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Abstract

We continue the research in [8] to construct de Bruijn sequences from feedback

shift registers (FSRs) that contains only very short cycles. Firstly, we suggest another

way to define the representative of a cycle. Compared with the definition in [8], this

definition can greatly improve the performance of the cycle joining algorithm. Then

we construct a large class of nonlinear FSRs that contains only very short cycles. The

length of the cycles in these n-stage FSRs are less than 2n. Based on these FSRs,

O(2
n
2
−logn) de Bruijn sequences of order n are constructed. To generate the next bit in

the de Bruijn sequence from the current state, it requires only 2n bits of storage and

less than 2n FSR shifts.

Keywords: de Bruijn sequence, feedback shift register, cycle joining method.

1 Introduction

A binary de Bruijn sequence of order n is a sequence of period 2n in which each n-tuple occurs

exactly once in one period [2]. These sequences have many applications in cryptography and

modern communication systems. Numerous algorithms for generating these sequences are

known, and a useful survey can be found in [5]. A classical method to construct de Bruijn

sequences is to consider a feedback shift register (FSR) producing several cycles which are
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then joined together to form a full cycle, i.e., de Bruijn cycle. Linear feedback shift registers

(LFSRs) with simple cycle structures are often used for this purpose. The LFSRs that

contains only very short cycles are good candidates, for example, the pure circulating registers

and the pure summing registers [3,4]. The LFSRs that contains a very small number of cycles

are also good candidates, for example, the LFSRs with characteristic polynomials of the form

(1 + x)mp(x) and (1 + xm)p(x), where p(x) is a primitive polynomial [9, 10, 13]. By joining

the cycles in an LFSR, a large class of maximum-length FSRs can be constructed efficiently.

However, this method requires the full knowledge of the cycle structure of the based FSR

and the adjacency relations of the cycles in it. Hence, it is hard to apply this method to a

general FSR, especially, an nonlinear FSR.

Jansen. etc. [8] proposed an algorithm for joining cycles of an arbitrary FSR. For a given

FSR, they defined the representative of a cycle in this FSR as the least state (treat a state as

an integer) on this cycle. Then they showed that, interchanging the predecessors of the cycle

representatives with the predecessors of their companions will result in a full cycle. For the

application of their algorithm, one need to test whether a state is the cycle representative of

some cycle or not at every step. Therefore, the performance of their algorithm depends on

the length of the longest cycle in the based FSR. The FSRs that contains only very short

cycles are needed. To find such FSRs, they turned to the linear feedback shift registers. By

conduct a large number of irreducible polynomial of the same degree, a polynomial whose

period is very low (relative to its degree) is obtained. The LFSRs that take such polynomials

as their characteristic polynomials contain only very short cycles, and they can be used to

generate de Bruijn sequences.

The research in [8] is continued in this paper. To improve the performance of the cycle

joining algorithm, we suggest another way to define the representative of a cycle. Compared

with the definition in [8], this definition doubles the efficiency of the cycle joining algorithm.

Furthermore, our definition is more flexible, which implies more choices of the cycle repre-

sentative. We also find a class of FSRs that contains only very short cycles using a totally

different method. These FSRs are not linear and they are easy to get. The size of these

FSRs is larger than those in [8]. It is shown that, O(2
n
2
−logn) de Bruijn sequences of order n

can be constructed from these FSRs.

The paper is organized as follows. In Section 2, we introduce some necessary preliminar-

ies. In Section 3, an algorithm for joining cycles of an arbitrary FSR is presented. In Section

4, a large class of nonlinear FSRs that contain only very short cycles are suggested. The

number of de Bruijn sequences constructed from them is also given. In Section 5, we list

some comparisons of the results in [8] and ours. In Section 6, we make a conclusion about

our work.
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2 Preliminaries

2.1 Boolean Functions

Let F2 = {0, 1} be the finite field of two elements, and Fn2 be the vector space of dimension

n over F2. A Boolean function f(x0, x1, . . . , xn−1) in n variables is a mapping from Fn2
to F2. It is well known that it can be uniquely represented by its algebraic normal form

(ANF), which is a multivariate polynomial. The order of f , denoted by ord(f), is the

highest subscript i for which xi occurs in the ANF of f . Note that the order of f is not

equal to the number of variables in f . The Hamming weight of f is defined by w(f) =

]{x : f(x) 6= 0}. The Hamming distance of two Boolean functions is defined by d(f, g) =

]{x : f(x) 6= g(x)}. For two Boolean functions f(x0, x1, . . . , xn) and g(x0, x1, . . . , xm), we

denote f ∗ g = f(g(x0, x1, . . . , xm), g(x1, x2, . . . , xm+1), . . . , g(xn, xn+1, . . . , xn+m)), which is

a Boolean function of order n+m [7].

