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Abstract Following the line of work presented recently by Bellare, Paterson
and Rogaway, we formalize and investigate the resistance of linear secret-sharing
schemes to mass surveillance. This primitive is widely used to design IT systems
in the modern computer world, and often it is implemented by a proprietary code
that the provider (“big brother”) could manipulate to covertly violate the privacy
of the users (by implementing Algorithm-Substitution Attacks or ASAs). First,
we formalize the security notion that expresses the goal of big brother and prove
that for any linear secret-sharing scheme there exists an undetectable subversion
of it that efficiently allows surveillance. Second, we formalize the security notion
that assures that a sharing scheme is secure against ASAs and construct the first
sharing scheme that meets this notion. This work could serve as an important
building block towards constructing systems secure against mass surveillance.

Keywords: linear secret-sharing, algorithm-substitution attack, mass surveil-
lance, kleptography.

1 Introduction

The paper considers the possibility of mass surveillance by algorithm-substitution attacks
(ASAs) against secret sharing. Secret-sharing generally refers to a method for splitting
a secret into pieces (called shares of the secret) so that the secret can be reconstructed
when a qualified set of shares are combined together (reconstruction property); on the
other hand, unqualified sets of shares reveal no information about the original secret
(privacy property). An ASA replaces the real sharing algorithm by a subverted version
that allows a privileged party (big brother) to break privacy and reconstruct the secret
from an unqualified sets of shares. Since secret sharing is widely used as building block
for distributed protocols and systems, its insecurity against this kind of attack could
have significant consequences. For example, big brother could mount ASA against a key
backup system based on secret sharing, recover the private keys and break confidentiality
(in order to maintain the same terminology as in the existing literature [1], we refer to
this kind of scenario as mass surveillance).

Motivation. Applications for access control, key backup and recovery or secure storage
systems sometimes implement proprietary piece of code to perform secret sharing. Often,
the security of the entire system relies on the privacy property of the underlying secret
sharing scheme (e.g. access control systems grant permission only if a set of qualified



shares are available for reconstruction). Therefore, mounting ASAs against such systems
might lead to serious consequences: big brother can ruin access control, disclose private
keys or learn secret data.

To exemplify, we focus on the scenario of long-term secure storage systems that use
secret sharing to assure data confidentiality and availability [2–5]. A client-side applica-
tion runs a sharing algorithm to split data in share that are privately sent to a set of
independent storage nodes, which can be located across different geographical and net-
work areas, benefit of distinct protection mechanisms and even belong to various storage
providers. To later access the stored data, the client application requests a qualified set
of shares from several storage nodes and reconstructs. The architecture introduces mul-
tiple points of trust: reconstruction is possible only if the adversary breaks into several
storage nodes and obtains a qualified set of shares; the architecture assumes no trust on
individual storage providers, as no one can access the data using its own shares only.
Now, suppose an undetectable ASA replaces the client-side application code with a sub-
verted version designed by big brother that allows reconstruction from an unqualified
sets of shares; if big brother is a storage provider, then it can perform surveillance by
breaking the privacy property using the shares stored on its own servers; if big brother is
an outsider, it can perform surveillance by only breaking into a few storage nodes, inde-
pendently of the access structure. On the other hand, the client would like a guarantee
that no ASAs will succeed, under the minimal detectability conditions.

Related Work. Kleptography was introduced by Young and Yung in the 90s to consider
undetectable modifications to cryptosystems that deliberately provide trapdoor capabili-
ties [6,7], as an extension to the existing notions of subliminal and convert channels [8,9].
Since then, kleptographic attacks have been designed for a wide range of cryptographic
primitives and protocols. Despite the amount of work that has been done on the field, only
recently Bellare, Paterson and Rogaway formalize the security notions in the settings of
modern cryptography [1]. They set the terminology for ASAs (Asymmetric Substitution
Attacks) and use a game-based approach to model both negative and positive results, i.e.
when an adversary (big brother) can, respectively cannot perform surveillance without
being detected. Their work focuses on symmetric encryption and highlights its impact on
real-world systems. We follow their line of work, formalize and investigate the resistance
of linear secret-sharing to mass surveillance. The security in this framework of other
fundamental primitives has already been studied: see the recent work of Ateniese, Magri
and Venturi [10] for a formal treatment of subversion-resilient signature schemes.

