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Abstract
An efficient Dynamic Provable Data Possession scheme with Public Verifiability and Data
Privacy was recently published in ACISP’15. It appears that three attacks menace this
scheme. The first one enables the server to store only one block of a file m and still pass
the data integrity verification on any number of file blocks. The second attack permits the
server to keep the old version of a file block mi and the corresponding verification metadata
Tmi , after the client asked to modify them by sending the new version of these elements,
and still pass the data integrity verification. The last attack allows the Third Party Auditor
(TPA) to distinguish files when proceeding the data integrity checking, without accessing
their contents.

In this paper, we propose several solutions to overcome all the aforementioned issues.
For the two first attacks, we give two new constructions of the scheme, one using Index
Hash Tables and the other based on the Merkle Hash Trees. We compare the efficiency of
these two new systems with the previous one. For the third attack, we suggest a weaker
security model for data privacy that applies to the new construction based on the Index
Hash Tables, and we use the existing strong model to prove the data privacy security for the
new construction using Merkle Hash Trees.
Keywords: Provable Data Possession; Dynamcity; Public Verifiability; Security; Data
Privacy; Index Hash Tables; Merkle Hash Trees.

1. Introduction

Provable Data Possession (PDP) is a protocol that allows a client to verify the integrity
of its data stored at an untrusted server without the need to retrieve the entire file. In
a Dynamic Provable Data Possession (DPDP) system with Public Verifiability and Data
Privacy, three entities are involved: a client who is the owner of the data to be stored, a
server that stores the data and a Third Party Auditor (TPA) who may be required when
the client wants to check the integrity of its data stored on the server, without acquiring any
information about these data. The system is publicly verifiable with the possible help of the

Preprint submitted to Elsevier February 15, 2016



TPA who acts on behalf of the client to check the integrity of the data. The system exhibits
data dynamicity at block level such that three essential operations can be done, namely data
insertion, data deletion and data modification. Finally, the system is secure at the untrusted
server, meaning that a server cannot successfully generate a correct proof of data possession
without storing all the file blocks, and data private, meaning that the TPA learns nothing
about the data of the client from all available information.

In [5], the authors presented an efficient and practical PDP system by adopting asym-
metric pairings to gain in efficiency and reducing the group exponentiation and pairing
operations. In their scheme, no exponentiation and only three pairings are required during
the proof of data possession check, which outperformed all the existing schemes in the liter-
ature at this stage. Furthermore, the TPA on behalf of the client is allowed to request the
server for a proof of data possession on as many data blocks as possible at no extra cost.

Nevertheless, we find three attacks on the DPDP scheme with Public Verifiability and
Data Privacy [5]. The first one enables the server to store only one block of a file m and still
pass the data integrity verification on any number of file blocks. The second attack permits
the server to keep the old version of a file block mi and the corresponding verification
metadata Tmi , after the client asked to modify them by sending the new version of these
elements, and still pass the data integrity verification.

To overcome these two issues, we propose solutions that force us to switch from the stan-
dard model to the random oracle model. However, the practicality of our improved schemes
is not impacted: no exponentiation and four pairings (instead of three) are needed during
the proof of data possession check. Solutions include the employ of Index Hash Tables (IHT)
and Merkle Hash Trees (MHT) respectively.

The last attack threatens the data privacy in [5]. Indeed, in their security model, the
TPA plays the role of the attacker and is allowed to submit two equal-length files m0 and
m1 to the challenger. The latter chooses a bit b ∈ {0,1} and sends back the verification
metadata corresponding to each block of mb. Given these elements as well as the public key,
the attacker is able to discover which file was chosen by the challenger.

To overcome this issue, there are two options. The first one is to lessen the security
notion: instead of the indistinguishability property, we focus on the one-way property and
so, such security level is reached for the protocol based on IHT. The second one is to prove
that the strongest security notion presented in [5] is achieved for the protocol using MHT at
the cost of efficiency loss.

1.1. Related Work
Ateniese et al. [1] introduced the notion of Provable Data Possession (PDP), which enables
a client to check the integrity of its data stored at an untrusted server without retrieving the
entire file. Their scheme is designed for static data and used public key-based homomorphic
tags for auditing the data file. Nevertheless, the precomputation of the verification metadata
imposes heavy computation overhead that can be expensive for the entire file. Thereafter,
Ateniese et al. [2] proposed scalable and efficient schemes using symmetric keys in order to
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improve the efficiency of the audit. This results in lower overhead than their previous scheme
[1]. The scheme partially supports dynamic data operations (block updates, deletions and
appends to the stored file); however, it is not publicly verifiable and is limited in number of
verification requests.

Subsequently, several works were presented following the models given in [1, 2]. Wang
et al. [17] combined a BLS-based homomorphic authenticator with a MHT to achieve a
public auditing protocol with fully dynamic data. Yu et al. [21] joined the techniques
of Attribute-Based Encryption, Proxy Re-Encryption and Lazy Re-Encryption together to
obtain a scheme that guarantees fine-grainedness, scalability and data confidentiality of
access control. Hao et al. [6] designed a dynamic public auditing system based on RSA.
However, they did not provide any proof of security. Their scheme is shown not to be
secure with respect to data privacy in [22]. The authors in the [22] gave an improved
scheme that is proved to be data private. Erway et al. [3] proposed a fully Dynamic
PDP (DPDP) scheme based on rank-based authenticated dictionary. Unfortunately, their
system is very inefficient. Zhu et al. [26] used IHTs to support fully dynamic data and
constructed a zero-knowledge PDP. Zhu et al. [25] created a dynamic audit service based
on fragment structure, random sampling and IHT that supports timely anomaly detection.
Wang et al. [16] proposed a system to ensure the correctness of users’ data stored on multiple
servers by requiring homomorphic tokens and erasure codes in the auditing process. Le and
Markopoulou [7] constructed an efficient dynamic remote data integrity checking scheme
based on homomorphic MAC scheme and CPA-secure encryption scheme and specifically
designed for network coding based storage cloud. Wang et al. [15] gave a flexible distributed
storage integrity auditing protocol utilizing the homomorphic token and the distributed
erasure-coded data. Later, Wang et al. [12] designed a privacy-preserving protocol, called
Oruta, that allows public auditing on shared data stored in the cloud. They exploited
ring signatures to compute the verification information needed to audit the integrity of
shared data. The scheme allows public auditing and identity privacy but fails to support
large groups and traceability. In a parallel work, Wang et al. [11] presented a privacy-
preserving auditing system, called Knox, for data stored in the cloud and shared among a
large number of users in the group. They used group signatures to construct homomorphic
authenticators. The scheme allows identity privacy, large users’ number and traceability but
is only for private auditing. Note that in both schemes, the identity of the signer on each
block in shared data is kept private from a Third Party Auditor (TPA), who is still able
to verify the integrity of shared data without retrieving the entire file. Nevertheless, Yu
et al. [24] investigated the active adversary attacks in three auditing protocols for shared
data in the cloud, including the two identity privacy preserving auditing systems Oruta [12]
and Knox [11], and the aforementioned distributed storage integrity auditing system [15].
They showed that these schemes become insecure when active adversaries are involved in
the cloud storage (i.e. they can alter the cloud data without being detected by the auditor
in the verification phase). Yang et al. [20] presented a survey of the previous works on data
auditing. Subsequently, Wang et al. [14] proposed another privacy-preserving scheme with
public auditing. Nevertheless, Fan et al. [4] showed that such scheme cannot guarantee no

3



information leakage since indistinguishability is not achieved. The authors in [4] then gave a
new definition of data privacy based on indistinguishability along with an new version of the
aforementioned scheme that satisfies the new security model. Wang et al. [13] suggested a
protocol, called Panda, that achieves user revocation (by using Proxy Re-Signature model),
public verifiability, data dynamicity (by using IHT) and batch auditing. However, Yu et al.
[23] showed that Panda is not secure since a server can hide data loss without being detected.
The authors in [23] proposed a solution to overcome the issue that keeps the properties of
Panda.

Recently, another DPDP scheme with Public Verifiability and Data Privacy was proposed
[5], such that the efficiency of this scheme outperformed the one from all the previous related
systems. However, the scheme is subject to several attacks, including replay and replace
attacks and attacks against data privacy.

1.2. Contributions
In this paper, we propose solutions to overcome the technical issues threatening the DPDP
scheme in [5]. These solutions include two new DPDP constructions:

• We give a first new DPDP construction based on Index Hash Tables (IHT), in the
random oracle model. We prove that such scheme is secure against replace and replay
attacks. In addition, we provide a weaker security model than the one proposed in [5]
for data privacy but still strong enough in the real world, and show that the IHT-based
scheme is data private according to this model.

• We present a second new DPDP construction based on Merkle Hash Trees (MHT), in
the random oracle model. We demonstrate that such scheme is not vulnerable against
the three attacks mentioned above. In particular, we use the existing strong security
model given in [5] to prove that the MHT-based scheme is data private.

We also analyse the computational and communication overheads in the two new schemes
and compare them with the one in [5]. In both novel systems, we observe that the efficiency
is slightly affected compared to the results obtained in [5].

In the appendix, we accurately describe the three attacks that menace the DPDP scheme
in [5], namely the replace attack, the replay attack and the attack against data privacy. We
describe how the attacks can be triggered and break the security of the DPDP scheme in [5].

2. Preliminaries

In this section, we recall the definition of the DPDP protocol and the security models pro-
vided in [5]. We also specify the theoretic assumptions that we will need to prove the security
of our new DPDP systems.
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2.1. Definition for DPDP Schemes
The file to be stored is split into n blocks, and each block is split into s sectors. We let each
block and sector be elements of Zp for some large prime p. For instance, let the file be b
bits long. Then, the file is split into n= db/s · log(p)e blocks. The aforementioned intuition
comes from [10]. Suppose that the blocks contain s≥ 1 elements of Zp. Therefore, a tradeoff
exists between the storage overhead and the communtication overhead. More precisely, the
communication complexity rises as s+ 1 elements of Zp. Finally, a larger value of s yields
less storage overhead at cost of a high communication. Moreover, p should be λ bits long,
where λ is the security parameter such that n >> λ.

A Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy
Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof) is as follows:

KeyGen(λ)→ (pk,sk). The probabilistic key generation algorithm is run by the client to
setup the scheme. It takes as input the security parameter λ, and outputs a pair of public
and secret keys (pk,sk).

TagGen(pk,sk,m)→ Tm. The (possibly) probabilistic tag generation algorithm is run by
the client to generate the verification metadata. It takes as inputs the public key pk, the
secret key sk and a file block m, and outputs a verification metadata Tm. Then, the client
stores all the file blocks m in an ordered collection F and the corresponding verification
metadata Tm in an ordered collection E. It forwards these two collections to the server and
deletes them from its local storage.

PerfOp(pk,F,E, info= (operation, l′,ml′ ,Tml′ ))→ (F′,E′,ν ′). This algorithm is run by the
server in response to a data operation (insertion, deletion or modification) requested by the
client. It takes as inputs the public key pk, the previous collection F of all the file blocks,
the previous collection E of all the verification metadata, the type of the data operation to
be performed, the index l′ denoting the rank where the data operation is performed (in the
ordered collections F and E - l′ = 2i+1

2 for insertion, l′ = i for deletion and modification), the
file block ml′ to be inserted, deleted or modified (ml′ =m 2i+1

2
for insertion, ml′ is not required

for deletion and ml′ =m′i for modification), and the corresponding verification metadata Tl′
to be inserted, deleted or modified (Tml′ = Tm 2i+1

2
for insertion, Tml′ is not required for

deletion and Tml′ = Tm′i for modification), for l′ = 0, · · · ,n. More precisely, for the operation:

• insertion: m 2i+1
2

is inserted between the existing blocks mi and mi+1 and Tm 2i+1
2

is
inserted between the existing verification metadata Tmi and Tmi+1 , for i= 1, · · · ,n−1.
For i = 0, m 1

2
is appended before m1 and Tm 1

2
is appended before Tm1 . For i = n,

m 2n+1
2

is appended after mn and Tm 2n+1
2

is appended after Tmn .

The above explanation works for indices in N. Let us now consider two consecutive
blocks ml1 and ml2 such that l1 and/or l2 do(es) not belong to N. Thus, adding the
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block ml3 between l1 and l2 amounts to set l3 = l1+l2
2 .

