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Abstract

This paper presents a generic “GMW-style” method for turning passively secure protocols into
protocols secure against covert attacks, adding relatively cheap offline preprocessing and post-
execution verification phases. The execution phase, after which the computed result is already
available to the parties, has only negligible overhead.

Our method uses shared verification based on precomputed and -verified multiplication triples.
The verification proceeds by the verifiers repeating the computations of the prover in secret-shared
manner, checking that they obtain the same messages that the prover sent out during execution. The
verification preserves the privacy guarantees of the original protocol. It is applicable to protocols
doing computations over finite rings, even if the same protocol performs its computation over several
distinct rings at once. We apply our verification method to the Sharemind platform for secure
multiparty computations (SMC), evaluate its performance and compare it to other existing SMC
platforms offering security against stronger than passive attackers.

1 Introduction

Suppose that mutually distrustful parties communicating over a network want to solve a common com-
putational problem. It is known that such a computation can be performed in a manner that the
participants only learn their own outputs and nothing else [35], regardless of the functionality that the
parties actually compute. This general result is based on a construction expensive in both computation
and communication, but now there exist more efficient general secure multiparty computation (SMC)
platforms [11,15,21,25], as well as various protocols optimized to solve concrete problems [14,18,20,31].

Two main kinds of adversaries against SMC protocols are typically considered: passive and active.
The highest performance and greatest variety is achieved for protocols secure against passive adversaries.
In practice one would like to achieve stronger security guarantees. Achieving security against active
adversaries may be expensive, hence intermediate adversary classes (between passive and active) have
been introduced.

It is often a sufficient deterrent if an active adversary is going to be eventually detected. It does not
have to happen immediately after the malicious act. Hence ideas from verifiable computation (VC) [33]
are applicable to SMC. In general, VC allows a weak client to outsource a computation to a more powerful
server that accompanies the computed result with a proof of correct computation that is relatively easy
for the weak client to verify. Similar ideas can be used to strengthen protocols secure against passive
adversaries: after execution, each party will prove to others that it has correctly followed the protocol.

In this work we propose a distributed verification mechanism allowing one party (the prover) to
convince others (the verifiers) that it followed the protocol correctly. In our mechanism, the intermediate
computation values of the prover are secret-shared (using a linear secret-sharing scheme) amongst a set
of verifier parties where at least one verifier is honest. The verifiers repeat the prover’s computations,
using verifiable hints from the prover. The verification is zero-knowledge to any minority coalition of
parties.

Prover’s hints are based on precomputed multiplication triples [6] (Beaver triples), which we adapt
for verification. Before starting the verification (and even the execution), the verifiers hold shares of
sufficiently many triples. Importantly, at this time, they are already convinced in the correctness of the
triples. During verification, the correctness of precomputed triples implies the correctness of prover’s
computations.
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The entire construction constitutes a variant of the GMW compiler [17,35] from passively to actively
secure protocols, showing that this technique can be highly effective. Our verification phase can be seen
as an interactive proof, where the prover uses correlated randomness to make the proof, and the verifier
has been implemented using SMC to ensure its correct behaviour and prover’s privacy.

Applying this verification mechanism n times to any n-party computation protocol, with each party
acting as the prover in one instance, gives us a protocol secure against covert (if verification is performed
at the end) or fully malicious (if each protocol round is immediately verified) adversaries corrupting a
minority of parties. In this work we apply that mechanism to the SMC protocol set [11] employed in the
Sharemind platform [10], demonstrating for the first time a method to achieve security against active
adversaries for this efficient [39] protocol set, the deployments [12, 37, 60] of which include the largest
SMC applications ever [7, 8]. We discuss the difficulties with previous methods in Sec. 2.

Cost of precomputation. There exist other protocols for SMC secure against active adversaries
(see Sec. 2) with very modest overheads due to the need to verify the behaviour of parties. Our verifi-
cation phase, even while having a reasonable cost of its own, is not competitive with these approaches.
However, the efficiency of the verification comes at the expense of very costly precomputation (see Sec. 2),
significantly hampering the deployment. Our approach also has the precomputation phase, which is still
the most expensive part of the protocol, but it is orders of magnitude faster than previous methods (see
Sec. 6) and may actually serve as a partial replacement for them (see Sec. 7).

The reduction of the total cost of actively secure computation is the main benefit of our work. We
achieve this through novel constructions of verifiable computing, reducing the correctness of computations
to the correctness of pre-generated multiplication triples and tuples for other operations.

2 Related Work

Several techniques exist for two-party or multiparty computation secure against malicious adversaries.
We are aware of implementations based on garbled circuits [41, 49], on additive sharing with MACs to
check for correct behaviour [24–26], on Shamir’s secret sharing [21, 58], and on the GMW protocol [35]
paired with actively secure oblivious transfer [49]. Different techniques suit the secure execution of
different kinds of computations, as we discuss below. The verification technique we propose in this paper
is mostly suitable for secret-sharing based SMC, with no preference towards the algebraic structures
underlying the computation.

Our protocol uses precomputed multiplication triples, and also precomputed tuples for other opera-
tions to verify whether parties have followed the protocol. Such triples [6] are used by several existing
SMC frameworks, including SPDZ [25] or ABY [30]. Differing from them, we use the triples not for
performing computations, but for verifying them. This is a new idea that allows us to sidestep the most
significant difficulties in pre-generating the tuples.

The difficulty is, that the precomputed tuples for secure computation must be private. Heavyweight
cryptographic tools are used to generate them under the same privacy constraints as obeyed by the
main phase of the protocol. Existing frameworks utilize homomorphic [30, 51, 53] or somewhat (fully)
homomorphic encryption systems [13,24] or oblivious transfer [49]. For ensuring the correctness of tuples,
the generation is followed by a much cheaper correctness check [24]. Our approach keeps the correctness
check, but the generation can be done “in the open” by the party whose behaviour is going to be checked.

Previously, methods for post-execution verification of the correct behaviour of protocol participants
have been presented in [22, 43]. Laud and Pankova’s method [43] is similar to our work in their appli-
cability (it is in principle possible to verify any computation), as well as in the provided guarantees (a
malicious party has only a negligible chance of going undetected). Their approach still has significant
computational costs during the verification phase that is run after the execution of the protocol. Damg̊ard
et al’s method [22] is more specific. It applies specifically to SMC protocols, and only to protocols with
certain structure, which mildly restricts its applicability. Both works are instances of a more generic
verifiable computation problem, which may be approached in a number of different ways [1,33,36,40,48].
In the setting of multiparty computation, the verifiers may also differ from the protocol participants [2,4].
We note that the general outline of our verification scheme is similar to [4] — we both commit to cer-
tain values during protocol execution and perform computations with them afterwards. However, the
commited values and the underlying commitment scheme are very different. One important resulting
difference is that our work can be straightforwardly applied to computation over rings.
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We apply our verification to the protocol set of Sharemind [10], which is based on additive sharing
over finite rings (typically: integers of certain bit-width) among three computing parties (the number
of parties providing inputs or receiving outputs may be much larger). The protocol set tolerates one
passive corruption. Existing MAC-based methods for ensuring the correct behaviour of parties are not
applicable to this protocol set, because these methods presume the sharing to be done over a finite
field. Also, these methods can protect only a limited set of operations that the computing parties may
do, namely the linear combinations and declassification. Sharemind derives its efficiency from the great
variety of protocols it has and from the various operations that may be performed with the shares.

The verification step converts a protocol secure against a passive adversary to a protocol secure
against covert adversary [3] that is prevented from deviating from the prescribed protocol by a non-
negligible chance of getting caught. In our case, the probability of not being caught is negligible, based
on the properties of underlying message transmission functionality (signatures), hash functions, and the
protocols that generate offline preshared randomness. When applied to Sharemind, we obtain an efficient
protocol set for three computing parties, which can tolerate one actively corrupted party.

We believe that in most situations, where sufficiently strong legal or contractual frameworks are in
place, providing protection against covert adversaries is sufficient to cover possible active corruptions.
The computing parties should have a contract describing their duties in place anyway [28], this contract
can also specify appropriate punishments for being caught deviating from the protocol.

Complexity of actively secure integer multiplication

We are interested in bringing security against active adversaries to integer and floating-point operations,
to be used in secure statistical analyses [8], scientific computations [37] or risk analysis [7]. Such applica-
tions use protocols for different operations on private data, but an important subprotocol in all of them
is the multiplication of private integers. Hence, let us study the state of the art in performing integer
multiplications in actively secure computation protocol sets. All times reported below are amortized over
the parallel execution of many protocol instances. All reported tests have used modern (at the time of
the test) servers (one per party), connected to each other over a local-area network.

Such protocol sets are based either on garbled circuits or secret sharing (over various fields). Lindell
and Riva [46] have recently measured the performance of maliciously secure garbled circuits using state-
of-the-art optimizations. They have found that the total execution time for a single AES circuit is
around 80ms, when doing 1024 executions in parallel and using the security parameter η = 80. The size
of their AES circuit is 6800 non-XOR gates. According to [29], a 32-bit multiplier can be built with
ca. 1700 non-XOR gates. Hence we extrapolate that such multiplication may take ca. 20ms under the
same conditions. Our extrapolation cannot be very precise due to the very different shape of the circuits
computing AES or multiplication, but it should be valid at least as an order-of-magnitude approximation.

