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Abstract

We present the first information-theoretic steganographic protocol with an asymptotically optimal
ratio of key length to message length that operates on arbitrary covertext distributions with constant
min-entropy. Our results are also applicable to the computational setting: our stegosystem can be
composed over a pseudorandom generator to send longer messages in a computationally secure fashion.
In this respect our scheme offers a significant improvement in terms of the number of pseudorandom
bits generated by the two parties in comparison to previous results known in the computational setting.
Central to our approach for improving the overhead for general distributions is the use of combinatorial
constructions that have been found to be useful in other contexts for derandomization: almost t-wise
independent function families.

Keywords: Information hiding, steganography, data hiding, steganalysis, covert communication.

1 Introduction

Steganographic protocols enable one to “embed” covert messages into inconspicuous data over a public
communication channel in such a way that no one, aside from the sender and the intended receiver, can even
detect the presence of the secret message. The steganographic communication problem can be described using
Simmons’ [13] formulation of the problem: In this scenario, prisoners Alice and Bob wish to communicate
securely in the presence of an adversary, called the “Warden,” who monitors whether they exchange
“conspicuous” messages. In particular, Alice and Bob may exchange messages that adhere to a certain channel
distribution that represents “inconspicuous” communication. By controlling the messages that are transmitted
over such a channel, Alice and Bob may exchange messages that cannot be detected by the Warden. There
have been two approaches in formalizing this problem, one based on information theory [2, 15, 8] and one
based on complexity theory [5]. Most steganographic constructions supported by provable security guarantees
are instantiations of the following basic procedure (often referred to as “rejection-sampling”).
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The problem specifies a family of message distributions (the “channel distributions”) that provide a
number of possible options for a so-called “covertext” to be transmitted. Additionally, the sender and the
receiver possess some sort of private function indexed by the shared secret key (typically a keyed hash function,
MAC, or other similar function) that maps channel messages to a single bit. In order to send a message
bit m, the sender draws a covertext from the channel distribution, applies the function to the covertext
and checks whether it happens to produce the “stegotext” m she originally wished to transmit. If this is
the case, the covertext is transmitted. In case of failure, this procedure is repeated. While this is a fairly
concrete procedure, there are a number of choices to be made with both practical and theoretical significance.
From the security viewpoint, one is primarily interested in the choice of the function that is shared between
the sender and the receiver. From a practical viewpoint, one is primarily interested in how the channel is
implemented and whether it conforms to the various constraints that are imposed on it by the steganographic
protocol specifications (e.g., are independent draws from the channel allowed? does the channel remember
previous draws? etc.).

The shared key between Alice and Bob can be an expensive resource; to focus on this parameter, we define
a notion of overhead equal to the ratio of the length of the secret-key to the length of the message. Prior work
in statistically-secure steganography either gives high overhead or considers restricted covertext distributions.
For instance, in the information-theoretic model, Cachin [2] demonstrated a steganographic protocol that works
on restricted covertext distributions where the channel is a stationary distribution produced by a sequence of
independent repetitions of the same experiment. Under this uniformity assumption, he uses sequences of
covertexts to encode the message and obtains optimal overhead. In the complexity-theoretic setting, Hopper
et al. [5, 6] provided a provably secure stegosystem that pairs rejection sampling with a pseudorandom function
family to offer security for general (history-dependent) channel distributions with constant min-entropy.
However, this protocol has a few drawbacks. First, casting their result in the information-theoretic setting, the
length of the secret-key shared by Alice and Bob yields an overhead polynomial in the length of the message
as this is the overhead required to share a suitable random function. In the complexity-theoretic setting,
from an efficiency viewpoint, their construction required about 2 evaluations of a pseudorandom function per
bit transmission. Constructing efficient pseudorandom functions is possible either generically [4] or, more
efficiently, based on specific number-theoretic assumptions [10]. Nevertheless, pseudorandom function families
are a conceptually complex and fairly expensive cryptographic primitive. For example, the evaluation of the
Naor-Reingold pseudorandom function on an input x requires O(|x|) modular exponentiations. Similarly, the
generic construction [4] requires O(k) PRG doublings of the input string where k is the length of the key.

Our protocol remedies these shortcomings. We show how it is possible to attain constant overhead for
general channel distributions with constant min-entropy. The only assumptions employed in our analysis are
merely that the channel alphabet is polynomial in the length of the message m and the security required is
2−|m|. Furthermore, our protocol in the computational setting is much more efficient: in particular, while
the Hopper et al. stegosystem requires 2 evaluations per bit of a pseudorandom function, amounting to a
linear (in the key-size) number of applications of the underlying PRG (in the standard construction for
pseudorandom functions of [4]), in our stegosystem we require a constant number of PRG applications per bit.
So the number of cryptographic operations per bit transmitted drops from linear to constant.

