
Function-Hiding Inner Product Encryption

Allison Bishop
Columbia University

allison@cs.columbia.edu

Abhishek Jain
Johns Hopkins University
abhishek@cs.jhu.edu

Lucas Kowalczyk
Columbia University

luke@cs.columbia.edu

Abstract

We extend the reach of functional encryption schemes that are provably secure under simple
assumptions against unbounded collusion to include function-hiding inner product schemes.
Our scheme is a private key functional encryption scheme, where ciphertexts correspond to
vectors ~x, secret keys correspond to vectors ~y, and a decryptor learns 〈~x, ~y〉. Our scheme
employs asymmetric bilinear maps and relies only on the SXDH assumption to satisfy a natural
indistinguishability-based security notion where arbitrarily many key and ciphertext vectors
can be simultaneously changed as long as the key-ciphertext dot product relationships are all
preserved.

1 Introduction

Functional encryption (FE) [25, 8, 23] is an exciting paradigm for non-interactively computing
on encrypted data. In a functional encryption scheme for a family F , it is possible to derive
“special-purpose” decryption keys Kf for any function f ∈ F from a master secret key. Given such
a decryption key Kf and an encryption of some input x, a user should be able to learn f(x) and
nothing else about x.

A driving force behind FE has been to understand what class of functions F can be supported
and what notions of security can be achieved. In terms of functionality, research in FE started
with the early works on attribute-based encryption [25, 16], progressively evolving to support more
expressive classes of functions, leading to the state of art works that are now able to support
computation of general polynomial-size circuits [24, 15, 14, 11]. In terms of security, most of the
prior work in this area focuses on the privacy of (encrypted) messages (see, e.g., [8, 23, 10] for
various security definitions considered in the literature for message privacy).

In many application scenarios, however, it is important to also consider privacy of the function
being computed. Consider the following motivating example: suppose a hospital subscribes to a
cloud service provider to store medical records of its patients. To protect the privacy of the data,
these records are stored in an encrypted form. At a later point in time, the hospital can request
the cloud to perform some analysis on the encrypted records by releasing a decryption key Kf for
a function f of its choice. If the FE scheme in use does not guarantee any hiding of the function
(which is the case for many existing FE schemes), then the key Kf might reveal f completely to the
cloud, which is undesirable when f itself contains sensitive information.

This has motivated the study of function privacy in FE, starting with the work of Shen et
al. [26], and more recently by [6, 7, 2, 9]. Intuitively speaking, function privacy requires that
given a decryption key Kf for a function f , one should not be able to learn any unnecessary

1

information about f . Using the analogy to secure computation, function private FE can be seen
as the non-interactive analogue of private function evaluation (which guarantees the privacy of
both the input x and the function f being computed on x) just like standard FE can be seen as
the non-interactive analogue of secure function evaluation (which only guarantees privacy of the
input x). One may also observe that the notion of function privacy is similar in spirit to program
obfuscation [5, 11]. Indeed, in the public-key setting, function private FE, in fact, implies program
obfuscation.1 In the secret-key setting, however, no such implication is known.

In this work, we continue the study of function privacy in FE. In particular, we focus on the
inner product functionality IP: a function IP~y ∈ IP in this function family is parametrized by
a vector ~y in the finite field Zp . On an input ~x ∈ Zp, IP~y(~x) = 〈~x, ~y〉, where 〈~x, ~y〉 denotes the
inner product

∑n
i=1 xiyi ∈ Zp. Inner product is a particularly useful function for statistical analysis.

In particular, in the context of FE, (as shown by [17]) it enables computation of conjunctions,
disjunctions, CNF/DNF formulas, polynomial evaluation and exact thresholds.

Prior work on FE for inner product can be cast into the following two categories:

• Generic constructions: By now, we have a large sequence of works [24, 15, 14, 10, 11, 27, 12, 4]
on FE that support computation of general circuits. Very recently, Brakerski and Segev [9]
give a general transformation from any FE scheme for general circuits into one that achieves
function privacy. Then, by combining [9] with the aforementioned works, one can obtain a
function-private FE scheme for inner product as a special case.

We note, however, that these generic FE constructions use heavy-duty tools for secure
computation (such as fully-homomorphic encryption [13] and program obfuscation [5, 11]) and
are therefore extremely inefficient. Furthermore, in order to achieve collusion-resistance – one of
the central goals in FE since its inception – the above solution would rely on indistinguishability
obfuscation [5, 11], which is a strong assumption.

• Direct constructions: To the best of our knowledge, the only “direct” construction of FE for
inner product that avoids the aforementioned expensive tools is due to the recent work of
Abdalla et al. [1]. Their work, however, does not consider function privacy.

We clarify that our formulation of inner product FE is different from that considered in the
works of [17, 26, 18, 3, 21, 22, 7]. Very briefly, these works study inner product in the context
of predicate encryption, where a message m is encrypted along with a tag ~x and decryption
with a key Ky yields m iff 〈~x, ~y〉 = 0. In contrast, as discussed above, we are interested in
learning the actual inner product value (in Zp).

In summary, the state of the art leaves open the problem of constructing a collusion-resistant,
function-private FE scheme for inner product from standard assumptions. We stress that unless we
put some restrictions on the distribution of the messages (as in the work of [6, 7]), this question
only makes sense in the secret-key setting.

Our Results. In this work, we resolve this open problem. Specifically, we construct a function-
private secret-key FE scheme for the inner product functionality that supports any arbitrary
polynomial number of key queries and message queries. Our construction makes use of asymmetric
bilinear maps and is significantly more efficient than the generic solutions discussed earlier. The

1Here, the security definition for function privacy determines the security notion of program obfuscation that we
obtain. See, e.g., [6] for further discussion on this connection.

2

security notion we prove for our construction is a natural indistinguishability-based notion, and we
establish it under the Symmetric External Diffie-Hellman Assumption (SXDH). To obtain correctness
for our scheme, we assume that inner products will be contained in a polynomially-sized range.
This assumption is quite reasonable for statistical applications, where the average or count of some
bounded quantity over a polynomially-sized database will naturally be in a polynomial range.

Our Techniques. We begin with the basic idea for inner product encryption developed in [17],
which is the observation that one can place two vectors in the exponents on opposite sides of a bilinear
group and compute the dot product via the pairing. This already provides some protection for the
vectors as discrete log is thought to be hard in these groups, but without further randomization, this
is vulnerable to many attacks, such as guessing the vector or learning whether two coordinates of a
vector are the same. For this reason, the construction in [17] multiplies each of the exponent vectors
by a random scalar value and uses additional subgroups in a composite order group to supply more
randomization. The use of composite order groups in this way is by no means inherent, as subsequent
works [18, 21, 22] (for example) demonstrate how to supply a sufficient amount of randomization in
prime order bilinear groups using dual pairing vector spaces. However, in all of these schemes, the
random scalars prevent a decryptor from learning the actual value of the inner product. Of course
this is intentional and required, as these are predicate encryption schemes where the prescribed
functionality only depends on whether the inner product is zero or nonzero. To adapt these methods
to allow a decryptor to learn the inner product, we must augment the construction with additional
group elements that produce the same product of scalars in the exponent. Then the decryptor
can produce the value by finding a ratio between the exponents of two group elements. This will
be efficiently computable when the value of the inner product is in a known polynomially-sized
range. Crucially, we must prove that these additional group elements do not reveal any unintended
information.

We note that the construction in [17] is not known to be function-hiding. And since we are further
allowing the inner product itself to be learned, function-hiding for our scheme means something
different than function-hiding for schemes such as [17]. In particular, function hiding for a public
key scheme in our setting would be impossible: one could simply create ciphertexts for a basis of
vectors and test decryption of one’s key against all of them to fully reconstruct the vector embedded
in the key. It is thus fundamental that the public key scheme in [1] is not function-hiding. Indeed,
their secret keys include vectors given in the clear and have no hiding properties.

To prove function-hiding for our construction, we thus leverage our private key setting to obtain
a perfect symmetry between secret keys and ciphertexts, both in our construction and in our security
reduction. Since no public parameters for encryption need to be published, the same techniques that
we use to hide the underlying vectors in the ciphertexts can be flipped to argue that function-hiding
holds for the secret keys.