A protocol based on secret sharing over Z2 [49] would use the same circuit to perform integer mul-
tiplication. In [32], a single non-XOR gate is estimated to require ca. 70µs during preprocessing (with
two parties). Hence a whole 32-bit multiplier would require ca. 120ms. As the preprocessing takes the
lion’s share of total costs, there is no need for us to estimate the performance of the online phase.

Recent estimations of the costs of somewhat homomorphic encryption based preprocessing for mali-
ciously secure multiparty computation protocols based on additively secret sharing over Zp are hard to
come by. In [23], the time to produce a multiplication triple for p ≈ 264 is estimated as 2ms for covert
security and 6ms for fully malicious security (with two parties, with η = 40). We presume that the cost
is smaller for smaller p, but for p ≈ 232, it should not be more than twice as fast. On the other hand,
the increase of η to 80 would double the costs [23]. In [24], the time to produce a multiplication triple
for p ≈ 232 is measured to be 1.4ms (two parties, η = 40, escape probability of a cheating adversary
bounded by 20%).

The running time for actively secure multiplication protocol for 32-bit numbers shared using Shamir’s
sharing has been reported as 9ms in [21] (with four parties, tolerating a single malicious party). We are
not aware of any more modern investigations into Shamir’s secret sharing based SMC.

A more efficient N -bit multiplication circuit is proposed in [27], making use computations in Z2 and
in Zp for p ≈ N . Using this circuit instead of the one reported in [29] might improve the running times
of certain integer multiplication protocols. But it is unclear, what is the cost of obtaining multiplication
triples for Zp.

3



In this work, we present a set of protocols that is capable of performing a 32-bit integer multiplication
with covert security (on a LAN, with three parties, tolerating a single actively corrupted party, η = 80,
negligible escape probability for a cheating adversary) in 14µs. This is around two orders of magnitude
faster than the performance reported above. In practice, we may achieve even better performance by
making use of covertness and not verifying all protocol runs. See Sec. 7 for discussion.

In concurrent work [38], the oblivious transfer methods of [32] have been extended to construct SPDZ
multiplication triples over Zp. They report amortized timings of ca. 200µs for a single triple with two
parties on a 1Gbps network, where p ≈ 2128 and η = 64. Reducing the size of integers would probably
also reduce the timings, perhaps even bringing them to the same order of magnitude with our results.
But their techniques (as well as most others described here) only work for finite fields, not rings. For
fields, there exist methods to reduce the number of discarded triples during triple verification, which also
apply for us. See Sec. 5.3 for discussion.

3 Ideal Functionality

Notation. Throughout this work, we use ~x to denote vectors, where xi is the i-th coordinate of ~x. All
operations on vectors are defined elementwise. We denote [n] = {1, . . . , n}.

Circuits. An arithmetic circuit over rings Zn1
, . . . ,ZnK

consists of gates performing arithmetic
operations, and connections between them. An operation may be either an addition, constant multipli-
cation, or multiplication in one of the rings Znk

. It may also be “x = trunc(y)” or “y = zext(x)” for
x ∈ Znx and y ∈ Zny , where nx < ny. The first of them computes x = y mod nx, while the second lifts
x ∈ Znx to the larger ring Zny . Finally, there is an operation (z1, . . . , zdlognxe) = bits(x) that decomposes
x ∈ Znx

into bits. This operation could be implemented through other listed operations, but it occurs
so often in our protocols, and can be verified much more efficiently, so it makes sense to consider it
separately.

This set of gates is sufficient to represent any computation; any gates with other operations can be
expressed as a composition of the available ones. Nevertheless, the verifications designed for special gates
may be more efficient. In the protocol set of Sharemind [11], the parties do employ some other operations
for computing the outgoing messages; we can handle all of them.

Execution Functionality. We specify our verifiable execution functionality in the universal com-
posability (UC) framework [16]. Such specification allows us to precisely state the security properties of
the execution.

We have n parties (indexed by [n]), where C ⊆ [n] are corrupted for |C| < n/2 (we denote H = [n]\C).
There is a secure channel between each pair of parties. The protocol is synchronous; it has r rounds,
where the `-th round computations of the party Pi, the results of which are sent to the party Pj , are
given by a publicly known arithmetic circuit C`ij over rings Zn1

, . . . ,ZnK
. The honest parties are using

these circuits to compute their outgoing messages, while the corrupted parties can send anything.
The circuit C`ij computes the `-th round messages ~m`

ij to the party j ∈ [n] from the input ~xi,

randomness ~ri and the messages ~mk
j′i (k < `) that Pi has received before. All values ~xi, ~ri, ~m

`
ij are

vectors over rings ZN . We define that the messages received during the r-th round comprise the output
of the protocol. The ideal functionality Fvmpc , running in parallel with the environment Z (specifying
the computations of all parties in the form of circuits and the inputs of honest parties), as well as the
adversary AS , is given on Fig. 1.

In addition to the computation results, Fvmpc outputs to each party a set M of parties deviating
from the protocol. Our verifiability property is very strong, as all of them will be reported to all honest
parties. Even if only some rounds of the protocol are computed, all the parties that deviated from the
protocol in completed rounds will be detected. Also, no honest parties (in H) can be falsely blamed. We
also note that ifM = ∅, then AS does not learn anything that a semi-honest adversary could not learn.

4 The Real Protocol

4.1 High-level Overview

Before going to the details, let us give a general look of transforming a protocol, defined by circuits C`ij ,
to a verifiable one. The general idea is that, after the protocol execution ends, each party (the Prover P )
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• In the beginning, Fvmpc gets from Z for each party Pi the message (circuits, i, (C`ij)
n,n,r
i,j,`=1,1,1) and

forwards them all to AS . For each i ∈ [n], Fvmpc randomly generates ~ri. For each i ∈ C, it sends
(randomness, i, ~ri) to AS . At this point, AS may stop the functionality. If it continues, then for each
i ∈ H [resp i ∈ C], Fvmpc gets (input, ~xi) from Z [resp. AS ].
• For each round ` ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C`ij to compute the message ~m`

ij . For all j ∈ C,
it sends ~m`

ij to AS . For each j ∈ C and i ∈ H, it receives ~m`
ji from AS .

• After r rounds, Fvmpc sends (output, ~mr
1i, . . . , ~m

r
ni) to each party Pi with i ∈ H. Let r′ = r and

B0 = ∅.
Alternatively, at any time before outputs are delivered to parties, AS may send (stop,B0) to Fvmpc ,
with B0 ⊆ C. In this case the outputs are not sent. Let r′ ∈ {0, . . . , r − 1} be the last completed round.
• After r′ rounds, AS sends to Fvmpc the messages ~m`

ij for ` ∈ [r′] and i, j ∈ C.
Fvmpc defines M = B0 ∪ {i ∈ C | ∃j ∈ [n], ` ∈ [r′] : ~m`

ij 6= C`ij(~xi, ~ri, ~m
1
1i, . . . , ~m

`−1
ni )}.

• Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc , with M ⊆ Bi ⊆ C. Fvmpc forwards this
message to Pi.

Figure 1: The ideal functionality Fvmpc for verifiable computations

has to to prove that it followed the protocol to the set of other n− 1 parties (the Verifiers V1, . . . , Vn−1).
All n interactive proofs of the n provers may take place in parallel. In the rest of Sec. 4, we describe one
such proof.

We assume that the majority of parties is honest. This allows us to use threshold secret sharing to
make P and V1, . . . , Vn−1 (some of which may be corrupted) together collaborate as an honest verifier.

In the preprocessing phase, the parties generate verified multiplication triples. These are triples
(a, b, c) from some ring, secret-shared among the verifiers, such that ab = c and the verifiers have been
convinced that this equality holds. The triples are generated and secret-shared by the prover. The
verifiers execute a protocol to check that ab = c. Similarly, the parties generate trusted bits: values b
from some ring, such that b ∈ {0, 1} (the prover generates and shares b, and the verifiers check b ∈ {0, 1}).
If some party misbehaves, then the preprocessing phase fails with very high probability. It is possible
that this party cannot be identified.

At the beginning of the execution phase, P commits to its inputs and randomness by secret-
sharing them among verifiers. During that phase, the parties run the protocol as usual, but they sign the
messages they send out, so that the receiver may later prove which message it has got from the sender.
This adds some overhead to the protocol run, but it is negligible — not many signatures are needed [47],
and these can also be largely precomputed [56].

The preprocessed multiplication triples and trusted bits are not used in the execution phase. They
will be needed to check the behaviour of the prover later, after the execution ends. Still, execution may
not start before a sufficient number of verified triples and bits have been generated, since otherwise it will
be impossible to check later if the party has cheated. Also, a party may not continue with the execution
of the protocol if a signature it has received does not pass verification.