• deletion: mi is deleted, giving that mi−1 is followed by mi+1 and Tmi is deleted, giving
that Tmi−1 is followed by Tmi+1 , for i = 2, · · · ,n− 1. For i = 1, m1 is removed, giving
that the file now begins from m2, and Tm1 is removed, giving that the collection of
verification metadata now begins from Tm2 . For i= n, mn is removed, giving that the
file now ends at mn−1, and Tmn is removed, giving that the collection of verification
metadata now ends at Tmn−1 .

• modification: m′i replaces mi and Tm′i replaces Tmi . We assume that the file block m′i
and the corresponding verification metadata Tm′i were provided by the client to the
server, such that Tm′i was correctly computed by running the algorithm TagGen.

Note that the set of block indices is included in (0,n+ 1)∩Q after updates.
Finally, it outputs the updated file block collection F′ containing ml′ for insertion and

modification and not containing it for deletion, the updated verification metadata collection
E′ containing Tml′ for insertion and modification and not containing it for deletion.

CheckOp(pk,ν′)→ {“success”,“failure”}. This algorithm is run by the TPA on behalf of
the client to verify the server’s behavior during the data operation (insertion, deletion or
modification). It takes as inputs the public key pk and the updating proof ν ′ sent by the
server. It outputs “success” if ν ′ is a correct updating proof; otherwise it outputs “failure”.

GenProof(pk,F,chal,Σ)→ ν. This algorithm is run by the server in order to generate a
proof of data possession. It takes as inputs the public key pk, an ordered collection F ⊂ F of
blocks, a challenge chal and an ordered collection Σ⊂ E which are the verification metadata
corresponding to the blocks in F . It outputs a proof of data possession ν for the blocks in
F that are determined by the challenge chal.

CheckProof(pk,chal,ν)→{“success”,“failure”}. This algorithm is run by the TPA in order
to validate the proof of data possession. It takes as inputs the public key pk, the challenge
chal and the proof of data possession ν. It outputs “success” if ν is a correct proof of data
possession for the blocks determined by chal; otherwise it outputs “failure”. We assume that
the answer is then forwarded to the client.

Correctness. We require that a Dynamic Provable Data Possession scheme with Public Verifi-
ability and Data Privacy Π is correct if for (pk,sk)←KeyGen(λ), for Tm←TagGen(pk,sk,m),
for (F′,E′,ν ′)←PerfOp(pk,F,E, info), for ν←GenProof(pk,F,chal,Σ), then “success”←
CheckOp(pk,ν′) and “success”←CheckProof(pk,chal,ν).

2.2. Security Models for DPDP Schemes
2.2.1. Security against the Server
The definition of the game mentioned below follows the ones from [1] and [3]. We consider
a Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy
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Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof). Let a data pos-
session game between a challenger B and an adversary A be as follows.

KeyGen. (pk,sk)←KeyGen(λ) is run by B. The element pk is given to A.

Adaptive queries. A makes adaptive queries through the intermediary of two oracles.
First, A is given access to a tag generation oracle OTG as follows. A chooses blocks mi and
forwards them to B, for i = 1, · · · ,n. B computes the corresponding verification metadata
Tmi ← TagGen(pk,sk,mi) and gives them to A. Then, A creates an ordered collection
F = {m1, · · · ,mn} of file blocks along with an ordered collection E = {Tm1 , · · · ,Tmn} of the
corresponding verification metadata.

Thereafter, A is given access to a data operation performance oracle ODOP as follows.
A submits to B a block mi, for i = 1, · · · ,n, and the corresponding value infoi about the
data operation that A wants to perform. A also outputs a new ordered collection F′ of file
blocks, a new ordered collection E′ of verification metadata, and the corresponding updating
proof ν ′. B checks the value ν ′ by running the algorithm CheckOp(pk,ν′) and gives back
the resulting answer belonging to {“success”,“failure”} to A. If the answer is “failure”, then
B aborts; otherwise, it proceeds. The above interaction between A and B can be repeated.

Challenge. A submits file blocks m∗i along with the corresponding values info∗i , for
i ∈ I ⊆ (0,n+ 1)∩Q. Adaptive queries are again generated by A, such that the first info∗i
specifies a full re-write update (this corresponds to the first time that the client sends a file
to the server). B still verifies the data operations.

The final version of the blocks mi for i ∈ I is considered such that these blocks were cre-
ated according to the data operations requested by A, and verified and accepted by B in the
previous step. B sets F = {mi}i∈I of these file blocks and E = {Tmi}i∈I of the corresponding
verification metadata. It then takes an ordered collection F = {mi1 , · · · ,mik} ⊂ F and the
ordered collection Σ = {Tmi1

, · · · ,Tmik
} ⊂ E of the corresponding verification metadata, for

ij ∈ I, j = 1, · · · ,k. It generates a resulting challenge chal for F and Σ and forwards it to A.

Forge. A generates a proof of data possession ν on chal. Then, B runs CheckProof(pk,
chal,nu) and gives the answer belonging to {“success”,“failure”} to A. If the answer is
“success” then A wins.

The Dynamic Provable Data Possession scheme with Public Verifiability and Data Pri-
vacy Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof) is said to be
secure if for any probabilistic polynomial-time (PPT) adversary A who can win the above
data possession game with non-negligible probability, then the challenger B can extract at
least the challenged parts of the file by resetting and challenging the adversary polynomially
many times by means of a knowledge extractor E .

The above security model follows the definition of the extractor in Proofs of Knowledge.
The goal is to extract at least the challenged parts of a file m from the adversary’s approving
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responses.

2.2.2. Data Privacy against the TPA
Strong Security Model. The definition of the game mentioned below follows the one proposed
by Fan et al. [4]. They defined data privacy using an indistinguishability game between a
challenger B (the server as the prover) and an adversary A (the TPA as the auditor or the
verifier). A similar definition for data privacy has been presented in [22] as an enhancement
of the model given in [6]. Note that the authors in [5] used this security model for their data
privacy proof.

We consider a Dynamic Provable Data Possession scheme with Public Verifiability and
Data Privacy Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof, CheckProof). Let
a data privacy game between a challenger B and an adversary A be as follows.

KeyGen. B runs the key generation algorithm to generate the pair of public and secret
keys (pk,sk) and forwards pk to A.

Queries. A is allowed to make tag generation queries as follows. A selects a file m and
sends it to B. The latter generates the corresponding verification metadata Tm and returns
it to A.

Challenge. A chooses two different files m0 and m1 of equal length, such that they have
not appeared in the Query phase, and sends them to B. The latter computes Tm0 and Tm1
by running the algorithm TagGen. Then, B randomly chooses a bit b∈ {0,1} and sends Tmb

back to A. Thereafter, A creates a challenge chal and gives it to B. The latter generates a
proof of data possession ν based on mb, Tmb

and chal, and sends ν to A. Finally, A outputs
a bit b′ ∈ {0,1} and wins the game if b′ = b.

The advantage of the adversary A in winning the indistinguishability game is defined as
AdvA(λ) = |Pr[b′ = b]− 1

2 |. A proof of data possession ν has indistinguishability if for any
PPT adversary A, AdvA(λ) is a negligible function in the security parameter λ.

N.B.. This security model will be considered for the data privacy proof of the MHT-based
construction.

Weak Security Model. A solution to avoid the attack against data privacy is to choose a
weaker security model than the one proposed in [5]. The security model given in [5] is
based on indistinguishability and unfortunately, the system does not satisfy such property.
However, we argue that such model is strong and can be relaxed according to the reality.
Indeed, we can wish that even if the TPA is able to distinguish two files, it still does not
learn anything about the contents of these files. Moreover, it may have to check the same
blocks several times during different challenge-response audits. For instance, even if the TPA
notices that it has verified the same block during two consecutive challenge-response audits,
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it only knows that this block appeared twice, however it does not know more information
about it. We recall that the task of the TPA is to check that the server correctly performs
data operations at block level and stores the data. Therefore, for a given operation, the TPA
is aware of which block is considered and so, it may be able to differentiate it with another
one given another operation. Yet again, it does not have access to more details about these
two blocks.

In addition, note that such security model is found in the literature [17, 14] to show that
public auditing systems preserve data privacy. The requirement is to introduce a TPA that
checks that the server correclty stores the data of a user, without bringing new vulnerabilities
toward the data privacy. To prove that the schemes are data private, the authors revealed
the existence of a challenger that can produce a valid proof of data possession without the
knowledge of the challenged blocks, by using a backpatching technique in the random oracle
model as in [10].

Thus, we argue that a security model based on one-wayness is sufficient for the above
scenario. In the case of one-wayness, an attacker (played by the TPA) can not get back the
whole data of a given verification metadata with just public parameters at its disposal.

We consider a Dynamic Provable Data Possession scheme with Public Verifiability and
Data Privacy Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof). Let
a data privacy game between a challenger B and an adversary A be as follows.

KeyGen. (pk,sk)←KeyGen(λ) is run by B. The element pk is given to A.

Challenge. B chooses a file m = (m1, · · · ,mn) and computes Tmi ←TagGen(pk,sk,mi)
for i = 1, · · · ,n. Then, it creates an ordered collection F = {m1, · · · ,mn} of file blocks along
with an ordered collection E = {Tm1 , · · · ,Tmn} of the corresponding verification metadata.
A forwards chal to B.

Generation of the Proof. B outputs a proof of data possession ν∗←GenProof(pk,F,chal,Σ)
for the blocks in F that are determined by the challenge chal, where F = {mi1 , · · · ,mik} ⊂ F
is an ordered collection of blocks and Σ = {Tmi1

, · · · ,Tmik
} ⊂ E is an ordered collectection

of the verification metadata corresponding to the blocks in F , for 1≤ ij ≤ n, 1≤ j ≤ k and
1≤ k ≤ n. B sends ν∗ to A.

Guess. A outputs F ′ = {m′i1 , · · · ,m
′
ik
} for Σ = {Tmi1

, · · · ,Tmik
} and wins if F ′ = F .

The Dynamic Provable Data Possession scheme with Public Verifiability and Data Pri-
vacy Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof) is said to be
data private if there is no PPT adversary A who can win the above data privacy game with
non-negligible advantage AdvA(λ). Informally, there is no adversary A who can recover the
file from a given verification metadata tuple with non-negligible probability.
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N.B.. This security model will be considered for the data privacy proof of the IHT-based
construction.

2.3. Theoretic Assumptions
We first recall the definition of bilinear maps in groups. Let G1, G2 and GT be three
multiplicative cyclic groups of prime order p. Let g1 be a generator of G1, g2 be a generator
of G2 and e be a bilinear map, e : G1×G2 → GT . The bilinear map e has the following
properties:

1. bilinearity: for all (u,v) ∈G1×G2 and a,b ∈ Zp, we have e(ua,vb) = e(u,v)ab.
2. non-degeneracy: e(g1,g2) 6= 1.

We say that G1 and G2 are bilinear groups if the group operation in (G1,G2) and the bilinear
map e : G1×G2→GT are both efficiently computable.

2.3.1. Discrete Logarithm (DL) Problem
Let G1 be a multiplicative cyclic group of prime order p = p(λ) (where λ is the security
parameter). The DL problem is as follows: for a ∈ Zp, given g1,ga1 ∈G1, output a. The DL
problem holds in G1 if no PPT algorithm has advantage non negligible in solving the DL
problem in G1.

2.3.2. Computational Diffie-Hellman (CDH) Problem
Let G1 be a multiplicative cyclic group of prime order p = p(λ) (where λ is the security
parameter). Let g1 be a generator of G1. The CDH problem is as follows: for a,b ∈R Zp,
given g1,ga1 ,g

b
1 ∈ G1, output gab1 . The CDH problem holds in G1 if no PPT algorithm has

advantage non negligible in solving the CDH problem in G1.

2.3.3. s-Strong Diffie Hellman (SDH) Problem
Let G1 be a multiplicative cyclic group of order p= p(λ) (where λ is the security parameter).
Let g1 be a generator of G1. Set β,γ ∈R Zp. The s-SDH problem is as follows: for β ∈R Zp,

given g1,g
β
1 , · · · ,g

βs

1 , output (γ,g
1

β+γ
1 ) for γ ∈R Zp \{−β}. The s-SDH problem holds in G1

if no PPT algorithm has advantage non negligible in solving the s-SDH problem in G1.