The core of our security argument is an information-theoretic step (in the setting of dual pairing
vector spaces as introduced by Okamoto and Takashima [19, 20]). Essentially, our master secret
key consists of two dual orthonormal bases that will be employed in the exponents to encode the
vectors for ciphertexts and secret keys respectively. Secret keys and ciphertexts thus correspond to
linear combinations of these basis vectors in the exponent. Since the bases themselves are never
made public, if all of the secret keys (for example) are orthogonal to a particular vector, then
there is a hidden “dimension” in the bases that can be used to argue that the ciphertext vector
can be switched to another vector that has the same inner products with the provided keys. In

3

fact, if we did not want any function privacy and instead only wanted to hide whether a single
ciphertext corresponded to a vector ~x0 or ~x1 while giving out secret keys for vectors ~y orthogonal to
~x0 − ~x1, then we would do this information-theoretically. When we instead have many ciphertexts
and we also demand function privacy for the keys, we use a hybrid argument, employing various
applications of the SXDH assumption to move things around in the exponent bases and isolate
a single ciphertext or key in a particular portion of the bases to apply our information-theoretic
argument. The symmetry between keys and ciphertexts in our construction allows us to perform
the same hybrid argument to obtain function privacy as in the case of multiple-ciphertext security.

2 Preliminaries

2.1 Functional Encryption Specifications and Security Definitions

In the rest of this paper, we will consider a specialization of the general definition of functional
encryption to the particular functionality of computing dot products of n-length vectors over a
finite field Zp. A private key functional encryption scheme for this class of functions will have the
following PPT algorithms:

Setup(1λ, n) → PP,MSK The setup algorithm will take in the security parameter λ and the
vector length parameter n (a positive integer that is polynomial in λ). It will produce a master
secret key MSK and public parameters PP. (Note that this is not a public key scheme, so the PP
are not sufficient to encrypt - they are just parameters that do not need to be kept secret.)

Encrypt(MSK,PP, ~x)→ CT The encryption algorithm will take in the master secret key MSK,
the public parameters PP, and a vector ~x ∈ Znp . It produces a ciphertext CT.

KeyGen(MSK,PP, ~y) → SK The key generation algorithm will take in the master secret key
MSK, the public parameters PP, and a vector ~y ∈ Znp . It produces a secret key SK.

Decrypt(PP,CT,SK) → m ∈ Zp or ⊥ The decryption algorithm will take in the public pa-
rameters PP, a ciphertext CT, and a secret key SK. It will output either a value m ∈ Zp or
⊥.

For correctness, we will require the following. We suppose that PP,MSK are the result
of calling Setup(1λ, n), and CT,SK are then the result of calling Encrypt(MSK,PP, ~x) and
KeyGen(MSK,PP, ~y) respectively. We then require that the output of Decrypt(PP,CT,SK) must
be either m = 〈~x, ~y〉 or ⊥. We will only require that it is 〈~x, ~y〉 and not ⊥ when 〈~x, ~y〉 is from a
fixed polynomial range of values inside Zp, as this will allow a decryption algorithm to compute it
as a discrete log in a group where discrete log is generally hard.

Security We will consider an indistinguishability-based security notion defined by a game between
a challenger and an attacker. At the beginning of the game, the challenger calls Setup(1λ, n,B) to
produce MSK,PP. It gives PP to the attacker. The challenger also selects a random bit b.

Throughout the game, the attacker can (adaptively) make two types of a queries. To make a key
query, it submits two vectors ~y0, ~y1 ∈ Znp to the challenger, who then runs KeyGen(MSK,PP, ~yb)
and returns the resulting SK to the attacker. To make a ciphertext query, the attacker submits

4

two vectors ~x0, ~x1 ∈ Znp to the challenger, who then runs Encrypt(MSK,PP, ~xb) and returns the
resulting ciphertext to the attacker. The attacker can make any polynomial number of key and
ciphertext queries throughout the game. At the end of the game, the attacker must submit a guess
b′ for the bit b. We require that for all key queries ~y0, ~y1 and all ciphertext queries ~x0, ~x1, it must
hold that

〈~y0, ~x0〉 = 〈~y0, ~x1〉 = 〈~y1, ~x0〉 = 〈~y1, ~x1〉

The attacker’s advantage is defined to be the probability that b′ = b minus 1
2 .

Definition 1. We say a private key functional encryption scheme for dot products over Znp satisfies
function-hiding indistinguishability-based security if any PPT attacker’s advantage in the above
game is negligible as a function of the security parameter λ.

Remark 2. We note that the attacker can trivially win the security game if we allowed a key
query ~y0, ~y1 and ciphertext query ~x0, ~x1 such that 〈~y0, ~x0〉 6= 〈~y1, ~x1〉. Our stronger requirement that
〈~y0, ~x1〉 and 〈~y1, ~x0〉 is used for our hybrid security proof, but it might be possible to remove it by
developing different proof techniques.

2.2 Asymmetric Bilinear Groups

We will construct our scheme in aymmetric bilinear groups. We let G denote a group generator - an
algorithm which takes a security parameter λ as input and outputs a description of prime order
groups G1, G2, GT with a bilinear map e : G1×G2 → GT . We define G’s output as (p,G1, G2, GT , e),
where p is a prime, G1, G2 and GT are cyclic groups of order p, and e : G1 ×G2 → GT is a map
with the following properties:

1. (Bilinear) ∀g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)
ab

2. (Non-degenerate) ∃g1 ∈ G1, g2 ∈ G2 such that e(g1, g2) has order p in GT .

We refer to G1 and G2 as the source groups and GT as the target group. We assume that the
group operations in G1, G2, and GT and the map e are computable in polynomial time with respect
to λ, and the group descriptions of G1, G2, and GT include a generator of each group.

The SXDH Assumption The security of our construction relies on the hardness of the SXDH
assumption. Given prime order groups (p,G1, G2, GT , e)← G(λ), we define the SXDH problem as
distinguishing between the following two distributions:

D1 = (g1, g
a
1 , g

b
1, g

ab
1 , g2)

and
D2 = (g1, g

a
1 , g

b
1, g

ab+r
1 , g2)

where g1, g2 are generators of G1, G2, and a, b, r ← Zp.
The SXDH Assumption states that no polynomial-time algorithm can achieve non-negligible

advantage in deciding between D1 and D2. It also states that the same is true for the analogous
distributions formed from switching the roles of G1, G2 (that is, D1 = (g2, g

a
2 , g

b
2, g

ab
2 , g1) and

D2 = (g2, g
a
2 , g

b
2, g

ab+r
2 , g1))

5

2.3 Dual Pairing Vector Spaces

In addition to referring to individual elements of G1 and G2, we will also consider “vectors” of group
elements. For ~v = (v1, ..., vm) ∈ Zmp and g1 ∈ G1, we write g~v1 to denote the m-tuple of elements of
G1:

g~v1 := (gv11 , ..., g
vm
1)

We can also perform scalar multiplication and exponentiation in the exponent. For any a ∈ Zp and
~v, ~w ∈ Zmp , we have:

ga~v1 :=(gav11 , ..., gavm1)

g~v+~w1 =(gv1+w1
1 , ..., gvm+wm

1)

We abuse notation slightly and also let e denote the product of the component wise pairings:

e(g~v1 , g
~w
2) :=

m∏
i=1

e(gvi1 , g
wi
2) = e(g1, g2)

〈~v,~w〉

Here, the dot product is taken modulo p.

Dual Pairing Vector Spaces We will employ the concept of dual pairing vector spaces from
[19, 20]. We will choose two random sets of vectors: B := {~b1, . . . ,~bm} and B∗ = {~b∗1, . . . ,~b∗m} of Zmp
subject to the constraint that they are “dual orthonormal” in the following sense:

〈~bi,~b∗i 〉 = 1 (mod p) for all i

〈~bi,~b∗j 〉 = 0 (mod p) for all j 6= i.

We note that choosing sets (B,B∗) at random from sets satisfying these dual orthonormality
constraints can be realized by choosing a set of m vectors B uniformly at random from Zmp (these
vectors will be linearly independent with high probability), then determining each vector of B∗ from
its orthonormality constraints. We will denote choosing random dual orthonormal sets this way as:
(B,B∗)← Dual(Zmp).

3 Construction

We now present our construction in asymmetric bilinear groups. We will choose dual orthonormal
bases B and B∗ that will be used in the exponent to encode ciphertext and key vectors respectively.
Vectors will be encoded twice to create space for a hybrid security proof and will be additionally
masked by random scalars (these basic features are also present in [17]). We will use additional
dual bases D,D∗ to separately encode these same scalars in the exponent so that their effect can
be removed from the final decryption result. We view it as a core feature of our construction that
the structure of keys and ciphertexts in our scheme is perfectly symmetric, just on different sides
of dual orthonormal bases. This enables us to prove function hiding for the keys with exactly the
same techniques we use to prove indistinguishability security for the ciphertexts.

6

Setup(1λ, n),→ MSK,PP The setup algorithm takes in the security parameter λ and a positive
integer n specifying the desired length of vectors for the keys and ciphertexts. It chooses an
asymmetric bilinear group consisting of G1, G2, GT , all with prime order p. It fixes generators g1, g2
of G1 and G2 respectively. It then samples dual orthonormal bases B,B∗ ← Dual(Z2n

p) and dual
orthonormal bases D,D∗ ← Dual(Z2

p). It defines the master secret key as MSK := B,B∗,D,D∗. The
groups G1, G2, GT , the generators g1, g2, and p are set to be public parameters.