At the beginning of the post-execution phase, the prover commits to the messages it has sent
and received during the execution phase by secret sharing them among the verifiers. The signatures
generated during the execution phase do not allow the sender to deny the transmitted message without
the receiver’s agreement. The verifiers then repeat the computations of the prover in secret-shared
manner. For additions and multiplications with constants, they use the homomorphic properties of the
secret-sharing scheme. For any other operation, they use verified triples or bits to linearize it. This
linearization needs the opening of some secret-shared values. The prover knows all these values and can
broadcast all of them in a single round. Hence, after the commitment transformation and broadcast by
prover, each verifier can compute the shares of prover’s messages without further interaction.

The verification ends with the verifiers executing a protocol to check that the secret-shared messages
of the prover they just computed are equal to the messages that the prover committed. At the same time,
they also verify that the prover broadcast correct values. The prover sees all messages in this protocol
and can complain if any verifier misbehaves. Assuming that the prover has signed all the shares that it
has issued to the verifiers, the complaint can be justified. The honest majority assumption ensures that
a corrupted prover cannot collaborate with the corrupted verifiers to cheat.

In the rest of this section, we describe the details of the real protocol.
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4.2 Ensuring Message Delivery

Throughout the protocol execution, we meet the problem of stopping. A corrupted sender may provide
an invalid signature, or even decide not to send the message at all, so that the remaining parties cannot
proceed with the execution. Even if the receiver complains that it has not received the message, the
remaining parties do not know whether they should blame the sender or the receiver. It would be
especially sad to allow a corrupted party stop the verification phase in this way, so that the misbehaved
parties will not be pinpointed.

To solve this problem, we use the transmission functionality proposed in [22]. If the receiver claims
that the sender has not sent the message, then the sender has to broadcast the message, or otherwise it
will be publicly blamed. This broadcast will not be used in the optimistic setting. In a single adversary
model (like UC), such a broadcast does not leak any data, since if there is a conflict, then either the
sender or the receiver is corrupted, and hence the adversary knows the broadcast value anyway.

We use this solution not only in the execution, but also in the preprocessing and the verification
phases, in order to ensure that all the shares are delivered and all the proofs terminate.

4.3 Sharing Based Commitments

Our verification is based on a linearly homomorphic (n, t)-threshold sharing scheme that ensures consis-
tency of the shared value and allows to prove later what has been shared. We emphasize that the initial
protocol that is being verified does not have to be based on some linear sharing. Our verification is very
generic and can verify any multiparty computation, which does not necessarily use any sharing at all.
Linear sharing is needed only for the verification.

Shamir’s sharing is an example of (n, t)-threshold sharing that works over any finite field. We could
verify ring operations also in a finite field, but the solution would be cumbersome. A (n, t)-threshold
sharing can be constructed on the basis of additive sharing. Let a ∈ R for some ring R. Let V1, . . . ,V(n

t)

be all subsets of [n] of size t. The share of each party Pk is a vector ~ak ∈ R(n
t), such that for each

j ∈ [
(
n
t

)
], the equation

∑
k∈Vj a

k
j = a holds. Also, akj = 0 whenever k 6∈ Vj .

In other words, the same value a is additively shared in
(
n
t

)
different ways, each time issuing some

shares a1, . . . , at such that a1 + . . . + at = a to a certain subset of t parties. All these
(
n
t

)
sharings are

independent. In this way, any t parties are able to reconstruct the secret, but less than t are not. We
write JaK = (~ak)k∈[n] to denote the sharing of a.

Under honest majority assumption, a (n, t)-threshold secret sharing scheme with t = n/2 + 1 can
be used as a commitment [19]. The committed value is shared among the n parties, and each share is
signed (we assume the availability of a PKI). The commitment is opened by broadcasting the shares and
verifying their signatures. If the number of honest parties is also at least t then there is an index j, such
that Vj lists only honest parties. In this case, a set of shares can be reconstructed to at most one value,
even if corrupted parties tamper with their shares (tampering may only lead to inconsistency of shares,
and opening the commitment fails). The signatures on shares prevent corrupted parties from causing an
inconsistent opening. Availability of at least t honest parties allows to open the commitment even if all
the corrupted parties refuse to participate.

Throughout this paper, by commitment we mean sharing the value among the n parties using a linear
(n, t)-threshold sharing. In order to avoid ambiguity, no other definition of commitment is used.

4.4 Precomputed tuples

In the preprocessing phase, the parties have to produce a sufficient number of multiplication triples and
trusted bits over each ring that is used in the main protocol. The generation of such tuples is easy:
the prover, allowed to know the sharings, simply generates the values itself, and commits to them by
(n, t)-threshold sharing. The prover is interested in generating the tuples randomly, because his (and
only his) privacy depends on it. The parties will then check whether the prover generated the tuples
correctly. If the check fails, parties will not run the execution phase.

To perform the check, the parties first agree on a joint random seed. They will then perform two
sub-checks: cut-and-choose and pairwise verification. In cut-and-choose, the parties randomly select k
tuples and open them. This phase fails if any of the opened tuples have wrong values. Afterwards, the
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parties randomly partition the remaining tuples into groups of m. In each group, they use each of the
first (m−1) tuples to verify the m-th one. This check fails if any of the pairwise checks fail. As analyzed
below, it fails unless all tuples in a group are valid or all are invalid. After the check, the first (m − 1)
tuples in each group are discarded and only the last one is used.

Hence, to finish the preprocessing with u tuples of certain kind, (m ·u+k) tuples have to be generated
and shared in the beginning. A combinatorial analysis (omitted due to space constraints) shows that
values m and k do not need to be large. For example, if u = 220, then it is sufficient to take m = 5 and
k = 1300. If u = 230 then m = 4 and k = 14500 are sufficient. These choices guarantee that if the prover
aims to have an invalid tuple among the final u ones, then no strategy of generating the initial tuples
makes the probability of the check succeeding greater than 2−80. At the other extreme, if u = 10, then
m = 26 and k = 168 are sufficient for the same security level.

The pairwise verification, applied to two multiplication triples, or to two trusted bits, works as follows.
Note that it is certain to fail if exactly one of the tuples is a correct one.

Multiplication triples. These are triples of shared values (JaK, JbK, JcK) in a ring Zn, where a and
b are random and c = a · b. Let the triple (Ja′K, Jb′K, Jc′K) be used to verify the correctness of the triple

(JaK, JbK, JcK). The parties compute JâK = JaK − Ja′K and Jb̂K = JbK − Jb′K, and declassify â, b̂ (the check

fails if reconstruction is impossible). They will then compute JzK = â · JbK + b̂ · Ja′K + Jc′K− JcK, declassify
it and check that it is 0. The check succeeds if both tuples are correct and declassifications do not fail.
If one of the tuples is correct but in the other one, the third component differs from the product of the
first two components by δc, then z = ±δc 6= 0.

Trusted bits. These are shared values JbK in a ring Zn, where b ∈ {0, 1} is random. Let the bit
Jb′K in a ring Zn be used to verify that JbK is a bit. The prover broadcasts a bit indicating whether b = b′

or not. If b = b′ was indicated, the verifiers compute JzK = JbK − Jb′K, declassify it and check that it is
0. If b 6= b′ was indicated, the verifiers compute JzK = JbK + Jb′K, declassify it and check that it is 1. In
both cases, if exactly one of JbK, Jb′K contained a bit in {0, 1} and the other one did not, then the check
cannot succeed.

In a finite field, more efficient methods than pairwise verification are available. We discuss it in
Sec. 5.3.

4.5 Commitments to messages

Before the execution phase starts, the prover P commits to its input x sharing it by a (n, t)-threshold
sharing scheme.

During the execution phase, the prover P signs the outgoing messages; each message m to some P ′ is
signed together with the identity of the protocol run it is participating in, as well as its position in this
run. In protocols spanning many rounds, many signatures are necessary. To reduce the effort, methods
for signing digital streams [34] may be useful.

At the start of the post-execution phase, the prover P secret-shares the message m it had sent to
some P ′ during the execution, separately signs all shares, and sends them all to P ′. Party P ′ (one of
the verifiers) makes sure that the sharing was done correctly, and sends to each party its share, in turn
signing it, so that it can be seen that both P and P ′ agree on the same m. Otherwise, P ′ publishes
the message, its shares and all P ’s signatures, demonstrating that P has misbehaved. In this way, the
sender P cannot change its mind about m, since P ′ is able to provide a disproof. At the same time, P ′

is bound to m it receives from P , since it cannot forward falsified shares without having a signature of
P .

At this point, both P and P ′ are committed to the shares of JmK that have been issued to the honest
parties. The same sharing of m is also used by P ′ in the proof of his correct behaviour. The sharing
JmK may not correspond to m that was transmitted in the execution phase only if P and P ′ both are
corrupted. In this case, the actual value of m during the execution phase is meaningless anyway, as it
can be viewed as an inner value of the joint circuit of P and P ′, and it is only important that P and P ′

are committed to the same value m′, possibly m′ 6= m.

4.6 Commitment to randomness

Before the execution phase starts and inputs are given to the parties, the prover P must fairly choose
the randomness it is going to use during the protocol, and commit to it. For this purpose, the verifiers
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jointly generate this randomness. Each verifier Vj sends a sufficiently long random vector ~rj to the prover
P and commits both herself and the prover to it. The commitment is the same as for messages after
the execution — Vj secret-shares the vector ~rj , signs the shares and sends them all to P . The prover P
checks for the correctness of sharing and signatures, and forwards a signed share to each verifier. The
prover P uses

∑
j ~rj as its randomness. The sharing of this sum can be computed as the sum of the

shares of all ~rj .

