
Homomorphic Signature Schemes - A Survey

Giulia Traverso1, Denise Demirel2, and Johannes Buchmann3

1 Technische Universität Darmstadt, Germany, gtraverso@cdc.informatik.tu-darmstadt.de
2 Technische Universität Darmstadt, Germany, ddemirel@cdc.informatik.tu-darmstadt.de
3 Technische Universität Darmstadt, Germany, buchmann@cdc.informatik.tu-darmstadt.de

Abstract. Homomorphic signature schemes are an important primitive for many applica-
tions and since their introduction numerous solutions have been presented. Thus, in this
work we provide the first exhaustive, complete, and up-to-dated survey about the state of
the art of homomorphic signature schemes. First, the general framework where homomorphic
signatures are defined is described and it is shown how the currently available types of homo-
morphic signatures, these are the linearly homomorphic signature schemes, the homomorphic
schemes supporting polynomial functions, the fully homomorphic signature schemes, and the
homomorphic aggregate signature schemes, can then be derived from such a framework. In
addition, this work also presents a description of each of the schemes presented so far to-
gether with the properties it provides. Furthermore, three use cases, electronic voting, smart
grids, and electronic health records, where homomorphic signature schemes can be employed
are described. For each of these applications the requirements that a homomorphic signature
scheme should fulfill are defined and the suitable schemes already available are listed. This
also highlights the shortcomings of current solutions. Thus, this work concludes with several
ideas for future research in the direction of homomorphic signature schemes.

1 Introduction

In the last years there has been an increasing interest in homomorphic signature schemes. Thus,
many schemes have been proposed that are suitable for a lot of different applications. In this work
we overcome the extensive state of the art by presenting a survey of the existing approaches and
the properties they provide. In addition, we look into three interesting use cases for homomorphic
operations on authenticated data, these are, electronic voting, smart grids, and electronic health
records, and identify their requirements. We show to what extend the existing solutions meet these
conditions and highlight promising directions for future work.

Homomorphic signature schemes have been initially designed to establish authentication in net-
work coding and to address pollution attacks (see [10]). However, since they allow for computations
on authenticated data, they are also a useful primitive for many other applications. In fact, after
Johnson et al. introduced a formal definition and a precise framework for homomorphic signatures
in 2002 (see [37]), in the following years many schemes have been presented and discussed. The
first schemes proposed only allowed to perform linear computations on authenticated data (e.g.,
[60], [56], [57], and [19]). These approaches have been further improved with respect to efficiency,
security, and privacy ([10], [28], [3], [4], [26], [16], [17], [5], [17], [50], and [12]). In addition, to be
more flexible, solutions have been developed supporting polynomial functions ([11], [34], [18]), or
even coming without any restrictions on the functions themselves, so called fully homomorphic
signature schemes ([32], [14]). However, all these solutions assume that each input signature has



been signed using the same private key. To overcome this restriction, the homomorphic property
has been added to the aggregate signature schemes ([59], [36]) allowing for operations on signatures
generated using even different secret-public key pairs.

In this work we start by providing a formal definition of these four types of homomorphic sig-
nature schemes. First, the passage from the digital signature schemes to the homomorphic ones is
formally described, where the novelties introduced by the homomorphic property itself are high-
lighted. Afterwards, it is described how to obtain the linearly homomorphic signature schemes
from the merely homomorphic ones. And then, starting from the linearly homomorphic signature
schemes, it is shown how to derive the ones supporting polynomial functions and how to define
the fully ones. Finally, it is formally described how to combine the homomorphic property together
with the aggregative one in order to obtain a homomorphic aggregate signature scheme.

Up to our knowledge, this survey is the first such work providing both a description of each single
homomorphic signature scheme and a description of the whole general framework in a methodical
and didactical approach. Indeed the survey proposed in [58] is not up-to-dated, while in [15] the ex-
isting homomorphic signature schemes are just listed, without any deeper discussions. Furthermore,
in this survey we also discuss the possible use cases electronic voting, smart grids, and electronic
health records. For each use case, concrete examples of how improvements can be achieved by the
usage of homomorphic signature schemes are provided, together with the definition of the minimal
requirements these schemes should fulfill. Furthermore, it is shown which of the currently existing
homomorphic signature schemes are suitable for which of the use cases in question. When that is
not the case, directions for future works are proposed.

In Section 2, the definition of general digital signature schemes is recalled and the formal de-
scription of the homomorphic signature schemes is provided. In Section 3, the linearly homomorphic
signature schemes, the homomorphic signature schemes for polynomial functions, the fully homo-
morphic signature schemes, and the homomorphic aggregate signature schemes are described. In
Section 4, interesting properties for homomorphic signature schemes are discussed. The description
of each of the currently existing homomorphic signature scheme and the properties they provide
follow in Section 5. In Section 6, the usage of homomorphic signature schemes for each of the afore-
mentioned use cases is presented. Finally, in Section 7 a conclusion is given and possible directions
for future work are provided.

2 From Digital to Homomorphic Signature Schemes

Generally speaking, a signature is a cryptographic primitive whose aim is to provide:

– integrity : protection from non-authorized modifications of the signed message;

– authenticity : guarantee of the source, the destination, and the content of the signed message;

– non-repudiation: the signer cannot deny to have signed the message.

In this chapter, in order to make clear what a homomorphic signature is, we first provide
a definition for digital signature schemes and their security. Afterwards, we present those two
definitions for homomorphic signatures.



2.1 Digital Signatures

A digital signature scheme is defined over the following sets [31]:

– the messages space M;

– the space of signed messages Y;

– the set of private keys K;

– the set of public keys K′.

In addition, the following three probabilistic, polynomial-time algorithms are defined:

– an algorithm Set : 1λ → K × K′ for the preliminary stage, where the secret key (used in the
signing process) and the public key (used in the verification process) are chosen;

– an algorithm Sig : K ×M→ Y for signing;

– a deterministic algorithm Vrf : K′ ×M×Y → {ok, bad} for verification.

For an algorithm, being a probabilistic, polynomial-time one means that some randomness is
added in the input and the running time is bounded by a polynomial. Also, as a consequence for
the randomness in input, the output is probabilistic.

We now specify the role of each of the aforementioned algorithm in the following definition
([45]).

Definition 1. A digital signature scheme is a tuple of the following probabilistic, polynomial-time
algorithms:

– Set(1λ). It takes as input a security parameter λ in unary. It outputs a secret key k and the
respective public key k′. The public key determines the space of messages M and the space of
signatures Y.

– Sig(k,m). It takes as input a secret key k and a message m ∈M. It outputs a signature σ ∈ Y,
which is the signature for the message m signed by means of the secret key k.

– Vrf(k′,m, σ). It takes as input a public key k′, a message m ∈ M and a signature σ ∈ Y. It
outputs “ ok” if σ is a valid signature of the message m under the secret key k. It outputs “ bad”
otherwise.

The verification is a fundamental step to check the authenticity of the signature. Specifically, if
k′ is the corresponding public key of the secret one k, then

∀m ∈M, Vrf (k′,m,Sig(k,m)) = ok.

The verification is a public procedure. Indeed, anyone, using the public key, can verify that the
signature correctly belongs to the person who holds the private key.

Definition 2. A digital signature scheme is correct if, for any signature σ produced by Sig on
message m ∈M and private key k, then Vrf(k′,m,Sig(k,m)) = ok.



2.2 Digital Signatures’ Security Definition

The security of a digital signature is evaluated taking into account the opponent’s attack capacity,
who could act in different contexts [31]. If Alice is the signer, Bob the receiver, and Eve the one
who wants to forge the signature, from the least dangerous attack to the most sever one, we find:

– Key-Only Attack. Eve knows Alice’s public key.
– Message Attacks. Eve has access to some signature-message pairs. This attack consists of four

different options:
• Known Message Attack. Eve knows some pairs (m1, σ1), (m2, σ2), . . . , (mk, σk), butm1,m2, . . . ,mq

have not been chosen by her.
• Generic Chosen Message Attack. Eve can obtain from Alice some pairs (m1, σ1),

(m2, σ2), . . . , (mk, σk) for a chosen list of messages m1,m2, . . . ,mk. Though this choice is
generic, i.e. independent of Alice’s public key, the attack is nonadaptive: m1,m2, . . . ,mq

are chosen before seeing the signatures.
• Directed Chosen Message Attack. Eve is in the same situation as before, with the only

difference that she can chose the messages m1,m2, . . . ,mq after seeing Alice’s public key.
Therefore it is called directed: the aim is to attack the signer whose public key has been
seen.

• Adaptive Chosen Message Attack. Eve can in addition see the signatures before choosing
the list of messages m1,m2, . . . ,mq: Alice is seen as an oracle, to which Eve has an adaptive
access (Eve can now request signatures of messages which depend on already-obtained
signatures).

A signature forgery is the ability of the attacker to get a pair (m,σ), where σ has been created
by the enemy itself, i.e. the legitimate signer hasn’t signed m. In the following, we present (again
in hierarchical order) the possible results after performing an attack:

– Total Break. Eve retrieves the private key.
– Universal Forgery. Eve is able to model an algorithm which forges signatures for any message.

In short, Eve’s model is an algorithm equivalent to Alice’s one.
– Selective Forgery. The forgery is created on a specific message which has been previously chosen

by Eve herself.
– Existential Forgery. Eve forges a signature for at least one message; the attacker might get some

message-signature pairs (m,σ), but she has no control over the messages.

Therefore the strongest notion of security for a digital signature we can achieve is security
against existential forgery under adaptive chosen message attack.

2.3 Homomorphic Signatures

The work by Johnson et al. (see [37]) is the first one which provides a rigorous definition of what
a homomorphic signature is. The authors highlight also the main problematics concerning such
scheme and define the path of the future research.

The specifications needed to define a homomorphic signature scheme are the same as for the
digital counterpart: the message spaceM equipped with an operation, the space of signed message
Y (which in this case is also equipped with an operation) and the space for the secret (K) and the
public (K′) keys respectively. Of course, the setup, the signing, and the verifying algorithms are
still absolutely necessary. In the following we propose the original definition of [37].



Definition 3. Assume we have a signature algorithm Sig and a verification algorithm Vrf, together
with a binary operation “·”. Then we say that Sig is a homomorphic signature with respect to · if it
comes with an efficient family of binary operations ∗k′ : Y ×Y → Y such that, having the messages
m,m′ ∈M and the signatures y, y′ ∈ Y for which

Vrf(k′,m, y) = ok = Vrf(k′,m′, y′)

for a public key k′ ∈ K′, then there is a secret key k ∈ K such that

y∗k′y′ = Sig(k,m ·m′) and Vrf(k′,m ·m′, y∗k′y′) = ok.

With respect to the framework for digital signatures presented in Section 2.1, for homomorphic
signatures there are some new elements to take into account:

– the integer N : this value gives the maximum data size, i.e. the maximum number of messages
that the admissible function can operate on. Indeed it corresponds to the dimension of the
message space where those admissible functions are defined.

– the set F of admissible functions: this set defines which are the possible computations over the
signed data that the homomorphic signature scheme can support. An element of F is a function
f :MN →M.

– the index i: this index doesn’t have an intrinsic meaning for the homomorphic scheme. It is just
a practical tool to keep track of which of the message of the dataset (m1,m2, . . . ,mN ) ∈M we
are working on.

