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Abstract

We demonstrate the first attacks on the SPN ciphers with 6, 7, 8, and 9 secret components. In
particular, we show a decomposition attack on the SASASASAS scheme when the S-box size m and
the block length n satisfy the condition m2 ≤ n (for example, 8-bit S-box and 128-bit block).

1 Introduction

A block cipher with secret nonlinear layers S and secret affine transformations A is a fundamental
concept in both symmetric and asymmetric cryptography. For years, only up to 5-layer schemes could
be analyzed in a generic, structural way. The so called ”ASASA” structure with two S-box layers and
three affine layers was suggested by Patarin in 1997 [12] and broken by Biham in 2000 [2] due to non-
bijectivity of S-boxes. The SASAS structure was attacked with practical complexity in 2001 by Biryukov
and Shamir [4, 5]. The attack recovered S-boxes and affine layers up to affine equivalence (as equivalent
layers produce identical ciphers).

The ASASA scheme with injective S-boxes and schemes with more layers were considered secure since
then and motivated Biryukov et al. to propose a number of schemes based on the generic ASASA for
black-box, white-box, and public-key cryptography in 2014 [3]. However, it turned out that this variant
is also insecure, even though the attack complexity is practical for small block sizes only. Independently,
Minaud et al. [11] and Dinur et al. [8] found decomposition attacks for several instances of ASASA both
for large and small block sizes. These results suggest the insecurity of generic 5-layer schemes with secret
layers, but give little insight on the security of longer variants.

The structural decomposition attacks are supposed to be difficult since the secret components are
described with much more than n bits of information, where n is the block size. In some cases the attacks
with complexity 2n and higher are not a surprise [8]. Moreover, for small block lengths n, which is a
typical setting in the white-box cryptography, a scheme can be called secure only if the decomposition
complexity is far larger than 2n. It is unclear whether this can be achieved for 6-layer and longer schemes.

Our contributions. In this work we combine the existing techniques altogether and demonstrate
attacks on 6-, 7-, 8-, and 9-layer schemes. As a groundbreaking result, we demonstrate a decomposition
attack on the SASASASAS scheme (which is a generic 5-round substitution affine network) with total
complexity of 2n or less for certain parameters (e.g., 2240 for secret 8-bit S-boxes and 256-bit block size).
Our methods apply for certain (but natural) combinations of S-box size and block size, and, to little
surprise, for smaller S-boxes we can attack even more layers.

Related work. Our attacks are purely algebraic but highlight the links between the Square/multiset/integral
attack and the high-order differential attack. In this context, a reader might be interested in the schemes
with very small S-boxes [1] and attacks on them [9, 10]. The degree deficiency effect, that we exploit, was
noticed in [7] and used in [6] to demonstrate that Rijndael-256 achieves full degree only after 7 rounds.

2 Algebraic degree of iterative functions

The following result originated in the discussion on the security of Keccak permutation. The small size
(5 bits) and low degree (2) of Keccak S-boxes warned cryptographers that the full-round permutation
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might be insecure to algebraic attacks or distinguishers. Indeed, after some point, the algebraic degree
of the multi-round SPN structure does not grow as fast as expected. For m-bit bijective S-boxes that
have maximum possible degree (m− 1), the following result holds.

Theorem 1 ([7]). Let G be an arbitrary function on Fn
2 . Let F be a bijection on Fn

2 corresponding to
the concatenation of m smaller bijective Sboxes.

1. If the degree of all S-boxes is m− 1, then

deg(G ◦ F ) ≤ n−
⌈
n− deg(G)

m− 1

⌉
.

In other words, the difference between n and the scheme degree decreases at maximum by the factor
of (m − 1) with each new layer. Due to rounding the fraction in the equation, the degree deficiency is
even larger.

3 Attack on SASASASAS

We proceed to our main result and then derive some interesting implications. Consider the ASASASA
scheme with secret bijective m-bit S-boxes (possibly different) and secret affine transformations over
GF (2). Apparently, if there are at least m such S-boxes in each layer, then the scheme does not have
the maximum possible degree.

Theorem 2. If m2 ≤ n, then
deg(ASASASA) ≤ n− 3.

Proof. The degree of the ASA subscheme does not exceed m−1, and the degree of the ASASA subscheme
does not exceed (m− 1)2 < n. If we add one more S-layer, Theorem 1 implies that

deg(ASASAS) ≤ n−
⌈
n− (m− 1)2

m− 1

⌉
= n−

⌈
n

m− 1

⌉
+ m− 1. (1)

From the theorem condition we get

m2 ≤ n =⇒ m2 − 1 < n =⇒ n

m− 1
> m + 1 =⇒ −

⌈
n

m− 1

⌉
≤ −m− 2.

We substitute this to Eq. (1) and obtain that

deg(ASASAS) ≤ n− 3.

Clearly, the degree does not change if we add one more A-layer. This ends the proof.

For ASASA-like schemes the degree growth is shown in Table 1. It can be seen that ASASASA
schemes with 4-bit S-boxes and 16-bit block, or 8-bit S-boxes and 128-bit block, do not have the maximum
possible degree.

