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Abstract. This paper presents a generic method for turning passively
secure protocols into protocols secure against covert attacks, adding an
offline preprocessing and a cheap post-execution verification phase. The
execution phase, after which the computed result is already available to
the parties, has only negligible overhead.
Our method uses shared verification based on precomputed multiplica-
tion triples. Such triples are often used to make the protocol execution
itself faster, but in this work we make use of these triples especially
for verification. The verification preserves the privacy guarantees of the
original protocol, and it can be straightforwardly applied to protocols
over finite rings, even if the same protocol performs its computation over
several distinct rings at once.

Introduction

Suppose that several distinct parties communicating over a network want to
solve a common problem. As far as the parties trust each other, the task is
trivial, but it becomes more difficult if it is not the case. It is known that such
a computation can be performed in a manner that the participants only learn
their own outputs and nothing else [1], regardless of the functionality that the
parties actually compute. This general result is based on a construction expensive
in both computation and communication, but now there exist more efficient
general secure multiparty computation (SMC) platforms [2–5], as well as various
protocols optimized to solve concrete problems [6–9].

Initially, two main kinds of adversaries are taken into account: passive and
active. The highest performance and greatest variety is achieved for protocols
secure against passive adversaries. However, in practice one would like to achieve
a stronger security property. Since achieving security against active adversaries
is expensive, some intermediate adversary classes (between passive and active)
have been introduced.

In practice, it would often be sufficient that an active adversary would not
be detected immediately during the computation, but probably later, after the
computation has already been finished. Hence ideas of verifiable computation
(VC) [10] are applicable to SMC. In general, VC is a method allows a weak



client to outsource a computation to a more powerful server that accompanies
the computed result with a proof of correct computation that is relatively easy for
a weak client to verify. Similar ideas can be used to strengthen protocols secure
against passive adversaries. Namely, after executing the protocol, the parties can
prove to each other that they have correctly followed the protocol, with little
overhead.

This work is based on distributed verification, where the intermediate com-
putation values of the prover are shared amongst a set of verifier parties where
at least one verifier is honest. Although it is pretty trivial for the verifiers to
repeat the same computation on these shares in a secret shared way, we do not
want to execute the same protocol on the same inputs again, as this would be
senseless. Instead, we make use of the fact that, after the initial protocol execu-
tion, the prover already knows all the intermediate values, and hence can make
the verifiers’ work significantly easier. In our construction, we apply the ideas of
precomputation of multiplication triples [11] (Beaver triples), and combine them
with linear secret sharing, which we use also for commitments. In general, using
Beaver triples allows to make the protocol faster due to substituting multipli-
cations with declassifications of random values, which is much cheaper. In our
settings, the Beaver triples will be used in the verification process, and since the
prover already knows which values will have to be declassified, it may publish all
of them already before the verification starts. The correctness of these published
values will be also verified in just one round.

We end up with a protocol transformation that makes the executions of any
protocol (and not just SMC protocols) verifiable afterwards. Our transformation
commits the randomness (this takes place offline), inputs, and the communi-
cation of the participants. The commitments are cheap, being based on digital
signatures and not adding a significant overhead to the execution phase. The
results of the protocol are available after the execution, and the verification can
take place at any time after the execution.

The verification itself requires the prover to send around O(|C|) information,
but that can be done in one round. The remaining verification is local. The
verification results of size O(|C|) (in general, much less than |C|) are published
by the verifiers in one round.

We present our protocol transformation as a functionality in the universal
composability (UC) framework [12]. After reviewing related work in Sec. 1, we
describe the ideal functionality in Sec. 2 and its implementation in Sec. 4. Before
the latter, we give an overview of the existing building blocks we use in Sec. 3.
We estimate the computational overhead of our transformation in Sec. 5.

1 Related Work

Our protocol transformation converts a protocol secure against a passive adver-
sary to a protocol secure against covert adversary [13] that is prevented from
deviating from the prescribed protocol by a non-negligible chance of getting
caught. In our case, the probability of being caught is negligible, based on the



properties of underlying message transmission functionality (signatures), hash
functions, and the protocols that generate offline preshared randomness.

Our transformation is very close to to [14], which is in turn similar to [15].
In [15], several instances of the initial protocol are executed, where only one
instance is run on real inputs, and the other one on randomly generated shares.
No party should be able to distinguish the protocol executed on real inputs from
the protocol executed on random inputs. In the end, the committed traces of
the random executions are revealed by each party, and everyone may check if
a party acted honestly in the random executions. This way, in the beginning
all the inputs must be reshared, and the computation must leak no information
about the inputs, so that no party can guess which inputs are real and which
are random.

In [14], the intermediate values of the circuit computed by each party are
shared amongst the other parties using Shamir sharing. Afterwards, the cor-
rectness of these shares is verified by a linear probabilistically checkable proof
(LPCP). This transformation can be applied to an arbitrary initial protocol, but
computing the proof is expensive for the prover.

Similarly to [14], the goal of our transformation is to provide security against
a certain form of active attackers. Currently, one of the best sets of SMC proto-
cols secure against active adversaries is SPDZ [4,16]. Its performance is achieved
through extensive offline precomputations, which involve Beaver triple genera-
tion. Similarly to several other protocol sets, SPDZ provides only a minimum
amount of protocols to cooperatively evaluate an arithmetic circuit. A form of
post-execution verifiability has been proposed for SPDZ [17]. Differently from
SPDZ, we use Beaver triples not for the computation itself, but only for the final
verification (which does not exclude the possibility of using triples also in the
execution phase).

We have chosen [14] as the basis for our work. In this work, we use the same
transmission functionality as in [14] (which has been initially motivated by an
analogous functionality from [15]), but instead of LPCP we are going to use
Beaver triples, which allow to apply the verification also to computation over
rings.