2.3.4. Decisional s-Strong Diffie Hellman (DSDH) Problem
Let G1 and G2 be two multiplicative cyclic groups of order p= p(λ) (where λ is the security
parameter). Let g1 be a generator of G1 and g2 be a generator of G2. Choose β ∈R Zp and
b ∈R {0,1}. The s-DSDH problem instance consists of the tuple (Z,gγ1 ,g1,g

β
1 , · · · ,g

βs

1 ,g2,g
β
2 ),

such that if b = 0, set Z = gβ
s+1

1 for some integer s; otherwise, set Z ∈R G1. The s-DSDH
problem is to guess b and holds in (G1,G2) if no PPT algorithm has advantage negligible in
solving the s-DSDH problem in (G1,G2).
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3. First Solution: IHT-based DPDP Scheme with Public Verifiability and Data
Privacy

A solution to avoid the replace attack is to embed the index i of the file block mi into the
verification metadata Tmi . When the TPA on behalf of the client checks the proof of data
possession generated by the server, it requires to use all the indices of the challenged file
blocks to process the verification. Such idea was proposed for the publicly verifiable scheme
in [10].

A solution to avoid the replay attack is to embed the version number vnbi of the file block
mi into the verification metatdata Tmi . The first time that the client sends the file block mi

to the server, the number vnbi is set to be equal to 1 (meaning that the first version of the
file block is uploaded) and is appended to the index i. When the client wants to modify the
file block mi with m′i, it specifies the number vnbi = 2 (meaning that the second version of
file block is uploaded) and generates the verification metadata Tm′i accordingly. When the
TPA on behalf of the client checks that the block was correctly updated by the server, it has
to use both the index i and the version number vnbi of the file block.

We stress that the index i of the file block mi is unique. More precisely, when a block
is inserted, a new index is created that has not been used and when a block is modified,
the index does not change. However, when a block is deleted, its index does not disappear
in order to let the scheme remain secure. To explain why, we consider that the index of a
deleted block is removed. Let m = (m1, · · · ,m10) be a file stored on the server. The client
first requests to the server to delete the file block m5. Thus, the index 5 disappears. Later,
the client asks to insert a block m′4+6

2
= m′5 between the file blocks m4 and m6. However,

the server might have not properly deleted the previous file block m5 when the cliend asked
for, and so the server may not replace the not-yet-deleted block m5 by the block m′5 that
the client wants to insert, and can still pass the data integrity verification using the not-
yet-deleted block m5. In order to elude this situation, the index i is kept as “used” even
if the block mi is deleted and when a file block should be added between mi−1 and mi+1,
then the client can choose either an index equal to 2i−1

2 for m 2i−1
2

or 2i+1
2 for m 2i+1

2
. In

addition, we should explicit the insertion process when one of or both involved indices are
not natural numbers. More precisely, let us consider the blocks mi such that i∈N and m 2i+1

2
that has been inserted earlier (and 2i+1

2 /∈ N). We wish to add a block ml between the two
aforementioned blocks: its index l should be set as the mean of the indices of the two blocks,
i.e. l = 1

2(i+ 2i+1
2 ) = 4i+1

4 . Such mean method should be kept in mind when inserting a new
file block.

In our construction, we specify that the client deletes the file blocks and the corresponding
verification metadata from its local storage once these elements are sent to the server. We
also implicitly let the TPA know the indices of the file blocks that are currently stored on
the server in order to challenge the server on a certain data amount of the stored data. To
be quite clear, we let the client conserve a table of indices of the file blocks mi kept on the
server along with their version numbers vnbi. Such table is then forwarded to the TPA.
Refering to the aforementioned example with m= (m1, · · · ,m10), we suppose that the block
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m5 has been deleted, the blocks m 4+5
2

= m 9
2

and m 1
2 (4+ 9

2 ) = m 17
4

have been added, and the
block m6 has been modified twice. Let the table stored on the client’s local storage be as
follows:

Index i Version Number vnbi Comments
1 1 -
· · · · · · · · ·
4 1 -

17/4 1 -
9/2 1 -
5 - DELETED
6 3 -
7 1 -
· · · · · · · · ·
10 1 -

The above IHT table is composed of several columns: one for the block index, one for the
version number and one for some auxiliary comments. A column for random values can be
added, if the verification metadata should be randomized to enhance the data privacy against
the TPA. We stress that each record in the IHT is different from another to ensure that data
blocks and their corresponding verification metadata cannot be forged. An example of an
IHT-based PDP scheme can be found in [25].

The IHT gives better security level against the untrusted server while the security level
against the TPA is lowered (in the random oracle model instead of the standard model),
and this leads into an increase of the complexity of the system. Indeed, the communication
and the computation costs grow for all the entities involved in the protocol. We recall that
the TPA is required to help the client that does not have the necessary resources to audit
the server efficiently and regularly. However, the task of the TPA should remain simple in
verifying that the proof of data possession is consistent with the given challenge and that
the updating proof with the requested data operation. Nevertheless, adding IHTs obliges the
TPA to provide more local storage and more communication burden. Such additional costs
make that the intervention of the TPA is not necessarly advantageous One may think that
the TPA should be more trusted since it keeps more sensitive information elements; however,
note that the TPA already has access to the indices of the data blocks in the original scheme
given in [5].

Finally, we show below that such changes only slightly affect the efficiency and the prac-
ticality of the protocol compared to the one presented in [5].

3.1. IHT-based Construction
The IHT-based Dynamic Provable Data Possession scheme with Public Verifiability and
Data Privacy Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof) is as
follows:

12



KeyGen(λ)→ (pk,sk). Let GroupGen(λ) be an algorithm that, on input the security pa-
rameter λ, generates the cyclic groups G1, G2 and GT of prime order p= p(λ) with bilinear
map e : G1×G2 → GT . Let g1 and g2 be generators of G1 and G2 respectively. Let the
hash function H : Q×N→ G1 be a random oracle. Then, the client randomly chooses s
elements h1, · · · ,hs ∈R G1. Moreover, it selects at random a ∈R Zp and sets its public key
pk = (p,G1,G2,GT , e,g1,g2,h1, · · · ,hs,ga2 ,H) and its secret key sk = a.

TagGen(pk,sk,m)→ Tm. A file m is split into n blocks mi, for i = 1, · · · ,n. Each block
mi is then split into s sectors mi,j ∈ Zp, for j = 1, · · · , s. We suppose that |m| = b and
n= db/s · log(p)e. Therefore, the file m can be seen a n×s matrix with elements denoted as
mi,j . The client computes the verification metadata

Tmi = (H(i,vnbi) ·
s∏
j=1

h
mi,j

j )−sk =H(i,vnbi)−a ·
s∏
j=1

h
−a·mi,j

j

Yet, it sets Tm = (Tm1 , · · · ,Tmn) ∈Gn
1 .

Then, the client stores all the file blocks m in an ordered collection F and the correspond-
ing verification metadata Tm in an ordered collection E. It forwards these two collections to
the server and deletes them from its local storage.

PerfOp(pk,F,E, info = (operation, l′,ml′ ,Tml′ ))→ (F′,E′,ν ′). After receiving the elements
l′, ml′ and Tml′ from the client, the server prepares the updating proof as follows. It first
selects at random u1, · · · ,us ∈R Zp and computes U1 = hu1

1 , · · · ,Us = huss . It also chooses
at random wl′ ∈R Zp and sets cj = ml′,j ·wl′ + uj ∈ Zp for j = 1, · · · , s, then Cj = h

cj
j for

j = 1, · · · , s, and d = T
wl′
ml′ . Finally, it returns ν ′ = (U1, · · · ,Us,C1, · · · ,Cs,d,wl′) ∈ G2s+1

1 to
the TPA.

More precisely, for the operation:

• insertion: (l′,ml′ ,Tml′ ) = (2i+1
2 ,m 2i+1

2
,Tm 2i+1

2
) and vnbl′ = vnb 2i+1

2
= 1.

• deletion: (l′,ml′ ,Tml′ ) = (l′, , ) and vnbl′ = vnbi = , meaning that the elements ml′ ,
Tml′ and vnbl′ are not required. Indeed, the server uses the block mi and the corre-
sponding verification metadata Tmi that are kept on its storage to generate ν ′.

• modification: (l′,ml′ ,Tml′ ) = (i,m′i,Tm′i) and vnb′i = vnbi+ 1.

CheckOp(pk,ν′)→ {“success”,“failure”}. The TPA has to check whether the following
equation holds:

e(d,ga2) · e(
s∏
j=1

Uj ,g2) ?= e(H(l′,vnbl′)wl′ ,g2) · e(
s∏
j=1

Cj ,g2) (1)

If Eq. 1 holds, then the TPA returns “success” to the client; otherwise. it returns “failure”
to the client.
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GenProof(pk,F,chal,Σ)→ ν. The TPA on behalf of the client prepares a challenge chal to
send to the server as follows. First, it chooses a subset I ⊆ (0,n+ 1)∩Q, randomly chooses
|I| elements vi ∈R Zp and sets chal = {(i,vi)}i∈I .

Second, after receiving the challenge chal provided by the TPA, the server sets the or-
dered collection F = {mi}i∈I ⊂ F of blocks and an ordered collection Σ = {Tmi}i∈I ⊂E which
are the verification metadata corresponding to the blocks in F . It then selects at random
r1, · · · , rs ∈R Zp and computes R1 = hr11 , · · · ,Rs = hrss . It also sets bj =∑

(i,vi)∈chalmi,j · vi+
rj ∈ Zp for j = 1, · · · , s, then Bj = h

bj
j for j = 1, · · · , s, and c = ∏

(i,vi)∈chalT
vi
mi

. Finally, it
returns ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) ∈G2s+1

1 to the TPA.

CheckProof(pk,chal,ν)→ {“success”,“failure”}. The TPA has to check whether the fol-
lowing equation holds:

e(c,ga2) · e(
s∏
j=1

Rj ,g2) ?= e(
∏

(i,vi)
∈chal

H(i,vnbi)vi ,g2) · e(
s∏
j=1

Bj ,g2) (2)

If Eq. 2 holds, then the TPA returns “success” to the client; otherwise. it returns “failure”
to the client.

Correctness. For the proof of data possession:

e(c,ga2) · e(
s∏
j=1

Rj ,g2) = e

 ∏
(i,vi)
∈chal

T vimi
,ga2

 · e(
s∏
j=1

h
rj
j ,g2)

= e

 ∏
(i,vi)
∈chal

(H(i,vnbi)−a·vi ·
s∏
j=1

h
mi,j ·(−a)·vi
j ),ga2

 · e(
s∏
j=1

h
rj
j ,g2)

= e

 ∏
(i,vi)
∈chal

H(i,vnbi)vi ,g2

 · e(
s∏
j=1

h

∑
(i,vi)
∈chal

mi,j ·vi+rj

j ,g2)

= e

 ∏
(i,vi)
∈chal

H(i,vnbi)vi ,g2

 · e(
s∏
j=1

h
bj
j ,g2)

= e

 ∏
(i,vi)
∈chal

H(i,vnbi)vi ,g2

 · e(
s∏
j=1

Bj ,g2)

14



For the updating proof:

e(d,ga2) · e(
s∏
j=1

Uj ,g2) = e(Twl′ml′ ,g
a
2) · e(

s∏
j=1

h
uj
j ,g2)

= e(H(i,vnbl′)−a·wl′ ·
s∏
j=1

h
ml′,j ·(−a)·wl′
j ,ga2) · e(

s∏
j=1

h
uj
j ,g2)

= e(H(l′,vnbl′)wl′ ,g2) · e(
s∏
j=1

h
ml′,j ·wl′+uj
j ,g2)

= e(H(l′,vnbl′)wl′ ,g2) · e(
s∏
j=1

h
cj
j ,g2)

= e(H(l′,vnbl′)wl′ ,g2) · e(
s∏
j=1

Cj ,g2)

3.2. Security against the Server
Theorem 1 Let A be a PPT adversary that has advantage ε against the IHT-based DPDP
scheme with Public Verifiability and Data Privacy. Suppose that A makes a total of qH > 0
queries to H. Then, there is a challenger B that solves the CDH and DL problems with
advantage ε′ =O(ε).

Proof of the Security against the Server. For any PPT adversary A who wins the game,
there is a challenger B that wants to break the CDH and DL problems by interacting with
A as follows.