4.7 Verification of basic operations

A circuit (defined in Sec. 3) is composed of addition, multiplication, bit decomposition (bits), and ring
transition gates (zext and trunc). We now describe how each of these gates is verified.

We have the following setup. There is an operation op that takes k inputs in Zm and produces l
outputs in Zm′ . The prover knows values x1, . . . , xk, these have been shared as Jx1K, . . . , JxkK among the
n parties (the prover and (n− 1) verifiers). Moreover, the prover knows the shares of all parties. During
the execution of the protocol the prover was expected to apply op to x1, . . . , xk and obtain the outputs
y1, . . . , yl. The verifiers are sure that the shares they have indeed correspond to x1, . . . , xk (subject to
some deferred checks). A verification step gives us Jy1K, . . . , JylK, where the prover again knows the shares
of all verifiers, but no coalition of up to (t − 1) verifiers has learned anything new. It also gives us a
number of alleged zeroes — shared values Jz1K, . . . , JzsK (all known to prover). If z1 = · · · = zs = 0 then
the verifiers are sure that their shares of y1, . . . , yl indeed correspond to these values. All these equality
checks are deferred to be verified (possibly succinctly) in one round later.

Verifying linear combinations. For these operations, the verifiers simply perform the correspond-
ing operation with their shares. No alleged zeroes are created.

Verifying multiplications. The parties want to compute JyK from Jx1K and Jx2K, such that y =
x1x2 in some ring Zn. They pick a precomputed multiplication triple (JaK, JbK, JcK) over Zn. The prover
broadcasts x̂1 = x1 − a and x̂2 = x2 − b. The parties compute JyK = x̂1 · Jx2K + x̂2 · JaK + JcK using
the homomorphic properties of the sharing scheme. Similarly, they compute the alleged zeroes Jz1K =
Jx1K− JaK− x̂1 and Jz2K = Jx2K− JbK− x̂2.

Verifying bit decomposition. The parties want to compute Jy0K, . . . , Jyn−1K from JxK, where x ∈
Z2n , yi ∈ {0, 1}, x =

∑n−1
i=0 2iyi and all sharings are over Z2n . They pick n trusted bits Jb0K, . . . , Jbn−1K,

shared over Z2n . The prover broadcasts bits c0, . . . , cn−1. The parties take JyiK = JbiK if ci = 0, and
JyiK = 1− JbiK, if ci = 1 (this explains how the prover computes c0, . . . , cn−1). The parties compute the

alleged zero JzK = JxK−
∑n−1
i=0 2i · JyiK.

Verifying conversions between rings. The parties want to compute JyK from JxK, such that
y = x, but while the sharing of x, is over Z2n , the sharing of y is over Z2m . If m < n, then the parties
simply drop n−m highest bits from all shares of x, resulting in shares of y. We denote this operation by
JyK = trunc(JxK). Otherwise, the parties perform the bit decomposition of JxK as in previous paragraph,
obtaining the shared bits Jy′0K, . . . , Jy′n−1K; the bits are shared over the ring Z2m . They will then compute

JyK =
∑n−1
i=0 2i · Jy′iK and the alleged zero JzK = JxK−

∑n−1
i=1 2i · trunc(Jy′iK).

Verifying outputs of circuits. By composing the steps described above, the parties obtain a
sharing JyK of some output of the circuit from the commitments to its inputs. The prover has previously
committed that output as Jy′K. To verify the correctness of prover’s commitment, the parties simply
produce an alleged zero JzK = JyK− Jy′K.

In the verification of operations, the communication between parties (if any) only originated from
the prover. Thus the verification of a circuit can be performed by the prover first broadcasting a single
long message, followed by all parties performing local computations.

4.8 Checking of alleged zeroes

An alleged zero JzK is verified by simply opening the secret sharing. After the opening, each party may
reconstruct z and verify that it is equal to 0. This opening preserves prover’s privacy because each JzK
is just a random sharing of 0 if the prover behaved honestly.

The opening is simplified by the prover knowing all shares of JzK. He sends all shares to all verifiers
(signed). A verifier complains if the received shares do not combine to 0, or if its own share in JzK is
different from the one received from the prover. In both cases, the verifier publishes the shares signed
by the prover. In the former case, the prover’s maliciousness is immediately demonstrated. In the latter
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Fverify works with unique identifiers id, encoding the party indices p(id) and p′(id) (the latter is used only
for message commitments), the compound operation f(id) to verify (a composition of basic operations

of Sec. 4.7), the input indices ~xid(id), and the output indices ~yid(id) on which f(id) should be verified.
The committed values are stored in an array comm. The messages are first stored in an array sent before
they are finally committed. Let AS denote the ideal adversary.
Initialization: On input (init, f(·), ~xid(·), ~yid(·), p(·), p′(·)) from all the (honest) parties, initialize comm

and sent to empty arrays. Assign the mappings f := f(·), ~xid := ~xid(·), ~yid := ~yid(·), p := p(·),
p′ := p′(·).
Input Commitment: On input (commit input, ~x, id) from Pp(id), and (commit input, id) from all honest
parties, check if comm[id] exists. If it does, then do nothing. Otherwise, assign comm[id] := ~x. If
p(id) ∈ C, then ~x is chosen by AS .
Message Commitment: On input (send msg, ~m, id) from Pp(id), output ~m to Pp′(id). If p(id) ∈ C,
then ~m is chosen by AS . If p′(id) ∈ C, output ~m to AS . Assign sent [id] := ~m.
On input (commit msg, id) from all honest parties, check if sent [id] and comm[id] are defined. If either
comm[id] is defined, or sent [id] is not defined, then do nothing. Otherwise, assign comm[id] := sent [id].
If both p(id), p′(id) ∈ C, assign comm[id] := ~m∗, where ~m∗ is chosen by AS .
Randomness Commitment: On input (commit rnd, id) from Pp(id), and (commit rnd, id) from all
honest parties, check if comm[id] exists. If it does, then do nothing. Otherwise, generate a random ~r,
and assign comm[id] := ~r. Output ~r to Pp(id). If p(id) ∈ C, output ~r also to AS .
Verification: On input (verify, id) from all honest parties, take ~x = (comm[i])i∈ ~xid(id) and ~y =

(comm[i])i∈ ~yid(id). For f := f(id), compute ~y′ = f(~x). Output the difference ~y′ − ~y, to each party

and AS .
Stopping: On input (stop, k) from AS for k ∈ C, stop the functionality and output (corrupt, k) to each
party.

Figure 2: Ideal functionality Fverify

case, note that an alleged zero JzK is a linear combination (with public coefficients) of secret-shared
values, where all shares are signed by the prover. The complaining verifier also publishes its shares of
all values from which it computed its share in JzK. All other verifiers can now repeat the computation
and check whether it was correctly performed.

Similarly to Sec. 4.7, all communication in the checking step also originates from the prover, unless
there are complaints. Hence the messages in these two steps can be transmitted in the same round, and
the whole post-execution phase, in the case of no complaints, only requires two rounds of communication.
The transformation of commitments takes place in both rounds, while the messages required for verifying
basic operations and checking alleged zeroes are broadcast during the second round.

4.9 Putting it all together

From the informal constructions of Sec. 4.2- 4.8, we may abstract away the functionality Fverify that we
will use to verify circuit operations with respect to the committed inputs, randomness, and communica-
tion. It is given in Fig. 2. The implementation of Fverify is built on top of precomputed multiplication
triples and trusted bits. Their generation is abstracted away into a functionality Fpre given in Fig. 3.

Lemma 1 Let C be the set of corrupted parties. Assuming the existence of PKI and |C| < n/2, there
exists a protocol Πpre UC-realizing Fpre .

Proof sketch: The construction of Πpre follows Sec. 4.4. It is easy to see that the protocol does
not leak any information about the triples and bits that are finally chosen, since they are masked with
unifomly distributed values that are never published. The cut-and-choose and pairwise check ensure that
the remaining triples and bits are correct with overwhelming probability. This protocol works similary
to [25], and we refer to [25] for a more formal proof. �

Lemma 2 Let C be the set of corrupted parties. Assuming the existence of PKI and |C| < n/2, there
exists a protocol Πverify UC-realizing Fverify in Fpre-hybrid model.
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Fpre works with unique identifiers id, encoding a ring size m(id) in which the tuples are shared, the
party p(id) that gets all the shares, and the number n(id) of tuples to be generated. It stores a vector
triple of precomputed triples, and a vector bit of trusted bits. Let AS denote the ideal adversary.
Initialization: On input (init,m(·), n(·), p(·)) from each (honest) party, initialize triple and bit to empty
arrays. Assign the functions m := m(·), n := n(·), p := p(·).
Multiplication triple generation: On input (triple, id) from Pi, check if triple[id] exists. If it does,

take (~rkx, ~r
k
y , ~r

k
xy)k∈[n] := triple[id]. Otherwise, generate ~rx

$← Zn(id)
m(id), ~ry

$← Zn(id)
m(id), and compute ~rxy =

~rx · ~ry. Compute the shares (~rkx)k∈[n], (~rky)k∈[n], and (~rkxy)k∈[n] of ~rx, ~ry, and ~rxy respectively. Assign

triple[id] := (~rkx, ~r
k
y , ~r

k
xy)k∈[n]. If p(id) 6= i, send (~rix, ~r

i
y, ~r

i
xy) to Pi. Otherwise, send (~rkx, ~r

k
y , ~r

k
xy)k∈[n] to

Pi. For all k ∈ C, send (~rkx, ~r
k
y , ~r

k
xy) also to AS . If i ∈ C, send all shares (~rkx, ~r

k
y , ~r

k
xy)k∈[n] to AS .