2 Ideal Functionality

We specify our verifiable execution functionality in the universal composability
(UC) framework [12]. We have n parties (indexed by [n] = {1, . . . , n}), where
C ⊆ [n] are corrupted for |C| = t < n/2 (we denote H = [n]\C). The protocol
has r rounds, where the `-th round computations of the party Pi, the results of
which are sent to the party Pj , are given by an arithmetic circuit C`

ij over rings
Zn1

, . . . ,ZnK
. We define the following gate operations for such a circuit:

– The operations + (addition) and ∗ (multiplication) over rings Zn1 , . . . ,ZnK

(ni < nj for i < j).
– The operations trunc and zext are between rings. Let x ∈ Znx

, y ∈ Zny
,

nx < ny.



• x = trunc(y) computes x = y mod nx, going from a larger ring to a
smaller ring.

• y = zext(x) takes x and uses exactly the same value y = x in Zny
. If the

ring sizes are powers of 2, it can be treated as taking the log nx bits of
x and extending them with zero bits to log ny bits.

– The operation bits from an arbitrary ring Zn to (Z2)logn performs a bit de-
composition. Although bit decomposition can be performed by other means,
we introduce a separate operation, as it is reasonable to implement a faster
verification for it.

More explicit gate types can be added to the circuit. Although the current set
of gates is sufficient to represent any other operation, the verifications designed
for special gates may be more efficient. For example, introducing the division
gate c = a/b explicitly would allow to verify it as a = b ∗ c instead of express-
ing the division through addition and multiplication. In this work, we do not
define any other gates, as the verification of most standard operations is pretty
straightforward, assuming that bit decomposition is available.

Throughout this paper, we assume that the cardinalites of the rings are pow-
ers of two. Taking a ring of arbitrary size that is not a power of 2 is also possible,
but that would be less efficient applying the methods proposed in this paper. All
the results still hold without any efficiency loss if the computation is performed
in a single finite field for which no bit operation support is needed.

In [14], the proof was based on the fact that Shamir sharing can be used
with threshold. Consistency of Shamir sharing ensured that the set of all-honest
verifiers that satisfy the threshold (which existed due to honest majority assump-
tion) indeed accepts the proof. One significant disadvantage of rings of powers
of 2 is that we cannot use Shamir secret sharing for verification, and additive
secret sharing should be used instead. In this case, the prover has to repeat the
proof with each subset of t + 1 verifiers separately (for efficiency gain, we may
exclude the sets containing the prover itself), in order to ensure that at least
one of the verifier sets consisted of honest provers only. The proof succeeds if
and only if the outcomes of all the verifier sets are satisfiable. The number of
verification sets is thus exponential in the number of parties, but it can still be
reasonable for a small number of parties. Note that we require using the additive
sharing scheme only in the verification phase, and it does not matter whether
the original protocol that we are verifying has used any secret sharing at all.

The circuit C`
ij computes the `-th round messages m`

ij to all parties j ∈ [n]
from the input xi, randomness ri and the messages Pi has received before (all val-
ues xi, ri,m

`
ij are vectors over rings ZN ). We define that the messages received

during the r-th round comprise the output of the protocol. The ideal functional-
ity Fvmpc, running in parallel with the environment Z and the adversary AS , is
given on Fig. 1.

We see that M is the set of parties deviating from the protocol. Our ver-
ifiability property is very strong as all of them will be reported to all honest
parties. Even if only some rounds of the protocol are computed, all the parties
that deviated from the protocol in completed rounds will be detected. Also, no



In the beginning, Fvmpc gets from Z for each party Pi the message
(circuits, i, (C`

ij)
n,n,r
i,j,`=1,1,1) and forwards them all to AS . For each i ∈ H [resp i ∈ C],

Fvmpc gets (input,xi) from Z [resp. AS ]. For each i ∈ [n], Fvmpc randomly generates
ri. For each i ∈ C, it sends (randomness, i, ri) to AS .
For each round ` ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C`

ij to compute the message
m`

ij . For all j ∈ C, it sends m`
ij to AS . For each j ∈ C and i ∈ H, it receives m`

ji from
AS .
After r rounds, Fvmpc sends (output,mr

1i, . . . ,m
r
ni) to each party Pi with i ∈ H. Let

r′ = r and B0 = ∅.
Alternatively, at any time before outputs are delivered to parties, AS may send
(stop,B0) to Fvmpc, with B0 ⊆ C. In this case the outputs are not sent. Let r′ ∈
{0, . . . , r − 1} be the last completed round.
After r′ rounds, AS sends to Fvmpc the messages m`

ij for ` ∈ [r′] and i, j ∈ C.
Fvmpc defines M = B0 ∪ {i ∈ C | ∃j ∈ [n], ` ∈ [r′] : m`

ij 6= C`
ij(xi, ri,m

1
1i, . . . ,m

`−1
ni )}.

Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc, with M ⊆ Bi ⊆ C. Fvmpc

forwards this message to Pi.

Fig. 1: The ideal functionality for verifiable computations

honest parties (in H) can be falsely blamed. We also note that if M = ∅, then
AS does not learn anything that a semi-honest adversary could not learn.

3 Building Blocks

Throughout this work, bold letters x denote vectors, where xi denotes the i-th
coordinate of x. Concatenation of x and y is denoted by (x‖y), and their scalar

product by 〈x,y〉, which is defined (only if |x| = |y|) as 〈x,y〉 =
∑|x|

i=1 xiyi. Our
implementation uses a number of previously defined subprotocols and algorithm
sets.