Modeling and Results. We assume that big brother subverts the sharing scheme em-
bedding in it a strategy T and an encryption key. Big brother aims for a strong form
of subversion, that disallows users from detecting ASAs or gain his abilities to perform
surveillance even in case of reverse engineering. So, we consider asymmetric ASAs, where
big brother embeds into the code a public key PK and keeps the corresponding secret key
SK private. In this strong surveillance model, the subverted algorithm has access to the
public key PK and the strategy T and it remains undetectable by the users even if both
PK and T are given to the detection algorithm (run by the users). We give additional
power to the detection algorithm and allow it to choose the secret to be shared. This
models big brother’s goal to keep subversion hidden for all possible secrets and hence
make the ASA undetectable. Following the strategy T , big brother corrupts a set of



Table 1. Strong Subversion and Resilience Modeling

Strong subversion Strong resilience
(big brother’s goal) (users’ goal)

Detection algorithm PK, T ; choose the secret ∅; access Secret oracle
Subverted algorithm PK, T PK, SK, T

unqualified parties and uses their shares to gain information about the secret. This is
the framework we formalize in Section 3, where we also show our negative result: for
any linear secret-sharing scheme there exists an undetectable subverted version of it that
efficiently allows surveillance.

On the other hand, users aim for a strong form of resilience against surveillance,
that allows detectability even if they only have black-box access to the subverted sharing
algorithm. In this strong resilience model, the subverted algorithm can also be given
access to the private key SK and it is detectable by users even if the detection algorithm
is given nothing (except the inputs and outputs of the black-box). Symmetric ASAs
suffice, as (PK, SK) can be seen a single secret key K embedded into the code; however,
we maintain the asymmetric notation for continuity. We now disallow the detection
algorithm to choose the secret to be shared and give it access to a Secret oracle,
reflecting that users should detect surveillance for sampled inputs. We formalize this
framework in Section 4, where we also give the first construction of a linear secret-
sharing scheme that is resilient against any efficient subversion. To obtain this positive
result, we require that all the users give input to the sharing algorithm.

In contrast to [1], we consider strong forms of subversion and resilience to model the
goals of big brother, respectively users and give the detection and subverted algorithms
distinct capabilities. Similar to [1] (where big brother is not allowed to select the encryp-
tion key), we do not allow big brother to select the secret. However, we discuss in Section
4 the settings that allow surveillance resilience when big brother is allowed to select the
secret and show that our proposal remains secure under this settings.

2 Preliminaries

Let F be a finite field and v ∈ Fn a vector of n components; we denote by v[i] its i-th
component. We denote sampling uniformly at random a value x from a set X as x� X
and assigning a value Y to a variable y as y ← Y .

2.1 Secret Sharing

Let n be the set of parties (e.g. the different storage nodes) P = {P1, . . . , Pn}. A secret
sharing scheme consists of two algorithms Π = (Sh,Rec) such that:

– the sharing algorithm Sh is a randomized algorithm that receives as input a secret
s and outputs a vector of shares S = (S[1], . . . ,S[n]); We call dealer the entity that
runs the algorithm on input s and that receives the output S. We assume that the



sharing algorithm is connected by a bidirectional secure channel3 with each players
Pi, in such a way that the share S[i] is securely sent to the player Pi.
For any subset of players A ⊂ {P1, . . . , Pn}, let SA be the vector of shares held by
players in A, i.e. SA = (S[i])Pi∈A. A set A ⊂ {P1, . . . , Pn} is called unqualified if the
distribution of SA is independent from s, while it is called qualified if the secret s is
uniquely determined from SA.

– the reconstruction algorithm Rec is a deterministic algorithm that receives as input
a subset of shares SA and outputs the value s if the set of shares corresponds to a
qualified set of players; otherwise it outputs the special symbol ⊥. We ask that the
entire set of players {P1, . . . , Pn} is always qualified.

The access structure of Π, Γ , is defined as the set of all A ⊂ {P1, . . . , Pn} that are
qualified and Γmin is the set of the minimal qualified subsets, i.e. Γmin = {B ∈ Γ |6
∃B′ ⊂ B,B′ ∈ Γ}. Let γ be the cardinality of the largest set in Γmin, i.e. γ = max{|B| |
B ∈ Γmin} and let ρ the reconstruction threshold, i.e. the smallest integer such that
every A ⊂ {P1, . . . , Pn} of cardinality ρ is qualified.