Trusted bit generation: On input (bit, id) from Pi, check if bit[id] exists. If it does, take (~rk)k∈[n] :=

bit[id]. Otherwise, generate a vector of random bits ~r
$← Zn(id)

2 . Compute the shares (~rk)k∈[n] of ~r over

Zn(id)
m(id). Assign bit[id] := (~rk)k∈[n]. Handle (~rk)k∈[n] similarly to the multiplication triple shares.

Stopping: On input (stop) from AS , stop the functionality and output ⊥ to all parties.

Figure 3: Ideal functionality Fpre

Proof sketch: We describe the protocol Πverify and the simulator S that translates between the
messages Fverify exchanges with the ideal adversary AS , and the messages the protocol Πverify exchanges
with the real adversary A over the network. The task of S is to make Z believe that it is executing
Πverify , while it is actually executing Fverify .

All the commitments of Fverify can be realized by (n, t)-threshold sharing, which works on the as-
sumption |C| < n/2 (see Sec. 4.3). As discussed in Sec. 4.2, assuming |C| < n/2 we can ensure that,
either all shares are delivered and provided with valid signatures, or the cheating party Pk will be publicly
blamed. In the latter case, the simulator S sends (stop, k) to Fverify , causing it to output (corrupt, k) to
each party. Since A obtains at most t − 1 shares issued to the corrupted parties, they are distributed
uniformly, and so S may sample the shares of honest parties randomly.

The shares of corrupted parties are chosen by A. If the shares are inconsistent, there is no way to
check it in Πverify immediately. At the same time, Fverify is waiting for a commitment from AS . Here S
may reconstruct the commitment from any set of shares belonging to some t honest parties. As we show
later, the simulation works with an arbitrary set of t honest parties, even if the sharing is inconsistent.
For simplicity, in the remaining proof, instead of writing that S has received shares of x from A, we
write that S has received x from A, assuming that x has been reconstructed from shares of a certain set
of t honest parties.
Initialization: Before the inputs are given to the parties, a certain number of multiplication triples and
bits should be generated. Each (honest) party sends (init,m(·), n(·), p(·)) to Fpre , where m(·),n(·),p(·)
are determined by the function descriptions f(·), ~xid(·), ~yid(·),p(·),p′(·) received by the parties from
the environment, that fully describe the particular operations that are going to be verified, and the
responsible prover parties. The mappings m(·),n(·),p(·) are all defined over the same domain, which is a
set of identifiers id. For each such id, each (honest) party sends to Fpre a call (triple, id) or (bit, id) (the
choice of triple and bit is defined by f(·)).
Inputs: The inputs of Pp(id) are committed by sharing, without doing any additional checks. The inputs
of corrupted parties are chosen by A, and S forwards them to Fverify .
Messages: First of all, the sender P = Pp(id) signs m and sends it to the receiver P ′ = Pp′(id). The
delivery of signed m is ensured by the message transmission functionality (Sec. 4.2). This intermediate
step is only needed to allow to postpone the sharing, so that the execution phase does not become more
expensive. At this point, if P is corrupted, then S delivers to Fverify the value m that is chosen by A.

Later, P shares m, signs the shares, and sends them to P ′ who finally distributes them among the
other parties (Sec. 4.5). Requiring signatures on shares from both the sender and the receiver ensures
that P and P ′ agree on the same committed message m. Since P ′ holds the signature of P on m, even
if P does not share m correctly, P ′ may commit m itself by publishing it, so that the parties may share
the published m themselves in an arbitrary pre-agreed way. Publishing m can be easily simulated by S,
since if at least one of P and P ′ is corrupted, then it has already seen m that was either chosen by A,
or was sent to S by Fverify .
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Randomness: For the randomness commitment, each verifier Vj provides a uniformly distributed vector
~rj that will be used in the sum ~r = ~r1 + · · · + ~rn−1 (Sec. 4.6). Since at least one verifier is honest, the
sum is uniformly distributed even if the corrupted parties try to tamper with their contributions. After
S receives from A all the vectors ~rj for j ∈ C, it generates the remaining shares of at least one honest
party in such a way that ~r1 + · · ·+ ~rn−1 equals to ~r chosen by Fverify .
Verification: The preprocessed multiplication triples and bits are used to linearize all basic operations
and their compositions (Sec. 4.7). For this, the prover P first needs to publish the values x̂1 = x1 − a
and x̂2 = x2 − b for each multiplication triple (a, b, c), and ci ∈ {bi, 1− bi} for each trusted bit bi. For
corrupted provers, these values are chosen by A. For honest provers, the values a, b, bi have not been
used in the simulations yet, and they are still uniformly distributed. In this way, they work as masks,
and the values x̂1, x̂2, ci may be sampled by S from a uniform distribution (where ci ∈ {0, 1} is a random
bit).

For any composition of basic operations f , each verifier Vk may now locally compute ~zk = f(~xk)−~yk
on its shares, producing a vector of alleged zeroes J~zK. The parties need to check if ~z = ~0. For this, the
prover P first computes all the shares ~z∗k itself, signs, and sends them to each other party (Sec. 4.8).
The definition of Fverify allows to reveal ~z to AS , so ~z (and its shares) of honest provers can also be
simulated by S. If any Vk sees that ~z∗k 6= ~zk, then it publishes all the shares ~xk and ~yk, so that each
other party may now compute ~zk = f(~xk) − ~yk itself. Revealing ~xk and ~yk can be easily simulated,
since in the case of a conflict they are known by A (and hence S) anyway. Since all ~xk and ~yk have
been signed, a corrupted verifier cannot blame an honest prover. If Vk and P are both corrupted, they
are able to present ~z∗k 6= ~zk to the other verifiers who cannot check the validity of ~z∗k. However, since
at least t parties are honest, and we are using (n, t)-threshold sharing, there will be at least t shares
~z∗k = ~z that uniquely determine the value ~z∗ = ~z that is reconstructed from these t shares. Introducing
any tampered shares ~z∗k 6= ~zk will make the sharing inconsistent, and the proof will not be accepted. In
this case, S sends (stop, p(id)) to Fverify . Hence the verification is indeed bound to ~x and ~y committed
before, and if the shares are consistent, they correspond to the same ~x and ~y that S reconstructed from
the shares of some t honest parties and committed to Fverify before.
Stopping: Fverify allows AS to blame any party Pk for k ∈ C. In Πverify , the accusations may take place
only if some party presents a signature, proving that some other party has generated a set of shares that
does not correspond to the previously signed message (during commitments), or it has generated a share
that does not correspond to the shares it has committed before (during the verification). In both cases,
an honest party would never sign a value that does not correspond to its previous signatures. Assuming
a good PKI, accusing Pk for k /∈ C may happen only with a negligible probability. �

Having an implementation of Fverify , we may now state and prove the main theorem of this paper.

Theorem 1 Let C be the set of corrupted parties. There exists a protocol Πvmpc UC-emulating Fvmpc

in Fverify -hybrid model if |C| < n/2.

Proof sketch: The real protocol Πvmpc follows the outline of Sec. 4.1. The parties P1, . . . , Pn work as
follows.

In the preprocessing phase, each (honest) party sends (init, f(·), ~xid(·), ~yid(·), p(·), p′(·)) to Fverify ,
where the argument functions are defined by the circuits that the parties get from the environment.
After that, each (honest) party sends (commit rnd, id) to Fverify to generate the committed randomness
for Pp(id). By definition of Fverify , the randomness comes from a uniform distribution, as the randomness
generated by Fvmpc .

After the inputs are given to the parties by Z, Pp(id) commits to its inputs by sending (commit input, ~x, id)
to Fverify , and each (honest) Pi supports it by sending (commit input, id) to Fverify . The corrupted par-
ties may commit arbitrary values, which is allowed by definition of Fvmpc . The simulator S obtains the
inputs of corrupted parties from A and forwards them to Fvmpc .