Message transmission. For message transmission between parties, we use
functionality Ftr [14, 15] which allows one to prove to third parties which mes-
sages one received during the protocol, and to further transfer such revealed
messages. We use the definition of [14] that differs from Damg̊ard et al.’s [15]
Ftransmit by supporting the forwarding of received messages, as well as broad-
casting as a part of the outer protocol. The definition of the ideal functionality
of Ftr is shown on Fig. 2. The real implementation of the transmission function-
ality is built on top of signatures. This makes the implementation very efficient,
as hash trees allow several messages (sent in the same round) to be signed with
almost the same computation effort as a single one [18], and signatures can be
verified in batches [19]. An implementation of Ftr is given in [20].

Beaver triples. Beaver multiplication triples [11] are triples of values

(a, b, c) in a ring Zn, such that a, b
$← R, and c = a ∗ b. Precomputing such

triples can be used to linearize multiplications. For example, if we want to mul-
tiply x ∗ y, and a triple (rx, ry, rxy) is already precomputed and preshared,
we may first compute and publish x′ := x − rx and y′ := y − ry (x′ and y′

leak no information about x and y), and then compute the linear combination



Ftr works with unique message identifiers mid, encoding a sender s(mid) ∈ [n], a
receiver r(mid) ∈ [n], and a party f(mid) ∈ [n] to whom the message should be
forwarded by the receiver (if no forwarding is foreseen then f(mid) = r(mid)).
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from
all (other) honest parties, store (mid,m, r(mid)), mark it as undelivered, and output
(mid, |m|) to the adversary. If the input of Ps(mid) is invalid (or there is no input), and
Pr(mid) is honest, then output (corrupt, s(mid)) to all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid)
from all honest parties, store (mid,m, bc), mark it as undelivered, output (mid, |m|) to
the adversary. If the input of Ps(mid) is invalid, output (corrupt, s(mid)) to all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m, r)
send (mid,m) to Pr; mark (mid,m, r) as delivered. For each undelivered (mid,m, bc),
send (mid,m) to each party and the adversary; mark (mid,m, bc) as delivered.
Forward received message: On input (forward,mid) from Pr(mid) after (mid,m) has
been delivered to Pr(mid), and receiving (forward,mid) from all honest parties, store
(mid,m, f(mid)), mark as undelivered, output (mid, |m|) to the adversary. If the input
of Pr(mid) is invalid, and Pf(mid) is honest, output (corrupt, r(mid)) to all parties.
Publish received message: On input (publish,mid) from the party Pf(mid) which at
any point received (mid,m), output (mid,m) to each party, and also to the adversary.
Do not commit corrupt to corrupt: If for some mid both Ps(mid), Pr(mid) are
corrupt, then on input (forward,mid) the adversary can ask Ftr to output (mid,m′) to
Pf(mid) for any m′. If additionally Pf(mid) is corrupt, then the adversary can ask Ftr

to output (mid,m′) to all honest parties.

Fig. 2: Ideal functionality Ftr

x ∗ y = (x′ + rx)(y′ + ry) = x′y′ + rxy
′ + x′ry + rxry = x′y′ + rxy

′ + x′ry + rxy.
Differently from standard usage (like in SPDZ), we do not use these triples in
the original protocol, but instead use them to simplify the verification phase.
Since the preprocessing phase does not count, we may generate such triples us-
ing any actively secure protocol, for example similarly to SPDZ [4]. The ideal
functionality is given in Fig. 3. In addition to Beaver triple generation, Fpre also
generates and shares random ring elements and random bits, which can also be
done in the preprocessing phase (differently from [14], where randomness sharing
was not treated as preprocessing).

Implementing Fpre is actually cheap if we use honest majority assumption.
Below are given some propositions (without formal proofs).

Beaver triple generation: In our verification, the prover P will know the
precise values of all Beaver triple shares anyway. Let n be the number of required
triples. P generates 2n + 3η triples for a security parameter η and shares them
amongst all the other parties. After that, some randomly chosen η of those
triples are revealed. If all of them are correct, then only negligible fraction of the
remaining 2n+ 2η triples is incorrect. However, we rather want not a negligible
fraction of triples to be incorrect, but want to have all of them correct except
with negligible probability. For this, the triples are randomly divided to n pairs,
where in each pair one triple is sacrificed to check the other one, as it is done in
SPDZ [4]. This uses up one triple from each pair, and any n of the n+η remaining



Fpre works with unique wire identifiers id, encoding a ring size n(id) of the value of
this wire. It stores an array mult of the shares of Beaver triples for multiplication
gates, referenced by unique identifiers id, where id corresponds to the output wire of
the corresponding multiplication gate. It also stores an independent array bit, refer-
enced by id, that stores the shares of random bit vectors that will be used in the bit
decomposition of the wire identified by id.
Initialization: On input (init) from the environment, set mult := [], bit := [].
Beaver triple distribution: On input (beaver, j, id) from Mi, check if mult[id] exists.
If it does, take (r1x, . . . , r

n
x , r

1
y, . . . , r

n
y , r

1
xy, . . . , r

n
xy) := mult[id]. Otherwise, generate

rx
$← Zn(id) and ry

$← Zn(id). Compute rxy = rx · ry. Share rx to rkx, ry to rky , rxy to
rkxy. Assign mult[id] := (r1x, . . . , r

n
x , r

1
y, . . . , r

n
y , r

1
xy, . . . , r

n
xy). If j 6= i, send rix, r

i
y, r

i
xy to

Mi. Otherwise, send (r1x, . . . , r
n
x , r

1
y, . . . , r

n
y , r

1
xy, . . . , r

n
xy) to Mi.

