=1 h

mb,i,j

j)−a for i = 1, · · · , n.

Note that e(Tmb,i
, g2) = e((

∏s
j=1 h

mb,i,j

j)−sk, g2) = e((
∏s
j=1 h

mb,i,j

j)−a, g2) = e(
∏s
j=1 h

mb,i,j

j , (ga2)−1).
The last pairing requires only public elements to be computed. Therefore, for b′ ∈ {0, 1}, the TPA is able to
generate the pairing e(

∏s
j=1 h

mb′,i,j
j , (ga2)−1), given the public key pk and the one of the message that it gave

to the challenger, as well as the pairing e(Tmb,i
, g2), given the verification metadata sent by the challenger,

and finally compares them. If these two pairings are equal, then b′ = b; otherwise b′ 6= b.

4.1 The First Solution for the Data Privacy Attack: a Weaker Security Model

4.1.1 Idea of the First Solution

A first solution to avoid the aforementioned attack is to choose a weaker security model than the one
proposed in [4]. The security model given in [4] is based on indistinguishability and unfortunately, the
system does not satisfy such property. However, we argue that such model is too strong according to the
reality. Indeed, if we allow the TPA to be able to distinguish two files, it still does not learn anything
about the contents of these files. Moreover, it may have to check the same blocks several times during
different challenge-response processes. For instance, even if the TPA notices that it has verified the same
block during two consecutive challenge-response processes, it only knows that this block appeared twice
but it does not know more information about it. We recall that the TPA checks that the server correctly
performed a data operation at block level, therefore this means that the TPA is aware of on which block the
operation happened and so, it may be able to differentiate this block with another one on which another
operation occured. Yet again, it does not have access too more details about these two blocks.

Thus, we argue that a security model based on one-wayness is sufficient for our purposes. In the case
of one-wayness, an attacker (played by the TPA) can not get back the whole data of a given verification

17

metadata, with just public parameters at its disposal.

4.1.2 The New Security Model

We consider a Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy Π =
(KeyGen,TagGen,PerfOp,CheckOp,GenProof, CheckProof). Let a data privacy game between a
challenger C and an adversary A be as follows:

KeyGen. (pk, sk)← KeyGen(λ) is run by C. The element pk is given to A.
Setup. C chooses a file m = m1|| · · · ||mn, computes Tmi ← TagGen(pk, sk,mi) for i = 1, · · · , n.

Then, it creates an ordered collection F = {mb,1, · · · ,mb,n} of file blocks along with an ordered collection
E = {Tmb,1

, · · · , Tmb,n
} of the corresponding verification metadata.

Challenge. The adversary forwards chal to C.
Generation of the Proof. The challenger outputs a proof of data possession ν∗ ← GenProof(pk, F, chal,Σ)

for the blocks in F that are determined by the challenge chal, where F = {mi1 , · · · ,mik} ⊂ F is an ordered
collection of blocks and Σ = {Tmi1

, · · · , Tmik
} ⊂ E is an ordered collectection of the verification metadata

corresponding to the blocks in F , for 1 ≤ ij ≤ n, 1 ≤ j ≤ k and 1 ≤ k ≤ n. B sends (ν′,Σ) to the adversary.
Guess. The adversary outputs F ′ = {m′i1 , · · · ,m

′
ik
} for Σ = {Tmi1

, · · · , Tmik
} and wins if F ′ = F .

The Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy Π = (KeyGen,
TagGen,PerfOp,CheckOp,GenProof,CheckProof) is said to be data private if there is no proba-
bilistic polynomial-time (PPT) adversary A who can win the above data privacy game with non-negligible
advantage AdvA(λ). Informally, there is no adversary A who can recover the file from a given verification
metadata tuple with non-negligible probability.

4.1.3 The New Security Proof for the Original Scheme

The proof will be provided in the full version of this paper.

4.2 The Second Solution for the Data Privacy Attack: Index-Hash Table

4.2.1 Idea of the Second Solution

A second solution to avoid the above attack while keeping the same security level (i.e. indistinguishability)
is to employ Index-Hash Tables (IHT). Please refer to Section for details about such construction.