Encrypt(MSK,PP, ~x)→ CT The encryption algorithm takes in the master secret key B,B∗,D,D∗,
the public parameters, and a vector ~x ∈ Znp . It chooses two independent and uniformly random
elements α, α̃ ∈ Zp. It then computes:

C1 := g
α(x1~b∗1+···+xn~b∗n)+α̃(x1~b∗n+1+···+xn~b∗2n)
1

C2 := g
α~d∗1+α̃

~d∗2
1 .

The ciphertext CT = {C1, C2}.

KeyGen(MSK,PP, ~y)→ SK The secret key generation algorithm takes in the master secret key
B,B∗,D,D∗, the public parameters, and a vector ~y ∈ Znp . It chooses two independent and uniformly

random elements β, β̃ ∈ Zp. It then computes:

K1 := g
β(y1~b1+···+yn~bn)+β̃(y1~bn+1+···+yn~b2n)
2

K2 := gβ
~d1+β̃ ~d2

2 .

The secret key SK = {K1,K2}.

Decrypt(PP,CT, SK)→ m ∈ Zp or ⊥ The decryption algorithm takes in the public parameters,
the ciphertext C1, C2, and the secret key K1,K2. It computes:

D1 := e(C1,K1)

D2 := e(C2,K2).

It then computes an m such that Dm
2 = D1 as elements of GT . It outputs m. We note that we can

guarantee that the decryption algorithm runs in polynomial time when we restrict to checking a
fixed, polynomially size range of possible values for m and output ⊥ when none of them satisfy the
criterion Dm

2 = D1.

Correctness We observe that for a ciphertext formed by calling Encrypt(MSK,PP, ~x) and a key
formed by calling KeyGen(MSK,PP, ~y), we have

D1 = e(C1,K1) = e(g1, g2)
αβ〈~x,~y〉+α̃β̃〈~x,~y〉 = e(g1, g2)

(αβ+α̃β̃)〈~x,~y〉

and D2 = e(C2,K2) = e(g1, g2)
αβ+α̃β̃.

This follows immediately from the definitions of C1, C2,K1,K2 and the fact that B,B∗ and D,D∗
are dual orthonormal bases pairs. Thus, if 〈~x, ~y〉 is in the polynomial range of possible values for m
that the decryption algorithm checks, it will output m := 〈~x, ~y〉 as desired.

7

4 Security Proof

Our security proof is structured as a hybrid argument over a series of games which differ in how
the ciphertext and keys are constructed. Intuitively, if there were only one ciphertext, we could
embed the difference of the two possible ciphertext vectors, namely ~x0 − ~x1, into the definition of
the bases B,B∗ to argue that this difference is hidden when only key vectors orthogonal to ~x0 − ~x1
are provided. In other words, there is ambiguity in the choice of B,B∗ left conditioned on the
provided keys, and this can be exploited to switch ~x0 for ~x1. But there is a limited amount of such
ambiguity, so to re-purpose it for many ciphertexts, we employ a hybrid argument that isolates each
ciphertext in turn in a portion of the basis. Since keys and ciphertexts are constructed and treated
symmetrically in our scheme, we can apply the same hybrid argument over keys to prove function
hiding, just reversing the roles of B and B∗.

Notice that a normal ciphertext for a vector ~x contains two parallel copies of ~x in the ex-
ponent of C1: one attached to ~b∗i ’s and one attached to ~b∗n+i’s for i = 1, ..., n. We will refer to

this as a type-(~x, ~x) ciphertext. We will use this notation to define a type-(~0, ~x) ciphertext - one
which is normally formed but has no ~b∗i components for i = 1, ..., n and no ~d∗1 component in C2.
We will also use the same terminology to refer to keys (i.e: type-(~y, ~y) / type-(~0, ~y) / type-(~y,~0) keys).

Letting Q1 denote the total number of ciphertext queries the attacker makes, we define 7 games
for each j = 0, ..., Q1:

Game1j,Z In Game1j,Z all ciphertexts before the jth ciphertext are of type-(~0, ~x1i), the jth ciphertext

is of type-(~0, ~x0i), all ciphertexts after the jth ciphertext are also type-(~0, ~x0i) ciphertexts, and all
keys are of type-(~y0i , ~y

0
i).

Game2j,Z Game2j,Z is the same as Game1j,Z except that the jth ciphertext is now of type-(~x0j , ~x
0
j).

Game3j,Z Game3j,Z is the same as Game2j,Z except that the jth ciphertext is now of type-(~x0j , ~x
1
j).

Game4j,Z Game4j,Z is the same as Game3j,Z except that all ciphertexts before the jth ciphertext are

now of type-(~x1i , ~x
1
i) and all ciphertexts after the jth ciphertext are now type-(~x0i , ~x

0
i) ciphertexts.

Game5j,Z Game5j,Z is the same as Game4j,Z except that all ciphertexts before the jth ciphertext

are now of type-(~x1i ,~0) and all ciphertexts after the jth ciphertext are now type-(~x0i ,~0) ciphertexts.

Game6j,Z Game6j,Z is the same as Game5j,Z except that the jth ciphertext is now of type-(~x1j , ~x
1
j).

Game7j,Z Game7j,Z is the same as Game6j,Z except that all ciphertexts before the jth ciphertext

are now of type-(~x1i , ~x
1
i) and all ciphertexts after the jth ciphertext are now type-(~x0i , ~x

0
i) ciphertexts.

Letting Q2 denote the total number of key requests the attacker makes, we define 7 additional
games for each j = 0, ..., Q2:

8

Game1O,j In Game1O,j all keys before the jth key are of type-(~0, ~y1i), the jth key is of type-(~0, ~y0i),

all keys after the jth key are also type-(~0, ~y0i) keys, and all ciphertexts are of type-(~x1i , ~x
1
i).

Game2O,j Game2O,j is the same as Game1O,j except that the jth key is now of type-(~y0j , ~y
0
j).

Game3O,j Game3O,j is the same as Game2O,j except that the jth key is now of type-(~y0j , ~y
1
j).

Game4O,j Game4O,j is the same as Game3O,j except that all keys before the jth key are now of

type-(~y1i , ~y
1
i) and all keys after the jth key are now type-(~y0i , ~y

0
i) keys.

Game5O,j Game5O,j is the same as Game4O,j except that all keys before the jth key are now of

type-(~y1i ,~0) and all keys after the jth key are now type-(~y0i ,~0) keys.

Game6O,j Game6O,j is the same as Game5O,j except that the jth key is now of type-(~y1j , ~y
1
j).

Game7O,j Game7O,j is the same as Game6O,j except that all keys before the jth key are now of

type-(~y1i , ~y
1
i) and all keys after the jth key are now type-(~y0i , ~y

0
i) keys.

Note that Game70,Z is the real security game played with b = 0 and Game7O,Q2
is the real se-

curity game played with b = 1. Note also that Game7Q1,Z
and Game7O,0 are identical.

We will use a hybrid argument to transition between the two to show that no polynomial attacker
can achieve non-negligible advantage in the security game (distinguishing between b = 0 and b = 1.).
Our hybrid works in two parts, first transitioning all ciphertexts from type-(~x0i , ~x

0
i) to type-(~x1i , ~x

1
i)

(using the Gameij,Z ’s), then transitioning all keys from type-(~y0i , ~y
0
i) to type-(~y1i , ~y

1
i) (using the

GameiO,j ’s).

First we will transition from Game70,Z (the real security game played with b = 0) to Game11,Z .

We then transition from Game11,Z to Game21,Z , to Game31,Z ,, to Game71,Z , to Game12,Z etc. until

reaching Game7Q1,Z
, where all ciphertexts are of type (~x1i , ~x

1
i) (but all keys are still of type (~y0i , ~y

0
i)).

Recall that Game7Q1,Z
is identical to Game7O,0. We will then transition from Game7Q1,Z

= Game7O,0
to Game1O,1, to Game2O,1,, to Game7O,1, to Game1O,2, etc. until reaching Game7O,Q2

, where all keys

are of type (~y1i , ~y
1
i) (and all ciphertexts are of type (~x1i , ~x

1
i)). This is identical to the real security

game played with b = 1.
We begin the first transition in a hybrid over the Q1 ciphertexts. Recall that the real security

game played with b = 0 is identical to Game70,Z , so in particular, the following lemma allows us to

make the first transition from Game70,Z to Game11,Z .