Random bit distribution: On input (bit, j, id) from Mi, check if bit[id] exists. If it

does, take (b1, . . . , bn) := bit[id]. Otherwise, generate a bit vector b
$← (Z2)n(id) and

share it to bk. Assign bit[id] := (b1, . . . , bn). If j 6= i, send bi to Mi. Otherwise, send
(b1, . . . , bn) to Mi.
Randomness distribution: On input (rnd, j, id) from Mi, check if rnd[id] exists. If

it does, take (r1, . . . , rn) := rnd[id]. Otherwise, generate a ring element r
$← Zn(id) and

share it to rk. Assign rnd[id] := (r1, . . . , rn). If j 6= i, send ri to Mi. Otherwise, send
(r1, . . . , rn) to Mi.

Fig. 3: Ideal functionality Fpre

triples may now be used in the verification. The prover may cheat only if two
wrong triples get into the same pair, but this probability is negligible since the
fraction of such triples is small. Differently from SPDZ, we do not need to use
any homomorphic encryption for triple generation, since we allow the prover to
know them.

Randomness Using honest majority assumption, all the randomness can be
generated similarly to [14]. The only question is how to ensure that the random
bits are indeed bits if they are generated in a larger ring. Similarly to Beaver
triple generation, the simplest way is generate n+ η bits and reveal randomly η
of them. If we want the result to be 100% correct, performing checks of the form
b2 − b = 0 can be done, using a Beaver triple for computing each b ∗ b product.

Verifying Basic Operations.

If we need to compute z := trunc(x), we can locally convert the shares over
the larger ring to shares over the smaller ring, which is correct as the sizes of the
rings are powers of 2, and so the size of the smaller ring divides the size of the
larger ring. However, if we need to compute z := zext(x), then we cannot just
covert the shares of committed z locally, as zext is not an inverse of trunc, and
we need to ensure that all the excessive bits of z are 0.

Formally, the gate operations of Sec. 2 are verified as follows.

1. The bit decomposition operation (z0, . . . , zn−1) := bits(z):
check z = z0 + z1 · 2 + · · ·+ zn−12n−1;
check ∀j : zj ∈ {0, 1}.



2. The transition from Z2m to a smaller ring Z2n : z := trunc(x):
compute locally the shares of z from x, do not perform any checks.

3. The transition from Z2n to a larger ring Z2m : z := zext(x):
compute locally the shares of y := trunc(z) from z;
check x = y;
check z = z0 + z1 · 2 + . . .+ zn−1 · 2n−1;
check ∀j : zj ∈ {0, 1}.

Now all the ring-specific operations have been reduced to linear combinations
and equality checks. The linear combinations can be computed locally on shares,
and the equalities verified succinctly in parallel. However, the initial circuit may
still contain some multiplication gates that cannot be computed locally and
hence would provide a large computational overhead for the verifiers. We would
like to get rid of all the multiplications, and we do it using Beaver triples.

Consider a circuit C`
ij being verified. For each multiplication gate, a Beaver

triple is generated in the corresponding ring Z2n . The triple is known by the
prover, and it is used only in the verification, but not in the computation itself.
The triple generation is performed using an ideal functionality Fpre (see Fig. 3)
that generates Beaver triples and shares them amongst the parties. Additionally,
this functionality generates and shares random bits, which will be used similarly
to Beaver triples: at some moment, b′ is published, such that b = (b′+rb) mod 2.
These random bits are not used in multiplication, and they are used to ensure
that b is a bit. Namely, if b′ = 0, then b = rb, and b = 1 − rb otherwise. If rb is
indeed a bit (which can be proved in the preprocessing phase), then b is also a
bit.

Theorem 1. Given a Beaver triple generation protocol with output error ε, any
n-party r-round protocol Π can be transformed into an n-party (r + 6)-round
protocol Ξ in the Ftr-Fpre-hybrid model, which computes the same functionality
as Π and achieves covert security against adversaries statically corrupting at
most t < n/2 parties, where the cheating of any party is detected with probability
at least (1−ε). If Π is δ-private against passive adversaries statically corrupting
at most t parties, then Ξ is δ-private against cover adversaries. Under active
attacks by at most t parties, the number of rounds of the protocol may at most
double.

Thm. 1 is proved by the construction of the real functionality Sec. 4, as well
as the simulator presented in Appendix. A.

4 Real Functionality

The protocol Πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn

doing the work of parties P1, . . . , Pn, and the functionality Ftr. The internal state
of each Mi contains a bit-vector mlci of length n where Mi marks which other
parties are acting maliciously. Some t of n parties are assigned to be verifiers,
and the set of such parties is denoted by V. The goal of the prover is to prove its



Circuits: Mi gets from Z the message (circuits, i, (C`
ij)

n,n,r
i,j,`=1,1,1) and sends it to A.

Beaver triple generation Let id be the identifier of a multiplication gate of Mi,
where both inputs are private. Each party Mk sends a query (beaver, i, id) to Fpre. The

prover Mi receives all the shares (r1x, . . . , r
t′
x , r

1
y, . . . , r

t′
y , r

1
xy, . . . , r

t′
xy), and each verifier

just the shares (rkx, r
k
y , r

k
xy).

Random bit generation Let id be the identifier of a circuit wire that needs a proof
of correctness of its bit decomposition. For all k ∈ V, Mk sends a query (bit, i, id) to

Fpre. The prover Mi receives all the shares (b1, . . . , bt
′
), and each verifier just the share

bk. Let b̄
k
i be the vector of all such bit shares of the prover Mi issued to Mk.

Randomness generation and commitment: Let id be the identifier of a circuit
wire that takes randomness as an input. For all k ∈ V, Mk sends a query (rnd, i, id) to

Fpre. The prover Mi receives all the shares r1, . . . , rt
′
), and each verifier just the share

rk. Let rk
i be the vector of all such bit shares of the prover Mi issued to Mk.