Central to our approach for improving the efficiency and overhead for general distributions is the use of
combinatorial constructs such as almost t-wise independent function families given by Alon et al. [1]. Our
protocol is based on the rejection sampling technique outlined above in combination with an explicit almost
t-wise independent family of functions. We note that such combinatorial constructions have been extremely
useful for derandomization methods and here, to the best of our knowledge, are employed for the first time
in the design of steganographic protocols. The present paper is an extended version based on preliminary
work that appeared in [7]; the present version includes a full security analysis that works for any constant
min-entropy (as opposed to min-entropy of 1 bit that was assumed in this previous work).
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2 Definitions and tools

The security of a steganography protocol is measured by the adversary’s ability to distinguish between
“normal” and “covert” messages over a communication channel. To characterize normal communication we
need to define and formalize the communication channel. We follow the standard terminology used in the
literature [5, 2, 14, 6]: Let Σ = {σ1, . . . , σs} denote an alphabet and treat the channel as a family of random
variables C = {Ch}h∈Σ∗ ; each Ch is supported on Σ. These channel distributions model a history-dependent
notion of channel data that captures the notion of real-life communication. Such a channel induces a natural
distribution on Σn for any n: σ1 is drawn from Cε, and each subsequent σi is drawn from Cσ1...σi−1 . (Here
we let ε denote the empty string.) Recall that the min-entropy of a random variable X, taking values in a set
V , is the quantity

H∞(X) , min
v∈V

(− log Pr[X = v]) .

We say that a channel C has min-entropy δ if for all h ∈ Σ∗, H∞(Ch) ≥ δ.

2.1 One-time stegosystems; the steganographic models

Steganography has been studied in two natural (but implicit up to now) communication models differing in
Alice’s ability to sample from the channel.

Current History Model: The first model we study was that adopted by Hopper et al. [5]. In this model,
Alice—and consequently the steganographic encoding protocol—has access to a channel oracle that provides
samples from the channel for the current history. Alice is given no means of sampling from Ch for other
histories. We call this the current history model. In this case, one can imagine that the channel is determined
by a complex environment: while Alice is permitted to sample from the channel determined by the current
environment, she cannot simulate potential future environments. Naturally, the communication history is
updated when a symbol is transmitted on the wire from Alice to Bob. Formally, if h1, h2, . . . , h` ∈ Σ have
been transmitted along the channel thus far, Alice may sample solely from Ch1◦···◦h` and send an element of
her choice.

Look-Ahead Model: The second model we study—the look-ahead model—was adopted by von Ahn and
Hopper [14]. This model is a relaxation of the “current history” model: Alice is now provided with a means
for sampling “deep into the channel.” In particular, Alice and, consequently, the steganographic encoding
protocol, has access to a channel oracle that can sample from the channel for any history. Formally, during
the embedding process, Alice may sample from Ch1◦...◦h` for any future history h = h1 ◦ . . . ◦ h` she wishes
(though Alice is constrained to be efficient and so can make no more than polynomially many queries of
polynomial length). This more generous model allows Alice to transform a channel C with min-entropy δ into
a channel C(τ) with min-entropy τδ. Specifically, the channel C(τ) is defined over the alphabet Στ , whose

elements we write as vectors h = (h1, . . . , hτ ). The distribution C
(τ)
h1,...,hn is determined by the channel C

with history h = h1
1 ◦ · · · ◦ h1

τ ◦ h2
1 ◦ · · · ◦ hnτ . Below we give the definition of a one-time stegosystem that

works in either of the above models and is a steganographic system that enables the one-time steganographic
transmission of a message provided that the two parties share a suitable key.

Definition 1. A one-time stegosystem consists of three probabilistic polynomial time algorithms

S = (SK,SE,SD) ,

where:

• SK is the key generation algorithm; we write SK(1k) = κ. It produces a key κ of length k.

• SE is the embedding procedure and has access to the channel; SE (κ,m;O) = s ∈ Σ∗. The embedding
procedure takes into account the history h of communication that has taken place between Alice and
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Bob thus far and begins its operation corresponding to this history. It takes as input the key κ of length
k, a message m of length ` = `(k) and a (probabilistic) oracle O that allows SE to draw independent
samples repeatedly from Ch in the current history model. In the look-ahead model, the oracle O accepts
as input a (polynomial-length) history h′ ∈ Σ∗ and allows SE to draw independent samples repeatedly
from Ch◦h′ . The output is the stegotext s ∈ Σ∗. Observe that in a one-time stegosystem, once a security
parameter k is chosen, the length of the message ` is a fixed function of k. As described above, the
access that SE has to the channel is dictated by the model of communication.

• SD is the extraction procedure; SD (κ, c) = m or fail. It takes as input the key κ of length k, and some
c ∈ Σ∗. The output is a message m or the token fail.

We next define a notion of correctness for a one-time stegosystem.

Definition 2 (Correctness). A one-time stegosystem (SK,SE,SD) is said to be (ε, δ)-correct provided that
for all channels C of min-entropy δ, it holds that ∀h ∈ Σ∗

∀m ∈ {0, 1}`(k) Pr[SD(κ,SE(κ,m;O)) 6= m | κ← SK(1k)] ≤ ε .

In general, we treat both ε = ε(k) and δ = δ(k) as functions of k, the security parameter and the oracle O as
a function of the history h.

In the following paragraphs, we talk about the security for a one-time stegosystem. One-time stegosystem
security is based on the indistinguishability between a transmission that contains a steganographically
embedded message and a transmission that contains no embedded messages. The adversarial game discussed
next is meant to model the behavior of a warden in the Simmons’ formulation of the problem discussed
earlier.