– the tag τ : this element is necessary to define a strong notion of security also for homomorphic
signatures.

A fourth new algorithm is also introduced to the ones already present for common digital
signature schemes. That is the algorithm Eval : K′ × {0, 1}λ × F × YN → Y, which is the core
part of a homomorphic signature scheme. Indeed it lets anybody compute on authenticated data,
i.e. translating functions on messages into functions on signatures. In the following we denote those
signatures to the messages m1,m2, . . . ,mN with σ1, σ2, . . . , σN . Furthermore, we will denote the
tuple σ1, σ2, . . . , σN with −→σ .

Note that the other three algorithms now behave slightly differently because of the new param-
eters they have in the input. Modeling on the operative definition for digital signatures and taking
into account such differences, we describe the corresponding homomorphic signatures as follows
[26].

Definition 4. A homomorphic signature scheme is a tuple of the following probabilistic, polynomial-
time algorithms:

– Set (1λ, N). It takes as input a security parameter λ in unary and an integer N . It outputs a
secret key k and the respective public key k′. The public key determines the space of messages
M, the space of signatures Y, and the set F of admissible functions f :MN →M.

– Sig (k, τ,m, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a message m ∈ M, and an
index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ Y, computed using the secret key k, which is
the signature for the i-th message m of the dataset tagged by τ .

– Vrf (k′, τ,m, σ, f). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a message m ∈ M, a
signature σ ∈ Y, and a function f ∈ F . It outputs “ ok” if σ is a valid signature for the message
m, output of the function f over the dataset tagged by τ , under the public key k′. It outputs
“ bad” otherwise.



– Eval (k′, τ, f,−→σ ). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a function f ∈ F and a
tuple of signatures −→σ ∈ YN . It outputs a signature σ′ ∈ Y for a function f ∈ F over the (tuple
of) signatures −→σ ∈ YN , labeled by tag τ ∈ {0, 1}λ.

The definition of correctness is now provided.
The index i that the algorithm Sig takes as input actually indicates that the third term in input,

m, is the i-th message in the list of messages m1,m2, . . . ,mN . We can then define the following
projector:

πi :MN →M such that (m1,m2, . . . ,mN ) 7→ mi,

where πi ∈ F , ∀ i ∈ {1, 2, . . . , N}. A signature scheme is said correct if it verifies the projection
for any signed message m ∈ M and if it also verifies the output f(m1,m2, . . . ,mN ) ∈ M. More
precisely, this means that beyond verifying computations on multiple signatures, first of all the
single signatures have to be valid by themselves. In the latter case, as we said, the verification
algorithm takes as admissible function the projector on a single message (i.e. Vrf (k′, τ,m, σ, πi)),
reducing Vrf to the usual verification algorithm of a digital signature (i.e. Vrf (k′, τ,m, σ)). For this
reason, we will denote it with just four parameters in the input, omitting the function πi.

Definition 5. A homomorphic signature scheme is correct if for each output by the algorithm
Set(1λ, N) the following conditions are valid:

(1) For all τ ∈ {0, 1}λ, for all m ∈M, if σ is the output of Sig(k, τ,m, i), then

Vrf(k′, τ,m, σ) = ok.

(2) For all τ ∈ {0, 1}λ and for all the (mi, σi) pairs for which Vrf(k′, τ,mi, σi) = ok, with i ∈
{1, 2, . . . , N},

Vrf(k′, τ, f(−→m),−→σ ,Eval(k′, τ, f,−→σ )) = ok,

where −→m := (m1,m2, . . . ,mN ) and −→σ := (σ1, σ2, . . . , σN ).

2.4 Homomorphic Signatures’ Security Definition

The strongest security notion for digital signatures cannot be achieved by the homomorphic ones.
That is due to their intrinsic design: as Johnson et al. pointed out in [37] (the first work on ho-
momorphic signature schemes), no homomorphic signature will ever be safe against existential
forgeries. Clearly, if the signature is homomorphic with respect to the operation “∗”, by definition,
this means that from two signatures on the messages m1 and m2, one can directly compute a signa-
ture on m1 ∗m2! Therefore, the only thing we can require is that no one is able to forge signatures
on messages outside span∗(m1,m2, . . . ,mN ).

It seems that the homomorphic signatures’ notion of security is correlated to one of the following
two facts:

(1) the size of span∗(m1,m2, . . . ,mN ) with respect to the number of elements m1,m2, . . . ,mN

itself. What we wish to have is indeed that a big set of messages span into a small space, or at
least that a few messages don’t have a large span.



(2) the hardness of the decomposition problem inside span∗(m1,m2, . . . ,mN ). We would like indeed
that it is difficult to write a message m ∈ span∗(m1,m2, . . . ,mN ) in terms of m1,m2, . . . ,mN .

If the decomposition problem is difficult, then the scheme can be secure even if the first require-
ment is not satisfied. The contrary also holds: if the scheme doesn’t present a large span for a small
set of messages, it is still secure even though the decomposition is easy. Since being able to quickly
decompose a message may be useful also for the legitimate signer (see [46]), we do not consider
the issue of having a hard decomposition. Therefore the definition of security of a homomorphic
signature is presented as follows (see [37]).

We define the advantage of an adversary E as the probability that she outputs a valid signature
(m′, σ′) for some message m′ /∈ span∗(m1,m2, . . . ,mN ), after queries on messages m1,m2, . . . ,mN .

Definition 6. A homomorphic signature scheme is (t, q, ε)- secure against existential forgeries
(with respect to ∗), if every adversary E making no more than q chosen-message queries and running
in time at most t has advantage at most ε:

Adv E ≤ ε.

3 Homomorphic Signature Schemes

In this section we present two types of signature schemes satisfying homomorphic properties. In the
first subsection we provide a description of those schemes having the homomorphic property only.
Afterwards, in the second subsection, we discuss the homomorphic signature schemes presenting
also the aggregative property.

3.1 Types of Homomorphic Signature Schemes

After providing a formal definition of what a homomorphic signature scheme is, we now discuss
three different typologies. In fact, the whole set of homomorphic signatures can be divided according
to the admissible function each scheme supports. Specifically, we can distinguish:

– linearly homomorphic signatures;
– homomorphic signatures for polynomial functions;
– fully homomorphic signatures.

The signatures are presented in the same order they are listed above. That is, they are discussed
with respect to an admissible function which is less and less restrictive. For each section, the
differences with respect to the general definition of homomorphic signatures are highlighted. Plus,
the evolution from linearly up to fully is shown.

Linearly Homomorphic Signatures A linear homomorphic signature scheme [36] is used when
the signed messages are operated by linear functions.

Due to this specific instantiation, with respect to the general definition of homomorphic signature
scheme, there are some differences to point out:



– the messages space M is the vector space FpN of dimension N defined over the finite field Fp,
for a prime number p. Such p is an additional output of the setup algorithm Set;

– the messages are vectors. More precisely, they are elements v ∈ FpN , i.e. v = (a1, a2, . . . , aN )
where ai ∈ Fp;

– if we consider the vectors v1, v2, . . . , vN , then the set F of admissible functions f ∈ F are all
the possible linear combinations in the Fp-linear span of v1, v2, . . . , vN .

Therefore, the homomorphic property in this context is specified as follows. Given one signature
per message v1, v2, . . . , vN in FpN , anyone can compute a signature for a vector v′ ∈ FpN , where:

– v′ := f(−→v ) =
∑N
i=1 civi, where −→v := (v1, v2, . . . , vN );

– c1, c2, . . . , cN ∈ Fp.

The definition of linearly homomorphic signatures follows (see [10]).

Definition 7. A linearly homomorphic signature scheme is a tuple of the following probabilistic,
polynomial-time algorithms:

– Set(1λ, N). It takes as input a security parameter λ in unary and an integer N . It outputs a
secret key k, the respective public key k′ and a prime number p. The public key determines
the space of messages FpN , the space of signatures FpN , and the set F of admissible functions

f : FpN → FpN .

– Sig(k, τ, v, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a vector v ∈ FpN , and an index

i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ FpN , computed using the secret key k, which is the
signature for the i-th message v of the dataset tagged by τ .

– Vrf(k′, τ, v, σ, f). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a vector v ∈ FpN , a

signature σ ∈ FpN , and a function f ∈ F . It outputs “ ok” if σ is a valid signature for the
vector v, output of the function f over the dataset tagged by τ , under the public key k′. It
outputs “ bad” otherwise.

– Eval(k′, τ, f,−→σ ). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a function f ∈ F , and a

tuple of signatures −→σ ∈ FpN . It outputs a signature σ′ =
∑N
i=1 ciσi ∈ FpN for a function f ∈ F

over the (tuple of) signatures −→σ ∈ FpN , labeled by tag τ ∈ {0, 1}λ.

For the correctness, we refer to Definition 5, where the message m ∈ M is instead a vector
v ∈ FpN and f(−→m) =

∑N
i=1 civi.

Homomorphic Signatures for Polynomial Functions A homomorphic signature for polyno-
mial functions is a signature scheme that allows for polynomial functions on signed messages. The
first of such schemes is proposed in [11], where actually the polynomials are multivariates and of
bounded degree. It can be seen as a generalization of linearly homomorphic schemes, since in the
linearly homomorphic schemes the set of admissible functions is nothing but a polynomial of degree
one. The definition of homomorphic signatures for polynomial functions we give is a generalization
of the original one presented in [11]. Though, the definition will take into account a maximum
degree of the polynomials, which are multivariate.

As described in [11], the general framework of such signatures is composed of the proper tools
to allow for polynomial functions:



– the message space is a finite field Fp, for a prime number p;
– the space of signed messages is the polynomial ring R := Z[x]/〈F (x)〉, for a monic irreducible

polynomial F (x) of degree d. Such polynomial is the new output of the algorithm Set;
– the set of admissible functions F ⊂ Fp[x1, . . . , xN ] for the variables x1, . . . , xN , with coefficients

in {−y, . . . , y} and degree at most d, where y and d are positive integers.

Therefore, the homomorphic property in this context is specified as follows. Given one signa-
ture per message m1,m2, . . . ,mN , anyone can compute a signature for the polynomial f(−→m) =∑`
j=1 cjYj(

−→m) where:

– −→m = (m1,m2, . . . ,mN );
– ` :=

(
N+d
d

)
− 1;

– {Yj}`j=1 is the set of non-constant monomials x1
e1 , x2

e2 . . . , xN
eN of degree

∑
eN ≤ d;

– c1, c2, . . . , cl are coefficients in Fp.

Definition 8. A homomorphic signature scheme for polynomial functions is a tuple of the following
probabilistic, polynomial-time algorithms:

– Set(1λ, N). It takes as input a security parameter λ in unary and an integer N . It outputs a
secret key k, the respective public key k′, a prime number p, and a monic irreducible polynomial
F (x) of degree d. The public key determines the space of messages Fp, the space of signatures
R, and the set F ⊂ Fp[x1, . . . , xN ] of admissible functions, where y = poly(λ) and d = O(1).

– Sig(k, τ,m, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a message m ∈ Fp, and an
index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ R, computed using the secret key k, which is
the signature for the i-th message m of the dataset tagged by τ .