Fig. 4: Preprocessing phase of the real functionality

Input commitments: Mi with i ∈ H [resp. i ∈ C] gets from Z [resp. A] the input

xi and shares it to n vectors x1
i , . . . ,x

t′
i . For each k ∈ V \ {i}, Mi sends to Ftr

(transmit, (x share, i, k),xk
i ) for Mk.

At any time: if (corrupt, j) comes from Ftr, Mi writes mlci[j] := 1 and goes to the
accusation phase.

Fig. 5: Initialization phase of the real functionality

honestness to each subset of t verifiers (the number of proofs is thus exponential
in the number of parties). Due to the honest majority assumption, at least one
of these subsets consists only of honest provers. The proof is accepted iff all the
verifier subsets accept the proof. Hence our construction has to ensure that no
set containing any dishonest verifiers may accuse an honest prover.

The protocol Πvmpc runs in six phases: preprocessing, initialization, execu-
tion, message commitment, verification, and accusation. For simplicity, we de-
scribe each phase as it is defined for one proof (for one fixed set V). These phases
are exactly the same for all the subsets of t′ := t+ 1 verifiers, sharing no unique
randomness, and hence they can be treated as independent proofs.

Preprocessing. This is a completely offline preprocessing phase that can
be performed before any inputs are known. First of all, the circuits C`

ij are
constructed and shown to the adversary. For the prover Mi, a Beaver triple
is constructed and shared for each multiplication gate of C`

ij . In addition, N
random bits are generated for each value that requires a bit decomposition in
a ring of size 2N . All these values are generated using Fpre. The randomness
vectors ri used in the initial protocol are committed for each Mi also using
Fpre. This phase is given in Fig.4.

Initialization. In the initialization phase, the inputs xi. This phase is given
on Fig.5. Note that the consistency of input shares is not verified. Intuitively, it
can be only more difficult for the prover to prove the correctness of his compu-
tation for several distinct inputs at once. The simulator (in Appendix A) proves
it more formally.



For each round ` the machine Mi computes c`ij = C`
ij(xi, ri, c

1
1i, . . . , c

`−1
ni ) for each

j ∈ [n] and sends to Ftr the message (transmit, (message, `, i, j), c`ij) for Mj .
After r rounds, uncorrupted Mi sends (output, cr1i, . . . , c

r
ni) to Z and sets r′ := r.

At any time: if (corrupt, j) comes from Ftr, each (uncorrupted) Mi writes mlci[j] := 1,
sets r′ := `− 1 and goes to the message commitment phase.

Fig. 6: Execution phase of the real functionality

Message sharing: As a sender, Mi shares c`ij to c`kij . For each k ∈ V, Mi sends to Ftr

the messages (transmit, (c share, `, i, j, k), c`kij ) for Mj .
Public values: The prover Mi constructs the vector b`i which denotes which entries of

communicated values of b̄
`
i (related to communication values) should be flipped. Let p`

i

be the vector of the published values c′ such that c = (c′+ rc) is a masked communica-
tion value. Mi sends to Ftr a message (broadcast, (communication public, `, i), (p`

i , b
`
i)).

Message commitment: upon receiving ((c share, `, i, j, k), c`kij ) and
(broadcast, (communication public, `, i), (p`

i , b
`
i)) from Ftr for all k ∈ V, the ma-

chine Mj checks if the shares correspond to c`ij it has already received. If only

c`sij
′

is published for some c`sij , then it checks c`sij = c`sij
′

+ rc for the corresponding
preshared randomness rc (related to the Beaver triple). If something is wrong, Mj

sends (publish, (message, `, i, j)) to Ftr, so now everyone sees the values that it has
actually received from Mi, and each (uncorrupted) Mk should now use c`kij := c`ij . If
the check succeeds, then Mi sends to Ftr (forward, (c share, `, i, j, k)) for Mk for all
k ∈ V \ {i}.

Fig. 7: Message commitment phase of the real functionality

Execution. The parties run the original protocol as before, just using Ftr to
exchange the messages. This phase is given on Fig.6. If at any time in some round
` the message (corrupt, j) comes from Ftr (all uncorrupted machines receive it
at the same time), the execution is cut short, no outputs are produced and the
protocol continues with the commitment phase.

Message commitment. In the message commitment phase, all the n par-
ties finally commit their sent messages c`ij for each round ` ∈ [r′] by sharing

them to c`kij and sending these shares to the other parties. This phase is given on

Fig. 7. Let v`
ij = (xi‖ri‖c11i‖ · · · ‖c

`−1
ni ‖c`ij) be the vector of inputs and outputs

to the circuit C`
ij that Mi uses to compute the `-th message to Mj . After this

phase, Mi has shared v`
ij among the t′ verifier parties. Let v`k

ij be the share of

v`
ij given to machine Mk.

The proving party now also publishes all the public Beaver triple commu-
nication values: for each c = (c′ + rc), it publishes c′. It also publishes a bit
b′ij for each communicated bit bij that requires a proof of being a bit. For the

communicated values of c`ij , publishing only the value c′
`
ij is sufficient, and c`ij

itself does not have to be reshared.

During the message commitment phase, if at any time (corrupt, j) comes from
Ftr, the proof for Pj ends with failure, and all uncorrupted machines Mi write
mlci[j] := 1.



Remaining proof commitment: The prover Mi constructs the vector b`i which

denotes which entries of non-communicated values b̄
`
i should be flipped. Let p`

i be the
vector of the published values z′ such that z = (z′+rz) is a masked non-communicated
value. Mi sends to Ftr a message (broadcast, (remaining public, `, i), (p`

i , b
`
i)).

For each operation z = zext(x), z = trunc(x), Mi shares z to zk. Let z`k
i be the vector

of all such shares in all the circuits of Mi. It sends ((z share, `, i, k),z`k
i ) to Ftr.