Lemma 3. No polynomial-time attacker can achieve a non-negligible difference in advantage between
Game7(j−1),Z and Game1j,Z for j = 1, ..., Q1 under the SXDH assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage between Game7(j−1),Z
and Game1j,Z for some j ∈ [1, Q1], we could achieve non-negligible advantage in deciding the SXDH
problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0, use g1, g2 as

the generators of the same name used to form ciphertexts and keys respectively. Generate bases

9

(F,F∗)← Dual(Z2n
p), (H,H∗)← Dual(Z2

p) and implicitly define new bases (B,B∗), (D,D∗) as the
following:

~bi = ~fi − a~fn+i for i = 1, ..., n

~bn+i = ~fn+i for i = 1, ..., n

~b∗i = ~f∗i for i = 1, ..., n

~b∗n+i = ~f∗n+i + a~f∗i for i = 1, ..., n

~d1 = ~h1 − a~h2
~d2 = ~h2

~d∗1 = ~h∗1
~d∗2 = ~h∗2 + a~h∗1

Note that these bases are distributed exactly the same as those output by Dual(Z2n
p) and Dual(Z2

p)
respectively (they are created by applying an invertible linear transformation to the output of
Dual(Z2n

p) and Dual(Z2
p)).

To construct any key (for, say, vector ~y0), generate random β, β̃′ ← Zp, implicitly define
β̃ = βa+ β̃′, and compute:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃′(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+(β̃−βa)(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~f1−a~fn+1)+···+y0n(~fn−a~f2n))+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)
2

K2 = gβ
~h1+β̃′~h2

2

= g
β~h1+(β̃−βa)~h2
2

= g
β(~h1−a~h2)+β̃~h2
2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game7(j−1),Z and Game1j,Z).

10

For the jth ciphertext and all ciphertexts after, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α′i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)(T)α

′
i(x

0
1,i
~f∗1+···+x0n,i ~f∗n)g

α̃′i(x
0
1,i
~f∗n+1+···+x0n,i ~f∗2n)

1 (ga1)α̃
′
i(x

0
1,i
~f∗1+···+x0n,i ~f∗n)

= g
α′ir(x

0
1,i
~f∗1+···+x0n,i ~f∗n)+(α̃′i+α

′
ib)(x

0
1,i(

~f∗n+1+a
~f∗1)+···+x0n,i(~f∗2n+a~f∗n))

1

= g
α′ir(x

0
1,i
~b∗1+···+x0n,i~b∗n)+(α̃′i+α

′
ib)(x

0
1,i
~b∗n+1+···+x0n,i~b∗2n)

1

C2,i = (gb1)
α′i
~h∗2(T)α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1)α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)
~d∗2

1

For ciphertexts before the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α′i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)(T)α

′
i(x

1
1,i
~f∗1+···+x1n,i ~f∗n)g

α̃′i(x
1
1,i
~f∗n+1+···+x1n,i ~f∗2n)

1 (ga1)α̃
′
i(x

1
1,i
~f∗1+···+x1n,i ~f∗n)

= g
α′ir(x

1
1,i
~f∗1+···+x1n,i ~f∗n)+(α̃′i+α

′
ib)(x

1
1,i(

~f∗n+1+a
~f∗1)+···+x1n,i(~f∗2n+a~f∗n))

1

= g
α′ir(x

1
1,i
~b∗1+···+x1n,i~b∗n)+(α̃′i+α

′
ib)(x

1
1,i
~b∗n+1+···+x1n,i~b∗2n)

1

C2,i = (gb1)
α′i
~h∗2(T)α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1)α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)
~d∗2

1

(The only difference from the prior ciphertext construction is that ~x1 is used instead of ~x0).

When r ← Zp, all ciphertexts before the jth ciphertext are properly distributed type-(~x1i , ~x
1
i)

ciphertexts and the remaining ciphertexts are properly distributed type-(~x0i , ~x
0
i) ciphertexts where

αi = α′ir and α̃i = α̃′i + α′ib. This is as would be expected in Game7(j−1),Z .

When r = 0, all ciphertexts before the jth ciphertext are properly distributed type-(~0, ~x1i) ciphertexts
and the remaining ciphertexts are properly distributed type-(~0, ~x0i) ciphertexts where α̃i = α̃′i + α′ib.
This is as would be expected in Game1j,Z .

Our simulation is therefore identical to either Game7(j−1),Z or Game1j,Z depending on the SXDH

challenge T = gab+r1 having r ← Zp or r = 0 respectively. Therefore, by playing the security game in
this manner with the supposed attacker and using the attacker’s output as an answer to the SXDH
challenge, we will enjoy the same non-negligible advantage as the supposed attacker in deciding the
SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

11

Lemma 4. No polynomial-time attacker can achieve a non-negligible difference in advantage between
Game1j,Z and Game2j,Z for j = 1, ..., Q1 under the SXDH assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage between Game1j,Z and

Game2j,Z for some j ∈ [1, Q1], we could achieve non-negligible advantage in deciding the SXDH
problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0, use g1, g2 as the

generators of the same name used to form ciphertexts and keys respectively.. Generate bases
(F,F∗)← Dual(Z2n

p), (H,H∗)← Dual(Z2
p) and implicitly define new bases (B,B∗), (D,D∗) as the

following:

~bi = ~fi − a~fn+i for i = 1, ..., n

~bn+i = ~fn+i for i = 1, ..., n

~b∗i = ~f∗i for i = 1, ..., n

~b∗n+i = ~f∗n+i + a~f∗i for i = 1, ..., n

~d1 = ~h1 − a~h2
~d2 = ~h2

~d∗1 = ~h∗1
~d∗2 = ~h∗2 + a~h∗1

Note that these bases are distributed exactly the same as those output by Dual(Z2n
p) and Dual(Z2

p)
respectively (they are created by applying an invertible linear transformation to the output of
Dual(Z2n

p) and Dual(Z2
p)).

To construct any key (for, say, vector ~y0), generate random β, β̃′ ← Zp, implicitly define
β̃ = βa+ β̃′, and compute:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃′(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+(β̃−βa)(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~f1−a~fn+1)+···+y0n(~fn−a~f2n))+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)
2

K2 = gβ
~h1+β̃′~h2

2

= g
β~h1+(β̃−βa)~h2
2

= g
β(~h1−a~h2)+β̃~h2
2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game1j,Z and Game2j,Z).

12

For ciphertexts before the jth ciphertext draw random α̃i ← Zp and compute:

C1,i = g
α̃i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)

1 (ga1)α̃i(x
1
1,i
~f∗1+···+x1n,i ~f∗n)

= g
α̃i(x

1
1,i(

~f∗n+1+a
~f∗1)+···+x1n,i(~f∗2n+a~f∗n))

1

= g
α̃i(x

1
1,i
~b∗n+1+···+x1n,i~b∗2n)

1

C2,i = g
α̃i~h
∗
2

1 (ga1)α̃i
~h∗1

= g
α̃i(~h

∗
2+a

~h∗1)
1

= g
α̃i ~d
∗
2

1

a properly distributed type-(~0, ~x1i) ciphertext (as expected in both Game1j,Z and Game2j,Z).
For ciphertexts after the jth ciphertext draw random α̃i ← Zp and compute:

C1,i = g
α̃i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)

1 (ga1)α̃i(x
0
1,i
~f∗1+···+x0n,i ~f∗n)

= g
α̃i(x

0
1,i(

~f∗n+1+a
~f∗1)+···+x0n,i(~f∗2n+a~f∗n))

1

= g
α̃i(x

0
1,i
~b∗n+1+···+x0n,i~b∗2n)

1

C2,i = g
α̃i~h
∗
2

1 (ga1)α̃i
~h∗1

= g
α̃i(~h

∗
2+a

~h∗1)
1

= g
α̃i ~d
∗
2

1

a properly distributed type-(~0, ~x0i) ciphertext (as expected in both Game1j,Z and Game2j,Z). Note

that this construction is the same as that of the first j − 1 ciphertexts except for the ~x0i components
used instead of ~x1i .

For the jth ciphertext, compute:

C1,j = (gb1)
x01,j

~f∗n+1+···+x0n,j ~f∗2n(T)x
0
1,j
~f∗1+···+x0n,j ~f∗n

= g
r(x01,j

~f∗1+···+x0n,j ~f∗n)+b(x01,j(~f∗n+1+a
~f∗1)+···+x0n,j(~f∗2n+a~f∗n))

1

= g
r(x01,j

~b∗1+···+x0n,j~b∗n)+b(x01,j~b∗n+1+···+x0n,j~b∗2n)
1

C2,j = (gb1)
~h∗2(T)

~h∗1

= g
r~h∗1+b(

~h∗2+a
~h∗1)

1

= g
r~d∗1+b

~d∗2
1

When r = 0, this is a properly distributed type-(~0, ~x0j) ciphertext where α̃j = b (as would be

expected in Game1j,Z).

13

When r ← Zp, this is a properly distributed type-(~x0j , ~x
0
j) ciphertext where αj = r and α̃j = b (as

would be expected in Game2j,Z).