Remark 1. In general, γ differs from the reconstruction threshold ρ. For example, let
n = 4 and Γmin = {{P2, P3}, {P2, P4}, {P3, P4}}. Then γ = 2, but ρ = 3. The inequality
γ ≤ ρ always holds.

2.2 Linear Secret Sharing

Informally, a secret sharing scheme is called linear if the secret and the shares are el-
ements of some vector spaces and the shares are computed as a linear function of the
secret.

More precisely, given M a n × m matrix (m > l) with elements in F, the Linear
Secret-Sharing Scheme (LSSS) associated to M , ΠM = (ShM ,RecM ), is defined in
Construction 1. To share a secret s = (s[1], . . . , s[l]) ∈ Fl, the algorithm first forms a
column vector f ∈ Fm where s appears in the first l entries and with the last d entries
chosen uniformly at random and then computes S = M · f . We will use πl to denote

3 By secure channel we mean an authenticated and private channel that is also subversion
resilient, that is big bother can not implement surveillance over it. Using the results of [1]
and [10] for encryption scheme and digital signature such a channel can be easily implemented.

ShM (s)

r � Fd

fT ← (s, r)T

S ←M · f
return S

RecM (SB)
if B is qualified then

s←NB · SB
else

s← ⊥
return s

Construction 1: LSSS ΠM = (ShM ,RecM )



the projection that outputs the first l coordinates of a vector, i.e. πl(f) = s. Similarly,
let πd(f) be the last d elements of f ; hence, πd(f) = r, where d = m− l.

Let mi be the row i of M and mi be the column i of M . If B ⊆ P, then MB =
(mi)Pi∈B denotes the matrix built from all rows mi such that Pi ∈ B.

It easy to see that a player subset B is qualified if and only if there exists a l × |B|
matrix NB such that for any f ∈ Fd, NB · (MB · f) = πl(f).

Remark 2. The inequality γ > l always holds from the correctness of reconstruction and
the usage of randomness (d > 0).

For the rest of the paper, we fix M and denote ΠM = (ShM ,RecM ) by Π = (Sh,Rec)
to simplify notation.

Example 1 (Additive secret-sharing scheme). To share a secret s ∈ F among n players,
the sharing algorithm chooses random values S[1], . . . ,S[n] in F such that

∑n
i=1 S[i] = s

and sends the value S[i] to Pi. It is clear that the set of all the players can reconstruct the
secret from the received values, while any set of at most n−1 players has no information
on the value s held by the dealer. Notice that in this case γ = n.

Example 2 (Packed Shamir’s scheme [11]). Let {α1, . . . , αn} and {e1, . . . , el} be two
disjoint sets of distinct random elements of F. To share the secret s ∈ Fl, the sharing
algorithm samples a polynomial f(x) ∈ F[x] of degree at most τ + l − 1 such that
f(eb) = s[b] and sends to player Pi the evaluation f(αi). Using Lagrange’s interpolation
it can be proved that any set of τ shares gives no information about the secret s, while
any set of τ + l shares can reconstruct it. In this scheme we have γ = τ + l.

3 Subverting Secret-Sharing

This section models big brother’s B goal: to subvert the sharing algorithm Sh to an

algorithm S̃h that allows him to perform surveillance, while it remains undetected under
the strong subversion scenario (see Section 1).

Surveillance means that B compromises privacy and learns the secret (or part of
it) from corrupting an unqualified set of parties. To do so, B can embed in the code a
key and a strategy. The embedded key is used to favor B over other entities, by leaking
information in encrypted form. In real life, B aims to keep decryption capabilities to itself
even in case of reverse engineering the algorithm, so our definitions consider asymmetric
ASAs (B embeds a public key PK in the code and keeps the corresponding secret key SK

private). The strategy T defines the unqualified set of parties B must corrupt to break
the privacy of the scheme. We expect that B embeds in the code and hence follows a
strategy T that maximizes its chances to win (e.g. minimum number of parties, if all
parties are equally susceptible to corruption or easy to corrupt parties otherwise).

Undetectability means that no efficient detection algorithm U that is not given the
decryption key SK can distinguish between the real and the subverted sharing algorithm.