KeyGen. B runs GroupGen(λ)→ (p,G,GT , e). Then, it is given the CDH instance
tuple (g,ga,gb), chooses two exponents x,y ∈ Zp and computes g1 = gx and g2 = gy. It also
sets G1 =< g1 > and G2 =< g2 >. Note that (ga)x = ga1 , (gb)x = gb1, (ga)y = ga2 and (gb)y = gb2.
B randomly chooses s elements h1, · · · ,hs ∈R G1. Let a hash function H : Q×N→ G1 be
controlled by B as follows. Upon receiving a query (il,vnbil) to the random oracle H for
some l ∈ [1, qH ]:

• If ((il,vnbil), θl,Wl) exists in LH , return Wl.

• Otherwise, choose βj ,γj ∈R Zp and set hj = g
βj
1 · (gb1)γj for j = 1, · · · , s. For earch il,

choose θl ∈R Zp at random and set

Wl = gθl1

g

∑s
j=1βjmil,j

1 (gb1)
∑s
j=1 γjmil,j

for a given block mil = (mil,1, · · · ,mil,s). Put ((il,vnbil), θl,Wl) in LH and return Wl

as answer.
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B sets the public key pk = (p,G1,G2,GT , e,g1,g2,h1, · · · ,hs,ga2 ,H) and forwards it to A. It
keeps ga1 ,gb1,gb2 secret.

Adaptive queries. A has first access to the tag generation oracle OTG as follows. It first
adaptively selects blocks mi, for i = 1, · · · ,n. B splits each block mi into s sectors mi,j .
Then, it computes Tmi = (W ·∏sj=1h

mi,j

j )−sk = (W ·∏sj=1h
mi,j

j )−a, for i= 1, · · · ,n, such that
if ((i,vnbi), θ,W ) exists in LH , then the value W is used to compute Tmi . Otherwise, an
element θ ∈R Zp is chosen at random, W = gθ1

g

∑s
j=1 βjmi,j

1 (gb1)
∑s
j=1 γjmi,j

is computed for an

element hj = g
βj
1 · (gb1)γj , ((i,vnbi), θ,W ) is put in LH and W is used for the generation of

Tmi .
Note that we have

s∏
j=1

h
mi,j

j ·H(i,vnbi) = (
s∏
j=1

h
mi,j

j ) · gθ1

g

∑s
j=1βjmi,j

1 · (gb1)
∑s
j=1 γjmi,j

= g

∑s
j=1βjmi,j

1 (gb1)
∑s
j=1 γjmi,j ·gθ1

g

∑s
j=1βjmi,j

1 · (gb1)
∑s
j=1 γjmi,j

= gθ1

and so, Tmi = (H(i,vnbi) ·
∏s
j=1h

mi,j

j )−sk = (H(i,vnbi) ·
∏s
j=1h

mi,j

j )−a = (ga1)−θ.
B gives the blocks and the verification metadata to A. The latter sets an ordered collec-

tion F = {m1, · · · ,mn} of blocks and an ordered collection E = {Tm1 , · · · ,Tmn} which are the
verification metadata corresponding to the blocks in F.
A has also access to the data operation performance oracle ODOP as follows. Repeatedly,

A selects a block ml′ and the corresponding element infol′ and forwards them to B. l′ de-
notes the rank where A wants the data operation to be performed: l′ is equal to 2i+1

2 for an
insertion and to i for a deletion or a modification. Moreover, ml′ = in the case of a deletion,
since only the rank is needed to perform this kind of operation. The version number vnbl′
increases by one in the case of a modification. Then, A outputs a new ordered collection F′
(containing the updated version of the block ml′), a new ordered collection E′ (containing
the updated version of the verification metadata Tml′ ) and a corresponding updating proof
ν ′ = (U1, · · · ,Us,C1, · · · ,Cs,d), such that wl′ is randomly chosen from Zp, d = T

wl′
ml′ , and for

j = 1, · · · , s, uj is randomly chosen from Zp, Uj = h
uj
j , cj = ml′,j ·wl′ +uj and Cj = h

cj
j . B

runs the algorithm CheckOp on the value ν ′ and sends the answer to A. If the answer is
“failure”, then the challenger aborts; otherwise, it proceeds.

Challenge. A selects blocks m∗i and the corresponding elements info∗i , for i ∈ I ⊆ (0,n+
1)∩Q, and forwards them to the challenger who checks the data operations. In particular,
the first info∗i indicates a full re-write.
B chooses a subset I ⊆ I, randomly chooses |I| elements vi ∈R Zp and sets chal =

{(i,vi)}i∈I . It forwards chal as a challenge to A.
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Forge. Upon receiving the challenge chal, the resulting proof of data possession on
the correct stored file m should be ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) and pass the Eq. 2.
However, A generates a proof of data possession on an incorrect stored file m̃ as ν̃ =
(R̃1, · · · , R̃s, B̃1, · · · , B̃s, c̃), such that r̃j is randomly chosen from Zp, R̃j = h

r̃j
j , b̃j =∑

(i,vi)∈chal

m̃i,j ·vi+ r̃j and B̃j = h
b̃j
j , for j = 1, · · · , s. It also sets c̃=∏

(i,vi)∈chalT
vi
m̃i

. Finally, it returns
ν̃ to B. If the proof of data possession still pass the verification, then A wins. Otherwise, it
fails.

Analysis. We define ∆rj = r̃j−rj , ∆bj = b̃j−bj =∑
(i,vi)∈chal(m̃i,j−mi,j)vi+∆rj and ∆µj =∑

(i,vi)∈chal(m̃i,j−mi,j)vi, for j = 1, · · · , s. Note that rj and bj are the elements of an honest
proof of data possession ν such that rj ∈R Zp and bj = ∑

(i,vi)∈chalmi,j · vi + rj where mi,j

are the actual blocks (not the ones that the adversary claims to possess).
We prove that if the adversary can win the game, then a solution to the CDH and

DL problems are found, which contradicts the assumption that the CDH and DL problems
are hard in G and G1 respectively. Let assume that the adversary (playing the role of
the server) wins the game. We recall that if A wins then B can extract the actual blocks
{mi}(i,vi)∈chal in polynomially-many interactions with A. Without loss of generality, suppose
that chal = {(i,vi)}.

First case (c̃ 6= c): We have

e( c̃
c
,g2) = e

(
Tm̃i

Tmi

,g2

)
= e

(∏sj=1h
b̃j
j )−a

(∏sj=1h
bj
j )−a

,g2


= e(

s∏
j=1

h
∆bj
j ,g−a2 ) = e(

s∏
j=1

(gβj1 · (gb1)γj )∆bj ,g−a2 )

and so, we gets
e( c̃
c
· (ga1)

∑s
j=1βj∆bj ,g2) = e(gb1,g−a2 )

∑s
j=1 γj∆bj

meaning that we have found the solution to the CDH problem, that is

(gb1)a = (gx)ab = ( c̃
c
· (ga1)

∑s
j=1βj∆bj )

1∑s
j=1 γj∆bj

unless evaluating the exponent causes a divide-by-zero. Nevertheless, we notice that
not all of the ∆bj can be zero (indeed, if bj = b̃j for each j = 1, · · · , s, then c= c̃ which
contradicts the hypothesis), and the values γj are information theoretically hidden
from A (Pedersen commitments), so the denomicator is zero only with probability 1/p,
which is negligible. Finally, since B knows the exponent x such that g1 = gx, it can
directly compute

(( c̃
c
· (ga1)

∑s
j=1βj∆bj )

1∑s
j=1 γj∆bj )

1
x
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and obtains gab. Thus, if A wins the game, then a solution to the CDH problem can
be found with probability equal to 1−1/p.

Second Case (c̃= c): According to Eq. 2, we have

e(c̃, ga2) = e(H(i,vnbi)vi ,g2) · e(
s∏
j=1

B̃j ,g2) · e(
s∏
j=1

R̃j ,g2)−1.

Since the proof ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) is a correct one, we also have

e(c,ga2) = e(H(i,vnbi)vi ,g2) · e(
s∏
j=1

Bj ,g2) · e(
s∏
j=1

Rj ,g2)−1.

We recall that chal = {(i,vi)}. From the previous analysis step, we know that c̃ = c.
Therefore, we get that ∏sj=1 B̃j · (

∏s
j=1 R̃j)−1 = ∏s

j=1Bj · (
∏s
j=1Rj)−1. We can re-

write as ∏sj=1h
b̃j−r̃j
j =∏s

j=1h
bj−rj
j or even as ∏sj=1h

∆bj−∆rj
j =∏s

j=1h
∆µj
j = 1. For two

elements g1,h ∈ G1, there exists x ∈ Zp such that h = gx1 since G1 is a cyclic group.
Without loss of generality, given g1,h ∈ G1, each hj could randomly and correctly be
generated by computing hj = g

yj
1 ·hzj ∈G1 such that yj and zj are random values of Zp.

Then, we have 1 =∏s
j=1h

∆µj
j =∏s

j=1(gyj1 ·hzj )∆µj = g

∑s
j=1 yj ·∆µj

1 ·h
∑s
j=1 zj ·∆µj . Clearly,

we can find a solution to the DL problem. More specifically, given g1,h= gx1 ∈G1, we

can compute h= g

∑s
j=1 yj ·∆µj∑s
j=1 zj ·∆µj

1 = gx1 unless the denominator is zero. However, not all of
the ∆µj can be zero and the values zj are information theoretically hidden from A, so
the denominator is only zero with probability 1/p, which is negligible. Thus, if A wins
the game, then a solution to the DL problem can be found with probability equal to
1− 1

p . Therefore, for A, it is computationally infeasible to win the game and generate
an incorrect proof of data possession which can pass the verification.

The simulation of the tag generation oracle OTG is perfect. The simulation of the data
operation performance oracle ODOP is almost perfect except when B aborts. This happens
the data operation was not correclty performed. As previously, we can prove that if A can
pass the updating proof, then a solution to the DL problem is found. Following the above
analysis and according to Eq. 1, if A generates an incorrect updating proof which can pass
the verification, then solutions to the CDH and DL problems can be found with probability
equal to 1− 1

p respectively. Therefore, for A, it is computationally infeasible to generate an
incorrect updating proof which can pass the verification. The proof is completed.

3.3. Data Privacy against the TPA
Theorem 2 Let A be a PPT adversary that has advantage ε against the IHT-based DPDP
scheme with Public Verifiability and Data Privacy. Suppose that A makes a total of qH > 0
queries to H. Then, there is a challenger B that solves the SDH problem with advantage
ε′ =O(ε).
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Proof of the Data Privacy against the TPA. For any PPT adversary A who wins the game,
there is a challenger B that wants to break the s+ 1-SDH assumption in G1 by interacting
with A as follows.

KeyGen. B runs GroupGen(λ) → (p,G1,G2,GT , e) and receives the s+ 1-SDH in-
stance (g1,g

β
1 , · · · ,g

βs+1

1 ). Then, it chooses a generator g2 for G2 and sets the elements
h1 = gβ

1

1 , · · · ,hs = gβ
s

1 ,hs+1 = gβ
s+1

1 . It also randomly chooses the secret key sk = a ∈R Zp.
The challenger B also gives A access to hash function H : Q×N→G1, such that H is con-
trolled by B as follows: upon receiving a query (il,vnbil) to the random oracle H for some
l ∈ [1, qH ]:

• If ((il,vnbil), θl,Wl) exists in LH , return Wl.

• Otherwise, choose θl ∈R Zp at random and compute Wl = h−θl1 . Put ((il,vnbil), θl,Wl)
in LH and return Wl as answer.

It sets the public key pk = (p,G1,G2,GT , e,g1,g2,h1, · · · ,hs,ga2 ,H) and forwards it to A.

Challenge. B implicitly chooses a file m = (m1, · · · ,mn) such that for all i = 1, · · · ,n
and j = 1, · · · , s, we have mi,j = β · zj for an element zj ∈ Zp chosen at random by B (each
block mi is divided into s sectors mi,j). For that, it computes Tmi = W ·∏sj=1h

−sk·mi,j

j =

W ·∏sj=1 g
−βj ·β·zj ·sk
1 = W ·∏sj=1 g

−βj+1·zj ·(−a)
1 = W ·∏sj=1h

−zj ·a
j+1 , for i = 1, · · · ,n, such that if

((i,vnbi), θ,W ) exists in LH , then the value W is used to compute the verification meta-
data; otherwise, an element θ ∈R Zp is chosen at random, W = h−θ1 is computed, and
((i,vnbi), θ,W ) is put in LH . It gives the corresponding verification metadata Tm = (Tm1 , · · · ,Tmn)
to A.