During the execution phase, for each message identifier id, the (honest) sender Pp(id) sends (send msg, ~m, id)
to Fverify . If at least the sender P = Pp(id) or the receiver P ′ = Pp′(id) is honest, either the protocol
stops and P gets publicly blamed, or Fverify delivers ~m to P ′. If P is honest, then it delivers the same ~m
that is computed by Fvmpc . If P is corrupted, but P ′ is honest, then ~m can be arbitrary, and for Fvmpc

it is chosen by AS , so S delivers to Fvmpc the message ~m chosen by A. If both P and P ′ are corrupted,
then they may agree on committing ~m∗ 6= ~m later, so it cannot be fixed yet, but in this case Fvmpc also
does not expect ~m yet.
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After the execution phase, each (honest) party sends (commit msg, id) to Fverify , committing the
sender Pp(id) and the receiver Pp′(id) to the exchanged message ~m that Fverify has received at some point
earlier. If both Pp(id) and Pp′(id) are corrupted, they may commit to an arbitrary ~m∗. Fvmpc also expects
all such messages ~m∗ from AS at this point, so S just delivers ~m∗ from A to Fvmpc .

In the verification phase, each output of the prover’s circuit (including the outgoing messages) is
viewed as a function f applied to the inputs, randomness, and the incoming messages committed so far
(as in the definition of Fvmpc). In Sec. 4.7, we have provided verifications for the linear combinations
and multiplications (which are sufficient to compute any arithmetic circuit over a ring), and also the
bit decomposition and the ring conversion (which are sufficient to compute any combined computation
over several rings). We also have shown in Sec. 4.7 that the outputs of these operations are generated
locally by the verifiers on-the-fly. Hence f can be represented as a composition of the basic operations
of Sec. 4.7, and we may use Fverify to verify the computation of f on the quantities that have already
been committed. By definition, Fverify reveals the difference f(~x) − ~y, where ~x and ~y are the values
committed so far. If the prover is honest, then he has behaved correctly in the execution phase, and
hence f(~x) − ~y = ~0. Publishing ~0 does not reveal any private information. If the prover is corrupted,
then the difference f(~x) − ~y is known by the adversary anyway. Both cases can be simulated by S
straightforwardly.

If Fverify outputs 0 for each output of all the prover Pk’s circuits, then the proof of Pk is accepted.
Otherwise, each (honest) party claims that Pk has cheated, and it will be accused by Byzantine agreement.
The set of cheated parties is captured by the set M constructed by Fvmpc . In addition, Fvmpc allows
AS to include more corrupted parties of C into the set of blamed parties Bi that it finally outputs to Pi.
These additional parties are those that attempted to misbehave while using Fverify , causing messages
(corrupt, k) to be output. By definition of Fverify , such messages can be output only for k ∈ C. Hence
we have M⊆ Bi ⊆ C, as for Fvmpc . �

5 Extensions

In this section, we describe possible optimizations and extensions of the protocol described in Sec. 4.

5.1 Optimizations

Our protocols allow a general optimization: in a secret sharing JaK = (~ak)k∈[n] we can delete from the

vectors ~ak (of length
(
n
t

)
) the components that correspond to the subsets of [n] the contain (the index

of) the prover, because the prover knows all the shares anyway and can make up its own only when
required to send it to someone. Effectively, this means that JaK is shared among the n− 1 verifiers using
(n− 1, t)-threshold sharing scheme described in Sec. 4.3. In particular, if n = 3 (as in Sharemind), then
JaK = (a1, a2), where a1 + a2 = a in some ring R and ai is held by the i-th verifier. This simplification
enables many more optimizations for n = 3, as described below.

Sharing the messages. At the beginning of the post-execution phase, to share the messages it had
sent or received during the execution phase, the prover does not have to do anything: the messages are
already shared. Indeed, one of the verifiers, being the recipient or the sender of that message, already
knows it. The other verifier’s share of that message will be 0.

Committing to randomness. For the prover to commit to its randomness at the beginning of the
execution phase, he receives a signed random seed si from the i-th verifier. He will then use G(s1)+G(s2)
(for the PRG G) as its randomness.

In case of Sharemind, the commitment is even simpler. In all protocols currently in use, any random
value is known by exactly two parties out of three (each pair of parties has a common random seed).
Hence any random value r used by the prover is already shared in the same manner as the messages.

Checking alleged zeroes. To check if Jz1K, . . . , JzsK are all equal to 0, the first verifier computes
H(z1

1 , z
2
1 , · · · , zs1) and the second verifier computes H((−z1

2), (−z2
2), · · · , (−zs2)), where H is a hash func-

tion and zi1, z
i
2 are the shares of JziK held by the first and second verifier, respectively. They sign and

send the computed shares to each other and to the prover, and check that they are equal.
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5.2 Other operations

The circuits for computing the messages in certain protocols of Sharemind use some more operations in
addition to those described in Sec. 4.7. We now describe their verification. Note that the multiplication
protocol only needs multiplications to be verified [11, Alg. 2].

Comparison. The computation of a shared bit JyK from Jx1K, Jx2K ∈ Z2n , indicating whether
x1 < x2, proceeds by the following composition. First, convert the inputs to the ring Z2n+1 , let the
results be Jx′1K and Jx′2K. Next, compute JwK = Jx′1K − Jx′2K in the ring Z2n+1 . Finally, decompose JwK
into bits and let JyK be the highest bit.

Bit shifts. To compute JyK = JxK � Jx′K, where JyK and JxK are shared over Z2n and Jx′K is
shared over Zn, the parties need a precomputed characteristic vector (CV) tuple (JrK, J~sK), where JrK
is shared over Zn, JsiK are shared over Z2n , the values si are bits, the length of ~s is n, and si = 1 iff
i = r. The prover broadcasts x̂ = r − x′ ∈ Zn. The verifiers compute J~s′K = rot(x̂, J~sK), defined by

Js′iK = Js(i+x̂) mod nK for all i < n. Note that s′i = 1 iff i = x′. The verifiers compute J2x
′
K =

∑n−1
i=0 2iJs′iK

and multiply it with JxK (using a multiplication triple). They compute the alleged zero JzK = JrK−Jx′K−x̂,
as well as two alleged zeroes from the multiplication.

To compute JyK = JxK � Jx′K, the parties first reverse JxK, using bit decomposition. They will shift
the reversed value left by Jx′K positions, and reverse the result again.

During precomputation phase, the CV tuples have to be generated. Their correctness control follows
Sec. 4.4, with the following pairwise verification operation. Given tuples (JrK, J~sK) and (Jr′K, J~s′K), the

verifiers compute Jr̂K = Jr′K − JrK, declassify it, compute J~̂sK = J~sK − rot(r̂, J~s′K), declassify it and check
that it is a vector of zeroes. Recall (Sec. 4.4) that we need the pairwise verification to only point out
whether one tuple is correct and the other one is not.

Rotation. The computation of J~yK = rot(Jx′K, J~xK) for J~xK, J~yK ∈ Zm2n and Jx′K ∈ Zm could be
built from bit shifts, but a direct computation is more efficient. The parties need a rotation tuple
(JrK, J~sK, J~aK, J~bK), where JrK and J~sK are a CV tuple (with r ∈ Zm and ~s ∈ Zm2n), ~a ∈ Zm2n is random and

the elements of ~b satisfy bi = a(i+r) mod m.

The prover broadcasts r̂ = x′ − r and ~̂x = ~x− ~a. The verifiers can now compute

JciK = ~̂x · rot(i, J~sK) (i ∈ {0, . . . ,m− 1})

J~yK = rot(r̂, J~cK) + rot(r̂, J~bK) .

Here · denotes the scalar product; each ci is equal to some x̂i. The correctness of the computation follows
from ~c = rot(r, ~̂x). The procedure gives the alleged zeroes Jz′K = Jx′K− JrK− r̂ and J~zK = J~xK− J~aK− ~̂x.

The pairwise verification of rotation tuples
T = (JrK, J~sK, J~aK, J~bK) and T′ = (Jr′K, J~s′K, J~a′K, J~b′K) works similarly, using the tuple T′ to rotate J~aK by

JrK positions and checking that the result is equal to J~bK. Additionally, pairwise verification of CV tuples
is performed on (JrK, J~sK) and (Jr′K, J~s′K).

Shuffle. The parties want to apply a permutation σ to a vector J~xK ∈ Zmn , obtaining J~yK satisfying
yi = xσ(i). Here σ ∈ Sm is known to the prover and to exactly one of the verifiers [45]. To protect
prover’s privacy, it must not become known to the other verifier. In the following, we write [σ] to denote
that σ is known to the prover and to one of the verifiers (w.l.o.g., to verifier V1).

The parties need a precomputed permutation triple
([ρ], J~aK, J~bK), where ρ ∈ Sm, ~a,~b ∈ Zmn and ~b = ρ(~a). Both the prover and verifier V1 sign and send
τ = σ ◦ ρ−1 to V2 (one of them may send H(τ); verifier V2 complains if received τ -s are different). The

prover broadcasts ~̂x = ~x− ~a. The verifiers compute their shares (~y1, ~y2) of J~yK as ~y1 = τ(~b1 + ρ(~̂x)) and

~y2 = τ(~b2), where ~bi is the i-th verifier’s share of J~bK. The alleged zeroes J~zK = J~xK−J~aK− ~̂x are produced.