Our simulation is therefore identical to either Game1j,Z or Game2j,Z depending on the SXDH

challenge T = gab+r1 having r = 0 or r ← Zp respectively. Therefore, by playing the security game in
this manner with the supposed attacker and using the attacker’s output as an answer to the SXDH
challenge, we will enjoy the same non-negligible advantage as the supposed attacker in deciding the
SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

Lemma 5. No attacker can achieve a non-negligible difference in advantage between Game2j,Z and

Game3j,Z for j = 1, ..., Q1.

Proof. This lemma is unconditionally true because both games are information-theoretically identical.
In the simulation of the security Game2j,Z , one draws bases (B,B∗) ← Dual(Z2n

p). However,

imagine knowing the jth ciphertext vectors ~x0j , ~x
1
j ahead of time and drawing the bases in the

following way: first, draw B,B∗ ← Dual(Z2n
p) then apply following invertible linear transformation

to get (F,F∗), which is used (along with a normally drawn (D,D∗)← Dual(Z2
p)) as the basis:

~fi = ~bi for i = 1, ..., n

~fn+i = ~bn+i +
α̃j(x

0
i,j − x1i,j)
αjx01,j

~b1 for i = 1, ..., n

~f∗1 = ~b∗1 −
n∑
i=1

α̃j(x
0
i,j − x1i,j)
αjx01,j

~b∗n+i

~f∗i = ~b∗i for i = 2, ..., 2n

where αj , α̃j are randomly drawn values used in the creation of the jth ciphertext. Recall that the
distribution of the (F,F∗) produced this way is identical to that produced by Dual(Z2n

p)).

Consider simulating Game2j,Z with this basis. Any key (for, say, vector ~y0) looks like:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···+y0n ~f2n)
2

K2 = gβ
~d1+β̃ ~d2

2 .

where:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01(~bn+1+
α̃j(x

0
1,j−x

1
1,j)

αjx
0
1,j

~b1)+···+y0n(~b2n+
α̃j(x

0
n,j−x

1
n,j)

αjx
0
1,j

~b1))

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)+
β̃α̃j〈~y

0,~x0j−~x
1
j 〉

αjx
0
1,j

~b1

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)
2

14

The last step above comes from the fact that 〈~y0, ~x0j − ~x1j 〉 = 0.

(~x0j , ~x
1
j are vectors requested in the game where we require 〈~y0, ~x0j 〉 = 〈~y0, ~x1j 〉 =⇒ 〈~y0, ~x0j −~x1j 〉 = 0).

This is a type-(~y0, ~y0) key in the (B,B∗) basis (as expected in both Game2j,Z and Game3j,Z).

All ciphertexts created before the jth ciphertext look like properly distributed type-(~0, ~x1i)
ciphertexts in the (B,B∗) basis:

C1,i = g
α̃i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)

1

= g
α̃i(x

1
1,i
~b∗n+1+···+x1n,i~b∗2n)

1

C2,i = g
α̃i ~d
∗
2

1

Similarly, all ciphertexts created after the jth ciphertext look like properly distributed type-(~0, ~x0i)
ciphertexts in the (B,B∗) basis:

C1,i = g
α̃i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)

1

= g
α̃i(x

0
1,i
~b∗n+1+···+x0n,i~b∗2n)

1

C2,i = g
α̃i ~d
∗
2

1

However, the jth ciphertext constructed (as a type-(~x0j , ~x
0
j) ciphertext) looks like a type-(~x0j , ~x

1
j)

ciphertext in the (B,B∗) basis:

C1,j = g
αj(x

0
1,j
~f∗1+···+x0n,j ~f∗n)+α̃j(x01,j ~f∗n+1+···+x0n,j ~f∗2n)

1

= g

αj(x
0
1,j(

~b∗1−

n∑
i=1

α̃j(x
0
i,j − x1i,j)
αjx01,j

~b∗n+i) + · · ·+ x0n,j
~b∗n) + α̃j(x

0
1,j
~b∗n+1 + · · ·+ x0n,j

~b∗2n)

1

= g
αj(x

0
1,j
~b∗1+···+x0n,j~b∗n)+α̃j(x11,j~b∗n+1+···+x1n,j~b∗2n)

1

C2,j = g
αj ~d
∗
1+α̃j

~d∗2
1

This construction of the jth ciphertext is the only difference between Game2j,Z and Game3j,Z .

So, drawing (B,B∗) directly from Dual(Z2n
p) and using it to play Game2j,Z results in Game2j,Z in

the (B,B∗) basis. However, transforming this basis to (F,F∗) and using it instead results in playing
Game3j,Z with the (B,B∗) basis. However, since (B,B∗) and (F,F∗) have the same distribution (the

one produced by Dual(Z2n
p)), this means that the two Games are actually information-theoretically

identical. Therefore, no attacker can achieve non-negligible difference advantage in distinguishing
between Game2j,Z and Game3j,Z .

Lemma 6. No polynomial-time attacker can achieve a non-negligible difference in advantage between
Game3j,Z and Game4j,Z for j = 1, ..., Q1 under the SXDH assumption.

15

Proof. Given an attacker that achieves non-negligible difference in advantage between Game3j,Z and

Game4j,Z for some j ∈ [1, Q1], we could achieve non-negligible advantage in deciding the SXDH
problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0, use g1, g2 as

the generators of the same name used to form ciphertexts and keys respectively. Generate bases
(F,F∗)← Dual(Z2n

p), (H,H∗)← Dual(Z2
p) and implicitly define new bases (B,B∗), (D,D∗) as the

following:

~bi = ~fi − a~fn+i for i = 1, ..., n

~bn+i = ~fn+i for i = 1, ..., n

~b∗i = ~f∗i for i = 1, ..., n

~b∗n+i = ~f∗n+i + a~f∗i for i = 1, ..., n

~d1 = ~h1 − a~h2
~d2 = ~h2

~d∗1 = ~h∗1
~d∗2 = ~h∗2 + a~h∗1

Note that these bases are distributed exactly the same as those output by Dual(Z2n
p) and Dual(Z2

p)
respectively (they are created by applying an invertible linear transformation to the output of
Dual(Z2n

p) and Dual(Z2
p)).

To construct any key (for, say, vector ~y0), generate random β, β̃′ ← Zp, implicitly define
β̃ = βa+ β̃′, and compute:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃′(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+(β̃−βa)(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~f1−a~fn+1)+···+y0n(~fn−a~f2n))+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)
2

K2 = gβ
~h1+β̃′~h2

2

= g
β~h1+(β̃−βa)~h2
2

= g
β(~h1−a~h2)+β̃~h2
2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game3j,Z and Game4j,Z).

16

For the jth ciphertext, draw αj , α̃j ← Zp and compute:

C1,j = g
αj(x

0
1,j
~f∗1+···+x0n,j ~f∗n)+α̃j(x11,j ~f∗n+1+···+x1n,j ~f∗2n)

1 (ga1)α̃j(x
1
1,j
~f∗1+···+x1n,j ~f∗n)

= g
αj(x

0
1,i
~f∗1+···+x0n,i ~f∗n)+α̃j(x11,j(~f∗n+1+a

~f∗1)+···+x1n,j(~f∗2n+a~f∗n))
1

= g
αj(x

0
1,j
~b∗1+···+x0n,j~b∗n)+α̃j(x11,j~b∗n+1+···+x1n,j~b∗2n)

1

C2,j = g
αj~h
∗
1

1 g
α̃j~h
∗
2

1 (ga1)α̃j
~h∗1

= g
αj~h
∗
1+α̃j(

~h∗2+a
~h∗1)

1

= g
αj ~d
∗
1+α̃j

~d∗2
1

a properly distributed type-(~x0j , ~x
1
j) ciphertext (as expected in both Game3j,Z and Game4j,Z).