In the absence of the undetectability condition, subversion is always possible: S̃h simply
distributes the secret (or parts of it) in shares in accordance to the strategy T .



3.1 Definitions

Let Π = (Sh,Rec) be a secret-sharing scheme and let K be a probabilistic key generation
algorithm that outputs a public-private key pair (PK, SK). A subversion of Π is a pair

Π̃ = (S̃h, R̃ec), with the following features: the subverted sharing algorithm S̃h is a
randomized algorithm that maps (s, PK, ID, T ) to a share vector S. The input ID identifies
the dealer that runs the sharing algorithm; this information is in general available in the
system (e.g. the IP address or any authentication information of the client application
for storage systems). T is a strategy that outputs the subset T ⊂ {P1, . . . , Pn} used to

leak information. The subverted reconstruction algorithm R̃ec is an algorithm that tries
to map (ST , ID, SK) to the shared secret s, where ST is the subset of shares that belongs
to the unqualified set T .

We give next the definitions for detection and surveillance games. In contrast to the
traditional unbounded adversarial power in secret sharing, our model is defined in the
computational settings [12,13]. In the following, we say that a function ε is negligible in
N if for every polynomial function p(N) there exists a constant c such that ε(N) < 1

p(N)

when N > c. With the notation AALG(z) we mean that the entity A has oracle access to
the algorithm ALG with knowledge of z.

DETECTION ADVANTAGE. Let Π = (Sh,Rec) be a secret sharing scheme and Π̃ =

(S̃h, R̃ec) a subversion of it. Let U be a detection algorithm that is not given SK. The
advantage of U to detect the ASA is defined as:

Advdet
Π,Π̃

(U) = 2Pr[DETECTU
Π,Π̃
⇒ true]− 1

A subversion Π̃ is undetectable if Advdet
Π,Π̃

(U) is negligible for any efficient U .

Game DETECTU
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � UShare(PK, T )
return (b = b′)

Share(s)
if b=1 then

S ← Sh(s)

else

S ← S̃h(s, ID, PK, T )
return S

Game 1: DETECT (Detection Game)

Detectability measures the ability of U to detect an ASA. In the DETECT game, U
must detect if it receives shares produced by the real algorithm Sh or by its subversion

S̃h. To capture the case of reverse engineering, we allow U to use the encryption key PK

and the strategy T that are embedded in the code; of course, the detection algorithm
does not have access to the decryption key SK.



Clearly, B wants a subversion to be undetectable. By allowing U full control over the
secret, the shares and the embedded PK, our definition captures the strongest form of
detectability.

SURVEILLANCE ADVANTAGE. Let Π = (Sh,Rec) be a secret sharing scheme and

Π̃ = (S̃h, R̃ec) a subversion of it. Let B (big brother) be an adversary that knows SK.
The advantage of B to detect the ASA is defined as:

Advsrv
Π,Π̃

(B) = 2Pr[SURVB
Π,Π̃
⇒ true]− 1

A scheme Π is secure against surveillance if Advsrv
Π,Π̃

(B) is negligible for any efficient

B and for any Π̃.
Surveillance advantage measures the ability of a scheme to be secure against ASAs.

Clearly, B wants to break privacy. Our definition models the stronger property that B
cannot even distinguish between the real algorithm Sh and its subversion S̃h; in particular,
the subversion gives B no advantage to restore the secret by corrupting an unqualified
set of parties. SURV game is similar to the DETECT game, except that the adversary B
is given the secret key SK and cannot select the secret to be shared, but interrogates a
Secret oracle to obtain it.

We can now model a negative result : a scheme Π is susceptible to ASAs if there
exists an undetectable subversion Π̃ of Π that allows an efficient adversary B to have
a non-negligible surveillance advantage (e.g. to break privacy). We call Π̃ a successful
subversion of Π. We show that this is the case for any LSSS in Section 3.3.

3.2 Share-Fixing

Inspired by the existing work on bit-fixing [14,15], we introduce share-fixing notions that
we will later use to construct undetectable subversion of LSSS.