– Vrf(k′, τ,m, σ, f). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a message m ∈ Fp, a
signature σ ∈ R, and a function f ∈ F . It outputs “ ok” if σ is the valid signature for the
message m, output of the function f over the dataset tagged by τ , under the public key k′. It
outputs “ bad” otherwise.

– Eval(k′, τ, f,−→σ ). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a function f ∈ F , a tuple
of signatures −→σ ∈ R. It outputs a signature σ′ = f(−→σ ) ∈ R for a function f ∈ F over the
(tuple of) signatures −→σ ∈ R, labeled by tag τ ∈ {0, 1}λ.

For the correctness, we refer to Definition 5, where f(−→m) =
∑`
j=1 cjYj(

−→m).

Remark 1. We observe that in [11], the computation of f ∈ Fp[x1, x2, . . . , xN ] over the tuple of

signatures −→σ is actually performed in two steps. Indeed f is firstly lifted to a function, f̂ ∈
Z[x1, x2, . . . , xN ] defined as f̂ :=

∑l
j=1 cjYj(x1, x2, . . . , xN ), where c1, c2, . . . , cN are integer co-

efficients. Then σ′ is the output of f̂(−→σ ).

Fully Homomorphic Signatures With the fully homomorphic signatures we are not restricted
anymore to perform just one group operation over authenticated messages. Now, being allowed to
use both + and × over a field Fp, we can evaluate any function. Such function is now described
by a circuit C with a certain size and a certain depth d. We don’t propose here the definition of
a fully homomorphic signature scheme, since it is almost the same as for a general homomorphic
signature (Definition 4). We just discuss the few variations to take into account.



– As we already said, the function is seen as a circuit, which is denoted as C : MN → M. In
literature, the maximum size of the dataset is denoted by l instead of N .

– Instead of the set of admissible function, we have the circuit family, which is denoted by C.
– The algorithm Setup outputs the private key and the public key, but not the set of admissible

functions anymore.
– The notion of correctness remains the same with the remark that the circuit C can also be a

projection circuit Pi, i.e. P (m1, . . . ,mN ) = mi. That means that the correctness must hold for
single-message signatures (see [14]).

For the correctness, due to the generality of the function that a fully homomorphic scheme
supports, we refer directly to Definition 5, where the description of such f covers all types of
functions.

3.2 Homomorphic Aggregate Signatures

In this section we discuss signature schemes for the multiuser case. In such scenario, we want
to obtain a signature which supports the aggregation of different signatures on different messages,
signed by different users, each of them with its own private key. This task is fulfilled by the so-called
aggregate signatures, firstly introduced by Boneh et al. in [13]. In case we also need to compute
on the authenticated data that we want to aggregate, we need a so-called homomorphic aggregate
signature scheme.

In the following, we first discuss the definition and the framework of a general aggregate signa-
ture. Then we define what a homomorphic aggregate signature is and finally describe the linearly
homomorphic aggregate ones.

Aggregate Signatures An aggregate signature scheme combines multiple signatures into a single
one. If we have N different messages and their N respective signatures, thanks to the aggregate
signature scheme it is possible to compute a single signature for all the N messages. Such an
aggregated signature is as long as the individual ones.

More precisely, suppose that N users u1, u2, . . . , uN want to obtain a signature σ which is an
aggregation of the respective signatures σ1, σ2, . . . , σN . Each signature σi has been obtained by user
ui authenticating message mi, using its private key ki. Indeed each ui has its own private-public key
pair (ki, k

′
i). In addition, the scheme is also requested to be incremental. That is, after aggregating

N signatures obtaining the signature σ, it is always possible to aggregate a further one σN+1. This
means that we don’t have to start the process from the scratch and re-set the computations for
σ1, σ2, . . . , σN , σN+1. Instead, it is sufficient to generate the final signature σ′ by aggregating σN+1

and σ.
As for any other signature, also the aggregate one is defined over the messages space M, the

signatures space Y, and the set of secret and public keys K and K′, respectively. Novelties are
instead introduced as regards the algorithms:

– the algorithm Set for the preliminary stage, where for each user the secret key (used in the
signing process) and the respective public key (used in the verification process) are chosen;

– the algorithm Sig takes as input a secret key, a message and in addition an index i ∈ {1, 2, . . . , N},
in order to specify the user ui together with its secret key ki and message mi;

– the algorithm V rf takes as input a message, a signature, and a string of n public keys k′1, k
′
2, . . . , k

′
N

(indicated by
−→
k′ ), one for each signer;



– a new algorithm is introduced, that is the algorithm Aggσ which aggregates the signatures
σ1, σ2, . . . , σN , computing the signature σ.

A more formal and precise definition follows.

Definition 9. An aggregate signature scheme is a tuple of the following probabilistic, polynomial-
time algorithms:

– Set(1λ). It takes as input a security parameter λ in unary. It outputs a pair (ki, k
′
i) of secret

and public keys for each user i. The public keys determine the space of messages M and the
space of signatures Y.

– Sig(k,m, i). It takes as input a secret key k, a message m ∈M, and an index i ∈ {1, 2, . . . , N}.
It outputs a signature σ ∈ Y, which is the signature for the i-th message m, by means of the
i-th secret key k.

– Vrf(
−→
k′ ,m, σ). It takes as input the public keys’ string

−→
k′ , a message m ∈ M and a signature

σ ∈ Y. It outputs “ ok” if σ is a valid signature for the message m, under the public keys
−→
k′ . It

outputs “ bad” otherwise.

– Aggσ(
−→
k′ ,−→m,−→σ ). It takes as input a public keys’ string

−→
k′ , a messages’s string −→m ∈ M, and a

signatures’ string −→σ ∈ Y. It outputs a signature σagg ∈ Y, which is the aggregate signature of

the signatures in −→σ of the messages in −→m, under the public keys in
−→
k′ , respectively.

Now we give the definition of correctness. Roughly speaking, an aggregate signature scheme is
correct if the verification holds for the independent signatures over the single messages and the
aggregate signature over the aggregate message. In the first case, the algorithm Vrf takes as input
just one public key k′, that is the one corresponding to the secret key k by which the single message
has been signed. Therefore in this situation the algorithm Vrf coincides to the usual one defined
for a classical digital signature.

Definition 10. An aggregate signature scheme is correct if for each output (k, k′) of the algorithm
Set(1λ), the following conditions are valid:

(1) For all i ∈ {1, 2, . . . , N}, if σ is the output of Sig(k,m, i), then Vrf(k′,m, σ) = ok.

(2) If σi is the output of Sig(k, τ,m, i), then Vrf(
−→
k′ ,−→m,Aggσ(

−→
k′ ,−→m,−→σ )) = ok.

Remark 2. Everything we have said so far also holds for any arbitrary subset U of the N users,
where 0 < |U | < N .

Homomorphic Aggregate Signatures Homomorphic aggregate signatures combine together
two properties which at first seem to be incompatible. It fact, as discussed in [59], it is at the same
time:

– a signature which combines signatures without operations on messages, produced by different
users (aggregate signature);

– a signature which combines signatures on messages from the same user using an admissible
function (homomorphic signature).



However, a signature offering both of the above properties is very desirable.
In the following, we will add the homomorphic property (that is, the possibility to compute on
authenticated data) to the aggregate signatures’ definition. Some differences have to be taken into
account:

– the algorithm Set takes as input a security parameter and, in addition, an integer N , which
stands for the maximum number of users the scheme can support. Therefore, the parameter N
has to be decided a priori and this means that the incremental property of aggregate signatures
is lost;

– the algorithm Aggσ takes as input a public keys’ string, a messages’ string, and a signatures’
string. In addition, it takes as input a tag τ ∈ {0, 1}λ and an admissible function f ∈ F , since
the computation over the messages m1,m2, . . . ,mN reflects also on the corresponding signatures
σ1, σ2, . . . , σN ;

– a new algorithm is introduced, that is the algorithm Aggm. It takes as input a public keys’
string, a tag τ ∈ {0, 1}λ, a signatures’ string, and an admissible function f ∈ F . It combines
the messages m1,m2, . . . ,mN according to f ;

– the algorithm Sig takes as input a secret key, a message, and an index. In addition, it takes as
input a tag τ ∈ {0, 1}λ;

– the algorithm Vrf takes as input a public keys’ string, and a message. In addition, it takes as
input an admissible function f ∈ F .

The following definition formalizes the modifications discussed in a organic and precise way.

Definition 11. A homomorphic aggregate signature scheme is a tuple of the following probabilistic,
polynomial-time algorithms:

– Set(1λ, N). It takes as input a security parameter λ in unary and an integer N . It outputs N
pairs (ki, ki

′) of secret and public keys, one for each user i. The public keys determine the space
of messagesM, the space of signatures Y, and the set F of admissible functions f :MN →M.

– Sig(k, τ,m, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a message m ∈ M, and an
index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ Y, computed using the i-th secret key k,
which is the signature for the i-th message m.

– Vrf(
−→
k′ , τ,m, σ, f). It takes as input a public keys’ string

−→
k′ , a tag τ ∈ {0, 1}λ, a message m ∈M,

a signature σ ∈ Y, and an admissible function f ∈ F . It outputs “ ok” if σ is a valid signature

for the message m, signed using the public keys
−→
k′ , output of the function f over the dataset

tagged by τ . It outputs “ bad” otherwise.

– Aggm(
−→
k′ , τ,−→m, f). It takes as input a public keys’ string

−→
k′ , a tag τ ∈ {0, 1}λ, a messages’

string −→m ∈ M, and an admissible function f ∈ F . It outputs a message mAgg ∈ M, which is
the aggregate message, output of the function f over the string of messages −→m in the dataset

labeled by tag τ , coming from the users with public keys
−→
k′ , respectively.

– Aggσ(
−→
k′ , τ,−→σ , f). It takes as input a public keys’ string

−→
k′ , a tag τ ∈ {0, 1}λ, a signatures’

string −→σ ∈ M, and an admissible function f ∈ F . It outputs a signature σAgg, which is the
aggregate signature, output of the function f over the signatures −→σ in the dataset labeled by tag

τ , coming from the users with public keys
−→
k′ , respectively.

The correctness definition takes into account the new algorithm Aggm and the introduction
of the homomorphic property. When we verify a single signature, as for the aggregate signature



schemes, the algorithm Vrf takes as input just one public key and not N of them. Furthermore, as
for the homomorphic signature schemes, the admissible function f is meant as a projection from
the dataset to the message in question.

Definition 12. A homomorphic aggregate signature is correct if for each output of secret-public
key pair (k, k′) of the algorithm Set(1λ, N), the following conditions are valid:

(1) For all τ ∈ {0, 1}λ, for all i ∈ {1, 2, . . . , N}, if σ is the output of Sig(k, τ,m, i), then Vrf(k′, τ,m, σ) =
ok.

(2) If σi is the output of Sig(k, τ,m, i), then

Vrf(
−→
k′ , τ,Aggm(

−→
k′ , τ,−→m, f),Aggσ(

−→
k′ , τ,−→σ , f), f) = ok.