For all ciphertexts after the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α′i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)(T)α

′
i(x

0
1,i
~f∗1+···+x0n,i ~f∗n)g

α̃′i(x
0
1,i
~f∗n+1+···+x0n,i ~f∗2n)

1 (ga1)α̃
′
i(x

0
1,i
~f∗1+···+x0n,i ~f∗n)

= g
α′ir(x

0
1,i
~f∗1+···+x0n,i ~f∗n)+(α̃′i+α

′
ib)(x

0
1,i(

~f∗n+1+a
~f∗1)+···+x0n,i(~f∗2n+a~f∗n))

1

= g
α′ir(x

0
1,i
~b∗1+···+x0n,i~b∗n)+(α̃′i+α

′
ib)(x

0
1,i
~b∗n+1+···+x0n,i~b∗2n)

1

C2,i = (gb1)
α′i
~h∗2(T)α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1)α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)
~d∗2

1

For ciphertexts before the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α′i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)(T)α

′
i(x

1
1,i
~f∗1+···+x1n,i ~f∗n)g

α̃′i(x
1
1,i
~f∗n+1+···+x1n,i ~f∗2n)

1 (ga1)α̃
′
i(x

1
1,i
~f∗1+···+x1n,i ~f∗n)

= g
α′ir(x

1
1,i
~f∗1+···+x1n,i ~f∗n)+(α̃′i+α

′
ib)(x

1
1,i(

~f∗n+1+a
~f∗1)+···+x1n,i(~f∗2n+a~f∗n))

1

= g
α′ir(x

1
1,i
~b∗1+···+x1n,i~b∗n)+(α̃′i+α

′
ib)(x

1
1,i
~b∗n+1+···+x1n,i~b∗2n)

1

C2,i = (gb1)
α′i
~h∗2(T)α

′
i
~h∗1g

α̃′i
~h∗2

1 (ga1)α̃
′
i
~h∗1

= g
α′ir

~h∗1+(α̃′i+α
′
ib)(

~h∗2+a
~h∗1)

1

= g
α′ir

~d∗1+(α̃′i+α
′
ib)
~d∗2

1

(The only difference from the prior ciphertext construction is that ~x1 is used instead of ~x0).

When r = 0, all ciphertexts before the jth ciphertext are properly distributed type-(~0, ~x1i) ci-
phertexts and all ciphertexts after the jth are properly distributed type-(~0, ~x0i) ciphertexts where

17

α̃i = α̃′i + α′ib. This is as would be expected in Game3j,Z .

When r ← Zp, all ciphertexts before the jth are properly distributed type-(~x1i , ~x
1
i) ciphertexts and

all ciphertexts after the jth are properly distributed type-(~x0i , ~x
0
i) ciphertexts where αi = α′ir and

α̃i = α̃′i + α′ib. This is as would be expected in Game4j,Z .

Our simulation is therefore identical to either Game3j,Z or Game4j,Z depending on the SXDH

challenge T = gab+r1 having r = 0 or r ← Zp respectively. Therefore, by playing the security game in
this manner with the supposed attacker and using the attacker’s output as an answer to the SXDH
challenge, we will enjoy the same non-negligible advantage as the supposed attacker in deciding the
SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

Lemma 7. No polynomial-time attacker can achieve a non-negligible difference in advantage between
Game4j,Z and Game5j,Z for j = 1, ..., Q1 under the SXDH assumption.

Proof. The proof of this lemma is symmetric to that of the previous Lemma 6, just flipping the role
of the two parallel bases.

Lemma 6 showed how to create keys of type-(~y0, ~y0) and a type-(~x0j , ~x
1
j) ciphertext while having

the ciphertexts before and after the jth be type-(~0, ~x1i) and type-(~0, ~x0i) or type-(~x1i , ~x
1
i) and type-

(~x0i , ~x
0
i) respectively based on the challenge elements of the SXDH problem. By symmetrically

applying the same embedding to the opposite halves of the parallel bases, we can achieve the same
result, but with the ciphertexts before and after the jth being type-(~x1i , ~x

1
i) and type-(~x0i , ~x

0
i) or

type-(~x1i ,~0) and type-(~x0i ,~0) respectively based on the challenge elements of the SXDH problem,
which is what we need for this transition.

For an explicit proof, see Lemma 10 in the Appendix.

Lemma 8. No attacker can achieve a non-negligible difference in advantage between Game5j,Z and

Game6j,Z for j = 1, ..., Q1.

Proof. The proof of this lemma is information-theoretic and similarly almost symmetric to that
of Lemma 5, just flipping the role of the two parallel bases (just like the previous lemma did with
Lemma 6).

For an explicit proof, see Lemma 11 in the Appendix.

Lemma 9. No polynomial-time attacker can achieve a non-negligible difference in advantage between
Game6j,Z and Game7j,Z for j = 1, ..., Q1 under the SXDH assumption.

Proof. The proof of this lemma is nearly identical to that of Lemma 7 (which transitioned ciphertexts
before the jth between type-(~x1i ,~0) and type-(~x1i , ~x

1
i) and ciphertexts after the jth between type-

(~x0i ,~0) and type-(~x0i , ~x
0
i)) but instead constructing the jth ciphertext as type-(~x1i , ~x

1
i) instead of

type-(~x0i , ~x
1
i).

For an explicit proof, see Lemma 12 in the Appendix.

The previous lemmas let us transition to Game7Q1,Z
, where all ciphertexts are of type-(~x1i , ~x

1
i)

and all keys are type-(~y0i , ~y
0
i) keys. Notice that Game7Q1,Z

is identical to Game7O,0. It is easy to see

18

that we can now use a symmetric set of hybrids to transition all keys to type-(~y1i , ~y
1
i) in a similar

manner: starting by transitioning from Game7Q1,Z
= Game7O,0 to Game1O,1, then proceeding through

the GameiO,j using the same methods as in the Gameij,Z , just switching the roles of the basis vectors

(switching all ~b∗ with ~b, ~d∗ with ~d, α with β, α̃ with β̃, and ~xi with ~yi, while always producing type
(~x1i , ~x

1
i) ciphertexts (instead of always producing type (~y0i , ~y

0
i) keys).

These symmetric arguments let us transition to Game7O,Q2
, where all ciphertexts are of type-

(~x1, ~x1) and all keys are type-(~y1i , ~y
1
i) keys. This is identical to the original security game when

b = 1. So, by a hybrid argument, we have shown that no polynomial-time attacker gan achieve
non-negligible difference in advantage in the security game when b = 0 (Game70,Z) vs when b = 1

(Game7O,Q2
) under the SXDH assumption, so our construction is therefore secure.

References

[1] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes
for inner products. In PKC, pages 733–751, 2015.

[2] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prabhakaran, and
A. Sahai. On the practical security of inner product functional encryption. In PKC, pages
777–798, 2015.

[3] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product
predicates from learning with errors. In ASIACRYPT, pages 21–40.

[4] P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From selective to adaptive security
in functional encryption. In CRYPTO, 2015.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[6] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryption: Hiding
the function in functional encryption. In CRYPTO, pages 461–478, 2013.

[7] D. Boneh, A. Raghunathan, and G. Segev. Function-private subspace-membership encryption
and its applications. In ASIACRYPT, pages 255–275, 2013.

[8] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In
Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Providence, RI,
USA, March 28-30, 2011. Proceedings, pages 253–273, 2011.

[9] Z. Brakerski and G. Segev. Function-private functional encryption in the private-key setting.
In TCC, pages 306–324, 2015.

[10] A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On the achievability
of simulation-based security for functional encryption. In CRYPTO, pages 519–535, 2013.

[11] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In FOCS, pages 40–49,
2013.

19

[12] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014. http://eprint.

iacr.org/.

[13] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[14] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to run
turing machines on encrypted data. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
pages 536–553, 2013.

[15] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded collusions
via multi-party computation. In CRYPTO, pages 162–179, 2012.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute based encryption for fine-grained
access control of encrypted data. In ACM conference on Computer and Communications
Security, pages 89–98, 2006.

[17] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[18] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryp-
tion: Attribute-based encryption and (hierarchical) inner product encryption. In EUROCRYPT,
pages 62–91, 2010.

[19] T. Okamoto and K. Takashima. Homomorphic encryption and signatures from vector decom-
position. In Pairing, pages 57–74, 2008.

[20] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-products. In
ASIACRYPT, pages 214–231, 2009.

[21] T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from
the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[22] T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In ASIACRYPT 2012, pages 349–366, 2012.

[23] A. O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, 2010.

[24] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with public keys. In
CCS, pages 463–472.

[25] A. Sahai and B. Waters. Fuzzy identity based encryption. In EUROCRYPT, pages 457–473,
2005.

[26] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In TCC, pages
457–473, 2009.

[27] B. Waters. A punctured programming approach to adaptively secure functional encryption. In
CRYPTO, 2015.

20

A Explicit Lemmas Sketched in Security Proof

For completeness, here are explicit proofs of lemmas which were very similar to previous lemmas in
the security proof and only sketched in the main body of the paper.

Lemma 10. No polynomial-time attacker can achieve a non-negligible difference in advantage
between Game4j,Z and Game5j,Z for j = 1, ..., Q1 under the SXDH assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage between Game4j,Z and

Game5j,Z for some j ∈ [1, Q1], we could achieve non-negligible advantage in deciding the SXDH
problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0, use g1, g2 as

the generators of the same name used to form ciphertexts and keys respectively. Generate bases
(F,F∗)← Dual(Z2n

p), (H,H∗)← Dual(Z2
p) and implicitly define new bases (B,B∗), (D,D∗) as the

following:

~bi = ~fi for i = 1, ..., n

~bn+i = ~fn+i − a~fi for i = 1, ..., n

~b∗i = ~f∗i + a~f∗n+i for i = 1, ..., n

~b∗n+i = ~f∗n+i for i = 1, ..., n

~d1 = ~h1

~d2 = ~h2 − a~h1
~d∗1 = ~h∗1 + a~h∗2
~d∗2 = ~h∗2

Note that these bases are distributed exactly the same as those output by Dual(Z2n
p) and Dual(Z2

p)
respectively (they are created by applying an invertible linear transformation to the output of
Dual(Z2n

p) and Dual(Z2
p)).