5.3 Preprocessing phase for Finite Fields

Over a finite field, then we may use more efficient methods for generating the preprocessed tuples of
Sec. 4.4. We can replace the cut-and-choose and pairwise verification steps with an application of linear
error correcting codes [5]. This technique allows the construction of n verified triples from only n + k
initial ones, where k is proportional to η. Hence for large values of n, the communication cost due to
verification is negligible.
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Figure 4: Components of Sharemind with verification

5.4 Auditability

If a party P has deviated from the protocol, then all honest parties will learn its identity during the
post-execution phase. In this case, assuming that P does not drop out from the verification process at all,
the honest parties are going to have a set of statements signed by P , pertaining to the values of various
messages during the preprocessing, execution, and post-execution phases, from which the contradiction
can be derived. These statements may be presented to a judge that is trusted to preserve the privacy of
honest parties.

6 Evaluation

6.1 Implementation

We have implemented the verification of computations for the Sharemind protocol set [11,39,42,45]. The
previously existing (gray) and newly implemented (white) components are depicted in Fig. 4.

Sharemind has a large protocol set for integer, fix- and floating point operations, as well as for
shuffling the arrays, that can be used by a privacy-preserving application. Almost all these protocols
are generated from a clear description, how messages are computed and exchanged between parties [44].
The application itself is described in a high-level language that is compiled into bytecode [9], instructing
the Sharemind virtual machine to call the lower-level protocols in certain order with certain arguments.
Both descriptions are used in the post-execution phase.

Preprocessing phase. The verified tuple generator has been implemented in C, compiled with
gcc ver. 4.8.4, using -O3 optimization level, and linking against the cryptographic library of OpenSSL
1.0.1k. We have tried to simplify the communication pattern of the tuple generator as much as possible,
believing it to maximize performance. On the other hand, we have not tried to parallelize the generator,
neither its computation, nor the interplay of computation and communication. Hence we believe that
further optimizations are possible.

The generator works as follows. If the parties want to produce n verified tuples, then (i) they will
select m and k appropriately for the desired security level (Sec. 4.4); (ii) the prover sends shares of
(mn + k) tuples to verifiers; (iii) verifiers agree on a random seed (used to determine, which tuples are
opened and which are grouped together) and send it back to the prover; (iv) prover sends to the verifiers
k tuples that were to be opened, as well as the differences between components of tuples that are needed
for pairwise verification; (v) verifiers check the well-formedness of opened tuples and check the alleged
zeroes stating that they received from the prover the same values, these values match the tuples, and the
pairwise checks go through. Steps (ii) and (iv) are communication intensive. In step (iii), each verifier
generates a short random vector and sends it to both the prover and the other verifier. The concatenation
of these vectors is used as the random seed for step (iv). Step (v) involves the verifiers comparing that
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Table 1: Time to generate n = 108 verified tuples for security parameter η = 80 (m = 4, k = 15000)
Tuple width time

Multiplication triples
32 bits 120s
64 bits 171s

Trusted bits
32 bits 32s
64 bits 46s

they’ve computed the same hash value (Sec. 5.1). We use SHA-1 as the hash function. After the tuples
have been generated, the prover signs the shares that the verifiers have.

To reduce the communication in step (ii) above, we let the prover share a common random seed with
each of the verifiers. In this manner, the random values do not have to be sent. E.g. for a multiplication
triple (JaK, JbK, JcK), both shares of JaK, both shares of JbK and one share of JcK are random. The prover
only has to send one of the shares of JcK to one of the verifiers.

Execution phase. A Sharemind computation server consists of several subsystems on top of each
other. Central of those is the virtual machine (VM). This component reads the description of the privacy-
preserving application and executes it. The description is stated in the form of a bytecode (compiled
from a high-level language) which specifies the operations with public data, as well as the protocols
to be called on private data. There is a large number (over 100) of compiled primitive protocols that
may be called by the VM. These protocols are compiled from higher-level descriptions with one of the
intermediate formats being very close to circuits in Fig. 1. The protocols call the networking methods
in order to send a sequence of values to one of the other two computation servers, or to receive messages
from them.

In order to support verification, a computation server of Sharemind must log the randomness the
server is using, as well as the messages that it has sent or received. Using these logs, the descriptions of
the privacy-preserving application and the primitive protocols, it is possible to restore the execution of
the server.

We have modified the network layer of Sharemind, making it sign each message it sends, and verify
the signature of each message it receives. We have not added the logic to detect whether two outgoing
messages belong to the same round or not (in the former case, they could be signed together), but this
would not have been necessary, because our compiled protocols produce only a single message for each
round. We have used GNU Nettle for the cryptographic operations. For signing, we use 2 kbit RSA and
SHA-256. Beside message signing and verification, we have also added the logging of all outgoing and
incoming messages.

Verification phase. The virtual machine of the post-execution phase reads the application bytecode
and the log of messages to learn, which protocols were invoked in which order and with which data during
the execution phase. The information about invoked protocols is present in both the prover’s log, as well
as in the verifiers’ logs. Indeed, the identity of invoked protocols depends only on the application, and
on the public data it operates on. This is identical for all computation servers. The post-execution VM
then reads the descriptions of protocols and performs the steps described in Sec. 4.7. The post-execution
VM has been implemented in Java, translated with the OpenJDK 6 compiler and run in the OpenJDK 7
runtime environment. The verification phase requires parties to sign their messages, we have used 2 kbit
RSA with SHA-1 for that purpose.

6.2 The Cost of Integer multiplication

We have measured the total cost of covertly secure private multiplication, using the tools that we have
implemented. Our tests make use of three servers running on a LAN, similarly to the benchmarks
reported in Sec. 2. We run a large number of 32-bit integer multiplications in parallel and report the
execution time for a single multiplication.

Preprocessing. In the described set-up, we are able to generate 100 million verification triples for
32-bit multiplication in ca. 120 seconds (Table 1). To verify a single multiplication protocol, we need 9
such triples [11, Alg. 2]. Hence the amortized preprocessing effort to verify a single 32-bit multiplication
is ca. 11µs.

Execution. Passively secure Sharemind can perform 22 million 32-bit multiplications per sec-
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Table 2: Time and communication of the verification phase

# multiplications
Time (ms)

Communication (bits)prover local
comp.

verifier local
comp.

prover sign. verifier sign.
check

communication

102 0.061 0.17 97 15 110 21696
103 0.73 1.2 118 24 240 194496
104 11 10 132 47 280 1922496
105 24 26 164 78 390 19202496
106 66 120 290 220 1100 192002496
107 270 450 1300 1300 7200 1920002496

ond [39], if a large number of them are computed in parallel on servers that support AES-NI. When
message signing and logging have been added, the performance drops to 7 million multiplications per
second, or 0.15µs per multiplication. In general, the signing and logging appears to reduce the perfor-
mance of Sharemind approximately three times.

Verification. Assuming that all the inputs and the communication have already been committed,
and the beaver triples precomputed, we run the verification phase and measure the time spent on the
offline computation, the communication, and separately on signing (to see how much depends on the
underlying signature scheme). We consider the optimistic setting, where the prover only signs the
broadcast message, and the verifiers exchange the hash of the message to ensure that they got the same
message. We also measure the number of total communicated bits. The results of verifying a single party
are given in Table 2. For the whole verification effort, we have to add up the prover’s execution time
(2nd, 4th and 6th column), and twice the verifier’s execution time (3rd, 5th and 6th column). When
performing 10 million verifications in parallel, the cost to verify a single 32-bit multiplication is ca. 2.7µs.

When adding the costs of three phases, we find that the total amortized cost of performing a 32-bit
multiplication in our three-party SMC protocol tolerating one actively corrupted party is ca. 14µs. This
is more than two orders of magnitude faster than any existing solution.

6.3 Estimating the cost of other protocols

Our implementations of the preprocessing and verification phases are still preliminary, at least compared
to the existing Sharemind platform and the engineering effort that has been gone into it. We believe
that significant improvements in their running times are possible, even without changing the underlying
algorithms or invoking extra protocol-level optimizations. Hence we are looking for another metric that
may predict the running time of the new phases once they have been optimized. Due to the very
simple communication pattern of that phase, consisting of the prover sending a large message to the
verifiers, followed by the verifiers exchanging very small messages, we believe that the number of needed
communication bits is a good proxy for future performance.

The existing descriptions of Sharemind’s protocols make straightforward the computation of their
execution and verification costs in terms of communicated bits. We have performed the computation for
the protocols working with integers, and counted the number bits that need to be delivered for executing
and verifying an instance of the protocol. We have not taken into account the signatures, the broadcast
overhead, and the final alleged zero hashes that the verifiers exchange, because these can be amortized
over a large number of protocols executing either in parallel or sequentially.

Table 3 presents our findings. For each protocol, the results are presented in the form x:y:z
1 :a:b . The upper

line lists the total communication cost (in bits): x for the execution of the protocol, y for its verification
in the post-execution phase, and z for the generation of precomputed tuples in the preprocessing phase.
The suffixes k and M denote the multipliers 103 and 106, respectively. The lower line is computed
straightforwardly from the upper line, and it shows how many times more expensive each phase is,
compared to the execution phase (i.e a = y/x, b = z/x). The most interesting value is a that shows how
much overhead our verification gives in the online phase, compared to passively secure computation.