Without loss of generality, A generates a challenge on one block only. It chooses a subset
I = {i∗} ⊆ {1, · · · ,n}, randomly chooses an element vi∗ = γ ∈R Zp and sets chal = (i∗,vi∗).
It forwards chal as a challenge to B.

Generation of the Proof. Upon receiving the challenge chal, B selects an ordered collec-
tion F = {mi∗} of blocks and an ordered collection Σ = {Tmi∗} which are the verification
metadata corresponding to the block in F such that Tmi∗ = W ·∏sj=1 g

−βj+1·zj ·a
1 . It then

chooses r1, · · · , rs at random in Zp and computes R∗1 = hr11 , · · · ,R∗s = hrss . It also implicitly sets
b1 =mi∗,1 ·vi∗+r1, · · · , bs =mi∗,s ·vi∗+rs by computing B∗1 = hz1·γ2 ·R∗1 = hβ·z1·γ+r1

1 , · · · ,B∗s =
hzs·γs+1 ·R∗s = hβ·zs·γ+rs

s . It sets c∗ = T
vi∗
mi∗ =W ·∏sj=1 g

−βj+1·zj ·sk·vi∗
1 =∏s

j=1 g
−βj+1·zj ·a·γ
1 as well.

Finally, B returns ν∗ = (R∗1, · · · ,R∗s,B∗1 , · · · ,B∗s , c∗).

Guess. A outputs an ordered collection F ′ = {m′i∗}.

Analysis. The simulation is perfect, thus the adversary must not be able to recover the
ordered collection F = {mi∗}= {(β ·z1, · · · ,β ·zs)} set by B, despite accepting the verification
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metadata and the proof of data possession from the challenger. Because otherwise, B can
efficiently solve the s+ 1-SDH problem in G1 by receiving γ and β from A. Note that
the elements z1, ·, zs are chosen at random by B. Moreover, the value Tmb,i

is equal to
(H(i,vnbb,i) ·

∏s
j=1h

mb,i,j

j )−sk such that sk= a is kept secret from A. The proof is completed.

N.B.. The DPDP scheme in [5] can be proved data private considering the weaker security
model. The proof is similar to the above one.

3.4. Performance of the IHT-based DPDP Scheme
We compare the IHT-based scheme with the original scheme proposed in [5]. First, the client
and the TPA obviously have to store more information by keeping the IHT. Nevertheless,
we stress that in any case, the client and the TPA should maintain an index list. Indeed,
they need some information about the stored data in order to select some data blocks to
be challenged. We recall that the challenge consists of pairs (index, random element). By
appending an integer and sometimes an auxiliary comment (only in case of deletions) to each
index, the extra burden does not seem excessive. Therefore, such table does slightly affect
the client’s as well as the TPA’s local storage. The communication between the client and
the TPA rather increases since the client should send more elements to the TPA in order to
keep the table updated.

Second, the client has to perform extra computation when generating the verification
metatdata: for each file block mi, it has to compute H(i,vnbi). However, the communication
between the client and the server overhead does not inscrease.

Third, the TPA need to compute an extra pairing e(H(i,vnbi),g2) in order to check that
the server correclty performed a data operation requested by the client. The TPA also has
to compute |I| multiplications in G1 and one extra pairing when checking the proof of data
possession: for each challenge chal= {(i,vi)}i∈I , it calculates ∏(i,vi)∈chalH(i,vnbi) as well as
the pairing e(∏(i,vi)∈chalH(i,vnbi),g2). This gives a constant total of four pairings in order
to verify the data integrity instead of three, that is not a big loss in term of efficiency and
practicality.

Finally, apart the storage of a light table and the computation of an extra pairing by the
TPA for the verification of both the updating proof and the proof of data possession, the
new construction for the DPDP protocol is still practical by adopting asymmetric pairings
to gain efficiency and by still reducing the group exponentiation and pairing operations. In
addition, this scheme still allows the TPA on behalf of the client to request the server for
a proof of data possession on as many data blocks as possible at no extra cost, as in the
scheme given in [5].

4. Second Solution: MHT-based DPDP Scheme with Public Verifiability and
Data Privacy

The second solution to avoid the replace and replay attacks and the attacks against data
privacy is to implement a MHT for each file such that the file blocks are ordered. The
MHT [9] is similar to a binary tree in the way that each node nd has at most two children.
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Following the update algorithm, each internal (non-leaf) node has always two children. The
construction of a MHT is as follows. For leaf node ndi based on the file block mi, the
assigned value is equal to H ′(mi), where the hash function H ′ : {0,1}∗ → G1 is seen as a
random oracle. Note that the hash values are affected to leaf nodes in the increasing order
of the blocks, i.e. nd1 corresponds to the hash of the first block m1, nd2 corresponds to
the hash of the first block m2, and so on. A parent node of ndi and ndi+1 has a value
computed as H ′(H ′(mi)||H ′(mi+1)), where || is the concatenation sign (for an odd index i).
The auxiliary authentication information (AAI) Ωi of a leaf node ndi for the file block mi is
a set of hash values chosen from its upper levels, so that the root value rt can be computed
through (mi,Ωi).

When the client desires to add, remove or change a data block on its stored data, it has
first to inform the server of such wish. The client’s request R contains the type of operation
that has to be performed (insertion, deletion or modification) as well as the position where
the operation will be done. Using such information, the server is able to select the appopriate
elements from the current version of the MHT and set the AAI Ωi as the tuple of all these
elements. More precisely, the elements are the hash values assigned on the nodes of the
MHT: the elements can be found either on the leaves or the internal nodes, at different level,
in function of what needs the client to create the updated version of the MHT according to
the data operation.

Let m = (m1, · · · ,m8) be a file stored on the server. In Figure 1, we highlight which
leaves/internal nodes are required in order to insert a data block m′3 after the data block
m2, to delete the block m3 and to modify the block m3 by replacing it with m′3. Each hash
value H ′(mi) is assigned to a leaf node ndi, for i = 1, · · · ,n, in the increasing order. The
blocks that sustain the operations are alloted to leaf nodes with a disk inside. The hash
values that should be included into Ω3 are affected to leaves or internal nodes with a cross
inside. Such values will allow the client to compute the new version of the MHT, including
the new root rt′ that will be then signed.

The AAI Ωi is also required by the TPA to check the proof of data possession. More pre-
cisely, in addition to the proof of data possession ν, the server also forwards values rtserver,
H ′(mi) and Ωi for i ∈ I, according to the blocks indicated by chal. With such elements, the
TPA is able to construct the current MHT and verifies that the root that it obtained is equal
to rtserver. If such verification is successful, then the TPA proceeds to validate the proof of
data possession itself.

We recall that the client generates the verification metadata for each block of a file
m= (m1, · · · ,mn), and sends both the file blocks and the corresponding verification metadata
to the server. Now, the client has to also construct a MHT for such a file: given a hash
function H ′ : {0,1}∗→G1, it computes H ′(mi) for i= 1, · · · ,n, and assigns the values H ′(mi)
to each leaf of the MHT in the increasing order. Then, it calculates the hash values of the
internal nodes until computing the root rt of the MHT, following the construction definition
of such a tree. Given a digital signature scheme SS = (SS.KeyGen,SS.Sign,SS.Verify),
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nd2 → H ′(m2)

nd4 → H ′(m5)

Figure 1: MHTs for the file m = (m1, · · · ,m8) at the Initialization phase, at the Modification phase (changing
the block m3 into m′3), at the Deletion phase (removing the block m3), and at the Insertion phase (adding
the block m′3 after the block m2).

it signs the root rt using the signing secret key SS.sk← SS.KeyGen(λ) and obtains the
signature σrt← SS.Sign(SS.sk,rt). Finally, it sends H ′ and σrt to the server. The client
also computes the verifying public key SS.pk←SS.KeyGen(λ) and shares it with the TPA.

Upon receiving the ordered collection F = {mi}i=1,··· ,n of the file blocks, the ordered col-
lection E = {Tmi}i=1,··· ,n of the corresponding verification metadata, the hash function H ′

and the signature σrt, the server first constructs the MHT such that each hash value H ′(mi)
is assigned to each leaf of the MHT in the increasing order. It then obtains a root rtserver
and sends it to the client. The latter then runs SS.Verify(SS.pk,σrt, rtserver) and gets an
answer in {0,1}. If the answer is equal to 1, then the client knows that the server correctly
downloaded its files (the roots of their respective MHTs are identical), and proceeds. Oth-
erwise, then the client knows that the server did not obtain the same MHT, thus does not
correctly stores the data, and aborts.
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Data Operations. When the client wants to add a block m after the block mi, remove mi

or modify mi by replacing it with m′i, for i = 1, · · · ,n, it first sends a request to the server
containing information such as the type of operation to be performed and its location (index
of the block).

Upon each request, the server needs to return the AAI Ωi of the block to be updated (in
order to reconstruct the current MHT and build the new one after the data update) and the
last signed root value σrt provided by the client. The latter is so able to authenticate the AAI
Ωi by verifying the given signed root value σrt with the root rt of the reconstructed MHT.
If the AAI are successfully authenticated, then the client proceeds; otherwise, it aborts.

Thereafter, in order to get the new MHT, the client computes the value H ′(m) for
insertion or H ′(m′i) for modification. Note that it does not need to compute H(mi) for
deletion. In the new MHT, for the operation:

• insertion: the block m “takes” the position of and “becomes” the block mi+1, the block
mi+1 “takes” the position of and “becomes” the block mi+2 and so on, until the block
mn that has a new position and “becomes” the block mn+1.

• deletion: the block mi+1 “takes” the position of and “becomes” the deleted block mi,
the block mi+2 “takes” the position of and “becomes” the block mi+1 and so on, until
the block mn that “takes” the position of and “becomes” the block mn−1.

• modification: m′i simply “takes” the position of mi.

The client then signs the updated root rt′ obtained in the new MHT by running SS.Sign,
gets the signature σrt′ and forwards it to the server, in addition to (m,Tm) for insertion and
(m′i,Tm′i) for modification. The server builds the MHT following the client’s operation request
and gives the resulting rt′server to the client. Yet, the client runs SS.Verify(SS.pk,σrt′ , rt′server)
to get an answer in {0,1}. If the answer is equal to 1, then the client knows that the server
correctly updated the data (the roots of their respective MHTs are identical), and proceeds
(in particular, it can delete from its local storage (m,Tm,Ωi,σrt′) for insertion, (Ωi,σrt′) for
deletion or (m′i,Tm′i ,Ωi,σrt′) for modification). Otherwise, then the client knows that the
server did not obtain the same MHT, thus did not correctly perform the operation on the
data, and thus aborts.

Note that the client may ask the TPA to challenge the server after each update process
in order to check the server’s behavior.

4.1. MHT-based Construction
Let Π = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,CheckProof) be a Dynamic
Provable Data Possession scheme with Public Verifiability and Data Privacy such as the
one given in [5]. Let SS = (SS.KeyGen,SS.Sign,SS.Verify) be a secure Digital Signa-
ture scheme. The MHT-based Dynamic Provable Data Possession scheme with Public Ver-
ifiability and Data Privacy MHT.Π = (MHT.KeyGen,MHT.TagGen,MHT.PerfOp,
MHT.GenProof,MHT.CheckProof) is as follows:
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MHT.KeyGen(λ)→ (pk,sk). The client first runs KeyGen(λ)→ (pk,sk) and SS.KeyGen(λ)
→ (SS.pk,SS.sk). More precisely, let GroupGen(λ) be an algorithm that, on input the
security parameter λ, generates the cyclic groups G1, G2 and GT of prime order p = p(λ)
with bilinear map e : G1×G2→GT . Let g1 and g2 be generators of G1 and G2 respectively.
Then, s+ 1 elements h1, · · · ,hs ∈R G1 and a ∈R Zp are choosen randomly.

The client sets its public key pk = (pk,SS.pk) = (p,G1,G2,GT , e,g1,g2,h1, · · · ,hs,ga2 ,SS.pk)
and its secret key sk = (sk,SS.sk) = (a,SS.sk).