Local computation: After receiving all the messages
(broadcast, (remaining public, `, i), (p`

i , b
`
i)) and ((z share, `, i, k),z`k

i ), each verify-
ing party Mk locally computes the circuits of the proving party Mi on its local shares,
collecting the necessary linear equality check shares. In the end, it obtains a set of
shares A1x

k
1 , . . . , AKxk

K . Mi computes and publishes d`k
ij = (A1x

k
1‖ . . . ‖AKxk

K).
Complaints and final verification: The prover Mi knows how a correct verification
should proceed and, hence, it may compute the values d`k

ij itself. If the published d`k
ij is

wrong, then the prover accuses Mk and publishes all the shares sent to Mk using Ftr.
All the honest parties may now repeat the computation on these shares and compare
the result. If the shares d`k

ij correspond to 0, then the proof of Mi for C`
ij is accepted.

Otherwise, each honest party now immediately sets mlcv[i] := 1.

Fig. 8: Verification phase of the real functionality

Verification phase.
The proving party publishes all the remaining public Beaver triple values,

and all the remaining bits b′ij for each bit bij that require a proof of being a
bit (see Fig. 8). For each operation z := zext(x), where z ∈ Z2ne , the prover
commits by sharing the value of z in the ring Z2ne .

After all the values are committed and published, each verifier Mk does the
following locally:

– Let b̄
k
i be the vector of precomputed random bit shares for the prover Mi,

and bi the vector of published bits. For each entry b̄kij of b̄ki , if bij = 1, then

the verifier takes 1 − b̄kij , and if bij = 1, then it takes b̄kij straightforwardly.
These values will now be used in place of all shares of corresponding bits.

– For all Beaver triple shares (rkx, r
k
y , r

k
xy) of Mi, the products x′rky , y′rkx, and

x′y′ are computed locally.

As a verifier, each Mk computes each circuit of the prover on its local shares.
Due to preshared Beaver triples, the computation of addition and multiplication
gates is local, and, hence, communication between the verifiers is not needed.

The correctness of operations (z1, . . . , zne
) := bits(z), z = zext(x), and z =

trunc(x) is verified as shown in Sec. 3. The condition ∀j : zj ∈ {0, 1} can be
ensured as follows: using the bit rzj shared in the preprocessing phase, and z′j
published in the commitment phase, each party locally computes the share of
zj ∈ {0, 1} as rzj if z′j = 0, and 1− rzj if z′j = 1. In the case of zext, the verifiers
compute the shares of y locally, and take the shares of z that are committed by
the prover in the commitment phase. Now, the checks of the form x − y = 0
and z0 + z1 · 2 + . . .+ zne−1 · 2ne−1 − z = 0 are left. Such checks are just linear
combinations of the shared values. As the parties cannot verify locally if the
shared value is 0, they postpone these checks to the last round.



Finally, each party Mi sends to Z the message (blame, i, {j |mlci[j] = 1}).
Fig. 9: Accusation phase of the real functionality

For each multiplication input, the verifiers need to check x = (x′+rx), where
x is either the initial commitment of x, or the value whose share the verifier has
computed locally. The shares of x′+rx can be different from the shares of x, and
that is why an online check is not sufficient. As z = x ∗ y = (x′ + rx)(y′ + ry) =
x′y′+x′ry +y′rx +rxy, the verifiers compute locally zk = x′y′+x′rky +y′rkx +rkxy
and proceed with zk. The checks x = (x′ + rx) and y = (y′ + ry) are delayed.

Finally, the verifiers come up with the shares c̄`kij of the values c̄`ij that should

be the outputs of the circuits. The verifiers have to check c`ij = c̄`ij , but they

cannot do it locally since the shares c`kij and c̄`kij can be different. Again, an

online linear combination check is needed for each c`kij .
In the end, the verifiers have to check the linear combinations A1x1 =

0, . . . , AKxK = 0, where Aixi = 0 has to be checked in Z2ni . They compute
the shares of dk

i := Aix
k
i locally. If the prover is honest, then the vectors dk

i

are just shares of a zero vector and, hence, can be revealed without leaking any
information.

Unfortunately, in a ring we cannot merge the checks di = 0 into one 〈di, si〉 =
0 due to a large number of zero divisors (the probability of cheating becomes too
large). However, if the total number of parties is 3, then there are 2 verifiers in
a verifying set. They want to check if 0 = di = d1

i + d2
i , which is equivalent to

checking whether d1
i = −d2

i . For this, take a collision-resistant hash function and
publish h`1ij := h((d1

1‖ . . . ‖d
1
K)) and h`2ij := h(−(d2

1‖ . . . ‖d
2
K)). Check h`1ij = h`2ij .

Accusation. Finally, each party outputs the set of parties that it considers
malicious. This short phase is given in Fig. 9.

The formal UC proof for the real functionality can be found in Appendix A.

5 Efficiency

In this section we estimate the overheads caused by our protocol transformation.
Let C be the circuit of the prover. Let n be the total number of parties,

t < n/2 the number of corrupt parties, r the number of rounds, Ng the number
of gates, Nw the number of wires, Nx the number of inputs (elements of a ring
ZN ), Nc the number of communicated ring elements, Nr the number of random
ring elements, and Ni = Nw −Nx −Nr −Nc the number of intermediate wires
in the circuit. Then |v| = Nx +Nr +Nc (where v is the shared commitment, as
shown in Sec. 4).

In the case of additive sharing, up to
(

n
t+1

)
proofs have to be performed in

parallel for each party. For simplicity, below we present the complexity of one
such proof. The local computations all fit into O(|C|), and so we do not count
them. Let the set of t + 1 verifiers be fixed. Compared to the original protocol,
for each Mi the proposed solution has the following network communication



overheads (measured in the number of ring elements, which may be a bit unfair
since different elements may belong to different rings).

