
Quantum Cryptanalysis of NTRU

Scott Fluhrer

Cisco Systems

July 4, 2015

bb

1 Abstract

This paper explores some attacks that someone with a Quantum Computer may
be able to perform against NTRUEncrypt, and in particular NTRUEncrypt as
implemented by the publicly available library from Security Innovation. We
show four attacks that an attacker with a Quantum Computer might be able
to perform against encryption performed by this library. Two of these attacks
recover the private key from the public key with less effort than expected; in
one case taking advantage of how the published library is implemented, and
the other, an academic attack that works against four of the parameter sets
defined for NTRUEncrypt. In addition, we also show two attacks that are able
to recover plaintext from the ciphertext and public key with less than expected
effort. This has potential implications on the use of NTRU within TOR, as
suggested by Whyte and Schanck[3]

2 Introduction

NTRUEncrypt[2] is a public key encryption system designed by Jeffrey Hoff-
stein, Jill Pipher and Joseph Silverman. It has several attractive features, one
of which is that it is immune to attacks by Shor’s algorithm (as it does not rely
on a factorization or discrete log hard problem). Hence, it looks to be a logical
component as a part of a Quantum-Resistant cryptosystem.

NTRU does appear to be immune to Shor’s algorithm (which allows the at-
tacker to quickly factor large integers and compute discrete logarithms). How-
ever, a Quantum Computer also allows an attacker to run Grover’s algorithm[1],
which is able to find a n bit solution to a problem in 2n/2 time. The question
we would like to look at is ’how can Grover’s algorithm be used to advantage
in attacking NTRU?’

1

There has been previous analysis of the Quantum Resistance of NTRU, such
as by Wang, Ma and Ma[5], however those works studied previously defined
parameter sets. This work is focusing on the parameter sets distributed with
the current NTRU library.

3 NTRU Basics

NTRU works in the ring of polynomials Z[x]/xN −1, where N is a prime. Com-
putations in this ring are actually done modulo a prime power; NTRUEncrypt
actually evaluates additions and multiplications modulo a prime power (q) and
a small polynomial (p) during the course of its operation. However, all the
operations that we’ll examine are done modulo q (where q = 2048 is a typi-
cally choice), hence for the purposes of this paper, we can consider the ring to
be Z[x]/(xN − 1, q). In addition to the base NTRU operation, NTRUEncrypt
uses a padding mechanism called NAEP[4] to protect the underlying NTRU
primitive from the attacker being able to deduce information from decryption
failures.

There are a number of parameter sets defined for NTRU; each parameter set
includes the value of N that are used during the NTRU operations, the values
of p and q, as well as the expected security level for this parameter set (that is,
the value k for which we expect any attack against this parameter set to take
at least O(2k) operations.

NTRUEncrypt is available as a free-for-noncommercial use library from Se-
curity Innovation; we will be analyzing the parameter sets and the key genera-
tion and padding methods as implemented by that library.

When we select a private key for NTRUEncrypt, we select two polynomials
F and G with specific sets of coefficients; we also need to make sure that F
is invertible. Once we have that, we can compute the public polynomial H =
F−1G. The public key decryption process uses the secret polynomial F to
decrypt.

When we encrypt a message m with an NTRUEncrypt public key, the library
performs the following steps:

� It first examines the public key to get the security level k of the parameter
set that the public key belongs to. Currently defined parameter sets have
k ∈ {112, 128, 192, 256}

� It then selects a random k-bit value b

� It encodes the value b, the message m and a portion of the public key into
a string, and hash that string to form a value ρ. It uses SHA-1 as the
hash function if k ≤ 160 and SHA-256 if k > 160

� It uses ρ to seed a random number generator, and uses the output of that
random number generator to select a polynomial R

2

http://www.securityinnovation.com
http://www.securityinnovation.com

� It encodes the message m and the random value b as a polynomial M
which consists solely of coefficients in the set {0, 1,−1}; we run a check on
the value M to make sure that it has sufficient coefficient diversity (that is,
this check makes sure that each of the possible values occurs sufficiently
many times); if not, we go back and select a different value for b.

� It extracts the polynomial H from the public key, and generate the ci-
phertext HR+M (where the computation is done in the ring, calculating
everything modulo q).

All but the last step is actually the NAEP padding procedure, used for
generate the polynomials R and M for the actual NTRU operation.

During decryption, the decryptor recovers the values m and b; it then uses
the above logic to recompute R (and checks to make sure that was the R used
to generate the ciphertext; this prevents invalidly generated ciphertexts from
becoming an issue). What this means is that the encryptor must use this formula
to generate R from b, m and the public key.