Reed-Muller codes, named after Irving S. Reed and David E. Muller, are a family of

linear error-correcting codes used in communications. The Reed-Muller code of order r and

length n = 2m, denoted by RM(r,m), is the code that contains all the m-variable Boolean

functions of degree no more than r. It was proved that, RM(r,m) has minimum Hamming

distance 2m−r [12, 14]. Therefore, we have the following lemma.

Lemma 1. [12,14] Let g1 and g2 be two Boolean functions such that ord(g1) = ord(g2) = n

and deg(g1) = deg(g2) = r, then d(g1, g2) ≥ 2n+1−r.

2.2 Feedback Shift Registers

An n-stage feedback shift register (FSR) consists of n binary storage cells and a characteristic

function f regulated by a single clock. In what follows, the characteristic function f is

supposed to be nonsingular, i.e., of the form f = x0 + f0(x1, . . . , xn−1) + xn. The feedback

function of this FSR is defined as F (x0, x1, . . . , xn−1) = x0 + f0(x1, . . . , xn−1). The FSR

with characteristic function f is denoted by FSR(f). At every clock pulse, the current

state (s0, s1, . . . , sn−1) is updated by (s1, s2, . . . , sn−1, F (s0, s1, . . . , sn−1)). From an initial

state S0 = (s0, s1, . . . , sn−1), after consecutive clock pulses, FSR(f) will generate a cycle

C = [S0,S1, . . . ,Sl−1], where Si+1 is the next state of Si for i = 0, 1, . . . , l − 2 and S0 is the

next state of Sl−1. In this way, the set Fn2 is divided into cycles C1, C2, . . . , Ck by FSRf , and

reversely, it is easy to see, a partition of Fn2 into cycles determines an n-stage FSR. So we

can treat FSRf as a set of cycles. The output sequences of FSR(f), denoted by G(f), are

the 2n sequences s = s0s1 . . ., such that st+n = F (st, st+1, . . . , st+n−1) for t ≥ 0. An FSR is

called a linear feedback shift register (LFSR) if its characteristic function f is linear. For a

linear Boolean function f(x0, x1, . . . , xn) = a0x0 +a1x1 + · · ·+anxn, we can associate it with
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an univariate polynomial c(x) = a0 + a1x+ · · ·+ anx
n ∈ F2[x]. Most of the time, we do not

discriminate between linear Boolean functions and univariate polynomials. For an n-stage

FSR, the period of its output sequence is no more than 2n. If this value is attained, we call

the sequence de Bruijn sequence, and the FSR maximum-length FSR.

2.3 Inverse of A Linear Function

Let f(x0, x1, . . . , xn) be a Boolean function and a = a0a1 . . . , be a periodic sequence. Define

θ(f) be the mapping on the periodic sequences: θ(f)(a) = b, where b is determined by

bi = f(ai, ai+1, . . . , ai+n). Let θ(f)−1(a) be the set of sequences whose image is a under

θ(f), i.e., θ(f)−1(a) = {b : θ(f)(b) = a}. θ(f)−1(a) contains 2n sequences, and in the

case f is linear, θ(f)−1(a) is a linear space of dimension n over F2. It can be verified

that, θ(f)−1(0) = G(f). Some properties of θ(f)−1 were given in [13]. Let g be the linear

Boolean function with the least order such that θ(g)(a) = 0, then the linear complexity of

a is defined to be the order of g. The minimal polynomial of a, denoted by m(a), is the

univariate polynomial corresponding to g.

Lemma 2. [13] Let f(x) be a linear Boolean function and a be a periodic sequence.

1. If gcd(f,m(a)) = 1, then θ(f)−1(a) = b + G(f) for some b ∈ G(m(a)) with m(b) =

m(a).