To construct any key (for, say, vector ~y0), generate random β′, β̃ ← Zp, implicitly define
β = β̃a+ β′, and compute:

K1 = g
β′(y01

~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
(β−β̃a)(y01 ~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+β̃(y01(~fn+1−a~f1)+···+y0n(~f2n−a~fn))
2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)
2

K2 = gβ
′~h1+β̃~h2

2

= g
(β−β̃a)~h1+β̃~h2
2

= g
β~h1+β̃(~h2−a~h1)
2

= gβ
~d1+β̃ ~d2

2

21

a properly distributed type-(~y0, ~y0) key (as expected in both Game4j,Z and Game5j,Z).
For the jth ciphertext, draw αj , α̃j ← Zp and compute:

C1,j = g
αj(x

0
1,j
~f∗1+···+x0n,j ~f∗n)

1 (ga1)αj(x
0
1,j
~f∗n+1+···+x0n,j ~f∗2n)g

α̃j(x
1
1,j
~f∗n+1+···+x1n,j ~f∗2n)

1

= g
αj(x

0
1,i(

~f∗1+a
~f∗n+1)+···+x0n,i(~f∗n+a~f∗2n))+α̃j(x11,j ~f∗n+1+···+x1n,j ~f∗2n)

1

= g
αj(x

0
1,j
~b∗1+···+x0n,j~b∗n)+α̃j(x11,j~b∗n+1+···+x1n,j~b∗2n)

1

C2,j = g
αj~h
∗
1

1 (ga1)αj
~h∗2g

α̃j~h
∗
2

1

= g
αj(~h

∗
1+a

~h∗2)+α̃j
~h∗2

1

= g
αj ~d
∗
1+α̃j

~d∗2
1

a properly distributed type-(~x0j , ~x
1
j) ciphertext (as expected in both Game4j,Z and Game5j,Z).

For all ciphertexts after the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α̃′i(x

0
1,i
~f∗1+···+x0n,i ~f∗n)(T)α̃

′
i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)g

α′i(x
0
1,i
~f∗1+···+x0n,i ~f∗n)

1 (ga1)α
′
i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)

= g
(α′i+α̃

′
ib)(x

0
1,i(

~f∗1+a
~f∗n+1)+···+x0n,i(~f∗n+a~f∗2n))+α̃′ir(x01,i ~f∗n+1+···+x0n,i ~f∗2n)

1

= g
(α′i+α̃

′
ib)(x

0
1,i
~b∗1+···+x0n,i~b∗n)+α̃′ir(x01,i~b∗n+1+···+x0n,i~b∗2n)

1

C2,i = (gb1)
α̃′i
~h∗1(T)α̃

′
i
~h∗2g

α′i
~h∗1

1 (ga1)α
′
i
~h∗2

= g
(α′i+α̃

′
ib)(

~h∗1+a
~h∗2)+α̃

′
ir
~h∗2

1

= g
(α′i+α̃

′
ib)
~d∗1+α̃

′
ir
~d∗2

1

For ciphertexts before the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α̃′i(x

1
1,i
~f∗1+···+x1n,i ~f∗n)(T)α̃

′
i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)g

α′i(x
1
1,i
~f∗1+···+x1n,i ~f∗n)

1 (ga1)α
′
i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)

= g
(α′i+α̃

′
ib)(x

1
1,i(

~f∗1+a
~f∗n+1)+···+x1n,i(~f∗n+a~f∗2n))+α̃′ir(x11,i ~f∗n+1+···+x1n,i ~f∗2n)

1

= g
(α′i+α̃

′
ib)(x

1
1,i
~b∗1+···+x1n,i~b∗n)+α̃′ir(x11,i~b∗n+1+···+x1n,i~b∗2n)

1

C2,i = (gb1)
α̃′i
~h∗1(T)α̃

′
i
~h∗2g

α′i
~h∗1

1 (ga1)α
′
i
~h∗2

= g
(α′i+α̃

′
ib)(

~h∗1+a
~h∗2)+α̃

′
ir
~h∗2

1

= g
(α′i+α̃

′
ib)
~d∗1+α̃

′
ir
~d∗2

1

(The only difference from the prior ciphertext construction is that ~x1 is used instead of ~x0).

22

When r ← Zp, all ciphertexts before the jth are properly distributed type-(~x1i , ~x
1
i) ciphertexts and

all ciphertexts after the jth are properly distributed type-(~x0i , ~x
0
i) ciphertexts where αi = α′i + α̃′ib

and α̃i = α̃′ir. This is as would be expected in Game4j,Z .

When r = 0, all ciphertexts before the jth ciphertext are properly distributed type-(~x1i ,~0) ciphertexts
and all ciphertexts after the jth are properly distributed type-(~x0i ,~0) ciphertexts where αi = α′i+ α̃′ib.
This is as would be expected in Game5j,Z .

Our simulation is therefore identical to either Game4j,Z or Game5j,Z depending on the SXDH

challenge T = gab+r1 having r ← Zp or r = 0 respectively. Therefore, by playing the security game in
this manner with the supposed attacker and using the attacker’s output as an answer to the SXDH
challenge, we will enjoy the same non-negligible advantage as the supposed attacker in deciding the
SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

Lemma 11. No attacker can achieve a non-negligible difference in advantage between Game5j,Z and

Game6j,Z for j = 1, ..., Q1.

Proof. This lemma is unconditionally true because both games are information-theoretically identical.
In the simulation of the security Game5j,Z , one draws bases (B,B∗) ← Dual(Z2n

p). However,

imagine knowing the jth ciphertext vectors ~x0j , ~x
1
j ahead of time and drawing the bases in the

following way: first, draw B,B∗ ← Dual(Z2n
p) then apply following invertible linear transformation

to get (F,F∗), which is used (along with a normally drawn (D,D∗)← Dual(Z2
p)) as the basis:

~fi = ~bi +
αj(x

0
i,j − x1i,j)
α̃jx11,j

~bn+1 for i = 1, ..., n

~fn+i = ~bn+i for i = 1, ..., n

~f∗n+1 = ~b∗n+1 −
n∑
i=1

αj(x
0
i,j − x1i,j)
α̃jx11,j

~b∗i

~f∗i = ~b∗i for i = 1, ..., n, n+ 2, ..., 2n

where αj , α̃j are randomly drawn values used in the creation of the jth ciphertext. Recall that the
distribution of the (F,F∗) produced this way is identical to that produced by Dual(Z2n

p)).

Consider simulating Game5j,Z with this basis. Any key (for, say, vector ~y0) looks like:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···+y0n ~f2n)
2

K2 = gβ
~d1+β̃ ~d2

2 .

23

where:

K1 = g
β(y01

~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···+y0n ~f2n)
2

= g
β(y01(

~b1+
αj(x

0
i,j−x

1
i,j)

α̃jx
1
1,j

~bn+1)+···+y0n(~bn+
αj(x

0
i,j−x

1
i,j)

α̃jx
1
1,j

~bn+1))+β̃(y01
~bn+1+···+y0n~b2n)

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)+
βαj〈~y

0,~x0j−~x
1
j 〉

α̃jx
1
1,j

~bn+1

2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···+y0n~b2n)
2

The last step above comes from the fact that 〈~y0, ~x0j − ~x1j 〉 = 0.

(~x0j , ~x
1
j are vectors requested in the game where we require 〈~y0, ~x0j 〉 = 〈~y0, ~x1j 〉 =⇒ 〈~y0, ~x0j −~x1j 〉 = 0).

This is a type-(~y0, ~y0) key in the (B,B∗) basis (as expected in both Game5j,Z and Game6j,Z).