An adversary A against a one-time stegosystem S = (SK,SE,SD) is a pair of algorithms A = (SA1,SA2),
that plays the following game, denoted GA(1k):

1. A key κ is generated by SK(1k).

2. Algorithm SA1 receives as input the security parameter k and outputs a triple (m, aux, hc) ∈ M` ×
{0, 1}∗ × Σ∗, where m is the challenge plaintext, hc is the history of the channel that the adversary
wishes to use for the steganographic embedding to start, and aux is some auxiliary information that will
be passed to SA2. Note that SA1 is provided access to C via an oracle O(h), which takes the history h
as input. O(·), on input h, returns to SA1 an element c selected according to Ch. This way, the warden
can learn about the channel distribution for any history.

3. A bit b is chosen uniformly at random.

• If b = 0 let c∗ ← SE(κ,m;O) where O samples covertexts from Chc .

• If b = 1 let c∗ = c1 ◦ · · · ◦ cλ where λ = |SE(κ,m;O)| and ci
r← Chc◦c1◦···◦ci−1 .

4. The input for SA2 is 1k, hc, c
∗ and aux. SA2 outputs a bit b′. If b′ = b then we say that (SA1,SA2)

succeeded and write GA(1k) = success.

The advantage of the adversary A over a stegosystem S is defined as:

AdvA
S (k) =

∣∣∣∣Pr
[
GA(1k) = success

]
− 1

2

∣∣∣∣ .
The probability includes the coin tosses of A and SE, as well as the coin tosses of GA(1k). The

(information-theoretic) insecurity of the stegosystem is defined as

InSecS(k) = max
A
{AdvA

S (k)} ,

this maximum taken over all (time unbounded) adversaries A.
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Definition 3 (Security). We say that a stegosystem is (ε, δ)-secure if for all channels with min-entropy δ we
have InSecS(k) ≤ ε.

As above, in general we treat both ε = ε(k) and δ = δ(k) as functions of k, the security parameter.

Overhead. The overhead of a one-time stegosystem expressses the relation of the key length k and message
length ` variables; specifically, we adopt the ratio β = k/` as a measure for overhead.

This paper is an extended version of a previous abstract that appeared in [7]. The work presented by Kiayias
et al. [7] considers the scenario where the communication channel has min-entropy at least 1 in the current
history model. In this paper, we present steganography protocols both in the current history and the look-
ahead model. We also present explicit constructions of error-correcting codes using Forney [3] concatenation
scheme. Furthermore, our protocols operate on any communication channel with min-entropy δ > 0.

2.2 Error-correcting codes

Our steganographic construction requires an efficient family of codes that can recover from errors introduced by
certain binary symmetric channels. In particular, we require a version of the Shannon coding theorem [12, 11]
that yields explicit control on the various parameters of the code as the rate approaches the capacity of the
channel. We present this theorem in this section.

For an element x ∈ {0, 1}n, we let Bp(x) be the random variable equal to x⊕ e, where e ∈ {0, 1}n is a
random error vector defined by independently assigning each ei = 1 with probability p. (Here x⊕ e denotes
the vector with the ith coordinate equal to xi ⊕ ei.) The classical coding theorem [12] asserts that for every
pair of real numbers 0 < R < C ≤ 1 and n ∈ N, there is a binary code A ⊂ {0, 1}n, with log |A|/n ≥ R and
θ ∈ R, so that for each a ∈ A, maximum-likelihood decoding recovers a from Bp(a) with probability 1− e−θ·n,
where p is determined from C as

H(p) = p log p−1 + (1− p) log(1− p)−1 = 1− C .

The quantity C is called the capacity of the binary symmetric channel and determines the random variable
Bp; the quantity R = log |A|/n is the rate of the code A. In this language, the coding theorem asserts that
at transmission rates lower than the capacity of the channel, there exist codes that correct random errors
with exponentially decaying failure probability (in n, the length of the code). We formalize our requirements
below.

Definition 4. An error-correcting code of rate r is a pair of functions E = (Enc,Dec), where Enc :
{0, 1}r·n → {0, 1}n is the encoding algorithm and Dec : {0, 1}n → {0, 1}r·n the corresponding decoding
algorithm. Specifically, we say that E is a (r, p, ε)-code if for all m ∈ {0, 1}r·n,

Pr[Dec(Enc(m)⊕ e) = m] ≥ 1− ε ,

where e = (e1, . . . , en) and each ei is independently distributed in {0, 1} so that Pr[ei = 1] ≤ p. We say that
E is efficient if both Enc and Dec are computable in polynomial time in n.

We record the theorem below with the proof in Appendix A.

Theorem 1 (Based on Shannon [12, 11], Forney [3]). For any p ∈ [1/4, 1/2] and any R < 1−H(p), there
is an efficient (R, p, ε)-code for which there is θ ∈ [0, 1], n0 ∈ N such that ε ≤ 2−θn/ logn for any n ≥ n0.
Furthermore, it holds that θ−1 = Θ(Z−1) and log n0 = Θ(Z−2 logZ−1) as Z → 0 where Z = 1−H(p)−R.

2.3 Function families and almost t-wise independence

We will employ the notion of (almost) t-wise independent function families (cf., [1], [9]).
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Definition 5. A family F of Boolean functions on {0, 1}v is said to be ε-away from t-wise independent or
(v, t, ε)-independent if for any t distinct domain elements q1, q2, . . . , qt we have∑

α∈{0,1}t

∣∣∣∣Pr
f

[f(q1)f(q2) · · · f(qt) = α]− 1

2t

∣∣∣∣ ≤ ε , (1)

where f is chosen uniformly from F.