Preprocessing: Is done offline and does not depend on the inputs. Hence
we do not take its complexity into account.

Initialization: Share one vector of length Nx (the input x) amongst the
t+ 1 verifiers in Nx · (t+ 1) network communication.

Execution: No computation/communication overheads are present in this
phase, except those caused by the use of the message transmission functionality.

Message commitment: Send to each verifier party (t+1)·Nc ring elements,
which represent the total communication commitment.

Verification: The prover now publishes the vectors p`
i and bi for each round

`. In the worst case, such a vector should be published for each wire, and hence
the prover has to broadcast at most 2Nw ring elements. The simplest broadcast
based on honest majority requires that all the communication should be dis-
tributed by each party to each other party two times, and hence there will be
n · 2Nw + 2n2 · 2Nw communicated ring elements. All the verifiers then compute
the circuit C on their shares locally and then compute and publish the final
shares of Ax, which is up to Nw ring elements. In the case t = 3, they only
publish one ring element, which is either h(Ax) or h(−Ax).

As long as there are no complaints, the only overhead that Ftr causes is that
each message is signed, and each signature is verified.

6 Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols with hon-
est majority to covertly secure ones. The protocol transformation is suitable to
be implemented on top of some existing, highly efficient, passively secure SMC
frameworks, especially those that use 3 parties and computation over rings of
size 2N . The framework will retain its efficiency, as the time from starting a
computation to obtaining the result at the end of the execution phase will not
increase. Also, the overheads of verification, which are proportional to the num-
ber of parties, will be rather small due to the small number of computing parties
in all typical SMC deployments (the number of input and result parties may be
large, but they can be handled separately).
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A Simulator

In this section we prove that our protocol is as secure as Fvmpc. We have to show
that there exists a simulator that can translate the between the messages Fvmpc

exchanges with the ideal adversary, and the messages the protocol in Fig. 5–9
exchanges with the real adversary over the network. We present the work of the
simulator S in phases, coinciding with the phases of real functionality that it
simulates to the adversary A.

Preprocessing

Circuits: In the beginning, Fvmpc gets the messages (circuits, i, (C`
ij)

n,n,r
i,j,`=1,1,1)

from Z for each party Pi and forwards them all to S. S delivers them to A.

Beaver triple generation:. In the real functionality, the triples for x and y
(used in the product x∗y) are generated using Fpre. From the name of dishonest
parties, A sends the queries to S which has to simulate the behaviour of Fpre. For
the values known by dishonest parties, S generates the randomness in exactly the
same way as Fpre does. The randomness rx of honest parties cannot be randomly
generated since S will have to publish the public masked value x′ = (x − rx)
at some point, but x is unknown to S. Since the malicious parties receive only
t shares of rx out of t + 1, S just generates random uniform shares rkx for the
malicious parties without thinking of what the remaining shares could be.

Randomness generation and commitment: The bit randomness, and also the
randomness ri used in the initial protocol execution, are both generated similarly
to the Beaver triples. For each i ∈ [n], Fvmpc sends (randomness, i, ri) to S.

Initialization.

Input commitments: For i ∈ H, S should generate the shares of xi by itself.
At most t shares are sent to A, and they look random due to additive sharing, so
S generates them uniformly at random. Now S has to send (input,xi) to Fvmpc

for each malicious party Pi. In the real functionality, the vectors xi of malicious
parties are committed as shares whose particular values are chosen by A.

At any time: During all transmissions of the real functionality, S simulates
the functionality Ftr. If (corrupt, i) is output from Ftr, S sends (stop,B0) to
Fvmpc for B0 = {i |(corrupt, i) has been output}. The simulator S will follow it



up with messages (blame, i,B0) to Fvmpc for all i ∈ H. This position corresponds
to the direct jump to the accusation phase in the real functionality.

Execution.
For each round `: for each i ∈ H and j ∈ [n], Fvmpc uses C`

ij to compute

the message m`
ij . For all j ∈ C, it sends m`

ij to S. For each j ∈ C and i ∈ H, it

waits for m`
ji. S models the communication of Mj and Mi through Ftr. It takes

m`
ji = c`ji.
After r rounds: S goes to the message commitment phase with r′ = r.
At any time: If (corrupt, j) is output from Ftr, S sends (stop,B0) to Fvmpc

for B0 = {i |(corrupt, i) has been output}. In the real functionality, S goes to the
message commitment phase with r′ = `− 1.

Message commitment.
Message sharing: After the simulation of the initial protocol has finished,

Fvmpc waits for the messages m`
ij for ` ∈ [r′] and i, j ∈ C. For each corrupt

Mi, A generates the shares by itself. For each uncorrupted Mi, S has to give to
A only t of the t + 1 shares of each communication, so the knowledge of c`ij is
unnecessary.

Public values: A comes up with the public values for malicious parties. S has
to think out the values for the honest parties.

– For each value x used as an input of a multiplication gate, S knows the
randomness shares rkx that were issued to the malicious parties. S now has
to compute x′ = (x− rx). Neither A nor S know the particular values of rkx
distributed to the honest parties, but the sum of these shares rx is definitely
uniform at random since this is ensured by the preprocessing phase. Hence
S just generates a random value x′ and publishes it.

– The same is done to the bits. The bit randomness is shared in such a way
that at most t shares are known to A and S, but there is still at least one
share left. S just generates and reveals a random bit.