All ciphertexts created before the jth ciphertext look like properly distributed type-(~x1i ,~0)
ciphertexts in the (B,B∗) basis:

C1,i = g
αi(x

1
1,i
~f∗1+···+x1n,i ~f∗n)

1

= g
αi(x

1
1,i
~b∗1+···+x1n,i~b∗n)

1

C2,i = g
αi ~d
∗
1

1

Similarly, all ciphertexts created after the jth ciphertext look like properly distributed type-(~x0i ,~0)
ciphertexts in the (B,B∗) basis:

C1,i = g
αi(x

0
1,i
~f∗1+···+x0n,i ~f∗n)

1

= g
αi(x

0
1,i
~b∗1+···+x0n,i~b∗n)

1

C2,i = g
αi ~d
∗
1

1

However, the jth ciphertext constructed (as a type-(~x0j , ~x
1
j) ciphertext) looks like a type-(~x1j , ~x

1
j)

ciphertext in the (B,B∗) basis:

C1,j = g
αj(x

0
1,j
~f∗1+···+x0n,j ~f∗n)+α̃j(x11,j ~f∗n+1+···+x1n,j ~f∗2n)

1

= g

αj(x
0
1,j
~b∗1+···+x0n,j~b∗n)+α̃j(x11,j(~b∗n+1−

n∑
i=1

αj(x
0
i,j − x1i,j)
α̃jx11,j

~b∗i) + · · ·+ x1n,j
~b∗2n)

1

= g
αj(x

1
1,j
~b∗1+···x1n,j~b∗n)+α̃j(x11,j~b∗n+1+···+x1n,j~b∗2n)

1

C2,j = g
αj ~d
∗
1+α̃j

~d∗2
1

This construction of the jth ciphertext is the only difference between Game5j,Z and Game6j,Z .

So, drawing (B,B∗) directly from Dual(Z2n
p) and using it to play Game5j,Z results in Game5j,Z in

24

the (B,B∗) basis. However, transforming this basis to (F,F∗) and using it instead results in playing
Game6j,Z with the (B,B∗) basis. However, since (B,B∗) and (F,F∗) have the same distribution (the

one produced by Dual(Z2n
p)), this means that the two Games are actually information-theoretically

identical. Therefore, no attacker can achieve non-negligible difference advantage in distinguishing
between Game5j,Z and Game6j,Z .

Lemma 12. No polynomial-time attacker can achieve a non-negligible difference in advantage
between Game6j,Z and Game7j,Z for j = 1, ..., Q1 under the SXDH assumption.

Proof. Given an attacker that achieves non-negligible difference in advantage between Game6j,Z and

Game7j,Z for some j ∈ [1, Q1], we could achieve non-negligible advantage in deciding the SXDH
problem as follows:

Given SXDH instance g1, g
a
1 , g

b
1, T = gab+r1 , g2 where either r ← Zp or r = 0, use g1, g2 as

the generators of the same name used to form ciphertexts and keys respectively. Generate bases
(F,F∗)← Dual(Z2n

p), (H,H∗)← Dual(Z2
p) and implicitly define new bases (B,B∗), (D,D∗) as the

following:

~bi = ~fi for i = 1, ..., n

~bn+i = ~fn+i − a~fi for i = 1, ..., n

~b∗i = ~f∗i + a~f∗n+i for i = 1, ..., n

~b∗n+i = ~f∗n+i for i = 1, ..., n

~d1 = ~h1

~d2 = ~h2 − a~h1
~d∗1 = ~h∗1 + a~h∗2
~d∗2 = ~h∗2

Note that these bases are distributed exactly the same as those output by Dual(Z2n
p) and Dual(Z2

p)
respectively (they are created by applying an invertible linear transformation to the output of
Dual(Z2n

p) and Dual(Z2
p)).

To construct any key (for, say, vector ~y0), generate random β′, β̃ ← Zp, implicitly define

25

β = β̃a+ β′, and compute:

K1 = g
β′(y01

~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···y0n ~f2n)
2

= g
(β−β̃a)(y01 ~f1+···+y0n ~fn)+β̃(y01 ~fn+1+···y0n ~f2n)
2

= g
β(y01

~f1+···+y0n ~fn)+β̃(y01(~fn+1−a~f1)+···y0n(~f2n−a~fn))
2

= g
β(y01

~b1+···+y0n~bn)+β̃(y01~bn+1+···y0n~b2n)
2

K2 = gβ
′~h1+β̃~h2

2

= g
(β−β̃a)~h1+β̃~h2
2

= g
β~h1+β̃(~h2−a~h1)
2

= gβ
~d1+β̃ ~d2

2

a properly distributed type-(~y0, ~y0) key (as expected in both Game6j,Z and Game7j,Z).
For the jth ciphertext, draw αj , α̃j ← Zp and compute:

C1,j = g
αj(x

1
1,j
~f∗1+···+x1n,j ~f∗n)

1 (ga1)αj(x
1
1,j
~f∗n+1+···+x1n,j ~f∗2n)g

α̃j(x
1
1,j
~f∗n+1+···+x1n,j ~f∗2n)

1

= g
αj(x

1
1,i(

~f∗1+a
~f∗n+1)+···+x1n,i(~f∗n+a~f∗2n))+α̃j(x11,j ~f∗n+1+···+x1n,j ~f∗2n)

1

= g
αj(x

1
1,j
~b∗1+···+x1n,j~b∗n)+α̃j(x11,j~b∗n+1+···+x1n,j~b∗2n)

1

C2,j = g
αj~h
∗
1

1 (ga1)αj
~h∗2g

α̃j~h
∗
2

1

= g
αj(~h

∗
1+a

~h∗2)+α̃j
~h∗2

1

= g
αj ~d
∗
1+α̃j

~d∗2
1

a properly distributed type-(~x1j , ~x
1
j) ciphertext (as expected in both Game6j,Z and Game7j,Z). Note

that using (~x1j , ~x
1
j) here instead of (~x0j , ~x

1
j) is the only difference between this lemma and Lemma 10.

For all ciphertexts after the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α̃′i(x

0
1,i
~f∗1+···+x0n,i ~f∗n)(T)α̃

′
i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)g

α′i(x
0
1,i
~f∗1+···+x0n,i ~f∗n)

1 (ga1)α
′
i(x

0
1,i
~f∗n+1+···+x0n,i ~f∗2n)

= g
(α′i+α̃

′
ib)(x

0
1,i(

~f∗1+a
~f∗n+1)+···+x0n,i(~f∗n+a~f∗2n))+α̃′ir(x01,i ~f∗n+1+···+x0n,i ~f∗2n)

1

= g
(α′i+α̃

′
ib)(x

0
1,i
~b∗1+···+x0n,i~b∗n)+α̃′ir(x01,i~b∗n+1+···+x0n,i~b∗2n)

1

C2,i = (gb1)
α̃′i
~h∗1(T)α̃

′
i
~h∗2g

α′i
~h∗1

1 (ga1)α
′
i
~h∗2

= g
(α′i+α̃

′
ib)(

~h∗1+a
~h∗2)+α̃

′
ir
~h∗2

1

= g
(α′i+α̃

′
ib)
~d∗1+α̃

′
ir
~d∗2

1

26

For ciphertexts before the jth ciphertext, draw α′i, α̃
′
i ← Zp and compute:

C1,i = (gb1)
α̃′i(x

1
1,i
~f∗1+···+x1n,i ~f∗n)(T)α̃

′
i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)g

α′i(x
1
1,i
~f∗1+···+x1n,i ~f∗n)

1 (ga1)α
′
i(x

1
1,i
~f∗n+1+···+x1n,i ~f∗2n)

= g
(α′i+α̃

′
ib)(x

1
1,i(

~f∗1+a
~f∗n+1)+···+x1n,i(~f∗n+a~f∗2n))+α̃′ir(x11,i ~f∗n+1+···+x1n,i ~f∗2n)

1

= g
(α′i+α̃

′
ib)(x

1
1,i
~b∗1+···+x1n,i~b∗n)+α̃′ir(x11,i~b∗n+1+···+x1n,i~b∗2n)

1

C2,i = (gb1)
α̃′i
~h∗1(T)α̃

′
i
~h∗2g

α′i
~h∗1

1 (ga1)α
′
i
~h∗2

= g
(α′i+α̃

′
ib)(

~h∗1+a
~h∗2)+α̃

′
ir
~h∗2

1

= g
(α′i+α̃

′
ib)
~d∗1+α̃

′
ir
~d∗2

1

(The only difference from the prior ciphertext construction is that ~x1 is used instead of ~x0).

When r = 0, all ciphertexts before the jth ciphertext are properly distributed type-(~x1i ,~0) ci-
phertexts and all ciphertexts after the jth are properly distributed type-(~x0i ,~0) ciphertexts where
αi = α′i + α̃′ib. This is as would be expected in Game6j,Z .

When r ← Zp, all ciphertexts before the jth are properly distributed type-(~x1i , ~x
1
i) ciphertexts and

all ciphertexts after the jth are properly distributed type-(~x0i , ~x
0
i) ciphertexts where αi = α′i + α̃′ib

and α̃i = α̃′ir. This is as would be expected in Game7j,Z .

Our simulation is therefore identical to either Game6j,Z or Game7j,Z depending on the SXDH

challenge T = gab+r1 having r = 0 or r ← Zp respectively. Therefore, by playing the security game in
this manner with the supposed attacker and using the attacker’s output as an answer to the SXDH
challenge, we will enjoy the same non-negligible advantage as the supposed attacker in deciding the
SXDH problem.

By the SXDH assumption, this is not possible, so no such adversary can exist.

27