The above is equivalent to the following formulation quantified over all computationally unbounded
adversaries A: ∣∣∣ Pr

f
r←F

[Af [t](1v) = 1]− Pr
f
r←R

[Af [t](1v) = 1]
∣∣∣ ≤ ε , (2)

where R is the collection of all functions from {0, 1}v to {0, 1} and Af [t] is an unbounded adversary that is
allowed to determine up to t queries to the function f before it outputs its bit. The equivalence is formally
stated (without proof) as follows.

Lemma 2. Fκ is ε′-away from t-wise independence according to equation (1) if and only if Fκ is ε′-away
from t-wise independence according to equation (2) above.

We employ the construction of almost t-wise independent sample spaces given by Naor and Naor [9],
and Alon et al. [1]. The following theorem is a restatement of theorem 3 from Alon et al. [1].

Theorem 3 ([9], [1]). There exist families of Boolean functions Fvt,ε on {0, 1}v that are ε-away from t-wise
independent, are indexed by keys of length (2 + o(1))(log v+ t/2 + log(ε−1)), and are computable in polynomial
time.

2.4 Rejection sampling

A common method used in steganography employing a channel distribution is that of rejection sampling,
described below (cf., [2, 5]).

Rejection sampling in the current history model In the current history model, assuming that one
wishes to transmit a single bit m and employs a random function f : {0, 1}d × Σ→ {0, 1} that is secret from
the adversary, one performs the following “rejection sampling” process:

rejsamf
h(m)

c
r← Ch

if f(c) 6= m

then c
r← Ch

Output: c

Here, Σ denotes the output alphabet of the channel, h denotes the history of the channel at the start of
the process, and Ch denotes the distribution on Σ given by the channel with history h. The receiver (also
privy to the function f) applies the function to the received message c ∈ Σ and recovers m with probability
greater than 1/2. The sender and the receiver may employ a joint state (e.g., a counter), that need not be
secret from the adversary. Note that the above process performs only two draws from the channel with
the same history (more draws could, in principle, be performed, but we justify our choice of two draws in
Lemma 8 of Section 3.1.2). These draws are assumed to be independent. One basic property of rejection
sampling that we will prove and is helpful for our construction is the following:

Lemma 4. If f is drawn uniformly at random from the collection of all functions R = {f : Σ→ {0, 1} } and
C has min-entropy δ, then

Pr
f←R

[f(rejsamf
h(m)) 6= m] ≤ p ,

where p = (1 + 2−δ)/4 .
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Proof. Define the event E to be

E = [f(c1) = m] ∨ [f(c1) 6= m ∧ f(c2) = m] ;

thus E is the event that rejection sampling is successful for m.
Here c1, c2 are two independent random variables distributed according to the channel distribution Ch

and h is determined by the history of channel usage. Recalling that Σ = {σ1, . . . , σs} is the support of the
channel distribution Ch, let pi = Pr[Ch = σi] denote the probability that σi occurs. As f is chosen uniformly
at random,

Pr[f(c1) = m] =
1

2
.

Then Pr[E] = 1/2 + Pr[A], where A is the event that f(c1) 6= m ∧ f(c2) = m. To bound Pr[A], let D denote
the event that c1 6= c2. Observe that conditioned on D, A occurs with probability exactly 1/4; on the other
hand, A cannot occur simultaneously with D. Thus

Pr[E] =
1

2
+ Pr[A | D] · Pr[D] + Pr[A | D] · Pr[D] =

1

2
+

1

4
Pr[D] .

To bound Pr[D], note that

Pr[D̄] =
∑
i

p2
i ≤ max

i
pi
∑
i

pi = max
i
pi

and hence that Pr[D] ≥ 1−maxi pi. Considering that H∞(C) ≥ δ, we have maxi pi ≤ 1/2δ and hence the
success probability is

Pr[E] ≥ 1

2
+

1

4
· (1−max

i
pi) ≥

1

2
+

1

4

(
1− 1

2δ

)
= 1− p ,

from which the statement of the lemma follows.

The above lemma is a generalization of a similar result that appeared in [5] and dealt with the special
case that the min-entropy is 1 bit. The application of the rejection sampling procedure as described above
in our stegosystem implies that a message bit transmitted over the communication channel can be flipped
with a certain probability p. This can be viewed as an overlayed binary symmetric channel with a cross-over
probability p. The error-correcting code is introduced to recover from these cross-over errors.

Rejection sampling in the Look-Ahead model In the look-ahead model, the rejection sampling
procedure above can be coupled with the channel transformation described in Section 2.1. In particular,
transforming a channel C with min-entropy δ into a channel C(τ) with min-entropy δτ , one can carry out the
rejection sampling process above with samples drawn from Στ . The binary symmetric channel cross-over
probability is then p = (1 + 2−δτ )/4.

3 The construction

In this section we outline our construction of a one-time stegosystem as an interaction between Alice (the
sender) and Bob (the receiver). First, we focus on the construction in the current history model and defer
the discussion for the look-ahead model to Section 3.2.

3.1 Our stegosystem for the current history model

In the current history model, Alice and Bob wish to communicate over a channel with distribution C over an
alphabet Σ. We assume that C has min-entropy δ, so that ∀h ∈ Σ∗, H∞(Ch) ≥ δ. As in the statement of
Lemma 4, let p = (1 + 2−δ)/4 . The construction we describe below uses two parameters: r ∈ (0, 1−H(p))
and εF ∈ (0, 1). Alice and Bob agree on the following:
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An error-correcting code. Let E = (Enc,Dec) be an efficient (r, p, εenc)-code of length n from Theorem 1.
The theorem asserts that p and r determine a bound for the decoding error probability εenc assuming
that n is suitably large.