Game SURVB
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � BShare(PK, SK, T )
return (b = b′)

Secret()

s � Fl
return s

Share()
s← Secret()
if b=1 then

S ← Sh(s)

else

S ← S̃h(s, ID, PK, T )
return s,S

Game 2: SURV (Surveillance Game)



Let Π = (Sh,Rec) be a secret sharing scheme and T ⊂ {P1, . . . , Pn}. ST is called a
share-fixing vector for a secret s if there exists S a valid sharing of s such that S[i] =
ST [i], for all Pi ∈ T . Intuitively, a share-fixing vector is a subset of ordered shares that
can be expanded to a complete set of valid shares. A randomized algorithm FΠ that
generates ST for a given T and any secret s is called a share-fixing source. We will
use FΠ(s, T ) to denote that F runs on input (s, T ). Note that it is always possible to
construct a share-fixing source by simply running Sh(s) and restrict its output to T .

For a share-fixing source FΠ and any secret s, a randomized algorithm Ŝh that maps
(s,FΠ(s, T )) to a valid set of shares S such that S[i] = ST [i], for all Pi ∈ T is called a
share-fixing extractor. Intuitively, a share-fixing extractor expands the output ST of the
share-fixing source to a complete set of valid shares S. Note that it is always possible to
construct a share-fixing extractor by simply running Sh(s) repeatedly until S expands
ST (obviously, the construction is inefficient).

EXTRACTOR DETECTION ADVANTAGE. Let Π = (Sh,Rec) be a secret sharing

scheme and T ⊆ {P1, . . . , Pn}. Let FΠ be a share-fixing source for (Π,T ) and Ŝh a share-

fixing extractor for (Π,FΠ). Let Π̂ = (Ŝh,Rec) be the secret sharing scheme obtained

from Π by replacing the sharing algorithm Sh with the share-fixing extractor Ŝh. The
advantage of an algorithm U to detect the share-fixing extractor is defined as:

Adve-det
Π,Π̂

(U) = 2Pr[E-DETECTU
Π,Π̂
⇒ true]− 1

A share-fixing extractor Ŝh is undetectable if Adve-det
Π,Π̂

(U) is negligible for any efficient

U .

Game E-DETECTU
Π,Π̂

b� {0, 1}
b′ � UShare

return b = b′

Share(s,FΠ , T )
if b=1 then

S ← Sh(s)

else
ST � FΠ(s, T )

S ← Ŝh(s,ST )
return S

Game 3: E-DETECT (Extraction Detection Game)

Extraction detectability measures the ability of U to distinguish a share-fixing ex-

tractor Ŝh from the real Sh. In the E-DETECT game, U must detect if it receives shares

produced by the real algorithm Sh or by a share-fixing extractor Ŝh, given a share-fixing
source FΠ . Clearly, undetectability is impossible if the share-fixing source FΠ samples
ST from a distribution which can be efficiently distinguished from the distribution of
the shares produced by the original sharing algorithm. But that is not always the case:



Ŝh(s,FΠ , T )
πl(f)← s
ST ← FΠ(s, T ) (T and FΠ as in Theorem 1)

solve πd(MT ) · r = ST − πl(MT ) · s for r
(if t < d, fix r uniformly at random from the set of possible solutions)

f ← (s, r)T

S ←M · f
return S

Construction 2: Share-fixing extractor Ŝh for (Π,FΠ)

in the proof of Theorem 1 we show that for any LSSS it is always possible to find a
nonempty set T such that the distribution of the shares held by players in T is easy to
simulate (i.e. it is the uniform one).

Theorem 1. Let Π = (Sh,Rec) be a LSSS. Then, there exists a nonempty unqualified
set of players T of cardinality t such that if FΠ is an algorithm that maps s ∈ Fl to a
uniformly random ST ∈ Ft, it holds that FΠ is a share-fixing source for (Π,T ).

Proof. Let B ∈ Γmin with |B| = b. By definition, we have that rank(MB) = b and
rank(πd(MB)) ≥ b− l > 0 with πd(MB) denoting the last d columns of MB . Let t =
rank(πd(MB)), then there exists T ⊂ B of cardinality t such that rank(πd(MT )) = t
(take as T a set of players that corresponds to nonempty proper subset of the indices of
the rows that are linear independent in πd(MB)). Notice that T is trivially unqualified.
The proof reduces to the existence of r such that πd(f) = r and MT · f = ST , where
both ST and πl(f) = s are fixed. Let MT = (πl(MT ) | πd(MT )), where πl(MT )
and πd(MT ) denotes the first l columns, respectively the last d columns of MT . Under
this notation, MT · f = ST becomes πl(MT ) · s + πd(MT ) · r = ST or equivalently
πd(MT ) ·r = ST −πl(MT ) ·s, which always has a solution because the matrix πd(MT )
has full row-rank by construction.