MHT.TagGen(pk,sk,m)→Tm. The client runs TagGen(pk,sk,m)→T ′m = (T ′m1 , · · · ,T
′
mn

)
∈ Gn

1 such that T ′mi
= (∏sj=1h

mi,j

j )−sk = (∏sj=1h
mi,j

j )−a = ∏s
j=1h

−a·mi,j

j for i = 1, · · · ,n. It
also chooses a hash function H ′ : {0,1}∗→ {0,1}∗ seen as a random oracle Then, it creates
the MHT according to the file m as follows. For i = 1, · · · ,n, the client computes H ′(mi)
and assigns this value to the i-th leaf. Once the n leaves refer to the n hashed values, the
client starts to construct the resulting MHT, and obtains the root rt. Finally, the client
signs the root by running SS.Sign(SS.sk,rt)→ σrt. Using the hash values, it computes
the verification metadata as follows: Tmi = H ′(mi)−sk · T ′mi

= (H ′(mi) ·
∏s
j=1h

mi,j

j )−sk =
(H ′(mi) ·

∏s
j=1h

mi,j

j )−a =H ′(mi)−a ·
∏s
j=1h

−a·mi,j

j for i= 1, · · · ,n.
Then, the client stores all the file blocks m in an ordered collection F and the correspond-

ing verification metadata Tm in an ordered collection E. It forwards these two collections
and (H ′,σrt) to the server.

Once the server received (F,E,H ′), it generates the MHT corresponding to the data
uploaded by the client. It sends the resulting root rtserver to the client.

Upon getting the root rtserver, the client runs SS.Verify(SS.pk,σrt, rtserver)→ answer.
If answer= 0, then the client stops the process. Otherwise, it proceeds and deletes (F,E,σrt)
from its local storage and keeps H ′ for further data operations.

MHT.PerfOp(pk,F,E,R = (operation, i), info = (mi,Tmi ,σrt′))→ (F′,E′, rtserver). First,
the client sends a request R to the server. Such request R= (operation, i) should contain at
least the type of operation and the position where such operation will be performed.

Upon receiving the request R, the server selects the AAI Ωi from the MHT that the client
needs in order to generate the root rt′ of the updated MHT. It sends Ωi to the client.

Once the client received Ωi, it first authenticates it: if Ωi is not the current AAI, then
it aborts; otherwise, it constructs the updated MHT following the update that it wants the
server to perform on its stored data. It calculates the new root rt′ and signs it by running
SS.Sign(SS.sk,rt′)→ σrt′ . Then, the client sends info = (mi,Tmi ,σrt′) (note that mi and
Tmi are not necessary in case of deletion).

After receiving the element info from the client, the server first updates the MHT,
calculates the new root rt′server and sends this value to the client.

Upon getting the root rt′server, the client runs SS.Verify(SS.pk,σrt′ , rt′server)→ answer′

. If answer′ = 0, then the client stops the process. Otherwise, it proceeds and deletes
(mi,Tmi ,σrt′) from its local storage.
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MHT.GenProof(pk,F,chal,Σ)→ (ν,rtserver,{H ′(mi),Ωi}i∈I). After a time period to be
agreed between the client and the TPA, the latter prepares a challenge chal to be sent to the
server as follows: it chooses a subset I ⊆ [1,nmax] (nmax is the maximum number of blocks
after operations), randomly chooses |I| elements vi ∈R Zp and sets chal = {(i,vi)}i∈I .

Then, after receiving the challenge chal which indicates the specific blocks for which the
TPA on behalf of the client wants a proof of data possession, the server runs GenProof
(pk,F,chal,Σ)→ ν such that ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) ∈ G2s+1

1 . More precisely, it sets
the ordered collection F = {mi}i∈I ⊂ F of blocks and an ordered collection Σ = {Tmi}i∈I ⊂E
which are the verification metadata corresponding to the blocks in F . It then selects at ran-
dom r1, · · · , rs ∈R Zp and computes R1 = hr11 , · · · ,Rs = hrss . It also sets bj =∑

(i,vi)∈chalmi,j ·
vi+ rj ∈ Zp for j = 1, · · · , s, then Bj = h

bj
j for j = 1, · · · , s, and c=∏

(i,vi)∈chalT
vi
mi

.
Moreover, the server prepares the latest version of the stored root’s signature σrt provided

by the client, the root rtserver of the current MHT as well as the hash values H ′(mi) and
the AAI Ωi for the challenged blocks, such that the current MHT can be constructed using
{H ′(mi),Ωi}i∈I . Finally, it returns (ν,σrt, rtserver,{H ′(mi),Ωi}i∈I) to the TPA.

MHT.CheckProof(pk, chal,ν,σrt, rtserver,{H ′(mi),Ωi}i∈I)→ {“success”,“failure”}. After
receiving the set {H ′(mi),Ωi}i∈I from the server, the TPA first constructs the MHT and
calculates the root rtTPA. It then checks that rtserver = rtTPA: if not, then it aborts;
otherwise, it runs SS.Verify(SS.pk,σrt, rtserver)→ answer. If answer = 0, then the TPA
stops the process. Otherwise, it proceeds and checks whether the following equation holds:

e(c,ga2) · e(
s∏
j=1

Rj ,g2) ?= e(
∏

(i,vi)
∈chal

H ′(mi)vi ,g2) · e(
s∏
j=1

Bj ,g2) (3)

If Eq. 3 holds, then the TPA returns “success” to the client; otherwise, it returns “failure”
to the client.

Correctness. Supposing that the correctness holds for the systems Π and SS, if all the
algorithms of MHT.Π are correctly generated, then the above scheme is correct. For the
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proof of data possession:

e(c,ga2) · e(
s∏
j=1

Rj ,g2) = e

 ∏
(i,vi)
∈chal

T vimi
,ga2

 · e(
s∏
j=1

h
rj
j ,g2)

= e

 ∏
(i,vi)
∈chal

(H ′(mi)−a·vi ·
s∏
j=1

h
mi,j ·(−a)·vi
j ),ga2

 · e(
s∏
j=1

h
rj
j ,g2)

= e

 ∏
(i,vi)
∈chal

H ′(mi)vi ,g2

 · e(
s∏
j=1

h

∑
(i,vi)
∈chal

mi,j ·vi+rj

j ,g2)

= e

 ∏
(i,vi)
∈chal

H ′(mi)vi ,g2

 · e(
s∏
j=1

h
bj
j ,g2)

= e

 ∏
(i,vi)
∈chal

H ′(mi)vi ,g2

 · e(
s∏
j=1

Bj ,g2)

4.2. Comments on the MHT-based Construction
Let SS = (SS.KeyGen,SS.Sign,SS.Verify) be a secure digital signature scheme. One con-
crete and simple example in the random oracle model is SS.Sign(SS.sk,rt) = (H ′(rt))a = σrt,
where H ′ : {0,1}∗ → G1 is the hash function used to construct the MHT and a = sk ←
KeyGen(λ) from the DPDP Π with Public Verifiability and Data Privacy.

A possible security concern is the non-authentication of the TPA. We treat our scheme as
publicly verifiable, meaning that anyone has the possibility to check that the server correctly
stores the data. Therefore, a malicious user (not necessarly a client of the server) is able to
proceed such verification. To avoid such experience, the client can choose and authenticate a
particular TPA and the server then is able to verify that the person who wants to audit it, is
the TPA selected by the client [19]. More precisely, client, TPA and server proceed as follows.
When the client is uploading the data on the server, it also chooses a TPA to check on its
behalf the integrity of its data, and asks to the TPA its identity. The latter encrypts its iden-
tity IDTPA under the client’s public key pk and sends the resulting ciphertext to the client.
Then, the client decrypts the latter to recover IDTPA and includes SS.Sign(SS.sk,IDTPA)
into the elements (the data, the verification metadata, the signature of the MHT root and the
hash function H ′) that are sent to the server. Later, during each challenge-response process,
the TPA encrypts its identity IDTPA under the server’s public key pkserver and sends the
resulting ciphertext to the server. Then, the server uses its associated secret key skserver to

26



recover the identity IDTPA and runs SS.Verify(SS.pk,SS.Sign(SS.sk,IDTPA), IDTPA)
to check the validity of the identity. We assume that the server and a malicious non-
authenticated TPA cannot collude together, i.e. the server does not accept to communicate
with a non-authenticated TPA.

Note that the updating proof is no longer needed since the client has to authenticate the
AAI sent by the server anyway, and to verify that the updated MHT root rt′server is identical
to the client’s one rt′. We also argue that the TPA can be required to challenge the server
after each update requested by the client.

4.3. Security against the Server
Theorem 3 Let A be a PPT adversary that has advantage ε against the MHT-based DPDP
scheme with Public Verifiability and Data Privacy. Suppose that A makes a total of qH ′ > 0
queries to H ′. Then, there is a challenger B that solves the CDH and DL problems with
advantage ε′ =O(ε).

Proof of the Security against the Server. For any PPT adversary A who winds the game,
there is a challenger B that wants to break the CDH and DL problems by interacting with
A as follows.

KeyGen. This phase is similar to the one for the security proof of the IHT-based scheme,
except that the hash function H ′ : {0,1}∗→G1 is controlled by B as follows. Upon receiving
a query mil to the random oracle H ′ for some l ∈ [1, qH ′ ]:

• If (mil , θl,Wl) exists in LH ′ , return Wl.

• Otherwise, choose βj ,γj ∈R Zp and set hj = g
βj
1 · (gb1)γj for j = 1, · · · , s. For earch il,

choose θl ∈R Zp at random and set

Wl = gθl1

g

∑s
j=1βjmil,j

1 (gb1)
∑s
j=1 γjmil,j

for a given block mil = (mil,1, · · · ,mil,s). Put (mil , θl,Wl) in LH ′ and return Wl as
answer.

Note that H ′ is supposed to be collision resistant and the digital signature scheme SS
to be strongly unforgeable. B gives A the public key pk that contains the public key
pk= (p,G1,G2,GT , e,g1, g2,h1, · · · ,hs,ga2) as well as the public key SS.pk←SS.KeyGen(λ).
It keeps ga1 ,gb1,gb2 and SS.sk← SS.- KeyGen(λ) secret.

Adaptive queries. This phase is almost similar to the one for the security proof of the
IHT-based scheme, except the following. During the calls to the tag generation oracle OTG,
B generates the verification metadata and then creates the MHT resulting from the blocks
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mi and gets the corresponding root rt. It signs rt by running σrt ← SS.Sign(SS.sk,rt).
It finally gives the verification metadata Tmi and their corresponding hash values W , along
with σrt to A.

During the calls to the data operation performance oracle ODOP , the adversary repeat-
edly selects a block ml′ and the corresponding elements (Rl′ , infol′), and forwards them to B.
The signature of the root σrt′ is included in infol′ , as the output of the signature algorithm
SS.Sign(SS.sk,rt′). l′ denotes the rank where A wants the data operation to be performed.
Moreover, ml′ = in the case of a deletion, since only the rank is needed to perform this
kind of operation. Then, A outputs a new ordered collection F′ (containing the updated
version of the block ml′), a new ordered collection E′ (containing the updated version of the
verification metadata Tml′ ) and a new root rt′A corresponding to the updated MHT. B runs
the algorithm SS.Verify on the values σrt′ and rt′A and aborts if the answer is equal to 0;
proceeds otherwise.

Challenge. This phase is identical to the one for the security proof of the IHT-based
scheme, except that the element info∗i is given along with R∗i andthe index i∈ I = {1, · · · ,n}.

This phase is identical to the one for the security proof of the IHT-based scheme.

Forge. This phase is identical to the one for the security proof of the IHT-based scheme.
Note that we refer to Eq. 3.

Analysis. The first two parts of the analysis is similar to the ones for the security proof of
the IHT-based scheme. The last part slightly changes as follows. The simulations of the tag
generation oracle OTG and the data operation performance oracle ODOP are perfect. The
proof is completed.

4.4. Data Privacy against the TPA
Theorem 4 Let A be a PPT adversary that has advantage ε against the MHT-based DPDP
scheme with Public Verifiability and Data Privacy. Then, there is a challenger B that solves
the DSDH problem with advantage ε′ =O(ε).