2. If f is irreducible and m(a) = hf e, e ≥ 1 with gcd(h, f) = 1, then m(b) = hf e+1 for

all b ∈ θ(f)−1(a).

3. lcm{m(b) : b ∈ θ(f)−1(a)} = m(a)f , where lcm is the least common multiple.

3 Cycle Joining Algorithm

For a state S = (s0, s1, . . . , sn−1) , its companion is defined to be S̃ = (s0, s1, . . . , s̄n−1), where

s̄n−1 is the complement of sn−1. Sometimes, we treat S as an integer, i.e., S = Σn−1
i=0 si2

n−1−i.

Two cycles C1 and C2 are said to be adjacent if they are state disjoint and there exists a

state S on C1 whose companion S̃ is on C2. By interchanging the predecessors of S and

S̃, the two cycles C1 and C2 are joined together. This is the basic idea of the cycle joining

method. For the application of the cycle joining method, we need to find the companion

pairs shared by cycles. In [8], the cycle representative of a cycle is defined to be the least

state (treat states as integers) on this cycle, and they showed how to join the cycles in an

arbitrary FSR into a full cycle with the help of cycle representatives. In the following, we

suggest another way to define the cycle representative.
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Definition 1. Let C be a cycle such that the zero state 0 is not on C. The cycle represen-

tative of C is defined as the least state S on C such that: S contains the longest successive

0s and is of the form (∗, . . . , ∗,
t︷ ︸︸ ︷

0, . . . , 0, 1), where t is the length of the longest successive 0s.

Note 1. The cycle representative of C can also be defined as the greatest (or some other

type, as long as it is uniquely defined) such state.

It is easy to see that, for any cycle C such that 0 /∈ C, its representative is uniquely

determined by C. For example, the cycle representative of C = [001, 010, 001] is (001).

Theorem 1. Given an FSR, let C0, C1, . . . , Ck be the cycles in it. Assume C0 is the cycle

that contains the zero state 0. Let Si be the cycle representative of Ci for i = 1, 2, . . . , k. If

we interchange the predecessors of Si and S̃i for i = 1, 2, . . . , k, we get a full cycle.

Proof. Let ti be the length of the longest successive 0s in Si for i = 1, 2, . . . , k. Since Si is

of the form Si = (∗, . . . , ∗,
ti︷ ︸︸ ︷

0, . . . , 0, 1), the length of the longest successive 0s in S̃i is ti + 1.

By the definition of the cycle representative, there is no state on C that contains more than

ti successive 0s. Therefore, S̃i is on some cycle other than Ci. Assume S̃i is on the cycle Cj

with j 6= i. Since S̃i is of the form S̃i = (∗, . . . , ∗,
ti+1︷ ︸︸ ︷

0, . . . , 0), S̃i is not the cycle representative

of Cj, that is, S̃i 6= Sj. Again by the definition of the cycle representative, we get tj > ti.

Let G be the directed graph that take C0, C1, . . . , Ck as his nodes, and there is a directed

edge from Ci to Cj if and only if S̃i is on Cj. Then by the above discussion, G is directed

tree with root C0. This tree represents a choice of companion pairs that repeatedly join two

cycles into one ending with exactly one cycle, i.e., a full cycle.

By this theorem, we can join the cycles in an arbitrary FSR into a full cycle. Let

F (x0, x1, . . . , xn−1) be the feedback function of an FSR, and C be the full cycle determined

by this FSR according to Theorem 1. From any state Si, the next state Si+1 in the full cycle

C is calculated by the follow algorithm.

The algorithm complements the value of the feedback function only if there is a cycle rep-

resentative amongst the two possible successors (si+1, . . . , si+n−1, 0) and (si+1, . . . , si+n−1, 1).

By the definition of the cycle representative in this paper, (si+1, . . . , si+n−1, 0) will never be

a cycle representative, therefore, we only need to test whether (si+1, . . . , si+n−1, 1) is a cycle

representative. While in [8], both of the two possible successors need to be tested. So the

efficiency of the cycle joining algorithm is doubled. An obvious way to do the test is by

traversing the cycle that contains the state. Hence, it require 2n bits of storage and at most

2l FSR shifts for the generation of the next state in the full cycle, where l is the length of

the longest cycle in the based FSR. However, for certain states it is immediately clear that

they cannot be cycle representatives.
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Algorithm 1 Generation of the next state
Input:

The feedback function F (x0, x1, . . . , xn−1) of the based FSR.