Linearly Homomorphic Aggregate Signatures The homomorphic aggregate signature schemes
present in literature so fare are the linearly ones. That is, the computation supported is a linear
combination of different messages m1,m2, . . . ,mN coming from different users. Such computation
is then reflected on the signatures counterpart. In fact, the final signature σ′ joins together the
signatures σ1, σ2, . . . , σN , according to the same linear combinations as used for the messages.

In order to derive the linearly homomorphic aggregate signatures from the homomorphic aggre-
gate ones, there are some changes to take into account:

– the messages space M and the signatures space Y are the vector space FpN of dimension N
defined over the finite field Fp, for a prime number p. Such p is the new output of the algorithm
Set;

– the messages are vectors v ∈ FpN , i.e. v = (a1, a2, . . . , aN ) where ai ∈ Fp;
– if the vectors v1, v2, . . . , vN are a basis for FpN , then the set of the admissible functions f ∈ F

are all the possible linear combinations in the Fp-linear span of v1, v2, . . . , vN .

The definition of a linearly homomorphic aggregate signature scheme shapes then on Definition
11, taking into account that the general admissible function f ∈ F now has to be seen as f =∑N
i=1 civi for the messages and f =

∑N
i=1 ciσi for the signatures. The same holds for correctness.

Remark 3. A formal definition of linearly homomorphic aggregate signature is provided in [59] and
[36]. Though, let us notice that in literature the linearly homomorphic aggregate signatures are
called homomorphic aggregate signatures. Indeed, the unique examples available so far allow just
for linear combinations and therefore “linearly” is omitted. We prefer instead to specify whether
we are talking about a general homomorphic aggregate signature or a linearly one. Also because in
the future, schemes supporting less restrictive functions might be introduced.

4 Evaluation of Homomorphic Signature Schemes

Together with security, there are many other properties that should be taken into account when
evaluating a homomorphic signature scheme. In fact it might be important that a signature gen-
erated according to an admissible function is indistinguishable from the original ones. Or it may
be that we need a post-quantum signature scheme that it is expected to face quantum computer
attacks. In this case we have to make sure that the underlying hardness assumption is not based
on the Integer Factorization or the Discrete Logarithm Problem. Furthermore, there are situations
where computation efficiency and shortness of the signature are important features. In other cases
these properties might be less important.

In this chapter we discuss and define formally all the above features.



4.1 Complexity Assumptions

Basically, so far there are three kinds of hardness assumptions which a homomorphic signature
scheme can be based on. They are either built on the Diffie-Hellman problem for bilinear groups,
or based on the RSA, or on lattice problems. The first two cases deal with the classical Discrete
Logarithm and Integer Factorization problems which are proven to be not resilient against quantum
computer attacks. The lattice based problems instead are assumed to provide protection also against
such adversaries.

Bilinear Groups If G is an abelian group whose prime order is p and g ∈ G is one of its generators,
then the Discrete Logarithm Problem (DLP) in G is the following: given g, ga ∈ G, find a ∈ Zp.
However, several cryptosystems are designed over (security equivalent) weaker variants. The most
common are the following:

– Computational Diffie-Hellman Problem (CDH). On the same assumptions as before, given the
triple (g, ga, gb) ∈ G, compute gab.

– Decisional Diffie-Hellman Problem (DDH). On the same assumptions as before, given the tuple
(g, ga, gb, gc) ∈ G, decide if in Zp it is true that c = ab or not.

Many signature schemes’ unforgeabilty proofs rely on hardness assumptions defined over the
framework of groups with bilinear maps ([42], [10], [5]). Therefore the above problems have to be
adapted to this environment. Let us recall briefly the definition.

Definition 13. A bilinear group is a tuple (G1,G2,Gt, p, e, ϕ) such that:

– G1,G2 and Gt are cyclic groups of prime order p.
– e : G1 ×G2 → Gt is bilinear, i.e. for all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Z, e(g1a, g2b) = e(g1, g2)ab.
– e is an admissible bilinear map, i.e.
• e is efficiently computable;
• if g1 and g2 are generators of G1 and G2, respectively, then Gt is generated by e(g1, g2)

– the Discrete Logarithm Problem is infeasible to be computed in G1,G2 and Gt.

We list below the several assumptions based on the above definitions.

If in the bilinear group (G1,G2,Gt, p, e, ϕ) the groups G1 and G2 are the same, then we refer
to them as G. The bilinear map e becomes e : G × G → Gt. In this situation we can define the
Computational Diffie-Hellman Problem.

Definition 14. Given a cyclic group G of prime order p, the Computational Diffie-Hellman Prob-
lem (CDH) in G is the following: given g, ga, gb ∈ G, compute gab ∈ G.

However, in bilinear groups the decisional Diffie-Hellman assumption is easy to solve (see [39])
and therefore it cannot be used. For such situations, Boneh et al. introduced in [9] the Decisional
Linear Problem:

Definition 15. Let G1 be a cyclic group of prime order p and a generator g1 of G1. Given other
arbitrary u, v, h, all of them generators of G1, the Decision Linear Problem (DLIN) in G1 is the
following: taken a, b, c ∈ Zp∗ and given as input u, v, h, ua, vb, hc ∈ G1, output yes if a+ b = c and
no otherwise.



The previous problem implies the following Simultaneous Double Pairing Problem ([42]). For

simplicity, in the following definition, we denote G3\{(1Gt , 1Gt , 1Gt)} with Gt∗
3
.

Definition 16. Given the pair of cyclic groups (G,Gt) of prime order p, the Simultaneous Double
Pairing Problem (SDP) in (G,Gt) is the following: given the elements (gz, hz, gr, hu) ∈ G4, it is

hard to find a triple (z, r, u) ∈ Gt∗
3

such that

e(hz, z) · e(hu, u) = 1Gt = e(gz, z) · e(gr, r)

Another problem is the Flexible Diffie-Hellman Problem, which is slightly stronger than the
standard Diffie-Hellman Problem. However it is still a simple one, since it implies the fact that
distinguishing gabc from a randomly-given tuple (g, ga, gb, gc) is hard [5].

Definition 17. The Flexible Diffie-Hellman Problem (flexDHP) for a cyclic group G with the
usual assumptions is the following: given the triple (g, ga, gb), where a, b ∈ Zp, find another triple
(gµ, ga·µ, gab·µ) ∈ G3.

A variant of the above problem is called q-Simultaneous Flexible Pairing Problem, since it is
defined in a q-fashion.

Definition 18. For a group G with the usual assumptions, the q-Simultaneous Flexible Pair-
ing (q-SFP) is the following: given a tuple (gz, hz, gr, hr, a, a, b, b) ∈ G8 and a set of q tuples
(zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

(1) e(a, a) = e(gz, zj) · e(gr, rj) · e(sj , tj),

(2) e(b, b) = e(hz, zj) · e(hr, uj) · e(vj , wj),

the goal is to find another fresh tuple (z′, r′, s′, t′, u′, v′, w′) ∈ G7, where z′ /∈ {1G, z1, . . . , zq},
for which (1) and (2) are still valid.

If the map e runs from distinct groups G1,G2 then we get the co-Computational Diffie-Hellman
Problem.

Definition 19. Let G1,G2 and g1, g2 be as usual. The co-Computational Diffie-Hellman (co-CDH)
is the following: given g1, g1

a ∈ G1 and g2, g2
b ∈ G2, where a, b ∈ Zp, compute g2

ab.

Still in the same case, another, more efficient ([5]) assumption, the q-Strong Diffie-Hellman
Problem, was introduced by Boneh and Boyen [5]. For a security parameter k ∈ N and groups
G1,G2 of prime order p > 2k, we have that:

Definition 20. Given the triple (G1,G2,Gt), the q-Strong Diffie-Hellman Problem (q-SDH) on
(G1,G2,Gt) is the following: for any probabilistic polynomial-time algorithm E and any q= pol(k),
the following probability

Pr[E(g1, g1
x, g1

x2

, . . . , g1
xq

, g2, g2
x) = (c, g1

1
x+c )]

is negligible in k.



Other assumptions
There are five further complexity assumptions proposed in ([3], [4]). They are defined over the
following framework, which is slightly different from the one used so far.

We are again in the case where G1 = G2 =: G, therefore e : G×G→ Gt. The order p of these
two groups is not prime, but it is given by p = p1p2p3, where p1, p2, p3 are prime numbers. Let Gpi
be the subgroup of order pi, for i ∈ {1, 2, 3} and let Gpipj be the subgroup of order pipj , for i 6= j.

Remark 4. Let (u, v) ∈ Gpipj of order pi and pj , respectively. Then e(u, v) = 1Gt .

– Ass. 1 For given elements g ∈ Gp1 , X3 ∈ Gp3 and a group element T , it is hard to decide
whether T ∈ Gp1p2 or T ∈ Gp1 .

– Ass. 2 Let us assume that g,X1 ∈ Gp1 , X2, Y2 ∈ Gp2 and Y3, Z3 ∈ Gp3 . Then it is hard to
decide, given a tuple (g,X1X2, Z3, Y2Y3) and T , if T ∈ (G) or T ∈ Gp1p3 .

– Ass. 3 Let us assume that g ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 , X3 ∈ Gp3 and α, s ∈ Zp. Then given the
tuple (g, gαX2, X3, g

sY2, Z2) it is hard to compute e(g, g)αs.
– Ass. 4 Let us assume that, for t ∈ Zp, the elements g, w, gt, X1 ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 and
X3, Y3, Z3 ∈ Gp3 are given. Having the element T ∈ G and the tuple (g, w, gt, X1X2, X3, Y2Y3)
it is hard to decide if T = wtZ3 or T = wtZ2Z3.

– Ass. 5 Let us assume that a, b, c ∈ Zp, g ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 and X3 ∈ Gp3 . Then given
the tuple (g, ga, gb, gabX2, X3, g

cY2, Z2) it is hard to compute e(g, g)abc.

RSA A well known and widely used cryptosystem is RSA. It has been introduced in 1976 in [48]
and it is based on the hardness of the Integer Factorization problem. Its general underling setting
is exploited also for digital and homomorphic signature schemes. In the following, we define the
Strong RSA assumption [17].

Definition 21. Given an integer N = pq of length k, where k ∈ N is the security parameter, p and
q are distinct prime numbers, and z ∈ Zp, then the Strong RSA assumption is the following: for
any probabilistic polynomial-time algorithm E, the probability

Pr[(E(N, z) = (y, e) such that ye = z mod N, e 6= 1)]

is negligible in k.

Remark 5. The RSA assumption relies on the assumption that the RSA problem is hard. However,
the difference between the RSA problem and the stronger RSA assumption is that, in the latter case,
the exponent e could be chosen depending on z, while in the RSA problem e is chosen independently
(see [22]).

Lattices Some linear homomorphic signature schemes are built on lattices ([12], [50]). We do not
provide a description of lattices, but we introduce the merely assumptions used in the schemes. For
an introduction we refer to [12].

Definition 22. Given a uniform and random matrix A ∈ Zn×mq for positive integers m,n and
given an integer q, the Small Integer Solution (SIS) is the following problem: find a nonzero integer
vector x ∈ Zmq such that Ax = 0 mod q.



Definition 23. Given a matrix A ∈ Zn×mq and k short vectors x1, x2, . . . , xk ∈ Zm such that
A ·xi = 0 mod q for any i ∈ {1, 2, . . . , k}, the k-Small Integer Solution (k-SIS) problem consists of
finding another short vector x ∈ Zm\Q− span{x1, x2, . . . , xk} such that A · x = 0 mod q.