Then, it follows that for any LSSS there exists a share-fixing extractor. More precisely:

Theorem 2. Let Π = (Sh,Rec) be a LSSS and FΠ be a sharing-fixing source as defined

in Theorem 1. Then, the algorithm Ŝh in Construction 2 is an undetectable share-fixing

extractor Ŝh for (Π,FΠ).

Proof. Let Ŝh be defined as in Construction 2, where T is as in Theorem 1. Ŝh computes
r as a solution of πd(MT ) · r = ST −πl(MT ) · s (see Theorem 1). From the hypothesis,
FΠ outputs ST uniformly at random and hence ST −πl(MT ) ·s is uniformly at random.
Since πd(MT ) has full rank t, r is uniformly random in Fd. Note that from the definition

of LSSS, Sh also chooses r uniformly at random in Fd. Once r is fixed, Ŝh follows Sh
exactly: forms the column vector f and computes S = M · f . To conclude, the output

distribution of Ŝh equals the output distribution of Sh and the share-fixing extractor Ŝh
is undetectable with Adve-det

Π,Π̂
(U) = 0.



Example 3 (Additive secret-sharing scheme). FΠ from Theorem 1 can fix up to n − 1

shares S[ij ] = ST [ij ], j = 1 . . . , n − 1. The share fixing extractor Ŝh computes S[in] =

s−
∑n−1
j=1 S[ij ].

Example 4 (Packed Shamir’s scheme). FΠ from Theorem 1 can fix up to τ shares

f(αj) = ST [ij ]. The share fixing extractor Ŝh interpolates f of degree at most τ + l− 1
such that f(eb) = s[b], b = 1, . . . , l and f(αj) = ST [ij ], j = 1, . . . , τ .

3.3 Shares Replacement Attack

We show that for any LSSS there exists an undetectable subverted version that efficiently
allows surveillance. Let Π = (Sh,Rec) be a LSSS. Then, we construct a successful sub-

version Π̃ = (S̃h, R̃ec) of Π such that an efficient adversary B learns the secret s or parts
of it with probability 1.

Let T = {Pi1 , . . . , Pit}, as defined in Theorem 1. The subverted sharing algorithm

S̃h implements a share fixing source FΠ to generate a subset of shares ST that allows
B to compute the secret s (or a part of it), then expands ST to a full set of shares S

using the share-fixing extractor Ŝh from Theorem 2. To hide information about s into

ST , S̃h uses a deterministic public key encryption scheme (K, E ,D) such that if m is
sampled uniformly at random from F then E(m) is uniformly distributed in F and a
pseudo-random generator PRG that maps a seed in F to an element in Ft. It is natural
to assume such constructions exist [16–21]4.

If t ≥ 2, a random seed x is encrypted under the public key PK of B to obtain ST [i1],

the first share in ST . Then, S̃h simply hides in the remaining components of ST some
of the components of s by adding them to the pseudo-random values in F given by the
output of the pseudo-random generator.

The subverted scheme is correct. Since S is a valid vector of shares, reconstruction
and privacy hold from construction.

Theorem 3. Let Π = (Sh,Rec) be a LSSS with γ− l ≥ 2 (this assures t ≥ 2). Then, its

subversion Π̃ = (S̃h,Rec) defined in Construction 3 is successful and B learns the first
t− 1 components of s with probability 1.

The condition γ − l ≥ 2 is satisfied by many commonly used sharing schemes. For
example, it is satisfied by the additive scheme with more than 2 players (Example 1 with
n > 2) and by Shamir’s scheme with at least 2 privacy (Example 2 with τ ≥ 2).

We give in Construction 4 an undetectable subversion for t = 1, which reveals one
bit of the secret. Naturally, the construction works for any t ≥ 1, but it gives big brother
significantly less information about s (which might be less desirable in real life). Con-
structions for t = 1 and t ≥ 2 can easily be combined into a single one, but we keep them
separated for clearness of exposure.

Let (K, E ,D) be a deterministic public key encryption scheme as defined before, which
will be used to securely encrypt the lsb (least significant bit) of s[1].5

4 For [16] see Section X
5 Again, such encryption systems exists, for example padded RSA where encryption is repeated

until the ciphertext lies in F.