The current state Si = (si, si+1, . . . , si+n−1).

Output: The next state Si+1.

if (si+1, . . . , si+n−1, 1) is a cycle representative then

Si+1 = (si+1, . . . , si+n−1, F (si+1, si+2, . . . , si+n−1) + 1)

else

Si+1 = (si+1, . . . , si+n−1, F (si+1, si+2, . . . , si+n−1))

end if

Theorem 2. Let C be a cycle and X = (∗, . . . , ∗, 1,
t︷ ︸︸ ︷

0, . . . , 0, 1) be a state in C, then none of

the next t states would be a cycle representative.

Proof. None of the next t states would be of the form (∗, . . . , ∗, 1,
u︷ ︸︸ ︷

0, . . . , 0, 1) with u ≥ t. By

the definition of the cycle representative, none of them is the cycle representative.

4 The Based FSRs

The performance of the cycle joining algorithm proposed in Section 3 depends heavily on

the length of the longest cycles in the based FSR. Evidently, the FSRs that contains only

very short cycles are needed. In [8], a class of such LFSRs are constructed using the theory

of LFSRs. In this section, we propose another class of such FSRs which are nonlinear. Let

p(x) ∈ F2[x] be a polynomial. The period of p(x), denoted by per(p(x)), is the least integer

k such that p(x)|1 + xk. Some properties about the period of a polynomial can be found

in [11].

Lemma 3. Let 1 ≤ t ≤ 2m be an integer, then per((1 + xt)(1 + x2
m

)) = lcm(t, 2m+1).

Proof. Let t = 2uv, where v is an odd number. Then (1 + xt)(1 + x2
m

) = (1 + xv)2
u
(1 +

x)2
m

= (1 + x)2
u
(1 + x+ · · ·+ xv−1)2

u
(1 + x)2

m
= (1 + x+ · · ·+ xv−1)2

u
(1 + x)2

m+2u . Since

gcd((1+x+ · · ·+xv−1)2
u
, (1+x)2

m+2u) = 1, we have per((1+x+ · · ·+xv−1)2
u
(1+x)2

m+2u) =

lcm(per((1+x+ · · ·+xv−1)2u), per((1+x)2
m+2u). It is easy to see, per(1+x+ · · ·+xv−1) = v,

hence, per((1+x+ · · ·+xv−1)2
u
) = v2u = t. Since 1 ≤ 2u ≤ 2m, we have per((1+x)2

m+2u) =

2m+1. So we get per((1 + xt)(1 + x2
m

)) = lcm(t, 2m+1).

Theorem 3. Let f be a Boolean function of order m, then for any sequence s ∈ G(f ∗ (x0 +

x2m)) we have per(s) ≤ 22m+1.
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Proof. Let s be a sequence in G(f ∗ (x0 + x2m)). Then we have θ(f ∗ (x0 + x2m))(s) =

θ(f)θ(x0+x2m)(s) = 0. Therefore, θ(x0+x2m)(s) ∈ θ(f)−1(0). Since θ(f)−1(0) = G(f), there

exist some sequence a ∈ G(f) such that θ(x0+x2m)(s) = a. This implies s ∈ θ(x0+x2m)−1(a).

According to Case 3 of Lemma 2, we have m(s)|m(a)(1 + x2
m

). Let 0 ≤ t ≤ 2m be the

period of a, then m(a)|(1 +xt). Thus m(a)(1 +x2
m

)|(1 +xt)(1 +x2
m

). According to Lemma

3, per((1 + xt)(1 + x2
m

)) = lcm(t, 2m+1). Consider that m(s)|(1 + xt)(1 + x2
m

), we get

per(m(s)) ≤ lcm(t, 2m+1) ≤ t2m+1 ≤ 22m+1.

A more careful calculation shows that per(s) ≤ (2m − 1) 2m+1 for any sequence s ∈
G(f ∗ (x0 +x2m)). As a generalization of this theorem, we can prove that: let f be a Boolean

function of order m and h be a linear Boolean function that corresponding to an irreducible

polynomial of period k, then per(s) ≤ k22m+1 for any sequence s ∈ G(f ∗ h2m), where h2
m

means

2m︷ ︸︸ ︷
h ∗ h ∗ · · · ∗ h.