A variant of the above problem, called Inhomogeneous Small Integer Solution, was introduced
in [29]. It consists of finding a short solution to a random inhomogeneous system.

Definition 24. Given a uniformly random integer q, a uniformly random matrix A ∈ Zqn×m, a
syndrome u ∈ Zqn, the Inhomogeneous Small Integer Solution (ISIS) is the following problem: find
a vector of integers x ∈ Zm such that Ax = u mod q.

Remark 6. All the above hardness assumptions can be seen in the `2 norm if we assume that there
exist a real number β such that ||x|| ≤ β.

4.2 Efficiency and Size

Efficiency is a property which still has to be clearly defined in the framework of the homomorphic
signature schemes. Indeed, there is no precise standard with respect to comparing all the existing
schemes in a rigorous and unique way. Though, it would be desirable as a future work. However,
some information and partial comparisons are available in the state of the art, as we will discuss in
Chapter 5.

On the other hand, the notion of “succinctness” for a signature’s size, i.e. the desirable length
for a signature, is commonly accepted. For a fixed security parameter λ, a (homomorphic) signature
scheme is called succinct, if the signature’s length depends only logarithmically on the size N of
the dataset (see [11]).

4.3 Adversary

Two operative definitions of what security (specifically, unforgeability) is, are provided in the next
two subsections. Section 4.3 presents the strong and the more recent one, while Section 4.3 provides
a weaker definition that might be sufficient for some applications.

Boneh et al.’s Security Definition As we already mentioned, the tag τ is a useful element in
the definition of homomorphic signatures. This in fact allows for a secure homomorphic signature
scheme, as Boneh et al. formalized in [10]. Since the game presented there is specific for the linear
ones, we describe a more general definition given in [11].

Let us recall that a homomorphic signature scheme is the tuple S= (Set , Sig, Vrf, Eval), where
λ is the security parameter and N the maximum data set size.

Definition 25. A homomorphic signature scheme S is unforgeable if for all N and any probabilis-
tic polynomial-time adversary E, in the following game the advantage of E is negligible with respect
to λ:

– Set: The challenger obtains the secret-public key pair (k, k′) by running Set(1λ, N). The public
key k′ determines the space of messages M, the space of signatures Y, and the set F of admissible
functions f :MN →M. The challenger gives k′ to E.



– Queries: Proceeding adaptively, the adversary E selects a sequence of data sets −→mi ∈ MN . For
each i ∈ {1, 2, . . . , N}, the challenger chooses the tag τi ∈ {0, 1}λ, uniformly at random. The
challenger gives τi and the signatures σij, output of Sig(k, τi,mij , j) for j ∈ {1, 2, . . . , N}, to
E.

– Output: E outputs:
• a tag τ∗ ∈ {0, 1}λ;
• a message m∗ ∈M;
• a signature σ∗ ∈ Y.

The above game formalizes the attacker’s intent. Instead of aiming at getting a new pair (m∗, σ∗)
as for the digital signatures’ case, this time E wants to output a triple (m∗, σ∗, f) (where σ∗ is the
signature over f(m∗)). Being a forgery, the triple is such that it cannot be derived from data and
signatures previously seen.

As discussed in [26], the forgery can be done by E in two ways: either it produces a fresh signa-
ture for data which it hadn’t seen before, or, seeing a particular data set, it is able to authenticate
an incorrect value of one of its functions. We call the first case “Type I forgery”while the second
one “Type II forgery”. We refer to [11] for the following formalization.

The adversary E wins if Vrf(k′, τ∗,m∗, σ∗, f) = 1 and either

– Type I forgery : τ∗ 6= τi for all i ∈ {1, 2, . . . , N}.
– Type II forgery : τ∗ = τi for a certain i and m∗ 6= f(−→mi).

Remark 7. Without the tag τ , the definition of security would be weaker. Indeed without such a
file identifier, the adversary would just be able to query some messages on M and not on an entire
data set (see [58]).

Freeman’s Security Definition In [26], Freeman strengthens the adversary: E is not restricted
to query all the messages belonging to a given data set at one time. Now the attacker can query
one message at a time, and choosing the following one based on the output of the previous query.
Furthermore, it can do this adaptively within each data set and spread the queries among the data
sets. In this way the attacker can win in a third way: “Type III forgery”. That is, E might output a
triple (m∗, σ∗, f) where σ∗ is the signature over the pair (m∗, f) which corresponds to a previously
seen data set. Though, the adversary hasn’t queried enough messages on that data set in order to
shape precisely the behavior of f . For further details we refer to [26].

4.4 Privacy

In many practical applications it is necessary to protect derived signatures’ privacy. There are three
different notions of privacy, according to the level of protection achieved by a scheme.

Let us call σ1, σ2, . . . , σN the set of signatures from which a signature σ′ for a message m′ is
derived. A homomorphic signature scheme is said to be weakly context hiding if σ′ only reveals
information about the corresponding message m′, but doesn’t leak any information about the
dataset m1,m2, . . . ,mN of the respective above signatures.

This notion of privacy has been introduced in [2], together with its stronger version: the strong
context hiding. Such privacy level is achieved by signature schemes when it is not even possible to



see that the signature σ′ has been computed as the output of σ1, σ2, . . . , σN . This privacy level
requires the infeasibility of linking the signature σ′ to the original ones σ1, σ2, . . . , σq, even in the
case that they are publicly revealed (see [36]).

A further privacy level is introduced in [4]. According to the authors, the definition in [2] takes
only the indistinguishability from honestly generated signatures into account. In fact, there are
signature schemes (like the one presented in [3]) which satisfy that property even if an attacker
generates the signature using an admissible function. Note that the strong context hiding doesn’t
imply unlinkability when the original signatures are chosen by an attacker. In order to address
this, they define a new notion of privacy, said completely context hiding, which requires (statistical)
context hiding on adversarially chosen signatures with private key exposure (see [36]).

To conclude, there are three notions of privacy for homomorphic signature schemes. They are
listed in hierarchical order and the previous one implies the following ones:

– completely context hiding;
– strong context hiding;
– weakly context hiding.

4.5 Random Oracle Model vs. Standard Model

In the security proofs (and not only for homomorphic signature schemes) the gap between the ideal
framework and the practical one need to be faced. Indeed, in many schemes to be secure, the output
of cryptographic primitives involved, usually hash functions, are required to be perfectly random.
Though, it is not always possible to specify how such primitives are built. In this case, the security
proof is performed in an idealized model called Random Oracle Model (see [25]). In the Random
Oracle Model, each hash function, for instance, is substituted with a perfectly random function,
called random oracle.

Recent schemes are able to perform proofs in a more realistic framework, the Standard Model,
where perfect randomness is not necessary to prove the security of the schemes themselves. When
a signature scheme is set in the Standard Model, that is considered a valuable property.

5 State of the Art of Homomorphic Signatures

In this section the state of the art with respect to homomorphic signature schemes is presented. Due
to the large number and the different properties they satisfy, they are discussed in separate groups,
according to the computations they support. The investigated properties are the ones introduced
in the previous sections. Firstly the underlying hardness assumption is specified, then we provide
information about the efficiency of the schemes and their signature’s length. Afterwards, the general
safety of the scheme is discussed: which adversary the signature can cope with and which level of
privacy is achieved.

5.1 Linearly Homomorphic Signatures

The first homomorphic signature schemes introduced were the linearly ones. Though the earliest
signature we present is the one proposed by Boneh et al. in 2009 in [10], it is not the first one in



literature. Actually, many schemes had been published before ([19], [60], [56], [57]), but they have
already been proven to be not practical or even not completely secure ([51], [58], [24]). Therefore,
we do not discuss them in this work. On the other hand, we must highlight the fact that increasing
the processing overhead is the common drawback of all these public-key cryptographic primitives
(see [40]). However, in recent works many improvements have been done in this sense.

Since there are several linearly homomorphic signatures, we divide them into two groups. On
one hand we have the ones whose security proof relies on the employment of random oracles and
on the other hand we have the ones which are proven in the Standard Model, as defined in Section
4.5.

Random Oracle Model

Signing a Linear Subspace: Signature Schemes for Network Coding, by Boneh et al.
(2009) Boneh et al.’s work [10] is the milestone of linearly homomorphic signatures. Indeed it is
considered the first one to provide a practical framework for such schemes and the notion of a weak
adversary is defined. The scheme proposed is proven secure assuming that the co-CDH problem in
(G1,G2) is infeasible (see Section 4.1). The scheme is claimed to have low communication overhead,
because of the independence of both public-key and signature’s sizes with respect to the data size
(see [58]). Furthermore, a lower bound on signatures’ length is provided, which shows that the
construction is optimal in the sense of [10]. However, being defined over bilinear groups, expensive
bilinear maps are needed in order to verify each signature, as shown in [24]. Besides being the first
practical scheme, it can cope only with a weak adversary (see Section 4.3). Though, the signature
enjoys actually the excellent and valuable property to be completely context hiding in terms of
privacy (Section 4.4), as it has been later proven (see [33]).

Secure Network Coding Over the Integers, by Gennaro et al. (2010) In 2010, Gen-
naro et al. presented in [28] a Standard-RSA-based signature scheme (for a definition of the RSA
assumption see Section 4.1). Because of the underlying hardness assumption, the signature is less
computational expensive than the one presented in [10]. In fact it turned out to be the one provid-
ing the lowest computation complexity among the existing schemes in that year. It has also been
implemented in Linux, showing that it is actually a practical scheme (see [40]), i.e. the algorithm
runs in a reasonable time. The reduction of the bandwidth overhead and the general computational
efficiency is possible because the signature works over the integers. Indeed, in order to have a con-
crete example, the authors of [40] performed an exponentiation by a 1024-bit long exponent running
the 512-bit RSA signature scheme proposed in [28] in 3.2 ms. In order to have a fair comparison to
the scheme proposed in [10] in terms of the security level, they consider a 112-bit elliptic curve and
run the same exponentiation. This computation took 7.79 ms, showing that the scheme proposed
by Gennaro et al. is much more efficient and suitable for concrete applications. In fact in the scheme
proposed in [28], the linear combinations involve only 8-bit long coefficients, which are much smaller
than the 160-bit long coefficients used in [10]. The security is proven under the same definition given
in [10]: this means that the signature is unforgeable against the weak adversary only. The level of
privacy guaranteed by the scheme has not been specified yet.

Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based
Signatures, by Boneh and Freeman (2011) The signature scheme described in [12] is the first



one to authenticate vectors over binary fields. The hardness assumption exploited in order to prove
the security of the scheme is k-SIS (see Section 4.1). Efficiency is not clearly discussed. However,
being defined over lattices, the scheme is not expected to be as efficient as [28]. This signature
scheme is built on the one presented in [30], where the signatures are short vectors in lattices.
Therefore also for the signatures provided by [12], the length is supposed to be quite reasonable.
While the scheme is resistant to the weak adversary only, it is weakly context hiding in terms of
privacy. Note that in this case the number of the linear combinations that can be authenticated by
the scheme is bounded (see Remark 8).