Proof of the Data Privacy against the TPA. We presume that the digital signature scheme
SS is strongly unforgeable and the hash function H ′ is collision resistant. For any PPT
adversary A who wins the game, there is a challenger B that wants to break the s+1-DSDH
assumption by interacting with the adversary A as follows.

KeyGen. B runs GroupGen(λ)→ (p,G1,G2,GT , e) and receives the s+ 1-DSDH in-
stance (g1,g

β
1 , · · · ,g

βs+1

1 ,g2,g
β
2 ). B sets µ= 0 when the output Z of the s+1-DSDH assump-

tion is equal to gβ
s+2

1 ; otherwise, it sets µ= 1 when the output Z of the s+1-DSDH assump-
tion is a random element in G1. Then, it sets the elements h1 = gβ1 , · · · ,hs = gβ

s

1 ,hs+1 = gβ
s+1

1
and implicitly fixes the secret key sk = a = β by setting ga2 = gβ2 . B also controls the hash
function H ′ : {0,1}∗→ G1 as follows. Upon receiving a query mil to the random oracle H ′
for some l ∈ [1, qH ′ ]:
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• If (mil , θl,Vl,Wl) exists in LH ′ , return Vl and Wl.

• Otherwise, choose θl ∈R Zp at random and compute Vl = g−θl1 and Wl = h−θl1 . Put
(mil , θl,Vl,Wl) in LH ′ and return Wl as answer.

It sets the public key pk = (p,G1,G2,GT , e,g1,g2,h1, · · · ,hs,ga2). The challenger has also
access to a secure digital signature scheme SS and runs the algorithm SS.KeyGen(λ) to
obtain the public and secret key pair (SS.pk,SS.sk). B sets the public key pk = (pk,SS.pk)
and forwards it to A. It keeps the secret keys sk and SS.sk and the hash function H ′.

Queries. Amakes tag generation queries as follows: A first selects a file m= (m1, · · · ,mn)
and sends it to B. Then, the challenger splits each block mi into s sectors mi,j . Then, it
computes Tmi =W ·∏sj=1 g

βj ·(−β)·mi,j
1 =W ·∏sj=1 g

−βj+1·mi,j
1 , such that if (mi, θ,V,W ) exists

in LH ′ , then the value W is used to compute Tmi ; otherwise, an element θ ∈R Zp is chosen
at random, V = gθ1 and W = h−θ1 are computed, (mi, θ,V,W ) is put in LH ′ and W is used
for the generation of Tmi . B also creates the MHT resulting from the file m using the values
V such that if (mi, θ,V,W ) exists in LH ′ , then the value V is returned; otherwise, an ele-
ment θ ∈R Zp is chosen at random, V = g−θ1 and W = h−θ1 are computed, and (mi, θ,V,W )
is put in LH ′ . It finally gets the corresponding root rt. It gives the verification metadata
Tm = (Tm1 , · · · ,Tmn) along with the root’s signature σrt← SS.Sign(SS.sk,rt) to A.

Challenge. A first gives to the challenger two files m0 = (m0,1, · · · ,m0,n) and m1 =
(m1,1, · · · ,m1,n) of equal length. B randomly selects a bit b∈R {0,1} and for i= 1, · · · ,n, splits
each block mb,i into s sectors mb,i,j . Then, it computes Tmb,i

= Wb ·
∏s
j=1 g

−βj+1·mb,i,j
1 , such

that if (mb,i, θb,Vb,Wb) exists in LH ′ , then the value Wb is returned; otherwise, an element
θb ∈R Zp is chosen at random, Vb = g−θb1 and Wb = h−θb1 are computed, and (mb,i, θb,Vb,Wb)
is put in LH ′ . B also creates the MHT resulting from the file mb using the values Vb such
that if (mb,i, θb,Vb,Wb) exists in LH ′ , then the value Vb is returned; otherwise, an element
θb ∈R Zp is chosen at random, Vb = g−θb1 and Wb = h−θb1 are computed, and (mb,i, θb,Vb,Wb)
is put in LH ′ . It finally gets the corresponding root rtb. It gives the verification metadata
Tmb

= (Tmb,1 , · · · ,Tmb,n
) along with the root’s signature σrtb ← SS.Sign(SS.sk,rtb) to A.

Without loss of generality, A generates a challenge on one block only. It chooses a sub-
set I = {i∗} ⊆ {1, · · · ,n}, randomly chooses an element vi∗ ∈R Zp and sets chal = (i∗,vi∗).
It forwards chal as a challenge to B. Upon receiving the challenge chal, B selects an
ordered collection Fb = {mb,i∗} of blocks and an ordered collection Σb = {Tmb,i∗} which
are the verification metadata corresponding to the blocks in Fb such that Tmb,i∗ = Wb ·∏s
j=1 g

−βj+1·mb,i∗,j
1 . It then randomly chooses r1, · · · , rs ∈R Zp and computes R∗1 = hβ

2·r1
1 =

hr13 = gβ
3·r1

1 , · · · ,R∗s−1 = h
β2·rs−1
s−1 = h

rs−1
s+1 = g

βs+1·rs−1
1 and R∗s = Zrs . It implicitly fixes b1 =

β2 ·mb,i∗,1 ·vi∗+r1, · · · , bs−1 = β2 ·mb,i∗,s−1 ·vi∗+rs−1 by computing B∗1 = hb11 = h
β2·mb,i∗,1·vi∗
1 ·

hβ
2·r1

1 = h
mb,i∗,1·vi∗
3 ·hr13 = g

β3·mb,i∗,1·vi∗
1 · gβ

3·r1
1 , · · · ,B∗s−1 = h

bs−1
s−1 = h

β2·mb,i∗,s−1·vi∗
s−1 ·hβ

2·rs−1
s−1 =
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h
mb,i∗,s−1·vi∗
s+1 · hrs−1

s+1 = g
βs+1·mb,i∗,s−1·vi∗
1 · gβ

s+1·rs−1
1 and B∗s = Zmb,i∗,s·vi∗ · Zrs . It sets c∗ =

T
vi∗
mb,i∗ =W

vi∗
b ·

∏s
j=1 g

−βj+1·mb,i∗,j ·vi∗
1 as well. Finally, B returns ν∗= (R∗1, · · · ,R∗s,B∗1 , · · · ,B∗s , c∗)

along with (Vb,Ωb,i∗), where Ωb,i∗ is the AAI needed to create the MHT based on Vb. Note
that Ωb,i∗ is generated by calling successively the random oracle H ′. This means that, in the
list LH ′ , we can find tuples of the form (z,θ,V,W ) such that the query z can be either a file
block mi as we defined above (meaning that mi is appended to a leaf node) or a value H ′(y)
that is attached to an internal node.

If µ= 0 then Z = gβ
s+2

1 . Therefore, the proof of data possession is a valid random proof
for the file mb. Otherwise, if µ = 1, then Z is random value in G1. Since Z is random, the
values Rs and Bs will be random elements of G1 from the adversary’s view and the proof of
data possession contains no information about mb.

Guess. A returns a bit b′. If b = b′, B will output µ′ = 0 to indicate that it was given
a s+ 1-DSDH tuple; otherwise it will output µ′ = 1 to indicate that it was given a random
tuple.

Analysis. We first recall that the digital signature scheme SS is assumed to be strongly
unforgeable and the hash function H ′ is supposed to be collision resistant. We prove that the
verification metadata and the proof of data possession given to A are correctly distributed.
In the case where µ= 1, A gains no information about b. Therefore, we have Pr[b 6= b′|µ=
1] = 1/2. Since B guesses µ′ = 1 when b 6= b′, we have Pr[µ = µ′|µ = 1] = 1/2. If µ = 0,
then A sees an upload of mb. The adversary’s advantage in this situation is negligible by
definition, i.e. equal to a given ε. Therefore, we have Pr[b 6= b′|µ = 0] = 1/2 + ε. Since B
guesses µ′ = 0 when b = b′, we have Pr[µ = µ′|µ = 0] = 1/2 + ε. The value Tmb,i

is equal to
(H ′(mb,i) ·

∏s
j=1h

mb,i,j

j )−sk and sk = a. The elements SS.sk and H ′ are kept secret from A.
Note thatA does not have access to the random oracle H ′ and the AAI given to the adversary
with the proof of data possession results from calls to H ′. In addition, R∗1, · · · ,R∗s,B∗1 , · · · ,B∗s
are statically indistinguishable with the actual outputs corresponding to m0 or m1. Thus,
the answers given to A are correctly distributed. The proof is completed.

N.B.. Such security level is reached for data privacy since the hash function H ′ is kept secret
by the server and the client and so, the adversary as the TPA does not have access to it.

4.5. Performance of the MHT-based DPDP Scheme
We compare the MHT-based scheme with the original one presented in [5]. The client is able
to verify the first upload and the updates without the help of the TPA. It authenticates the
AAI given by the server, uses its MHT root and compares it with the one provided by the
server. The TPA is required for data integrity checks: it regularly challenges the server to
prove that the latter correctly stores the data of the client. The client and the TPA share
a list containing block indices (or at least the maximum number nmax of blocks given after
the operations that the client wanted the server to perform on its data) and the server stores
the data, the verification metadata, the signature of the client’s root (also regularly updated
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after the data operations) and the hash function H ′. The server might construct the MHT
each time this is needed or stores the latest version of the entire tree.

Obviously, the communication and the computation overheads grow. First of all, when
the client is uploading the file for the first time, it has to compute all the elements in order
to construct the MHT resulting from the file and compares the root with the one from the
server’s MHT. However, such elements are hash values, that is, elements easily computable.

Moreover, the server stores more elements: the MHT and the signature of the client’s
root for each file, along with the file itself and the corresponding verification metadata as in
[5]. Note that for each time the server is asked to perform an operation, it has to update
the MHT accordingly. Nevertheless, as suggested in [5], the server has huge computation
and storage resources, thus this should not be a constraint for it. Note that the server can
only store mi, Tmi , σrt and H ′ and constructs the MHT whenever necessary; however, this
option does not seem more attractive.

Then, the communication burden increases between the client and the server, especially
for the data operation process. More precisely, the client has first to inform the server that
it wants to make an operation on its data and asks the necessary information. From this
request, the server sends some AAI to the client in order to start the data operation process.
Upon receiving such information, the client has to authenticate it and then create the MHT
according to the data update to be performed. Then, as for the first upload, the client sends
the resulting information back to the server. Using such elements, the server can perform the
operation on the stored data and on the MHT, and obtain a new version of the root that is
forwarded back to the client. Such root is compared with the one given by the client (under
the form of a signature) on the client’s side. However, we no longer need the help of the TPA
to check updates. Thus, the server no longer has to generate an updating proof through the
algorithm PerfOp and the TPA no longer has to run the algorithm CheckOp to verify the
correctness of the updating proof, compared to the scheme in [5]. Overall, implementing a
MHT-based scheme seems to fairly affect the computation and communication overheads.

In the MHT-based system, we assume that the client deletes all the elements related to
the file (blocks, verification metadata, root signatures, MHTs) from its local storage, except
a list containing block indices that are needed for requesting a data integrity verification.
Such list may be shared with the TPA since the latter works on behalf of the client in the
challenge-response process. In order to reduce the communication overhead between the
client and the server when the former prepares an update operation, we can force the client
to store on its local storage the current MHT or a list of the hash values corresponding to
all the leaves of the current MHT. Doing this, the client does not need to ask for AAI before
updating the data and so, the server does not need to send it back to the client. Note that
the latter no longer needs to authenticate it, since it keeps the current version of the MHT.

If the client keeps the entire MHT, the hash values at internal nodes and the root are
already computed; however it has to store 2k+1−1 elements for n= 2k. Moreover, when an
operation is performed, the client does not need to calculate all the hash values at internal
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nodes, but only the ones on the path from the modified leaves until the root, as well as the
root itself. If the client keeps only a list of hash values corresponding to all the leaves of the
MHT, meaning that it stores only n elements, it has to compute all the intermediary hash
values at upper levels and the root each time it inserts, deletes or modifies data blocks. This
option is possible if the client possesses enough resources for storage and computation.

The MHT-based construction seems less practical and efficient. Communication and com-
putation burdens appear in order to obtain the desired security standards against the server
and the TPA. The communication overheads increase between the client and the server. The
computation overheads for the client raises also, although the client is limited in resources.
The storage space of the server should be bigger, since the server has to create and possibly
stores MHTs for each client it has. The TPA has to provide more computational resources
for each client in order to ensure valid data integrity checks. Nevertheless, experiments might
show that the time gap between the algorithms in the scheme proposed in [5] and the ones
in the MHT-based scheme is acceptable.