Theorem 4. Let FSR(f) be an m-stage maximum-length FSR. Then for any sequence s ∈
G(f ∗ (x0 + x2m)) we have per(s) = 2m+1.

Proof. Let s be a sequence in G(f ∗ (x0 + x2m)), and a be the de Bruijn sequence in G(f)

such that s ∈ θ(x0 + x2m)−1(a) (see the proof in Theorem 3). The minimal polynomial of

a is of form m(a) = (1 + x)C , where 2m−1 + m ≤ C ≤ 2m − 1 is the linear complexity of

a (see [1]). According to Case 2 of Lemma 2, the minimal polynomial of any sequence in

θ(x0 + x1)
−1(a) is (1 + x)C+1. Since θ(x0 + x2)

−1(a) = θ(x0 + x1)
−1θ(x0 + x1)

−1(a), the

minimal polynomial of any sequence in θ(x0 + x2)
−1(a) is (1 + x)C+2. Repeat this process,

we know that the minimal polynomial of any sequence in θ(x0 + x2m)−1(a) is (1 + x)C+2m .

Since per((1 + x)C+2m) = 2m+1, we get per(s) = per(m(s)) = 2m+1.

Note 2. Let f be the characteristic function of an m-stage maximum-length FSR. Using

the same method we can show that, for any sequence s ∈ G(f ∗ (x0 + x2m+1−C)) we have

per(s) = 2m+1, where C is the linear complexity of the de Bruijn sequences in G(f).

Denote the number 2m+m by n. According to Theorem 3, the length of the cycles in G(f∗
(x0 + x2m)) are no more than 2n2 for any f of order m. Especially, if f is the characteristic

function of an maximum-length FSR, then the length of the cycles in G(f ∗ (x0 + x2m)) are

no more than 2n. These FSRs are good candidates for the cycle joining algorithm. In the

following, we consider the number of full cycles constructed from them by the cycle joining

algorithm. We use the fact about minimum Hamming distance of Reed-Muller codewords,

which is suggested by Jansen. etc. [8]. First, we need a lemma.

Lemma 4. For any Boolean function f of order m we have deg(f ∗ (x0 + x2m)) = deg(f).
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Proof. For any term xi1xi2 · · ·xik , since (xi1xi2 · · ·xik) ∗ (x0 + x2m) = (xi1 + xi1+2m)(xi2 +

xi2+2m) · · · (xik +xik+2m), we have deg((xi1xi2 · · ·xik)∗(x0+x2m)) ≤ deg(xi1xi2 · · ·xik). Hence,

deg(f ∗(x0+x2m)) ≤ deg(f). We associate each term of f with an integer: N(xi1xi2 · · ·xik) =

2i1 +2i2 +· · ·+2ik . Let xj1xj2 · · ·xjd be the term of f such that N(xj1xj2 · · ·xjd) is the smallest

among all the terms of f of degree d, where d is the degree of f . The lemma will be proved

if we can show that xj1xj2 · · ·xjd is also a term of f ∗ (x0 + x2m). First, it is easy to see,

(xj1xj2 · · ·xjd) ∗ (x0 + x2m) contains the term xj1xj2 · · · xjd . Let xi1xi2 · · ·xik be a term of f

such that xi1xi2 · · ·xik 6= xj1xj2 · · ·xjd . We need to show that (xi1xi2 · · ·xik)∗ (x0 +x2m) does

not contain the term xj1xj2 · · · xjd . If k 6= d, (xi1xi2 · · ·xik) ∗ (x0 + x2m) contains only terms

of degree d, therefore, does not contain the term xj1xj2 · · ·xjd . If k = d, by the definition of

xj1xj2 · · ·xjd , we have 2i1 + 2i2 + · · ·+ 2ik > 2j1 + 2j2 + · · ·+ 2jd . (xi1xi2 · · ·xik) ∗ (x0 + x2m)

contains only terms whose associated integers are more than 2i1 + 2i2 + · · ·+ 2ik , therefore,

does not contain the term xj1xj2 · · ·xjd .