Lattice-Based Linearly Homomorphic Signature Scheme over Binary Fields, by Wang
et al. (2013) The work presented in [50] by Wang et al. improves the first homomorphic schemes
defined over binary fields, since it is expected to be resilient against quantum computers [12]. In-
deed, the hardness assumption is SIS, as defined in Section 4.1. Furthermore, the scheme is very
efficient (both in terms of signing and verifying cost) and provides a short signature and public key.
The lattices’ parameters are also short, thanks to the usage of the hash function defined in [43],
from which the linearity comes from.

As pointed out by the authors of [50], the scheme is secure against Type I forgery and Type II
forgery (Section 4.3); thus it is unforgeable only against the weak attacker. Furthermore, the scheme
is weakly context hiding, as defined in Section 4.4. With respect to [12], we can then conclude that
no improvements have been done in terms of security and privacy.

Remark 8. As discussed in [36] there is an open problem which concerns all the current lattice-
based homomorphic signature schemes over binary field. That is, they are L-limited, where L is the
upper-bound on the maximum number of signatures that can be combined.

Standard Model

Homomorphic Network Coding Signatures in the Standard Model, by Attrapadung
and Libert (2011) The signature scheme described in [3] is the first linearly homomorphic sig-
nature scheme proven in the Standard Model. The scheme is defined over bilinear groups, where
two decisional assumptions (Ass. 1 and Ass. 2, see Section 4.1) and one computational (Ass. 3, see
Section 4.1) are adopted to prove unforgeability. In this case, instead of working with prime fields
(like for the scheme described in [10]), the coordinates have to be chosen in ZN , where N is the
composite order of the bilinear groups. Unfortunately, the scheme is inefficient compared to the con-
structions proven in the Random Oracle Model. The signature is constant in terms of size: it consists
of three group elements of at least 1024-bit length. Furthermore, like in [10], the unforgeability of
the scheme can only face the weak adversary defined in Section 4.3. Therefore protection against
re-randomizing signatures by adversaries is not guaranteed and special countermeasures have to be
taken. Note that, according to [26], it is possible to modify the proof in the Standard Model and
to face even the strong adversary. Another valuable property is that the scheme is strongly context
hiding (see Section 4.4).

Computing on Authenticated Data: New Privacy Definitions and Constructions, by
Attrapadung et al. (2012) The same authors of [3] proposed one year later a similar scheme in
[4]. The groups (G,GT ) considered are of composite order p = p1p2p3 and the hardness assumptions
are Ass. 1, Ass. 2 , Ass. 4 and Ass. 5, as defined in Section 4.1. This scheme is a direct improvement
of the previous one described in [3]: in fact, while it achieves strongly context hiding privacy, the



signature is 33% shorter. Though, it is proven secure against the weak adversary only.

Adaptive Pseudo-Free Groups and Applications, by Catalano et al. (2011) The scheme
proposed by Catalano et al. in [16] employs and extends the notion of pseudo-free groups introduced
by Rivest in [47]. The signature relies on the Strong-RSA assumption (Section 4.1) and actually
the authors proved that all the signatures built on RSA are instances of their general framework.
Though, the scheme in [16] cannot achieve the same efficiency as the respective scheme in the
Random Oracle Model described in [28]. Furthermore, the signature’s length is affected by a large
random exponent s (for example, for 80-bit of security, s is 1346-bit long) and the signature consists
of two integers of at least 1024-bit length.

As for [3], the unforgeability is proven according to the weak adversary. Even in this case, the
proof in the Standard Model can be modified such that it is secure against the strong adversary
defined in Section 4.3. The privacy notion has still to be clarified.

The signature is an element of Z∗N , where N is the bit size of the RSA modulus N . However,
the linear combinations are performed over the integers. This leads to the fact that the number of
admissible linear combinations is bounded, otherwise the the vector coordinates would grow too
large.

Efficient Network Coding Signatures in the Standard Model, by Catalano et al. (2012)
This scheme, described in [17], was presented by the same authors of [16] one year later. This new
one works over ZN , where N = pq and p, q are two safe primes. It relies on the same hardness
assumption (Strong-RSA) of the scheme described in [16]. Though, it is an improvement in terms
of size, since the signature is composed of only one group element with respect to the signature
of [16]. Furthermore, even though it is proven in the Standard Model, the homomorphic signature
achieves efficiency comparable to the ones in the Random Oracle Model ([28], [10]). In addition,
the number of admissible linear combinations is not bounded anymore like in [16]. Indeed they are
computed modulo a certain prime number such that the vector coefficients cannot grow beyond it.
However, the scheme can cope with the weak adversary only.

Except for the improvement of [16], in [17] another scheme is proposed. This one is defined over
bilinear groups of prime order p and it is proven secure under the q-SDH assumption (see Section
4.1). The scheme can achieve short signatures as well: it consists of one group element and one more
element belonging to Zp (that is about 512-bit long for 128 bits of security).

In brief, the linearly homomorphic signatures in [17] outperforms in terms of efficiency and size.
On the other side, the security hasn’t been improved and it is unforgeable under the same defini-
tions of [10] and [16]. In addition, privacy has not been clarified yet.

Improved Security for Linearly Homomorphic Signatures: A Generic Framework, by
Freeman (2012) In [26], Freeman transformed ordinary (i.e. non-homomorphic) signatures into
homomorphic schemes. Specifically, the author converted four of them and proved their security in
the Standard Model, maintaining the original hardness assumptions they were relying on. That is,
the scheme proposed in [52] under the CDH, the scheme proposed in [7] under the q-Strong DH,
the scheme proposed in [27] under the Strong RSA assumption and the scheme proposed in [35]
under the RSA assumption. In terms of efficiency and signatures’ size, the schemes in [17] achieve
better performance. On the other hand, the four schemes in [26] are better in terms of security: the
unforgeability is proven against the stronger adversary (which is actually defined for the first time



in this paper). Furthermore, the signatures are also weakly context hiding: in fact in this work, also
the issue of privacy was firstly highlighted.

Remark 9. Another important feature of the scheme in [17] is that the to-be-signed vectors’s length
is unbounded. This is not true for the two constructions of [26] relying on RSA.

Efficient Completely Context-Hiding Quotable and Linearly Homomorphic Signatures,
by Attrapadung et al. (2013) The work presented in [5] by Attrapadung et al. is a linearly
homomorphic signature scheme relying on the Flex-DH hardness assumption (defined in Section
4.1). Such hardness assumption was necessary to improve the signature described in [4] (which is
only weakly context hiding) in order to make it completely context hiding. In this way the signature
is composed only of groups elements. However, the scheme can cope with the weak adversary only.

In Table 1 we summarize the properties of the linearly homomorphic signatures discussed so far.

Table 1. Linearly Homomorphic Signature Schemes

Signatures: Hard. Ass Efficiency Size Adversary Privacy Model

[10] DHP acceptable constant in N weak complete ROM

[28] RSA good ∅ weak ∅ ROM

[12] Lattice ∅ short weak weak ROM

[50] Lattice good constant in N weak weak ROM

[3] DHP bad 3 groups elem. (≥ 1024) weak strong Standard

[4] DHP ∅ 33% ≤ [3] weak strong Standard

[16] RSA ≤ [28] 2 groups elem. (≥ 1024) weak ∅ Standard

[17] RSA good ≤ [16] weak ∅ Standard

[26] DHP/RSA ≤ [17] ≥ [17] strong weak Standard

[5] DHP ∅ group elements ∈ G16 weak complete Standard

5.2 Homomorphic Signature Schemes for Polynomial Functions

Homomorphic Signatures for Polynomial Functions, by Boneh and Freeman (2011)
This signature scheme proposed in [11] is the first homomorphic signature supporting evaluation
of multivariate, bounded-degree polynomials on authenticated data. It relies on the SIS hardness
assumption and is defined over ideal lattices. Furthermore, it fulfills the definition of succintness
of a signature’s length, as defined in Section 4.2. In fact the signature depends logarithmically on
the data size. On the other hand, the scheme is not very efficient and can cope only with the weak
adversary. The security is proven in the Random Oracle Model. The level of privacy achieved by
the signature scheme still needs to be clarified.

Homomorphic Signatures for Polynomial Functions with Shorter Signatures, by Hi-
romasa et al. (2013) Hiromasa et al. presented in [34] a signature scheme which improves the
one proposed in [11] in terms of the signature’s size. On the other hand, the secret key is longer.
Regarding all the other properties and parameters, the signature scheme is proven secure in the
Random Oracle Model, using SIS as the underlying hardness assumption. Privacy is still a non
specified property.

Homomorphic Signatures with Efficient Verification for Polynomial Functions, by Cata-
lano et al. (2014) The work presented in [18] outperformes both the above signatures ([11], [34]).



As regards the hardness assumptions, the signature in [18] relies on the k-Augmented Power Mul-
tilinear Diffie-Hellman Problem (k-APMDHP). That is a hardness assumption that the authors
defined by themselves and we refer directly to [18] for its definition. Despite the fact that lattice-
based signatures are in general efficient in terms of computational costs, as remarked in [36], this
scheme shows better performance than in [11], at least in terms of verification. However, the scheme
relies on multilinear maps and it is still a work-in-progress to define a practical and efficient one
(see [21]). On the other hand, the size of the signature, the public key and the secret key increases
of a factor d, where d is the maximum degree of the polynomial supported. This drawback is the
expense to be paid in order to achieve a better security level than the scheme proposed in [11]. In
fact, the signature scheme described in [18] provides two substantial improvements:

(1) the scheme doesn’t rely on random oracles any more and the security proof is set in the Standard
Model;

(2) the adversary is not assumed to query signatures on messages in a given data set all at once.
That is: the scheme is proven to be secure also in the presence of a strong adversary.

Moreover, the open problem stated by the authors in [11] of building a homomorphic signature
providing privacy has still not been solved. Indeed none of the three signature schemes supporting
polynomial functions is at least weakly-context hiding.

In Table 2 we briefly show the signatures’ properties discussed so far about the scheme supporting
polynomial functions.

Table 2. Homomorphic Signature Schemes for Polynomial Functions

Signatures: Hard. Ass Efficiency Size Adversary Privacy Model

[11] Lattice bad O (d logN) weak ∅ ROM

[34] Lattice bad shorter weak ∅ ROM

[18] DHP good O (d3 + d2logN) strong ∅ Standard

5.3 Fully Homomorphic Signature Schemes

Leveled Fully Homomorphic Signatures from Standard Lattices, by Gorbunov et al.
(2014) In [32], the first fully homomorphic signature scheme is proposed. That means that the
admissible function can be an arbitrary one. The function is described as a circuit of depth d. This
scheme bases on the hardness assumption SIS and can evaluate arbitrary circuits over signed data.
With respect to efficiency, the costs for verification is as high as computing the function f . The
signature scheme can be proven secure either in the Random Oracle Model or in the Standard
Model. In the former case, we end with short public parameters, while in the latter case they are
even longer than the total size of the dataset.

Note that, in both cases, instead, the signature’s size is independent of the data size and of
the circuit size. Though, this doesn’t mean that the signature is short: it is indeed dependent of
the depth d of the circuit, which is an a-priori fixed parameter. Therefore, even though we can in
principle perform any kind of transformation on the authenticated data, this is done at the expense
of having a larger and larger signature.