Comparison with the Existing Schemes. The MHT is an Authenticated Data Structure
(ADS) that allows the client and the TPA to check that the server correctly stores and
updates the data blocks.

Erway et al. [3] proposed the first DPDP scheme. The verification of the data updates
is based on a modified ADS, called Rank-based Authentication Skip List (RASL). This
provides authentication of the data block indices, which ensures security in regards to data
block dynamicity. However, public verifiability is not reached. Note that such ADS with
bottom-up levelling limits the insertion operations. For instance, if the leaf nodes are at level
0, any data insertion that creates a new level below the level 0 will bring necessary updates
of all the level hash values and the client might not be able to verify.

Wang et al. [18] first presented a DPDP with Public Verifiability using MHT. However,
security proofs and technical details lacked. The authors revised the aforementioned paper
[18] and proposed a more complete paper [19] that focuses on dynamic and publicly verifiable
PDP systems based on BLS signatures. To achieve the dynamicity property, they employed
MHT. Nevertheless, because the check of the block indices is not done, the server can delude
the client by corrupting a challenged block as follows: it is able to compute a valid proof with
other non-corrupted blocks. Thereafter, in a subsequent work [17], Wang et al. suggested
to add randomization to the above system [19], in order to guarantee that the server cannot
deduce the contents of the data files from the proofs of data possession.

Liu et al. [8] constructed a PDP protocol based on MHT with top-down levelling. Such
protocol satisfies dynamicity and public verifiability. They opted for such design to let leaf
nodes be on different levels. Thus, the client and the TPA have both to remember the total
number of data blocks and check the block indices from two directions (leftmost to rightmost
and vice versa) to ensure that the server does not delude the client with another node on
behalf of a file block during the data integrity checking process.

In this paper, the dynamic and publicly verifiable PDP scheme is based on MHT with
bottom-up levelling, such that data block indices are authenticated. Such tree-based con-
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struction guarantees security for both dynamicity and public verifiability properties. In the
next section, we explain how we can ensure that the server cannot successfully generate a
correct proof of data possession without storing all the file blocks and the TPA cannot get
any information about the challenged file blocks.

5. Conclusion

We provided two solutions to solve the technical issues encountered in the DPDP scheme with
Public Verifiability and Data Privacy proposed in [5]. These solutions manage to overcome
replay attacks, replace attacks and attacks against data privacy by embedding Index Hash
Tables or Merkle Hash Trees into the construction given in [5]. We proved that our two
new schemes are both secure against the server and data private in the random oracle and
we also showed that the practicality of these two new constructions is just slightly affected
compared to [5].
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AppendixA. Replace Attack, Replay Attack and Attack against Data Privacy

In this section, we carefully describe how the three attacks threaten the DPDP scheme in
[5]. For lack of space, we let the reader refer to [5] for the construction of the DPDP protocol
and for the corresponding security proofs.

AppendixA.1. Replace Attack
In this section, we explain the first successful attack on the scheme given in [5]. Informally,
the attack works as follows. Let us assume the server actually stores only one block, say m1
without loss of generality, instead of n blocks as the client believes. The TPA on behalf of
the client regularly audits the server by sending it a challenge chal for blocks with indices in
a subset sub of [1,n], such that |sub|= k≤ n. The server generates a proof of data possession
on the k blocks m1 (instead of the blocks defined by chal). In other words, the server uses k
times the block m1 to obtain the proof of data possession according to the size of the index
subset used for the challenge. The attack is successful if the server manages to pass the
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verification process and has its proof of data possession being accepted by the TPA.

The client generates the verification metadata for a file m that it wants to upload on the
server.

TagGen(pk,sk,m)→ Tm. A file m is split into n blocks mi, for i = 1, · · · ,n. Each block
mi is then split into s sectors mi,j ∈ Zp, for j = 1, · · · , s. Therefore, the file m can be
seen as a n× s matrix with elements denoted as mi,j . The client computes the verification
metadata Tmi = (∏sj=1h

mi,j

j )−sk = (∏sj=1h
mi,j

j )−a = ∏s
j=1h

−a·mi,j

j for i = 1, · · · ,n. Then, it
sets Tm = (Tm1 , · · · ,Tmn) ∈Gn

1 .
Then, the client stores all the file blocks m in an ordered collection F and the correspond-

ing verification metadata Tm in an ordered collection E. It forwards these two collections to
the server and deletes them from its local storage.

Yet, the server is asked to generate a proof of data possession. However, let’s assume
that it only stores the first block m1 of the file m (it deleted all other blocks) and we show
that it can still pass the verification process.

GenProof(pk,F,chal,Σ)→ ν. The TPA prepares a challenge chal to send to the server as
follows. First, it chooses a subset I ⊆ (0,n+1)∩Q, randomly chooses |I| elements vi ∈R Zp
and sets chal= {(i,vi)}i∈I . Second, after receiving the challenge chal which indicates the spe-
cific blocks for which the client through the TPA wants a proof of data possession, the server
sets the ordered collection F = {m1}i∈I ⊂F of blocks (instead of F = {mi}i∈I) and an ordered
collection Σ = {Tm1}i∈I ⊂E which are the verification metadata corresponding to the blocks
in F (instead of Σ = {Tmi}i∈I). It then selects at random r1, · · · , rs ∈R Zp and computes
R1 = hr11 , · · · ,Rs = hrss . It also sets bj =∑

(i,vi)∈chalm1,j ·vi+ rj ∈ Zp for j = 1, · · · , s (instead
of bj =∑

(i,vi)∈chalmi,j ·vi+ rj), then Bj = h
bj
j for j = 1, · · · , s, and c=∏

(i,vi)∈chalTm1
vi (in-

stead of c=∏
(i,vi)∈chalT

vi
mi

). Finally, it returns ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) ∈G2s+1
1 to the

TPA.

CheckProof(pk,chal,ν)→ {“success”,“failure”}. The TPA has to check whether the fol-
lowing equation holds:

e(c,ga2) · e(
s∏
j=1

Rj ,g2) ?= e(
s∏
j=1

Bj ,g2) (A.1)

If Eq. A.1 holds, then the TPA returns “success” to the client; otherwise, it returns “failure”
to the client.
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Correctness. For the proof of data possession:

e(c,ga2) · e(
s∏
j=1

Rj ,g2) = e

 ∏
(i,vi)
∈chal

Tm1
vi ,ga2

 · e(
s∏
j=1

h
rj
j ,g2)

= e

 ∏
(i,vi)
∈chal

s∏
j=1

h
m1,j ·(−a)·vi
j ,ga2

 · e(
s∏
j=1

h
rj
j ,g2)

= e


s∏
j=1

h

∑
(i,vi)
∈chal

m1,j ·vi+rj

j ,g2


= e(

s∏
j=1

h
bj
j ,g2) = e(

s∏
j=1

Bj ,g2)

Therefore, Eq. A.1 holds, although the server is actually storing one block only.

N.B.. This attack is not due to the dynamicity property of the scheme in [5]. Such attack
could happen even on static data.

AppendixA.2. Replay Attack
In this section, we explain the second successful attack on the scheme given in [5]. Informally,
the attack works as follows. The server is storing some data blocks of a client, such that
the latter regularly requests the server to updates its data according to the three available
operations (insertion, deletion and modification). For instance, the client asks the server to
modify the block mi into the block m′i. However, the server does not proceed and keeps the
file block mi of its storage. Then, the TPA has to check that the operation has been correctly
done and asks the server for an updating proof on m′i. The server generates the updating
proof as requested, but using the file block mi. The attack is successful if the server manages
to pass the verification process and has its updating proof being accepted by the TPA.

A client asks the server to modify the file block mi by sending the new version of the
block m′i and the corresponding verification metadata Tm′i . However, the server does not
follow the client’s request and decides to keep the old version of the block mi and the corre-
sponding verification metadata Tmi , and deletes m′i and Tm′i .

PerfOp(pk,F,E, info= (modification, i,m′i,Tm′i))→ (F′,E′,ν ′). After receiving the elements
i, m′i and Tm′i from the client, the server prepares the updating proof as follows. It first re-
trieves the block mi and the verification metadata Tmi corresponding to the index i, and
once it gets these elements, it deletes m′i and Tm′i . It then selects at random u1, · · · ,us ∈R Zp
and computes U1 = hu1

1 , · · · ,Us = huss . It also chooses at random wi ∈R Zp and sets cj =mi,j ·
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wi+uj ∈Zp (instead of cj =m′i,j ·wi+uj ∈Zp) for j = 1, · · · , s, then Cj = h
cj
j for j = 1, · · · , s,

and d= Tmi
wi (instead of d= Twim′i

). Finally, it returns ν ′ = (U1, · · · ,Us,C1, · · · ,Cs,d)∈G2s+1
1

to the TPA.

CheckOp(pk,ν′)→ {“success”,“failure”}. The TPA has to check whether the following
equation holds:

e(d,ga2) · e(
s∏
j=1

Uj ,g2) ?= e(
s∏
j=1

Cj ,g2) (A.2)

If Eq. A.2 holds, then the TPA returns “success” to the client; otherwise, it returns “failure”
to the client.

Correctness. If all the algorithms are correctly generated, then the above scheme is correct.
For the updating proof:

e(d,ga2) · e(
s∏
j=1

Uj ,g2) = e(Tmi
wi ,ga2) · e(

s∏
j=1

h
uj
j ,g2)

= e(
s∏
j=1

h
mi,j ·(−a)·wi
j ,ga2) · e(

s∏
j=1

h
uj
j ,g2)

= e(
s∏
j=1

h
mi,j ·wi+uj
j ,g2)

= e(
s∏
j=1

h
cj
j ,g2) = e(

s∏
j=1

Cj ,g2)

Therefore, Eq. A.2 holds, although the server has not updated the block m′i and the corre-
sponding verification metadata Tm′i .

N.B.. This attack is due to the dynamicity property of the scheme in [5].

AppendixA.3. Attack against Data Privacy
In this section, we explain the third successful attack on the scheme given in [5]. Informally,
the attack works as follows. The TPA (i.e. the adversary) and the server (i.e. the challenger)
play the data privacy game. It gives two equal-length blocks m0 and m1 to the server and
the latter replies to the TPA by sending the verification metadata Tmb

of the file block mb,
after choosing a bit b ∈ {0,1}. Then, the TPA also selects a bit b′ ∈ {0,1} The attack is
successful if using mb′ , the TPA can discover which block mb ∈ {m0,m1} was chosen by the
server.

The data privacy attack on the scheme given in [5] works as follows. The TPA, who plays
the role of the adversary, provides two equal-length blocks m0 and m1 to the challenger, such
that m0 = (m0,1, · · · ,m0,n) and m1 = (m1,1, · · · ,m1,n). The challenger chooses a bit b∈ {0,1},
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computes Tmb,i
← TagGen(pk,sk,mb,i), for i = 1, · · · ,n, and gives them to the TPA. We

recall that Tmb,i
is equal to (∏sj=1h

mb,i,j

j )−sk = (∏sj=1h
mb,i,j

j )−a.
Note that

e(Tmb,i
,g2) = e((

s∏
j=1

h
mb,i,j

j )−sk,g2) = e((
s∏
j=1

h
mb,i,j

j )−a,g2) = e(
s∏
j=1

h
mb,i,j

j ,(ga2)−1).

The computation of the last pairing requires only public elements. Therefore, for b′ ∈ {0,1},
the TPA is able to generate the pairing e(∏sj=1h

mb′,i,j
j ,(ga2)−1), given the public key pk and

the block of the message that it gave to the challenger, as well as the pairing e(Tmb,i
,g2),

given the verification metadata sent by the challenger, and finally compares them. If these
two pairings are equal, then b′ = b; otherwise b′ 6= b.

N.B.. In the proof for the privacy against the TPA found in [5], the analysis is wrong: the
affirmation “The probability Pr[b′ = b] must be equal to 1

2 since the verification metadata
Tmb,i

, for i= 1, · · · ,n, and the proof ν∗ are independent of the bit b.” is incorrect: Tmb,i
and

ν∗ actually depend on b.
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