Message commitment: If i ∈ C, and A provides inconsistent shares for some
uncorrupted receiver Mj (including the public values c`ij

′
for masked communi-

cation c`ij), then S publishes c`ij through Ftr, as a real honest receiver would do,

and from the side of all honest parties it now assumes that c`ij is committed. If

both i, j ∈ C, then S defines m`
ij =

∑
k∈V c

`k
ij , so that m`

ij corresponds to the
view of the verifier parties V. If A decides that Mj should complain about Mi

and publishes c`ij , then S takes m`
ij = c`ij . S sends m`

ij to Fvmpc.
Remaining commitment: A chooses the remaining commitments for the ma-

licious parties, and S generates the shares of the honest parties that should be
given to the malicious party. S generates these shares uniformly at random,
without knowing what the actual value of the remaining commitment is.

Verification.
Local computation: Each verifying party should compute the circuits of the

proving party Mi on its local shares. A decides on the values d`k
ij for dishonest

parties. S holds all the shares that the malicious parties have sent. If t > 3, then
d`k
ij are published directly. if t = 3, then h(d`k

ij ) is published instead.



– For the honest prover Mi, S knows that it is honest, and hence knows that
it should be

∑
k∈V d`k

ij = 0. From the shares issued to malicious verifier, it

constructs the shares d`k
ij of the malicious verifiers (as if they acted honestly)

and then computes d :=
∑

k∈V∩C d
`k
ij as the sum of shares of the honest

verifiers, sharing d randomly amongst V ∩C. If t = 3, then a single share h`kij
is published by the only dishonest party, and S just takes h`k

′

ij := h`kij for the
remaining honest verifier k′ ∈ V ∩ C.

– If the prover is malicious, then S uses the shares that were issued by A to
the honest verifiers.

Complaints and final verification: If A decides that Mk refuses to broadcast,
or the broadcast value is not equal to (A1x

k
1‖ . . . ‖AKxk

K), then S broadcasts
the complaint. Now A has the right to reveal the shares that have been sent to
Mk. According to Ftr properties, the only case when it can falsify the shares is
when Mi is corrupted. If it is not the case, then A may output only the shares
that have actually been transmitted or forwarded by Mi, which are consistent
with the valid commitment. For t = 3, S may analogously complain that the
broadcast is not equal to h(±(A1x

k
1‖ . . . ‖AKxk

K)) (S may compute h itself since
h is deterministic). Hence an honest Mi will not be blamed in any case. If both
Mi and Mk are corrupted, then A may still provide a false proof for Mi. That
is the reason why we repeat the proof with all sets of t + 1 parties and ensure
that at least in one proof V ⊆ H.

If the proof of Mi has not failed yet due to misuse of Ftr (which is true at
least for uncorrupted Mi), all the shares (A1x

1
k‖ . . . ‖AKxk

K) for all k ∈ V are

published (in the case t = 3, h((A1x
k
1‖ . . . ‖AKxk

K)) and h((A1x
k′

1 ‖ . . . ‖AKxk′

K))
are published). S makes each uncorrupted verifier Mh act exactly like in the real
protocol and checks if the published values are equal. If the check does not pass,
S writes mlc[h, i] := 1 for each honest party Ph.

Accusation. Fvmpc computes all the messages m`
ij and constructs M. It

is waiting for (blame, i,Bi) from the adversary, such that M ⊆ Bi ⊆ C. Let
B′i = {j |mlc[i, j] = 1}. S defines Bi = B0 ∪ B′i. First, we prove that Bi ⊆ C.

1. For each j ∈ B0, a message (corrupt, j) has come from Ftr at some moment.
Due to properties of Ftr, no (corrupt, j) can be sent for j ∈ H. Hence j ∈ C.

2. For each j ∈ B′i, the proof of Mj has not passed the final verification. For

each honest Mj , S has chosen d :=
∑

k∈V∩C d
`k
ij (hk′ := hk for t = 3), and

the check passes since the sum of shares of all the verifiers is 0. Hence for an
uncorrupted Mj the proof would always succeed, so j ∈ C.

Secondly, we prove that M⊆ Bi.

1. The first component of M is B0 for which the message (stop,B0) has been
sent to Fvmpc. S sends to Fvmpc the same B0 that is a subset of Bi.

2. The second component M′ of M are the machines Mi for whom inconsis-
tency of m`

ij happens in Fvmpc. We show that if Mi /∈ Bi, then Mi /∈ M′.
Suppose by contrary that there is some Mi ∈M, Mi /∈ Bi. No honest party



may get into M, hence Mi ∈ C. If Mi /∈ Bi, then the proof of Mi had suc-
ceeded for every C`

ij . For all i, j ∈ [n], ` ∈ [r′], Mi should have come up with

d`k
ij such that

∑
k∈V d

`k
ij = 0 (h`1ij and h`2ij such that h`1ij = h`2ij ).

Consider now the proof in which V ⊆ H. There is at least one such set due to
honest majority assumption. Since all the verifiers in this set are honest, they
indeed use the shares that have been obtained during the protocol run. All
these shares are known by S since all of them have passed through the ma-
licious prover Mi. For t > 3, this immediately implies (A1x1‖ . . . ‖AKxK) =∑

k∈V d
`k
ij = 0 For t = 3, if h`1ij = h`2ij , then, due to the collision-resistance of

h, ∀i : Aix
1
i = −Aix

2
i ⇐⇒ Aixi = 0 with a probability p that depends on

the properties of h.
The verifiers have simulated the computation on their shares locally on the
subcircuits separated by zext operations, bit decompositions, and Beaver
triple masks. If ∀Aixi = 0, this means that all these transition points have
been computed correctly with respect to the committed inputs, random-
ness, and the communication. Hence m`

ij = C`
ij(xi, ri,m

1
1i, . . . ,m

`−1
ni ) for

all i, j ∈ [n], ` ∈ [r′] and Mi /∈M′.