4 Key Recovery Attack 1

The NTRU public key H is the polynomial F−1G (computed over mod q),
where F and G are sparse polynomials; the polynomial F is the private key.
One way to try to recover the private key is to search for an F such the product
polynomial FH is sparse (which, in this case, means consists of dG+1 coefficients
of the value p, dG coefficients of the value −p, and the rest 0, where dG is a
constant from the parameter set).

Now, the defined NTRU parameter sets work in one of two ways; in the
straight-forward method, the key generation process selects a random polyno-
mial whose coefficients consists of dF 1’s, dF -1’s, and the rest 0 (where dF is a
parameter from the parameter set). The other method, known as the product
form, has the key generation process select three polynomials F1, F2, F3, and
effectively sets F = F1F2 + F3. Each of these polynomials F1, F2, F3 is sparser
than the target F polynomial; and computing F1(F2H) + F3H is faster than
computing FH directly.

To use Grover’s algorithm, we could search for the polynomial F for which
FH is sparse. However, doing this in this straight-forward manner doesn’t work
(as for all defined parameter sets, there are more than 22k possible values of F).

If we are working with a parameter set that uses the product form, one way
to rewrite the equation FH = G is in the form F1F2H = G − F3H, where we
know that each coefficient of G is either 0, p or −p.

The next obvious improvement is to check for this equality modp; as all
coefficients of G are 0 mod p, this simplifies the equation to F1F2 ≡ −F3H
(mod p).

Now, there is an obvious objection to this; both F1F2 and F3H are computed
modulo q, which is relatively prime to p; what happens if an addition within
G−F3H which ”wraps”; that is, −F3H has one sign, and G−F3H has the other?

3

Well, the obvious answer is ”the search for the public key fails in that case”. It
is worth noting that the probability of such a wrap happening is reasonable; the
parameter sets in question have p = 3, q = 2048 and G having between 267 and
495 nonzero entries; assuming that the coefficents of F3H are random, this gives
us a success probability between 0.67 and 0.48. So, the obvious way to address
this failure mode is, if the initial search fails, we add a random constant to both
sides of the equation, and rerun the search; this has the effect of doubling the
expected search time.

So, the obvious search algorithm is to store the coefficients of −F3H (mod p)
(for all possible F3 values), and then perform the Quantum Computer search
over all possible F1, F2 values for where the coefficients of F1F2H (mod 3) is
a match for one of the precomputed values. With reasonable probability the
correct private key will be the only one that gives a plausible setting; in fact,
we don’t need to search over all the coordinates, instead it is sufficient to search
over enough to make any false hit unlikely. If we find a match, this will allow
us to rederive F in (strictly speaking) fewer than 2k operations.

In addition, we can reduce this work effort by taking advantage of the rota-
tional symmetry of the multiply operation within F [x]/xN − 1; if we consider
the product AB, and then consider the product A′B (where A′ has the same
coefficients as A, only rotated by m positions, then the product A′B will have
the same coefficients as AB, only rotated by m positions. This can easily be
seen as the operation of rotating by m positions is the operation of multiplying
by the polynomial xm, and (xmA)B = xm(AB). This allows us to reduce the
number of F3 polynomials we consider by a factor of N (because if a specific
value of F3 gives a solution with small coefficients, so will any rotation of F3

and the corresponding F1F2.
Ttere is also a second symmetry that we can take advantage of; if we rotate

the elements of F1 left by m positions, and the elements of F2 right by m posi-
tions, the resulting product F ′1F

′
2 will be unchanged. That is, (xmF1)(x−m)F2 =

F1F2. This is a second symmetry that reduces the number of the products F1F2

we need to consider by a factor of N .
The result of these two improvements reduce the number of −F3H mod p

values we need to precompute by a factor of N , and the number of F1F2 mod p
polynomials that we need the Quantum Computer to search over by a factor of
N.

When we consider the parameter set EES593EP1 (which has a design strength
of 192), we find it has N = 593, and dF1 = 10, dF2 = 10 and dF3 = 8. This im-
plies that the total number of F3 polynomials is

(
593
16

)(
16
8

)
(because each F3 poly-

nomial coefficients consists of 8 ps, 8 −p’s, and 577 0s), and the number of F1F2

polynomials as
(
593
20

)(
20
10

)(
593
20

)(
20
10

)
. When we take into account the factor of N

decrease (because of the rotational symmetry) , this gives us |F3|/N ≈ 2107.285.
When we consider the number of F1F2 polynomials, we take account of the
factor N decrease (because of the second rotational symmetric), this gives us
|F1||F2|/N ≈ 2271.165. A Quantum Computer is able to search over a set of this
size in approximately 2136 time, and this second step would dominate. When
we account for the failure probability (and the possibility we’re need to rerun

4

this procedure), this gives us an overall time of O(2137), which is considerably
smaller than the original design goal of 192 bits.