Let f be a Boolean function of order m. Some necessary conditions for FSR(f) be a

maximum-length FSR are given in [6]. One of these conditions is that deg(f) = m− 1.

Theorem 5. Let f1 and f2 be characteristic functions of two m-stage maximum-length FSRs

with f1 6= f2. If the cycle joining algorithm is applied to FSR(f1 ∗ (x0 + x2m)) and FSR(f2 ∗
(x0 + x2m)) respectively, the two resulting de Bruijn sequences are different.

Proof. By Lemma 4 and the discussion follow it, we have deg(f1 ∗ (x0 + x2m)) = deg(f1) =

m − 1 and deg(f2 ∗ (x0 + x2m)) = deg(f2) = m − 1. Since ord(f1 ∗ (x0 + x2m)) = ord(f2 ∗
(x0 + x2m)) = 2m + m, according to Lemma 1, d(f1 ∗ (x0 + x2m), f2 ∗ (x0 + x2m)) ≥ 22m+2.

Let FSR(h1) and FSR(h2) be the two maximum-length FSRs derived from FSR(f1 ∗ (x0 +

x2m)) and FSR(f2 ∗ (x0 + x2m)) by the cycle joining algorithm. According to Theorem 4,

FSR(f1 ∗ (x0 + x2m)) contains only cycles of length 2m+1, hence, there are 22
m+m

2m+1 = 22m−1

cycles in this FSR. Every time two cycles in this FSR are joined together in the process of

cycle joining algorithm, the weight of the corresponding characteristic function is changed by

4. Therefore, we get d(f1 ∗ (x0 +x2m), h1) ≤ 4
(
22m−1 − 1

)
= 22m+1− 4. By the same reason,

we have d(f2 ∗ (x0 +x2m), h2) ≤ 22m+1−4. The proof of this theorem can be done as follows,

d(h1, h2) ≥ d(f1 ∗ (x0 +x2m), f2 ∗ (x0 +x2m))−d(f1 ∗ (x0 +x2m), h1)−d(f2 ∗ (x0 +x2m), h2) ≥
22m+2 −

(
22m+1 − 4

)
−
(
22m+1 − 4

)
= 8.

The number of de Bruijn sequences of order m is 22m−1−m. According to Theorem 5, we

have constructed 22m−1−m de Bruijn sequences based on the FSRs with characteristic function

of the form f∗(x0+x2m), where f is the characteristic function of anm-stage maximum-length

FSR. Let n = 2m + m be the order of f ∗ (x0 + x2m), we have 22m−1−m = O(2
n
2
−logn). This

implies that, the size of the de Bruijn sequences we have constructed grows exponentially

with the order.
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5 Some Comparisons

In this section, we present some comparisons of our results and the results in [8]. At first,

we give an example to illustrate that the two definitions of the cycle representative in [8]

and in this paper are essentially different.

Example 1. Let f = x0+1+x2 be the characteristic function of the unique 2-stage maximum-

length FSR. Let g = f ∗ (x0 + x4) = x0 + x2 + x4 + 1 + x6. According to Theorem 4, There

are 8 cycles in FSR(g), all of them are of length 8.

C0 = [000000, 000001, 000011, 000110, 001100, 011000, 110000, 100000],

C1 = [000010, 000100, 001001, 010010, 100100, 001000, 010000, 100001],

C2 = [000101, 001011, 010111, 101110, 011100, 111000, 110001, 100010],

C3 = [000111, 001110, 011101, 111010, 110100, 101000, 010001, 100011],

C4 = [001010, 010101, 101011, 010110, 101100, 011001, 110010, 100101],

C5 = [001101, 011010, 110101, 101010, 010100, 101001, 010011, 100110],

C6 = [001111, 011111, 111111, 111110, 111100, 111001, 110011, 100111],

C7 = [011011, 110111, 101111, 011110, 111101, 111011, 110110, 101101].

The first state in each cycle is the cycle representative defined in [8], and the underlined state

in each cycle is the cycle representative defined in this paper. Let G be the directed graph

that take C0, C1, . . . , C7 as his nodes, and there is a directed edge from Ci to Cj if and only if

the companion of the representative of Ci is located on Cj, then G is a directed tree with root

C0 (see the proof of Theorem 1). The two trees are shown below, where the left one is based

on the definition of cycle representative in [8] and the right one is based on the definition in

this paper.