In [3], the authors gave a data privacy model based on indistinguishability. They also noticed that two
papers [11, 9] were not data private under the security model presented in [3], meaning that some infor-
mation about the file is leaked to the TPA. More precisely, the TPA is able to distinguish files that are
challenged. Note that such a security model is similar to one presented in [4].

The strongest notion for data privacy has been proposed by Fan et al. [3]. They defined data privacy
using an indistinguishability game between a challenger B (the server as the prover) and an adversary A
(the TPA as the auditor or the verifier).

Setup. B runs the KeyGen algorithm to generate the pair of matching public and secret keys (pk, sk)
and forwards pk to A.

Queries. A is allowed to make Tag Generation queries as follows. A selects a file m and sends it to B.
The latter generates the corresponding verification metadata Tm and returns it to A.

Challenge. A chooses two different files m0 and m1 of equal length, such that they have not appeared
in the Queries phase, and sends them to B. The latter computes Tm0

and Tm1
by running the TagGen

algorithm. Then, B randomly chooses a bit b ∈ {0, 1} and sends Tmb
back to A. Thereafter, A creates a

challenge chal and gives it to B. The latter generates a proof of data possession ν based on mb, Tmb
and

chal, and sends ν to A. Finally, A outputs a bit b′ ∈ {0, 1} and wins the game if b′ = b.
The advantage of the adversary A in winning the indistinguishability game is defined as

AdvA(1λ) = |Pr[b′ = b]− 1

2
|.

A proof of data possession ν has indistinguishability if for any PPT adversary A, AdvA(1λ) is a negligible
function of the security parameter λ.

4.2.2 The New Security Proof for the IHT-based Scheme

The proof will be provided in the full version of this paper.

18

5 Conclusion

We provided solutions to solve the technical issues of DPDP scheme with Public Verifiability and Data
Privacy proposed in [4]. These solutions manage to overcome replay and replace attacks by includ-
ing Index-Hash Tables (IHTs) or Merkle Hash Trees (MHTs) into the original construction, as well as
indistinguishability-based data privacy model problems by either presenting a weaker security model for the
original scheme or by proving such security level for the IHT-based construction.

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 598–609, New York, NY, USA, 2007. ACM.

[2] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data possession. In
Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS ’09, pages
213–222, New York, NY, USA, 2009. ACM.

[3] X. Fan, G. Yang, Y. Mu, and Y. Yu. On indistinguishability in remote data integrity checking.
58(4):823–830, Apr. 2015.

[4] C. Gritti, W. Susilo, and T. Plantard. Efficient dynamic provable data possession with public verifi-
ability and data privacy. In Proceedings of the 20th Australasian Conference on Information Security
and Privacy, ACISP ’15, Berlin, Heidelberg, 2015. Springer-Verlag.

[5] Z. Hao, S. Zhong, and N. Yu. A privacy-preserving remote data integrity checking protocol with data
dynamics and public verifiability. IEEE Trans. on Knowl. and Data Eng., 23(9):1432–1437, Sept. 2011.

[6] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen. Mur-dpa: Top-down levelled multi-
replica merkle hash tree based secure public auditing for dynamic big data storage on cloud. IACR
Cryptology ePrint Archive, 2014:391, 2014.

[7] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford, CA, USA, 1979.
AAI8001972.

[8] H. Shacham and B. Waters. Compact proofs of retrievability. In Proceedings of the 14th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’08, pages 90–107, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for secure
cloud storage. IEEE Transactions on Computers, 62(2):362–375, 2013.

[10] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for data storage se-
curity in cloud computing. In Proceedings of the 29th Conference on Information Communications,
INFOCOM’10, pages 525–533, Piscataway, NJ, USA, 2010. IEEE Press.

[11] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling public auditability and data dynamics for
storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst., 22(5):847–859, May 2011.

[12] Y. Yu, M. H. Au, Y. Mu, S. Tang, J. Ren, W. Susilo, and L. Dong. Enhanced privacy of a remote data
integrity-checking protocol for secure cloud storage. International Journal of Information Security,
pages 1–12, 2014.

19