When we consider all four product form parameter sets, we find that the 112
bit product form set (EES401EP2) can be attacked with an expected O(2104)
work, the 128 bit set (EES439EP1) can be attacked with an expected O(2112)
work, and the 256 bit set (EES743EP1) can be attacked with an expected
O(2197) work. In this last case, it’s actually the derivation of the possible values
of −F3H which is the dominating factor (because dF3 = 15 for this parameter
set, which is comparitively large.

Now, this approach has managed to recover the private key using fewer
NTRU multiplications than expected. On the other hand, this approach is
quite impractical (even beyond the number of operations involved); it assumes
that we can practically check for the existence of an entry in a table with more
than 265 entries in constant time.

An obvious alternative approach would be to search for equalities between
F1F2H and G−F3H modulo 2; this would allow us to ignore the sign differences
in the F1, F2, F3 coefficients (and avoids the possibility of the attack failing
because of a wrap, as all have parameter sets in question has q being a power
of 2). However, this approach turns out not to work, because G happens to be
relatively dense evaluated modulo 2 in the parameter sets in question, and so
there’s no obvious way to determine when we’ve detected the correct F1, F2, F3

set.

5 Key Recovery Attack 2

When the NTRU library generates a key, it goes through this procedure:

� It selects a random bitstring that is the design strength k of the parameter
set, plus 64 bits (for example, for a 128 bit parameter set, it obtains 192
bits from the internal random number generator)

� It hashes this random number (with SHA-1 if the parameter strength
k ≤ 160 and SHA-256 if k > 160) giving us a hash value h.

� It uses that hash value h (and nothing else) to seed a random number
generator, and the output of that random number generator selects a
polynomial F

� It uses a similar process to select a polynomial G

This process is similar to the process used to select the random polynomial
R during encryption (largely because it reuses the same code).

This key generation procedure immediately gives us a potential key recovery
attack; given a public key H, we use Grover’s algorithm to guess the hash
value h; our verification step would seed the random number generator, selects
a polynomial F ′, and then compute the product F ′H (mod q); if that consists
solely of elements in the set {−p, 0, p}, then we accept. This works because if
F = F ′, then we have F ′H = G (which has the special form listed).

5

6 Plaintext Recovery Attack 1

A similar approach to recover the plaintext given a ciphertext C and a public
key H is to run Grover’s algorithm, with the guess this time being ρ the output
of the hashed string. That is, they would use the function that takes a value
for ρ, run it through the random number generator to generate a guess of R,
and check if the polynomial C−HR consists solely of the coefficients {0, 1,−1};
the correct guess of the hash will do that (as C −HR is the encoded message
M , which is a polynomial with those coefficients); an incorrect guess is quite
unlikely to have coefficients limited to that range.

For security levels 112, 128, we use a 160 bit hash (and 2160 possible values
for ρ), hence this approach will take an expected O(280) operations. For security
levels 192, 256, we use a 256 bit hash, hence this approach will take an expected
O(2128) operations; in both cases, the work required is significantly smaller than
the target security levels.

This is quite similar to one of the key recovery attacks we have presented
above (because both attacks work against the common logic used to generate
both F and R). However, there is a distinction in that the key generation pro-
cedure could be modified to use a stronger method to select F (and G) without
any interoperability issue. In contrast, we cannot modify how we generate R
without modifying how decryption is done (as the decryptor will expect to be
able to regenerate R as part of the post-decryption validation process. Cover-
ing this plaintext recovery attack would require modifying the NTRU padding
method.

7 Plaintext Recovery Attack 2

Another way an attacker can attempt to recover the plaintext, if the plaintext
is low entropy, is to notice that the ciphertext is a deterministic function of
the plaintext, the public key, and the k-bit random value b. If the entropy of
the plaintext is low (has only 2n possible values, for n ≪ k), then what an
attacker with a Quantum Computer could do is model the system as one with
2n+k inputs (which consists of the 2n possible inputs for the plaintext, paired
with the 2k possible values for b), and then apply Grover’s algorithm to find a
solution (that is, m and b) that generates the known ciphertext in O(2(n+k)/2)
time, which is less than the security level 2k (and if n is sufficiently small, this
value may be even smaller than the previous attack).