A pseudorandom function family. Let F be the function family that is (log n + log |Σ|, 2n, εF)-
independent indexed by keys of length k from Theorem 3. Recall from the theorem that εF together
with our choices of v = log n + log |Σ| and t = 2n determine the required key length k. We treat
elements of F as Boolean functions on {1, . . . , n} × Σ and, for such a function f we let fi : Σ→ {0, 1}
denote the function fi(σ) = f(i, σ).

We will analyze the stegosystem below in terms of the parameters n, r, δ, εF, relegating the discussion of
how these parameters determine the overall efficiency, correctness and security of the system to Section 3.3.

Key generation consists of selecting an element f ∈ F. This will be facilitated by sharing a random bit
string κ of length k. Alice and Bob then communicate using the algorithms SE for embedding and SD for
extracting as described in Figure 1.

PROCEDURE SE: PROCEDURE SD:
Input: Key κ, hidden text m′, Input: Key κ, stegotext cstego

history h
let m = Enc(m′)
parse m as m = m1m2 . . .mn parse cstego as c = c1c2 . . . cn
for i = 1 to n { for i = 1 to n {

ci = rejsamfi
h (mi) set m̄i = fi(ci)

set h← h ◦ ci }
} let m̄ = m̄1m̄2 . . . m̄n

Output: cstego = c1c2 . . . cn ∈ Σn Output: Dec(m̄)

Figure 1: Encryption and Decryption algorithms for the one-time stegosystem in the current history model.

In SE, after applying the error-correcting code E, we use rejsamfi
h (mi) to obtain an element ci of the

channel for each bit mi of the message and update the history h. The resulting stegotext c1 . . . cn is denoted
cstego. In SD, the received stegotext is parsed block by block by evaluating the key function fi at ci; this
results in a message bit. After performing this for each received block, a message of size n is received, which
is subjected to decoding via Dec. Note that we sample at most twice from the channel for each bit we wish to
send. The error-correcting code is needed to recover from the errors introduced by this process. The detailed
correctness, security and overhead analysis for both models follow in the next sections.

3.1.1 Correctness

In this section we argue about the correctness of our one-time stegosystem in the current history model.
We examine the minimum message length needed for achieving (ε, δ)-correctness for any choice of these
parameters. We are particularly interested in the case when δ is small (perhaps even approaching 0 as a
function of k) as the difficulty of parameter selection is amplified in this case (in contrast when δ is bounded
away from 0, the cross-over probability p is bounded away from 1/2 and thus the parameter selection is
simplified).

Theorem 5. For any ε, δ > 0, consider the current history model stegosystem (SK,SE,SD) of Section 3.1
under the parameter constraints r = Ω(1−H(p)) and εF ≤ ε/2 where p = (1 + 2−δ)/4. Then the stegosystem
is (ε, δ)-correct so long as the message has length

Ω
(
δ−2 · log(ε−1) log log(ε−1)

)
+ 2O(δ−4)

as δ → 0 while the dependency on δ vanishes when δ is bounded away from 0.
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Proof. Let us first consider the case where the function f corresponding to the shared key between the two
participants is a truly random function. In this case, by Lemma 4, the underlying communication channel
simulates a binary symmetric channel with cross-over probability p = (1 + 2−δ)/4. Based on this fact and
Theorem 1, the probability of error in reception would be at most 2−θn/ logn for sufficiently large n. Specifically,
it should hold that n ≥ n0 for some n0 that satisfies log n0 = Θ(Z−2 logZ−1) where Z = 1−H(p)− r. Also
recall that θ = Θ(Z). Given the statement of the theorem we can postulate that Z = Ω(1−H(p)) and as a
result Z−1 = O((1−H(p))−1). Observe now that the choice of p = (1 + 2−δ)/4 implies that

(1−H(p))−1 = O((1− 2−δ)−2)

in the light of Proposition 15. It follows that Z−1 = O((1 − 2−δ)−2) and thus n0 = 2O((1−2−δ)−4)Z−1.

From this we see that the minimum message length is of the form 2O((1−2−δ)−4) in order to attain an error
correction bound of the form 2−θn/ logn. To force this latter function to be below, say, ε/2 we need to select
n/ log n = Ω(θ−1 log(1/ε)) which implies a lower bound for n of the form Ω((1− 2−δ)−2 · log(1/ε) log log(1/ε)).
The above guarantees an error of at most ε/2 when the function f corresponding to the shared key between
the two participants is a truly random function. Now we consider the case where the selection of f is based
on an ε-away from t-wise independent family of functions. Given that the postulated distance of our function
family from truly random functions is at most ε/2, we see that

∀m ∈ {0, 1}`, Pr[SD(κ,SE(κ,m;O)) 6= m | κ← SK(1k)] ≤ ε

which establishes the correctness of the stegosystem for messages of length ` that are suitably large as postulated
since (1− 2−δ)−2 = O(δ−2) for small values of δ ≤ 1 while for larger δ it holds that (1− 2−δ)−2 = O(1).