The adversary these schemes can cope with is the weak one. A particular technique is available
[8] to convert the schemes so that the scheme is secure against the strong adversary. Though, this
is possible at the expense of ending with high inefficiency (see [14]): it would then be possible to
sign only few and short messages. Such restriction is a devolution regarding the practicability of the
schemes in real life. Furthermore, they are claimed not to lack information about the original data
beyond the outcome of the transformation itself. Therefore, according to the terminology adopted
in this work, weakly context hiding privacy is provided.

Adaptively Secure Fully Homomorphic Signatures Based on Lattices, by Boyen et
al. (2014) This is the second paper in literature proposing a fully homomorphic signature scheme.
It is still based on lattices, assumed to provide security even in the presence of quantum computer.
This paper can be thought as a concurrent work to [32]. Indeed some improvements have been done,
though arising some problematics not present in the aforementioned paper. Specifically, the scheme
cannot sign arbitrary circuits any more: rather the ones with poly-logarithmic depth or the ones
with polynomial depth. In the first case the hardness assumption is the SIS, while in the second
case the scheme relies on the sub-exponential SIS. On the other hand, the efficiency is claimed to
be definitely improved even though there is no discussions about the signature’s size. An important
improvement of this work is that the scheme can cope with the strong adversary and this is proven
in the Standard Model. Unfortunately none of the possible level of privacy is achieved, making the
protocol not applicable for many real-life applications.

In short, we summarize the above schemes in Table 3.

Table 3. Fully Homomorphic Signature Schemes

Signatures: Hard. Ass Efficiency Size Adversary Privacy Model Note

[32] Lattice depends on f poly in depth weak weak Standard large param.

[32] Lattice depends on f poly in depth weak weak ROM short param.

[14] Lattice good not specified strong none Standard poly-log depth

5.4 Homomorphic Aggregate Signatures

In many practical applications it might be necessary to aggregate multiple signatures on messages,
produced even by different users. The merely linearly homomorphic signatures do not fulfill this
new issue: they do not face the multiple users case.

Among the digital signature schemes, the aggregate ones (see [13]) can fulfill this task. They are
designed to “aggregate”N different signatures (each of them has to be on a distinct message) from
N different signers by generating a new one. Each pair of message-signature comes with an index
i ∈ 1..N referred to the user i. That new signature (together with the N messages) will then prove
to the verifier that each of the N users has signed one (and only one) of the N original messages.

Introducing the homomorphic property into an aggregate scheme is therefore a quite valuable
improvement. Up to our knowledge, there are only two signatures which are both homomorphic
and aggregative:

– “A Homomorphic Aggregate Signature Scheme Based on Lattice”, by Zhang, Yu and Wang
(2012) [59]



– “An Efficient Homomorphic Aggregate Signature Scheme Based on Lattice”, by Jing (2014) [36]

They both support linear operations over binary fields and rely on lattices. Therefore the hard-
ness assumptions leading to unforgeability are supposed to face even quantum computers’ attacks.
Specifically, [59] relies on the ISIS problem, while [36] on the SIS one (see Section 4.1). Regarding
efficiency, the signature in [36] is better: the signing and the verification costs are improved, leading
to a faster scheme. Efficiency is not the only point where the earlier proposed signature in [36]
overcomes the older one described in [59]: indeed, while in [59] the signature’s length is as long as
that of each original signature, in [36] the signature is exactly two times longer. Instead, the public
key length is the same for both schemes.

Both of the signature schemes are proven unforgeable against the strong adversary. Furthermore,
the signature in [36] provides also weakly context hiding privacy. Note that this scheme is a variant
of the linearly homomorphic signature introduced in [12], where the same privacy property holds
and also apply to the multi-users case.

Both schemes are proven in the Random Oracle Model. Thus, a perfectly random, collision-
resistant hash function is needed to provide security.

In short, because of the improvements in terms of signature’s size, efficiency and privacy, the
signature by [36] is more desirable than the one presented in [59].

Having the aggregative property is not a necessary condition for a homomorphic signature to deal
with different signatures generated by different users. Indeed earlier works presented homomorphic
signatures for the multi-users case ([23], [54]). In both proposals, the length of the signatures is
really short: 128 bits and 160 bits respectively. Though, both of them present the same drawback:
they are not efficient. This is also due to the underling hardness problem. While [54] relies on CDH,
the first one relies on co-CDH. The several multiplications and exponentiations involved during
signing and verification due to pairings and point multiplication over elliptic curves make them not
very appealing from practical implementation’s point of view. Thus, we will not further consider
these approaches.

The properties of the two existing linearly homomorphic aggregate signatures discussed are
reported in Table 4.

Table 4. Linearly Homomorphic Aggregate Signature Schemes

Signatures: Hard. Ass Efficiency Size Adversary Privacy Model

[59] Lattice good constant in N strong ∅ ROM

[36] Lattice good constant in N strong weak ROM

6 Suitable Homomorphic Signature Schemes for Cloud Computing

The signature schemes presented in Section 5 were discussed from an abstract and very general
point of view. Now we are going to rephrase what we have said so far highlighting the requirements
a scheme needs to fulfill to fit a certain application. Specifically, in this section the review is adapted
to the cloud computing setting. In particular, we want to take into account three use cases enabled



by the cloud technology. These are: electronic voting, smart grids, and electronic health records.
Each of the following sessions is dedicated to one of them. After a brief description of the use case in
question, the minimum requirements for a signature are discussed, the available signature schemes
are presented, and possible future work is highlighted.

6.1 Electronic Voting

Since the existence of democracy, several voting schemes have been designed to let people express
their opinion. In order to be general, direct, free, equal, and secret an election needs to fulfill several
security requirements. These include, among others, correctness. More precisely, correctness requires
that only votes cast by eligible voters are tallied and that the election outcome is computed correctly
without removing and/or adding ballots.

Paper based voting schemes are currently the most widely used ones. Though, they have the
drawback that only people present during the tallying procedure can verify that the votes cast are
counted correctly.

There are several electronic Voting (eVoting) schemes that support a remotely verifiable tallying
process using a public bulletin board. More precisely, during the vote casting process each voter
receives a receipt containing some information, in most schemes the own vote in encoded form.
After the polls closed all encoded votes contained in the ballot box are published on the bulletin
board and each voter can verify that the own vote has been recorded as cast using his/her receipt
(individual verifiability). In addition, during the tallying process some audit data is published that
allows anybody to check that all votes recorded have been tallied correctly (universal verifiability).

In particular, in this scenario homomorphic signatures would allow to verifiably tally votes that
have been authenticated leading to an authenticated result. Note that here two cases need to be
distinguished. In the first case all votes are signed using the same global, but private, election sign-
ing key. In the second case several private keys are used to sign individual votes or set of votes. An
example for the first case are poll-site voting schemes where the voters cast their vote in a polling
station using official election hardware, e.g. by casting votes using voting machines or by scanning
filled out ballots. Here a possible application for homomorphic signatures is that the device in ques-
tion signs the digitally recorded ballots using a global election signing key. Thus, all votes published
on the bulletin board are authenticated and an election outcome signed with this election key can
be computed. The second case occurs, for instance, when the votes are cast remotely. Here each
voter submits his/her own vote and a possible application for homomorphic signatures is that these
votes are signed by his/her individual signing key. In this case tallying the votes published on the
bulletin board lead to an aggregated signature on the election outcome, i.e. an election outcome
signed by all voters. While the first case requires regular homomorphic signatures, in the second
case homomorphic aggregate signatures are needed. In both cases, the operation performed over
the signed votes range from simple additions of plaintext votes (see [20]), to polynomial functions
(see [1]), e.g. simple operations on encrypted data, up to arbitrary functions (see [53]). Thus, for
this use case, linearly, polynomial, fully, and aggregate homomorphic signatures are of interest.

With respect to the hardness assumption, it is sufficient that the signature schemes used are
based on the classical problems of Integer Factorization and Discrete Logarithm Problem. Indeed,
the election result is made public as soon as the counting is completed. Therefore, there is no



need for long-term protection of authenticity. Although it is preferable to determine the election
outcome as fast as possible, efficiency is in general a less critical aspect for the tallying process.
Indeed, computationally powerful devices (e.g. laptops, voting machines) are usually employed. For
the same reasons, having a succinct signature is also less important. In many schemes the signed
votes are not published before the poll is closed and the voters do not receive any feedback whether
the signatures are correct or not. This is for instance the case when manipulated hardware is used.
In this case it would not be possible for an adversary to submit a second set of signed votes whether
the signatures of the first set could not be successfully forged. The hardware would be replaced and
the voting process would be repeated. Therefore, it is sufficient for the scheme to be secure against
the weak adversary. However, there might be other schemes where the signature to the data cast is
verified directly. If feedback is given to the voter during vote casting the signature must be secure
against the strong adversary. With respect to privacy, it is sufficient for a homomorphic signature
scheme to achieve the weak context hiding level. In fact it is well known that the set of possible
messages are votes and that the admissible functions correspond to the election methods. If only
encrypted votes are signed, then privacy is not needed at all.

Table 5 summarizes the existing homomorphic signature schemes that might be of interest for
electronic voting. Regarding linear functions, the scheme proposed in [50] and the ones discussed in
[26] fulfill our requirements. The latter publication the schemes are even secure against the strong
adversary. Since the maximum number of voters is known a priori, we consider as a valid option also
the scheme defined in [12], where the number of admissible linear combinations is fixed a priori.
These schemes have to be taken into account when the votes are not encrypted, i.e. when privacy
is needed. When this is not the case, i.e. the votes are encrypted, also the scheme discussed in [17]
is suitable.

With respect to the schemes supporting polynomial functions, none of the approaches provide
weak privacy. Therefore, none of them can be considered in case the votes are not encrypted.
However, the scheme described in [18] fits all the other requirements, included the strong adversary,
and can be used when only encrypted data are signed. Note that the scheme relies on multilinear
maps. Therefore it will actually become a promising scheme for electronic voting, once such maps
will be practically implemented.

Furthermore, there is a fully homomorphic scheme [32] that satisfies the minimal requirements,
achieves weakly context hiding privacy, and is even assumed to be secure against quantum com-
puters. However, it can cope with the weak adversary only and efficiency depends on the election
method addressed and needs further analysis.

In addition, the linearly homomorphic aggregate scheme presented in [36] fits the minimal re-
quirements, privacy included. Except for privacy also the scheme proposed in [59] fits the minimal
requirements and can therefore be employed in voting schemes where the votes are processed in
encrypted form. Both schemes are also secure against the strong adversary.

Summarizing, one can say that for voting schemes with a simple election method (the addition
of votes) and where the votes are not necessarily encrypted, homomorphic signatures and aggregate
signature are available and there is also a promising fully homomorphic signature scheme. On
the other hand, for more complex voting schemes where the votes are even encrypted, a scheme
supporting polynomial function is available too. However, in order to address more complex election
methods even when the votes are not encrypted, more research is needed if the signature scheme
has to support polynomial or arbitrary tallying functions. Furthermore, efficiency is not well defined



and more precise analyses in this regard are needed. Note that although this is not a very critical
property for this use case, during elections a huge amount of data needs to be processed and the
election outcome should be available in reasonable time.