Now, in practice, this attack would not generally appear to be a significant
threat; in most cases, NTRUEncrypt will be used to pass symmetric keying data,
and symmetric keying data has sufficiently high entropy to make this attack
infeasible. However, in those cases where NTRUEncrypt is used to transmit
low-entropy plaintexts or if the attacker might have a plausible guess for the
plaintext (and it is important to make such verification infeasible), this attack
is of concern.

6

8 Conclusions and Recommendations

We have presented four attacks where an adversary with a Quantum Computer
is able to attempt against NTRUEncrpyt (as implemented by the current NTRU
library). One of the key recovery attacks actually attacks the key generation
process that the NTRU library uses; it would be easy to modify the library
to foil this approach (for example, both to use stronger hash functions when
generating the hashed value h, and by extending the entropy extracted from
the random number generator from k + 64 bits to at least 2k bits to prevent
someone using Grover’s algorithm to guess the preimage value). Because of the
ease of this modification, and because the modified library would continue to
interoperate with existing NTRU implementations, we recommend that such a
change be made (even if it is not clear if this attack is actually practical).

We have also presented another key recovery attack that uses fewer opera-
tions than expected to recover the private key (assuming one of the four stan-
dardized parameter sets); however this attack is thoroughly impractical. We
don’t recommend any change to cover this attack.

Neither of the two plaintext recovery attacks we have presented actually at-
tack the NTRU primitive itself; instead, they attack the NAEP padding method,
and take advantage of the fact that the internal primitives selected for the pa-
rameter sets are scaled to withstand attacks by a classical computer, and are
not sufficient if the attacker has a Quantum Computer.

These attacks may have some practical impact. For example, in ’A quantum-
safe circuit-extension handshake for Tor[3]’, they suggest using the NTRUEn-
crypt parameter set EES439EP1 (a 128 bit parameter set) to protect Tor traffic;
do these results mean that someone with a Quantum Computer could recon-
struct the original sender of a message with O(280) work?

There are three obvious ways to address the issues here. The first strategy
would be to use a stronger parameter set; if your target is 128 bits security, use
an NTRU parameter set targeted towards 256 bit security; such a parameter
set would provide at least 128 bits security against all known attacks, even if
the attacker has a Quantum Computer. The costs here are that the ciphertext
and public key sizes increases, as well as a small increase in the encryption and
decryption time.

The second strategy would be to define alternative parameter sets that are
designed to be Quantum-Resistant. These alternative parameter sets might
use the same polynomials as the current sets; however we would modify the
primitives used using the NAEP padding method; they would use wider hash
functions, and larger b values. The costs here would be that the new parameter
sets would be incompatible with libraries that only understood the old sets,
plus a minor decrease in the amount of plaintext that NTRU could encrypt in
a single message (because b is now larger).

The third way of addressing this is to question whether this is actually a
threat after all. O(264) work (as the worse case plaintext recovery attack) may
sound like a conceivable amount of work; however that notation conceals a
constant of proportionality, and that constant might be of significant size. In

7

both of these attacks, the amount of work involves is actually O(264) encryption
operations; in addition, each operation is done on a Quantum Computer (using
entangled states, and using some Quantum Error Correction logic). It would
appear plausible that such an operation may be considerably more expensive
than the corresponding operation on a classical computer. However, we don’t
have a working Quantum Computer, and so we can’t be certain how much more
expensive these operations would be. Because of this uncertainty, while this line
of argument may sound promising, our opinion is that we shouldn’t rely only on
that; we recommend one of the previous two strategies (especially given their
relatively low cost).

References

[1] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing - STOC '96. ACM Press, 1996.

[2] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Algorithmic Number Theory, pages 267–288.
Springer Science Business Media, 1998.

[3] Zhenfei Zhang John Schanck, William Whyte. A quantum-safe circuit-
extension handshake for Tor. Eprint, 2015.

[4] Ari Singer William Whyte Nick Howgrave-Graham, Joseph H. Silverman.
NAEP: Provable security in the presence of decryption failures. Eprint,
2003.

[5] Hong Wang, Zhi Ma, and ChuanGui Ma. An efficient quantum meet-in-the-
middle attack against NTRU-2005. Chin. Sci. Bull., 58(28-29):3514–3518,
oct 2013.

8

	Abstract
	Introduction
	NTRU Basics
	Key Recovery Attack 1
	Key Recovery Attack 2
	Plaintext Recovery Attack 1
	Plaintext Recovery Attack 2
	Conclusions and Recommendations