3.1 Decomposition attack on ASASASAS

Procedure. Consider now the ASASASAS scheme (one more S-layer). Denote deg(ASASASA) by d.
If we encrypt any affine subspace of dimension

d + 1 ≤ n + m−
⌈

n

m− 1

⌉
,

the inputs to the last S-layer would sum to zero. Consider, w.l.o.g., the first S-box S0. As noticed in [5],
we get an equation:

S−10 (x1)⊕ S−10 (x2)⊕ · · · ⊕ S−10 (x2d+1) = 0, (2)

where xj is the output of S0 at j-th encryption.
We encrypt 2m such subspaces (cubes) and collect 2m equations of type (2). The resulting system

is linear w.r.t. new variables yj = S−10 (j), j ∈ Zm
2 . However, it has multiple solutions, as for any affine

invertible transformation B if S is a solution then S(B()) is a solution as well. Thus our system of
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equations has rank at most1 2m−m−1. Since any solution is good for us, we can fix S−1(xi) at (m+ 1)
arbitrary points, get a full rank system, and solve it in 23m time.

Using the technique from [11], the ASASASA scheme can then be decomposed with complexity
n22d+1.

Complexity. The complexity of peeling off the final S-layer is determined by the number of encryptions,
which is upper bounded by 2d+m+1. However, this bound can be improved significantly. Consider an
affine space of dimension d′ > d+ 1, where (n− d′) variables are fixed and the other are free. How many
spaces of dimension (d + 1) are inside? Note that we should exclude linearly dependent spaces.

Consider subspaces of dimension d′− 1, which are formed by fixing any of d′ variables to 1. These d′

subspaces are linearly independent. Within each, we can select (d′ − 1) subspaces of dimension (d′ − 2)
in the same fashion. Therefore, a space of dimension (d+3) contains at least d2 +5d spaces of dimension
d + 1. For all m,n that we consider the condition d2 + 5d > 2m holds, so the total complexity of the
attack is upper bounded by

CDecompose ASASASAS ≤ 2d+3 ≤ 2n+m+2−d n
m−1e.

For certain parameters, like m = 4, n = 16 we can take into account the fact that (2m−m−1) spaces
are sufficient, and d + 1 ≥ 2m −m− 1. In this case the complexity of the attack is smaller by the factor
of 2.

3.2 Attack on SASASASAS

Now let us make the final step and consider a scheme with yet another S-layer, i.e. SASASASAS. The
observation here (also used in [9]) is that by fixing an input to a single S-box and varying the others we
also get an affine space, even if we do not know its constant bits. In the terms of the multiset attack,
the S-box layer preserves the multiset property, which has the affine property that we need. As long as
d + 1 ≤ n−m, i.e. at least one S-box can be fixed, this approach works. Unfortunately, we can not fix
arbitrary bits anymore to reduce the data complexity.

The attack procedure is very similar to that for ASASASAS. Let k be maximum such that d + 1 ≤
n − km. Then one of k S-boxes takes 2m −m − 1 values, and the other take all possible values. The
total data complexity is slightly less than 2n−(k−1)m.

For some extreme cases the complexity is almost 2n. However, we stress that this not an upper bound
for this kind of attacks. Indeed, we recover the secret components, which are described with more than
n bits of information (about m2m bits for an S-box and n2 bits for the affine layer). We summarize our
attacks in Table 2 and give the equivalent key size for the AS pair of layers (m2m + n2).

1In practice it is usually equal to this value, as confirmed both by [5] and our experiments

S-box size Block size ASA ASASA ASASASA
Verified experimentally

3 12 2 4 8
3 15 2 4 8
4 12 3 9 11
4 16 3 9 13
6 12 5 10 11
6 18 5 15 17

Theorem 1 implications
8 128 7 49 116
8 256 7 49 227
6 120 5 25 104
10 120 9 106 118
16 128 15 120 127

Table 1: Degree evolution
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S-box Block Key size ASASAS SASASAS ASASASAS SASASASAS
4 12 208 211 - - -
4 16 312 211 215 215 -
6 12 500 212 - - -
6 18 700 217 - - -
6 24 960 221 - - -
6 36 210 228 236 236 -
6 120 214 228 236 2106 2114

8 128 214 252 264 2118 2128

8 256 216 252 264 2230 2240

Table 2: Summary of our decomposition attacks

3.3 Even more layers

Our results can be further extended to more esoteric scenarios, where m � n. For example, if m3 ≤ n
(4-bit S-boxes, 64-bit block) the 11-layer scheme can be decomposed with complexity less than 2n. In
general, at least (2 logm n + 7) secret layers are needed to achieve security against this sort of attacks.

4 Experimental verification

We have verified our attack by experiments. We considered the ASASASAS scheme with 16-bit block
and 4 4-bit S-boxes. The inputs to the last S-layer have degree 13, thus they sum to zero over a cube of
dimension 14.

We need 24 linearly independent equations to recover the S-box. We encrypted 215 plaintexts that
start with the zero bit. Within this structure, we consider 15 substructures {Si}, where i-th bit is zero
in Si. We got a system of 15 equations (2), which has rank 11 (in most cases). We assigned arbitrary
distinct values to 5 unknowns and solved the resulting system. As a result, we got an S-box, which is
affine-equivalent to the original one. When we take true values of this unknowns, the S-box is recovered
precisely.
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