Table 5. Suitable Signature Schemes for eVoting

Signatures: type Hard. Ass Efficiency Size Adversary Privacy Model

[50] Linearly Lattice good constant in N weak weak ROM

[12] Linearly Lattice ∅ short weak weak ROM

[26] Linearly DHP/RSA ≤ [17] ≥ [17] strong weak Standard

[17] Linearly RSA good ≤ [16] weak ∅ Standard

[18] Polynomial DHP good O (d3 + d2 logN) strong ∅ Standard

[32] Fully Lattice depends on f polynomial in depth weak weak ROM

[59] Aggregate Lattice good constant in N strong ∅ ROM

[36] Aggregate Lattice good constant in N strong weak ROM

6.2 Smart Grids

Smart grids allow to introduce intelligent electricity generation, load balancing, resource alloca-
tion, and dynamic pricing on the basis of real-time power consumptions. The drawback of this new
technique is that the collected data allows to generate profiles of the energy consumers. Thus, in
order to preserve data privacy of individual households, the so called in-network aggregation is
performed. More precisely, the measured data is routed through a set of smart meters where each
smart meter aggregates its input. Thus, the result reported to the supplier only provides infor-
mation about a district but hides the fine-grained individual metering data. To prevent that the
meters on the route can see the intermediate results the measurements are encrypted by the smart
meters using a homomorphic encryption scheme and aggregated using the homomorphic property.
Besides homomorphic encryption also digital signatures provide important functionalities for this
use case. They protect against unintentional errors and prevent adversaries from altering messages.
However, to be compatible with privacy-preserving in-network data aggregation, signatures with
homomorphic properties are needed. They can be used to sign the encrypted metering data and
be aggregated along with the corresponding ciphertexts at each intermediate node ([41], [55]). This
allows the energy supplier to verify the correctness of the aggregation by checking the consistency
between the aggregation result and the aggregation signature.

As we already mentioned, in the framework of smart grids only encrypted data are signed.
Furthermore, if each smart meter on the aggregation route makes use of the same private key in
the signing procedure, then linearly homomorphic signature schemes and homomorphic signature
schemes for polynomial functions are taken into account. More precisely, if in the employed ho-
momorphic encryption scheme the ciphertexts are added, then a linearly homomorphic signature
schemes is needed. If instead the ciphertexts are multiplied, then a homomorphic signature scheme
supporting polynomial functions has to be employed. On the other hand, if the secret keys differ
for each smart meter, then homomorphic aggregate signatures are the suitable ones.

In this context, it is sufficient for a homomorphic signature scheme to be based either on the
Discrete Logarithm Problem, or on the Integer Factorization Problem. Indeed there is no need for
a long-term storage of the consumptions. However, the signature schemes should provide high per-
formances in terms of efficiency. In fact the power consumption needs to be reported in real-time



and therefore signature generation must be fast. In addition, the data are computed and aggregated
by the smart meters and they have only restricted resources. Thus, the signatures’ size should not
be large. The homomorphic signature schemes should also cope with the strong adversary. Indeed,
since there is the possibility to resent rejected data, the attacker can perform queries multiple times.
For smart metering, privacy is not an issue since only encrypted data are signed. Thus, there are
no constraints regarding the context hiding level.

Table 6 summarizes the existing homomorphic signature schemes that might me of interest for
smart grids. None of the currently existing linearly homomorphic signature schemes satisfy the
minimal requirements for smart grids discussed above. Indeed, the most promising options are the
one proposed in [17] and the ones proposed in [26]. The first scheme is efficient and the signature
size is not very large. However, it doesn’t achieve the desired safety level: it can cope only with the
weak adversary. For the schemes proposed in [26] it is the other way round. They provide security
even against the strong adversary, but the efficiency and the signature’s size are not optimal. Thus,
an interesting future work for the smart grid use case would be designing a linearly homomorphic
signature scheme merging together the pros of the schemes described in [17] and [26]. Furthermore,
as a future work, a more precise comparison between those two schemes should be done in terms
of efficiency.

As regards the homomorphic signatures for polynomial functions, the scheme proposed in [18]
seems to fit the minimal requirements. Indeed the efficiency is claimed to be good. In addition, the
signature’s length depends logarithmically on the data set size, that is, the signature is succinct.
Finally, the signature scheme is secure even against the strong adversary. However, we recall that
this scheme uses an ideal graded encoding scheme, which to our knowledge doesn’t exist so far.

Also both of the currently existing homomorphic aggregate signatures ([59], [36]) satisfy these
requirements. In fact the efficiency is claimed to be good, even though the hardness assumptions are
based on lattices. The schemes can cope with the strong adversary and the signature’s size obtained
is constant with respect to the data set size. However, also for the homomorphic signature schemes
supporting polynomial functions and the homomorphic aggregate ones, a deeper insight regarding
efficiency is recommended. In fact, numerical results are useful to have a concrete taste of the real
performances of the schemes taken into account before using them in practice.

Table 6. Suitable Signature Schemes for Smart Grids

Signatures: type Hard. Ass Efficiency Size Adversary Privacy Model

[18] Polynomial DHP good O (d3 + d2 logN) strong ∅ Standard

[59] Aggregate Lattice good constant in N strong ∅ ROM

[36] Aggregate Lattice good constant in N strong weak ROM

6.3 Electronic Health Records

In the last years, there has been an increasing interest in moving to digital health records. Indeed
in many European countries recording such data electronically is becoming central in the national
health informatics strategies (see [38]) and United Kingdom is one of the most advanced in this
process (see [49]). Also in the United States the adoption of electronic health records is becoming



more and more widespread [6]. Recording health information in a digital fashion make it more reli-
able and easier to access by different medical facilities, such as medical practices, hospitals, health
insurances, medical institutes, and pharmacies. The data stored can be used for merely consulta-
tions, but not only for that: one may want to perform computations over them, such as statistical
calculations. In case the data are authenticated by a homomorphic signature scheme, then the
above issue can be easily addressed, as discussed in [44]. In fact, let us suppose that a doctor has
signed several data regarding its patients. Then, another institution, e.g. a medical institute, can
perform a computation on a specific dataset, e.g. measured blood pressures, outputting the final
result already authenticated accordingly. This scenario can be extended to an input set signed by
several doctors in a hospital, where health records are stored in a common data base, and even
to several hospitals. In this case, homomorphic aggregate signatures are required to perform the
computations, since the original data are signed by doctors using different secret keys.

Summarizing, in this context linearly homomorphic signatures, homomorphic signatures for
polynomial functions, fully homomorphic signatures, and homomorphic aggregate signatures are of
interest. In addition, depending for how long a certain data is stored, the schemes to take into ac-
count can be either the ones based on classic problems (Integer Factorization and Discrete Logarithm
Problem) or the ones based on lattices problems. Due to the sensitive nature of the information
involved, the properties that a homomorphic signature scheme has to satisfy are demanding. Indeed,
the efficiency of the computation should be high: a lot of information is stored every day and the
function to be applied might be expensive. However, it is assumed that the devices employed in this
scenario are not computationally weak. Therefore, also a large signature’s size can still be accepted
in case it is not succinct . The scheme should be safe against the strong adversary, since there is the
possibility to repeat queries multiple times. In addition, due to the sensitivity of the information,
privacy is an important property. However, the weakly context hiding level of privacy is sufficient:
a homomorphic signature scheme achieving such level of privacy already doesn’t leak information
about the original data set. That is, no one can see for example the real blood pressure values of
the patients, and only the result of the computations is revealed.

An interesting linearly homomorphic signature schemes is the one presented in [50] that would
have been the most promising one. However, it is not acceptable since it is secure against the weak
adversary only.

Regarding the homomorphic schemes supporting polynomial functions, none of them fits the
minimal requirements. Indeed either the efficiency is not good enough, the required level of privacy is
not provided, or the adversary is the weak one. That is the same situation for the fully homomorphic
signature schemes.

However, there is one linearly homomorphic aggregate signature scheme that is suitable with
respect to electronic health records. That is the one discussed in [36]. In fact, it provides security
against the strong adversary and achieves the weak context hiding level of privacy. In addition, even
though it is based on lattices, the efficiency is claimed to be good.

Future works should address the aforementioned drawbacks and provide suitable solutions for
linearly homomorphic signature schemes, for homomorphic signature schemes supporting polyno-
mial functions and for the fully ones. In addition, deeper analysis regarding efficiency are desirable,
especially for the linearly homomorphic aggregated signature scheme that looks promising for this
use case (the one proposed in [36]). Indeed, quantitative (rather than only qualitative) comparisons



in terms of efficiency would give a better insight regarding the schemes’ performance. Furthermore,
the results would show whether the efficiency provided is good enough for the schemes to be used
in practice or whether more work needs to be done in this direction.

7 Conclusion

In this work a formal definition of the general framework regarding homomorphic signature schemes
is provided. Starting from such framework, it is also shown how linearly homomorphic signature
schemes, homomorphic signature schemes for polynomial functions, fully homomorphic signature
schemes, and homomorphic aggregate signature schemes are derived. Afterwards, the first up-to-
dated survey about all the currently existing homomorphic signature schemes is provided, where
each scheme is singularly described and analyzed. In addition three interesting use cases for ho-
momorphic signature schemes presented. These are: electronic voting, smart grids, and electronic
health records. For each use case the minimal requirements a suitable homomorphic signature
scheme should fulfill are identified and the existing homomorphic signature schemes that properly
address these requirements are presented. Based on these observations, directions for future work
are suggested that would address the faults of the current state of the art.

One of the most important directions for future research with respect to homomorphic signature
schemes is efficiency. So far, only partial comparisons have been provided, proposing a qualitative
rather then quantitative description in this regard. However, a deep analysis involving all the ex-
isting schemes is not available yet, even though it would be a very valuable contribution. Indeed,
having a clear insight about efficiency, would provide a better understanding of the schemes’ per-
formances in practice. Furthermore, it would show how these schemes behave in real-life situations,
such as when they have to run on computationally weak devices or process large amounts of data.

With respect to linearly homomorphic schemes, it would be useful to design approaches providing
both a good efficiency level and safety against the strong adversary. Such schemes would be suitable
to address the minimal requirements of smart grids. In addition, for electronic health records it
would be desirable that linearly homomorphic signature schemes are developed that are expected
to be resilient even against quantum computer attacks and that achieve at least weak privacy.

Regarding homomorphic signature schemes supporting polynomial functions, it would be inter-
esting to design a scheme that provides at least weak privacy, so that it can be used in the context
of electronic voting. Together with privacy, in order to be applicable for electronic health records,
homomorphic signature schemes for polynomial functions need to be developed that are secure
against the strong adversary.

With respect to the fully homomorphic signature schemes, an important topic for future work
is to build a scheme that copes with the strong adversary and achieves at least weak privacy. This
would allow to use it together with electronic health records.

Finally, in this work we looked at the use cases only from a high level point of view. Thus,
further research should be done before using homomorphic signature schemes for the mentioned
applications. However, the discussion of the use cases also showed that not for each scenario an
appropriate signature scheme is available and that extensive efficiency analyses are missing. Fur-
thermore, the introduction of homomorphic signature schemes to several use cases needs further
research. In our perspective these are interesting directions for future work and we plan to work on
these matters in the future.
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