S̃h(s, ID, PK, T )
T ← T
ST � FΠ(s, T )

S ← Ŝh(s,ST )
return S

FΠ(s, T )
x� F
ST [i1]← E(PK, x)
S′ ← PRG(x)
for j = 2 . . . t do

ST [ij ]← s[j − 1] + S′[j − 1]
return ST

R̃ec(ST , ID, SK)
x← D(SK,S[i1])
S′ ← PRG(x)
for j = 2 . . . t do

s[j − 1]← ST [ij ]− S′[j − 1]
return (s[1], . . . , s[t− 1])

Construction 3: Subverted scheme Π̃ = (S̃h, R̃ec) (t ≥ 2)

S̃h(s, ID, PK, T )
T ← T
ST � FΠ(s, T )

S ← Ŝh(s,ST )
return S

FΠ(s, T )
x� F such that lsb(x) = lsb(s[1])
ST [i1]← E(PK, x)
return ST

R̃ec(ST , ID, SK)
x← D(SK,S[i1])
lsb(s[1]) = lsb(x))
return lsb(s[1])

Construction 4: Subverted scheme Π̃ = (S̃h, R̃ec) (t = 1)

Theorem 4. Let Π = (Sh,Rec) be a LSSS. Then, its subversion Π̃ = (S̃h,Rec) defined
in Construction 4 is successful and B learns the least significant bit of s[1] with probability
1.

Proof. In the subversion game, B extracts ST from S accordingly to the embedded

strategy T and then runs R̃ec(S′T , ID, SK) to get a bit b′. If b′ = lsb(s), then B outputs 0,
otherwise B outputs 1. B wins with probability 1 when b′ 6= lsb(s) and with probability
1/2 when b′ = lsb(s). Hence, the surveillance advantage Advsrv

Π,Π̃
(B) = 2|1/2 · 1 + 1/2 ·

1/2| − 1 = 1/2 is clearly non-negligible.
In the detection game, ST is indistinguishable from random in Ft by exploiting en-

cryption security. Thus, by Theorem 2, FΠ is a share-fixing source and Ŝh is undetectable
with Adve-det

Π,Π̂
(U) = 0. Then, the detection advantage is Advdet

Π,Π̃
(U) ≤ AdvE(U), hence

negligible.



We can therefore conclude that Π̃ is a successful subversion.

4 Subversion Resilient Secret Sharing

4.1 Multi-Input Secret Sharing

We aim to define (linear) secret-sharing schemes that stands against ASAs. To achieve
this, we allow the parties to give input to the sharing algorithm: each player in P inputs
a random element u[i] to Sh, while the dealer inputs, as always, the secret s.

Let Π = (Sh,Rec) be a multi-input secret sharing scheme that consists of two algo-
rithms such that:

– the sharing algorithm Sh receives as input from the dealer a secret s and as input
from P a vector u = (u[1], . . . ,u[n]), where u[i] is given by Pi and outputs a set of
shares S = (S[1], . . . ,S[n]); note that since we assume the existence of authenticated,
private and subversion resilient channels between the sharing algorithm and the
players, u[i] remains unknown to all parties, except Pi;

– the reconstruction algorithm Rec remains unchanged; it receives as input a set of
shares S and outputs the secret s if the set of shares corresponds to a qualified set.

4.2 Definitions

Similar to Section 3, we introduce the definitions for detection and surveillance advan-
tages. Notice that this section models the users’ goal, so what we want is strong resilience:
B can embed in the code the secret key SK, while U is not given access to the strategy
and the public key. Even more, we disallow U to select the secret or the inputs of the
players and give it access to a Secret oracle, reflecting that U should detect surveillance
for any input. To differentiate the games from the ones in Section 3 defined for strong
subversion, we prefix them by R (which stands for resilience).

DETECTION ADVANTAGE. Let Π = (Sh,Rec) be a (multi-input) secret sharing

scheme and Π̃ = (S̃h, R̃ec) a subversion of it. Let U be a detection algorithm that is
not given PK and T . The advantage of U to detect an ASA is defined as:

Advr-det
Π,Π̃

(U) = 2Pr[R-DETECTU
Π,Π̃
⇒ true]− 1

A subversion Π̃ is undetectable if Advr−det
Π,Π̃

(U) is negligible for any efficient U .