C0

C1

C2

C3

C4

C5

C6 C7

C0

C1

C3

C2

C5

C4

C6 C7
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We note that, the hight of the directed tree base on the definition in [8] may achieve Z(n), the

maximum number of cycles in an n-stage FSR. While based on the definition of this paper,

the hight do not exceed n.

Table 1 shows the performance of the cycle joining algorithm in the two papers. To

generate the next state in the full cycle from the current state, it requires 3n bits of storage

and 4n FSR shifts in [8]. While in this paper, it requires only 2n bits of storage and 2n FSR

shifts. Since O(2
2n

log2n ) is negligible compared with O(2
n
2
−logn) as n → ∞, the number of de

Bruijn sequences constructed in this paper is more than those in [8]. In fact, when n > 30

we have 2
n
2
−logn > 2

2n
log2n (see also Table 2 and Table 3).

Table 1: The performance of the cycle joining algorithm

storage FSR shifts ] de Bruijn sequences

Jansen. etc. [8] 3n 4n O(2
2n

log2n )

ours 2n 2n O(2
n
2
−logn)

In the following, we consider the based FSRs proposed in the two papers. In [8], a

class of LFSRs that contain only very short cycle were constructed. Let N1(d) be number

of irreducible polynomials of degree d. According to the theory of finite fields, we have

N1(d) =
∑

t|d µ
(
d
t

)
2t, where µ is the Möbius function. By conduct a half of these irreducible

polynomials, a polynomial, denoted by p(x), of degree n1(d) = d
⌈
N1(d)

2

⌉
is obtained. The

period of p(x) is no more than l1(d) = 2d − 1, therefore, the LFSR with characteristic

polynomial p(x) contains cycles of length no more than l1(d). It is easy to see, there are

N̂1(d) =

(
N1(d)⌈
N1(d)

2

⌉) choices for p(x). Based on these LFSRs, N̂1(d) de Bruijn sequences of

order n1(d) can be constructed. In Table 2, we list these numbers for d = 2, 3, . . . , 10.

Let f be the characteristic function of an m-stage maximum-length FSR. Let n2(m) =

m+ 2m be the order of f ∗ (x0 + x2m), l2(m) = 2m+1 be the length of the cycles in FSR(f ∗
(x0 + x2m)), and N̂2(m) = 22m−1−m be the number of choices for f . In Table 3, we list these

numbers for m = 2, 3, . . . , 10.

The order of the de Bruijn sequences constructed in both papers do not cover all the

positive integers. In fact, the order of the de Bruijn sequences in [8] can only take the form

of n1(d) = d

⌈∑
t|d µ( d

t )2t
2

⌉
where d runs over the positive integers. While in this paper, the

order of the de Bruijn sequences takes the form of n2(m) = m+ 2m, where m runs over the

positive integers. However, this problem can be partially solved according to Note 2. Some

more solutions to this problem are needed and it will be studied further in the future.
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Table 2: The results in [8]

d N1(d) n1(d) l1(d) N̂1(d)

2 1 2 3 1

3 2 3 7 2

4 3 8 15 3

5 6 15 31 ≥ 24

6 9 30 63 ≥ 26

7 18 63 127 ≥ 215

8 30 120 255 ≥ 227

9 56 252 511 ≥ 252

10 99 500 1023 ≥ 295

Table 3: The results in this paper

m n2(m) l2(m) N̂2(m)

2 6 8 20

3 11 16 21

4 20 32 24

5 37 64 211

6 70 128 226

7 135 256 257

8 264 512 2120

9 521 1024 2247

10 1034 2048 2502

6 Conclusion

The performance of the cycle joining algorithm proposed by Jansen. etc. [8] are improved

in this paper. A large class of nonlinear FSRs that contain only very short cycles are given.

Based on these FSRs, O(2
n
2
−logn) de Bruijn sequences of order n are constructed, and it

requires only 2n bits of storage and less than 2n FSR shifts to generate the next bit in the de

Bruijn sequence. Since the order of the de Bruijn sequences constructed in both [8] and this

paper do not cover all the positive integers, more works are needed to solve this problem.
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