3.1.2 Security

In this section we argue about the security of our one-time stegosystem in the current history model. First,
we will observe that the output of the rejection sampling function rejsamf

h, with a truly random function f ,
is indistinguishable from the channel distribution Ch (this folklore result was implicit in previous work—we
prove it formally below). We then show that if f is selected from a family that is εF-away from 2n-wise
independent, the advantage of an adversary A to distinguish between the output of the steganographic
embedding protocol SE and the channel Ch is bounded above by εF. Let R = {f : Σ→ {0, 1}}. We will show
the following:

Theorem 6. For any ε, δ > 0, consider the current history stegosystem (SK,SE,SD) of Section 3.1 under
the parameter constraint εF ≤ ε. Then the stegosystem is (ε, δ)-secure so long as the key has length

(2 + o(1))

(
1

r
· `+ log log |Σ|+ log(ε−1)

)
,

where ` is the message length and r is the rate of the error correcting code employed by the stegosystem.

Anticipating the proof of the theorem we start with some preliminary results. First, we characterize the
probability distribution of the rejection sampling function:

Proposition 7. Fix some function f : Σ→ {0, 1} and channel history h ∈ Σ∗. The function rejsamf
h(m) is

a random variable with probability distribution expressed by the following function: Let c ∈ Σ and m ∈ {0, 1}.
Let missf (m) = Prc′←Ch [f(c′) 6= m] and pc = Prc′←Ch [c′ = c]. Then

Pr[rejsamf
h(m) = c] =

{
pc · (1 + missf (m)) if f(c) = m ,

pc ·missf (m) if f(c) 6= m .

Proof. Let c1 and c2 be the two (independent) samples drawn from Ch during rejection sampling. (For
simplicity, we treat the process as having drawn two samples even in the case where it succeeds on the
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first draw.) Note, now, that in the case where f(c) 6= m, the value c is the result of the rejection sampling
process precisely when f(c1) 6= m and c2 = c; as these samples are independent, this occurs with probability
missf (m) · pc. In the case where f(c) = m, however, we observe c whenever c1 = c or f(c1) 6= m and c2 = c.
As these events are disjoint, their union occurs with probability pc · (missf (m) + 1), as desired.

Lemma 8. For any h ∈ Σ∗,m ∈ {0, 1}, the random variable rejsamf
h(m) is perfectly indistinguishable from

the channel distribution Ch when f is drawn uniformly at random from the space of R.

Proof. Let f be a random function, as described in the statement of the lemma. Fixing the elements c, and
m, we condition on the event E6=, that f(c) 6= m. In light of Proposition 7, for any f drawn under this

conditioning we shall have that Pr[rejsamf
h(m) = c] is equal to

Pr
c′←Ch

[c′ = c] ·missf (m) = pc ·missf (m) ,

where we have written missf (m) = Prc′←Ch [f(c′) 6= m] and pc = Prc′←Ch [c′ = c]. Conditioned on E 6=, then,
the probability of observing c is

Ef [pc ·missf (m) | E 6=] = pc

(
pc +

1

2
(1− pc)

)
,

where the above follows from the fact that in the conditional space we can expand missf (m) as

Pr
c′←Ch

[f(c′) 6= m | c′ = c ∧ E 6=] · Pr
c′←Ch

[c′ = c | E6=] + Pr
c′←Ch

[f(c′) 6= m | c′ = c ∧ E 6=] · Pr
c′←Ch

[c′ 6= c | E6=] .

Letting E= be the event that f(c) = m, we similarly compute

Ef [pc · (1 + missf (m)) | E=] = pc

(
1 +

1

2
(1− pc)

)
.

As Pr[E=] = Pr[E 6=] = 1/2, we conclude that the probability of observing c is exactly

1

2

(
pc

(
pc +

1− pc
2

)
+ pc

(
1 +

1− pc
2

))
= pc ,

as desired.

Having established the behavior of the rejection sampling function when a truly random function is used,
we proceed to examine the behavior of rejection sampling in our setting where the function is drawn from a
function family that is εF-away from 2n-wise independent. In particular we will show that the insecurity of
the defined stegosystem is characterized as follows:

Proof of Theorem 6. Consider the following two games GA
1 and GA

2 that can be played with the adversary A.
Here λ = |SE(κ,m;O)|.

GA
1 (1k)

1. κ← {0, 1}k

2. (m∗, s)← SA
O(h)
1 (1κ, h), m∗ ∈ {0, 1}`

3. b
r← {0, 1}

4. c∗ =

{
c0, c1, . . . , cλ−1 ci = rejsamfκ,i

h (mi), h = h ◦ ci if b = 0
from the channel with history h if b = 1

5. b∗ ← SA2(c∗, s)
6. if b = b∗ then success

10



GA
2 (1k)

1. f ← R

2. (m∗, s)← SA
O(h)
1 (1κ, h), m∗ ∈ {0, 1}`

3. b
r← {0, 1}

4. c∗ =

{
c0, c1, . . . cλ−1 ci = rejsamf,i

h (mi), h = h ◦ ci if b = 0
from the channel with history h if b = 1

5. b∗ ← SA2(c∗, s)
6. if b = b∗ then success

AdvA
S (k) =

∣∣∣∣Pr
[
GA(1k) = success

]
− 1

2

∣∣∣∣
=

∣∣Pr[GA
1 (1k) = success]− Pr[GA

2 (1k) = success]
∣∣ ≤ εF

and the theorem follows by the definition of insecurity. From Theorem 3 we get that the minimum key length
required for security is (2 + o(1))(`/r + log log |Σ|+ log(ε−1)), where ` is the message length and r is the rate
of the error correcting code employed by the stegosystem.