Clearly, honest players want all subversions to be easily detectable (even when they
cannot perform reverse engineering). By restricting U from accessing anything except
the interface of the sharing algorithm and allowing B to embed in the code the secret
key SK, our definition captures a strong notion of detectability.

SURVEILLANCE ADVANTAGE. Let Π = (Sh,Rec) be a (multi-input) secret sharing

scheme and Π̃ = (S̃h, R̃ec) a subversion of it. Let B (big brother) be an adversary that
knows SK. The advantage of B to detect an ASA is defined as:

Advr-srv
Π,Π̃

(B) = 2Pr[R-SURVB
Π,Π̃
⇒ true]− 1



A scheme Π is secure against surveillance if Advr−srv
Π,Π̃

(B) is negligible for any efficient

B and for any Π̃.

SURV game is similar to the DETECT game, except that the adversary B is given the
keys PK, SK and the strategy T .

We can now model a positive result : a scheme Π is resilient to ASAs if all possible
subversions Π̃ of Π are detectable. We call Π subversion resilient. We give a secure
construction in this sense in Section 4.3.

Game R-DETECTU
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � UShare

return (b = b′)

Secret()

s � Fl
u � Fn
return s,u

Share()
s,u← Secret()
if b=1 then

S ← Sh(s,u)

else

S ← S̃h(s,u, ID, PK, SK, T )
return s,u,S

Game 4: R-DETECT (Detection Game)

Game R-SURVB
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � BShare(PK, SK, T )
return (b = b′)

Secret()

s � Fl
u � Fn
return s,u

Share()
s,u← Secret()
if b=1 then

S ← Sh(s,u)

else

S ← S̃h(s,u, ID, PK, SK, T )
return S

Game 5: R-SURV (Surveillance Game)



4.3 Subversion Resilient Multi-Input LSSS

Let Π = (Sh,Rec) be a LSSS. We construct Π∗ = (Sh∗,Rec∗) multi-input LSSS that can-
not be subverted without violating detectability. Let PRG be a pseudo-random generator
that maps a seed in F to an element in Fd.

Sh(s,u)
r ← PRG(u[1]⊕ · · · ⊕ u[n])

fT ← (s, r)T

S←M · f
return S

Rec(SB)
if B is qualified then

s←NB · SB
else

s← ⊥
return s

Construction 5: Subversion Resilient Multi-Input LSSS Π∗ = (Sh∗,Rec∗)

Theorem 5. The multi-input LSSS Π∗ = (Sh∗,Rec∗) defined in Construction 5 is sub-
version resilient.

Proof. First, we note that the shares by Sh∗ are a deterministic function of u and s. The
detection algorithm simply takes the values u[i] produced by each player and verifies
that the shares sent are the ones that would be produced by Sh∗. Any subversion with
advantage δ must produce a different set of shares with probability greater or equal to δ (if
at least one player is honest, u[1]⊕. . .⊕u[n] is uniformly random and hence r is uniformly
random from the security of PRG). We can therefore conclude that Advr-det

Π∗,Π̃∗(U) ≥ δ for

any possible subversion Π̃∗.

Discussion. Our modeling does not allow big brother to select the secret. Otherwise,
if detection and surveillance games run independently, it is trivial for big brother to
generate an undetectable subversion. Namely, it subverts the algorithm as follows: if the
secret queried is a fixed element (e.g. an element deterministically computed from the
key), then the subverted algorithm outputs specific shares, otherwise it generates proper
shares. Note that this subversion is undetectable since the key is randomly sampled. This
reflects the fact that in practice big brother can always embed hidden pattern which will
allow surveillance when this pattern is matched by a secret. This could be used to notice
unauthorized storage of sensitive documents by embedding a secret pattern within the
documents and then subverting the algorithm to misbehave under this hidden pattern.
The best that a user can therefore hope to do is to be able to detect whether or not the
sharing could have allowed surveillance. Hence, we could allow big brother to input the
secret in the surveillance game, but require that detection is continuously performed at
runtime. In terms of games, this can be easily modeled by giving the subverted algorithm
permission to select the secret, while detection algorithm runs on all this secrets and the
corresponding outputs. It is immediate that our construction remains secure under this



settings, since any subversion would require different shares than the ones that would
have been produced by Sh with very high probability.
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