In estimating the costs of generating precomputed tuples, we have assumed the tuples to be generated
in batches of 220, with security parameter η = 80. Sec. 4.4 describes the number of extra tuples that
we must send for correctness checks. We consider the selected parameters rather conservative; we would
need less extra tuples and less communication during the preprocessing phase if we increased the batch
size or somewhat lowered the security parameter. Increasing the batch size to ca. 100 million would
drop the parameter m from 5 to 4, thereby reducing the communication needs of preprocessing by 20%.
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Table 3: Communication overheads of integer operation verification

Operation
bit width

8 16 32 64

multiplication
48 : 288 : 1513
1 : 6 : 32

96 : 576 : 3025
1 : 6 : 32

192 : 1152 : 6050
1 : 6 : 32

384 : 2304 : 12k
1 : 6 : 32

division
4.4k : 81k : 4.9M

1 : 18 : 1120
10k : 200k : 25M

1 : 20 : 2500
32k : 690k : 190M

1 : 21 : 5900
89k : 2.1M : 1400M

1 : 23 : 16000

div. with pub.
452 : 12k : 320k

1 : 26 : 707
1044 : 27k : 1.4M

1 : 26 : 1340
2.4k : 64k : 6.2M

1 : 26 : 2600
5.3k : 144k : 27M

1 : 27 : 5100

priv. � priv.
152 : 3.3k : 60k

1 : 22 : 390
416 : 9.1k : 280k

1 : 22 : 670
1328 : 35k : 2.1M

1 : 26 : 1580
4.7k : 135k : 16M

1 : 29 : 3500

priv. � priv.
328 : 10k : 167k

1 : 31 : 510
864 : 30k : 860k

1 : 35 : 990
2.4k : 101k : 5.4M

1 : 42 : 2250
7.2k : 360k : 37M

1 : 49 : 5100

priv. � pub.
204 : 4.6k : 74k

1 : 22 : 360
500 : 11.5k : 330k

1 : 23 : 660
1188 : 28k : 1.5M

1 : 23 : 1250
2.8k : 66k : 6.6M

1 : 24 : 2400

equality
50 : 804 : 7.2k
1 : 16 : 143

106 : 1.8k : 25k
1 : 17 : 240

218 : 3.8k : 94k
1 : 18 : 430

442 : 7.9k : 360k
1 : 18 : 810

less than
322 : 7.9k : 117k

1 : 24 : 360
809 : 21k : 590k

1 : 26 : 730
1.9k : 51k : 2.8M

1 : 27 : 1440
4.5k : 121k : 13M

1 : 27 : 2900

bit decomp.
184 : 3.8k : 60k

1 : 21 : 330
464 : 10k : 278k

1 : 22 : 600
1120 : 25k : 1.3M

1 : 22 : 1140
2.6k : 60k : 5.9M

1 : 23 : 2230

If we take η = 40, then m = 3 would be sufficient.
The described integer protocols in Table 3 take inputs additively shared between three computing

parties and deliver similarly shared outputs. In the “standard” protocol set, the available protocols
include multiplication, division (with private or with public divisor), bit shifts (with private or public
shift), comparisons and bit decomposition, for certain bit widths. We left out the protocols for operations
that require no communication between parties during execution or verification phase: addition, and
multiplication with a constant.

We see that the verification overhead (normalized to communication during the execution phase)
of different protocols varies quite significantly. While most of the protocols require 20–30 times more
communication during the verification phase than in the execution phase, the important case of integer
multiplication has the overhead of only six times. Even more varied are the overheads for preprocessing,
with integer multiplication again having the smallest overhead of 31.5 and the protocols working on
smaller data having generally smaller overheads.

Discussion

Our explanation to the variability of overheads is the following. We are measuring a parameter of the
protocols that, up to now, has been considered completely irrelevant to their performance. The overheads
of pre- and post-processing depend on the operations performed locally by the Sharemind servers during
the execution phase. The overheads are particularly sensitive to the order of operations, and how similar
are the consecutive operations performed with the “same” data. A n-bit value held by a server may
be interpreted both as an element of Z2n or an element of Zn2 ; the conversion is cost-free during the
execution phase. During verification, such conversion requires us to do a bit-decomposition or a number
of conversions to a larger ring. If the expressions evaluated during the execution contain a fine mix of
arithmetic and bitwise operations, then the number of such conversion will be large and many trusted
bits are consumed.

We have thus identified a new goal in optimizing SMC protocols, and Sharemind protocols in partic-
ular — the local computations of a server should be structured in a manner that minimizes the number
of times a bitwise operation follows an arithmetic one or vice versa. Also, the number of operations that
are not free to verify should be minimized in general. While we likely cannot achieve overheads as small
as the multiplication protocol currently has (the servers perform no bitwise operations in this protocol,
hence the issue of mixing operations does not arise), we hope that strategic placement of conversions
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allows us to reduce the post-processing overhead a couple of times and preprocessing overhead by at
least an order of magnitude. We tried to rewrite a small protocol — integer equality — to a form where
arithmetic and bitwise operations were mostly separated from each other. The resulting protocol had the
same cost in the execution phase, but its postprocessing overhead was only 4 times and the preprocessing
overhead between 31 (for 8-bit inputs) and 112 times (for 64-bit inputs) of that.

Even the multiplication protocol can be further optimized for verification. In this protocol, each
party performs a computation of the form w = uv + u′v + uv′ where u, v, u′, v′, w are ring elements;
this is the only part of protocol where effort in verification has to be spent [11, Alg. 2], each party
having to prove that it performed the three multiplications correctly. We may rewrite that expression to
w = (u+v)(u′+v′)−u′v′ containing only two multiplications and reducing the overheads by 1/3. In this
manner, the total communication cost for performing multiplications secure against malicious adversaries
would be only around 25 times larger than the effort of a passively secure protocol. With three servers
on a LAN, Sharemind can currently compute around 22 million 32-bit multiplications per second [39],
if these are massively parallelized; for 64-bit multiplications, the performance is half of that. Hence we
believe that on a LAN, after optimizing the preprocessing and verification phases, we could perform
several hundred thousand maliciously secure 32-bit multiplications per second, taking into account all
necessary pre- and post-processing. This exceeds the earlier reported results, either based on linear secret
sharing [21,24] or garbled circuits [59], by almost three orders of magnitude.

One may ask whether the relatively higher cost of verifying other operations (besides multiplication)
may diminish the advantages of our techniques over the state of the art when considering privacy-
preserving applications that are more dependent in these other operations. This question may be an-
swered both affirmatively and negatively. Closest to our performance are SPDZ-like protocols [24] built
on top of additive secret sharing over fields Zp. These protocol sets do not “naturally” support many
operations; instead, they have to build other private operations from the composition of multiplications
and bit decompositions [20,50]. Hence their performance is also worse for other operations. On the other
hand, the protocol sets working with Boolean circuits (using either garbled circuits or secret sharing) do
not pay similar performance penalty. But their currently discussed performance was another order of
magnitude slower than for protocols based on sharing over Zp.

7 Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols with honest majority to covertly
secure ones. The protocol transformation is suitable to be implemented on top of some existing, highly
efficient, passively secure SMC frameworks, especially those that use 3 parties and computation over
rings of size 2N . The framework will retain its efficiency, as the time from starting a computation to
obtaining the result at the end of the execution phase will increase only slightly. We evaluated the
verification on top of the Sharemind SMC framework and found its overhead to be of acceptable size,
roughly an order of magnitude larger than the complexity of the SMC protocols themselves included in
the framework (which are already practicable). We note that the protocols of Sharemind are currently
not optimized for verification, hence the overheads may become even smaller in the future.

The notion of verifiability that we achieve in this paper is very strong — a misbehaving party will
remain undetected with only a negligible probability. The original notion of covert security [3] only
required a malicious party to be caught with non-negligible probability. By randomly deciding (with
probability p) after a protocol run whether it should be verified, our method still achieves covert security,
but the average overhead of verification is reduced by 1/p times. It is likely that overheads smaller than
the execution time of the original passively secure protocol may be achieved in this manner, while
keeping the consequences of misbehaving sufficiently severe. Auditability (Sec. 5.4) helps in setting up
the contractual environment that establishes the consequences.

We could use the verification procedure after each protocol round, thereby obtaining a fully actively
secure SMC protocol. While the communication overhead of such solution would be the same, its
total overhead will probably be larger than for the verification after the computation, because of a more
complex communication pattern. Also, verification after the protocol run may allow further optimizations
for such computations, where the effort to check its correctness is smaller than the effort to actually
perform it [57]. Such optimizations are applicable if the original SMC protocol set preserves privacy
(but not necessarily correctness) against active adversaries [52]. The extent of their applicability is a
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subject of future work.
For three-party protocols, we see the combination of Sharemind’s multiplication protocol with our

verification mechanism as a suitable method for performing the precomputations of SPDZ-like SMC
protocol sets. Even though we would in this manner only get security against a malicious minority, we
still consider the outcome interesting, because the online phase of SPDZ is hard to beat even in this case.
Also, the online phase would still be secure even against all-but-one malicious parties. There may be use
cases where the number of corrupted parties increases between the precomputation phase and the actual
protocol run. Again, the investigation of this use case, together with the optimizations to our scheme
that may be possible due to working over fields, is a subject of future work.
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