3.2 Adapting to the look-ahead model

In this section we note the differences in the construction for the look-ahead model from the current history
model. In this model, Alice and Bob agree to communicate over a channel with distribution Cτh over an

alphabet Στ where τ = δ−1. The min-entropy is now H∞(C
(δ−1)
h ) ≥ 1. The binary symmetric channel

cross-over probability p is no more than 3/8. To recover from the cross-over error, they use the error-correcting
code E = (Enc,Dec) which is an efficient (r, 3/8, εenc)-code of length n from Theorem 1. For the look-ahead
model, we record the corollary below which follows directly from Theorem 5.

Corollary 9. For any ε, δ > 0, consider the look-ahead model stegosystem (SK,SE,SD) under the parameter
constraints r = Ω(1−H(p)) and εF ≤ ε/2 where p = 3/8. Then the stegosystem is (ε, δ)-correct so long as
the message has length Ω(log(1/ε) log log(1/ε)).

In the current history model, as δ → 0, the rejection sampling procedure has a high probability of failure.
This is because the overlayed binary symmetric channel cross-over probability converges to a 1/2 very quickly
since p = (1 + 2−δ)/4. With p converging to 1/2, the binary symmetric channel becomes informationless.
Consequently, we would have to employ error correcting codes that can recover from very high error rates.
This translates to a very high minimum message length requirement and explains the exponential dependence
on δ−1. In the look-ahead model, we amplify the entropy of the channel upto 1, thereby removing the
minimum message length’s exponential dependence on δ−1. In either model, if we want to transmit a message
of length shorter than the minimum message length, this can be accomplished by padding the original message
to attain the required length. The rejection sampling procedure in the two models only differ in the size of
their domain space. Observe that this does not affect the security analysis. The corollary recorded below
follows directly from Theorem 6:

Corollary 10. For any ε, δ > 0, consider the look-ahead stegosystem (SK,SE,SD) under the parameter
constraint εF ≤ ε. Then the stegosystem is (ε, δ)-secure so long as the key has length (2+o(1))(`/r+log log(|Σ|·
δ−1) + log(1/ε)), where ` is the message length and r is the rate of the error correcting code employed by the
stegosystem.

3.3 Putting it all together

The objective of this section to combine the results of the previous sections and illustrate the results for
our stegosystem in the two channel models. As our system is built over two-sample rejection sampling, a
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process that faithfully transmits each bit with cross-over probability p = (1 + 2−δ)/4, the target rate that
we may approximate is 1−H(p). In the case of the look-ahead model, we have the cross-over probability
p ≤ 3/8 and the target rate that we may approximate is 1−H(3/8). Indeed, as described below, the system
asymptotically converges to the rate of this underlying rejection sampling channel. We remark that with
sufficiently large channel entropy, there are ways for one to draw more samples during rejection sampling to
reduce the error-rate without compromising security, but nevertheless this would not have any (asymptotic)
bearing to our overhead objective.

Theorem 11. For any ε, δ > 0, the stegosystem (SK,SE,SD) of Section 3.1 in the current history model
under the parameter constraints r = Ω(1−H(p)) and εF ≤ ε/2 where p = (1 + 2−δ)/4 is (ε, δ)-correct and

(ε, δ)-secure so long as : the message has length Ω(δ−2 · log(1/ε) log log(1/ε)) + 2O(δ−2) as δ → 0 while the
dependency on δ vanishes for δ →∞. When the size of the channel alphabet is polynomial in the length of
the message m and ε = 2−|m|, (SK,SE,SD) has overhead O((1 − H(p))−1) = O(δ−2) as δ → 0 while the
dependency on δ vanishes for δ →∞.

The above theorem implies that for any fixed δ our stegosystem exhibits O(1) overhead, i.e., the ratio of
the key length over the message length is constant.

Theorem 12. For any ε, δ > 0, the stegosystem (SK,SE,SD) of Section 3.1 in the look-ahead model under
the parameter constraints r = Ω(1−H(p)) and εF ≤ ε/2 where p = 3/8 is (ε, δ)-correct and (ε, δ)-secure so
long as : the message has length Ω(log(1/ε) log log(1/ε)). When the size of the channel alphabet is polynomial
in the length of the message m and ε = 2−|m|, (SK,SE,SD) exhibits O(1) overhead.

4 A provably secure stegosystem for longer messages

In this section we show how to apply the “one-time” stegosystem of Section 3.1 together with a pseudorandom
generator so that longer messages can be transmitted.

Definition 6. Let Uk denote the uniform distribution over {0, 1}k. A polynomial time deterministic algorithm
G is a pseudorandom generator (PRG) if the following conditions are satisfied:

Variable output For all seeds x ∈ {0, 1}∗ and y ∈ N, |G(x, 1y)| = y.

Pseudorandomness For every polynomial p the set of random variables {G(Uk, 1
p(k))}k∈N is computation-

ally indistinguishable from the uniform distribution {Up(k)}k∈N.

For a PRG G and 0 < k < k′, if A is some statistical test, we define the advantage of A over the PRG as
follows:

AdvAG(k, k′) =

∣∣∣∣ Pr
w←G(Uk,1k

′ )
[A(w) = 1]− Pr

w←Uk′
[A(w) = 1]

∣∣∣∣ .
The insecurity of the above PRG G against all statistical tests A computable by circuits of size ≤ P is

then defined as

InSecG(k, k′;P ) = max
A∈AP

{AdvAG(k, k′)}

where AP is the collection of statistical tests computable by circuits of size ≤ P .
It is convenient for our application that typical PRGs have a procedure G′ such that if z = G(x, 1y), it

holds that G(x, 1y+y′) = G′(x, z, 1y
′
) (i.e., if one maintains z, one can extract the y′ bits that follow the first

y bits without starting from the beginning).
Consider now the following stegosystem S′ = (SK′,SE′,SD′) that can be used for steganographic

transmission of longer messages using the one-time stegosystem S = (SK,SE,SD) defined in Section 3.1.
S′ can handle messages of length polynomial in the security parameter k and employs a PRG G. The two
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players Alice and Bob, share a key of length k denoted by x. The function SE′ is given input x and the
message m ∈ {0, 1}ν to be transmitted of length ν = p(k) for some fixed polynomial p. SE′ in turn employs
the PRG G to extract k′ bits (it computes κ = G(x, 1k

′
), |κ| = k′). The length k′ is selected to match the

number of key bits that are required to transmit the message m using the one-time stegosystem of Section 3.1.
Once the key κ of length k′ is produced by the PRG, the procedure SE′ invokes the one-time stegosystem on
input κ,m, h. The function SD′ is defined in a straightforward way based on SD.

The computational insecurity of the stegosystem S′ is defined by adapting the definition of information-
theoretic stegosystem security from Section 2.1 for the computationally bounded adversary as follows:

InSecS′(k, k
′;P ) = max

A∈AP
{AdvA

S′(k, k
′)} ,

this maximum taken over all adversaries A, where SA1 and SA2 have circuit size ≤ P and the definition
of advantage AdvA

S′(k, k
′) is obtained by suitably modifying the definition of AdvA

S (k) in Section 2.1. In
particular, we define a new adversarial game GA(1k, 1k

′
) which proceeds as the previous game GA(1k) in

Section 2.1 except that in this new game GA(1k, 1k
′
), algorithms SA1 and SA2 receive as input the security

parameter k′ and SE′ invokes SE as SE(κ,m;O) where κ = G(x, 1k
′
). This matches the model of [5] which

referred to such schemes as steganographically secret against chosen hiddentext attacks.

Theorem 13. The stegosystem S′ = (SK′,SE′,SD′) is steganographically secret against chosen hiddentext
attacks. In particular employing a PRG G to transmit a message m we get

InSecS′(k, k
′;P ) ≤ InSecG(k, k′;P ) + InSecS′(k

′)

where InSecS′(k
′) is the information-theoretic insecurity defined in Section 2.1 and |m| = `(k′).

Performance comparison of the stegosystem S′ and the Hopper, Langford, von Ahn system.
The system of Hopper et al. [5] concerns a current history model where the min-entropy of all Ch is at
least 1. In this case, we may select an (p, 3/8, εenc)-error-correcting code. Then the system of Hopper, et
al. correctly decodes a given message with probability at least 1 − εenc and makes no more than 2n calls
to a pseudorandom function family. Were one to use the pseudorandom function family of Goldreich et al.
[4], then this involves production of Θ(` · log(` · |Σ|)) pseudorandom bits, where ` is the message length. Of
course, the security of the system depends on the security of the underlying pseudorandom generator with
parameter k. On the other hand, with the same error-correcting code, the steganographic system described
in this work utilizes O(`+ log log |Σ|+ log(1/ε)) pseudorandom bits, correctly decodes a given message with
probability 1− ε, while it possesses insecurity no more than ε. In order to compare the two schemes, note
that by selecting ε = 2−k, both the decoding error and the security of the two systems differ by at most 2−k,
a negligible function in terms of the security parameter k. (Note also that pseudorandom functions utilized
in the above scheme have security no better than 2−k with security parameter k.) In this case, the number of
pseudorandom bits used by our system is

(2 + o(1))
(
`+ log log |Σ|+ k

)
= Θ(`+ k + log log |Σ|) ,

a non-trivial improvement over the Θ(` · log(` · |Σ|)) bits of the scheme above. In the look-ahead model,
the number of pseudorandom bits used by our system is Θ(`+ log log(|Σ| · δ−1) + k) as we operate on the

concatenated channel C
(δ−1)
h .
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A Error-correcting codes

In this section, we provide the proof for Theorem 1 from Section 2.2.

Theorem 14. (based on Shannon [12, 11], Forney [3]) For any p ∈ [1/4, 1/2] and any R < 1−H(p), there
is an efficient (R, p, ε)-code for which there is θ ∈ [0, 1], n0 ∈ N such that ε ≤ 2−θn/ logn for any n ≥ n0.
Furthermore, it holds that θ−1 = Θ(Z−1) and log n0 = Θ(Z−2 logZ−1) as Z → 0 where Z = 1−H(p)−R.

Proof. We provide the details below of the classic construction for such error-correcting codes E based on
concatenated codes. In the standard notation used for codes, q stands for the alphabet size, n for the block
length, k for the message length (where |C| = qk) and d for the minimum distance of the code. A code with
the above parameters is called an (n, k, d)q code and an [n, k, d]q code if it is linear. Thus, k/n is the rate of
the code and d/n is the relative distance.
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Here, we take advantage of the concatenation C1 · C2 of two codes C1 and C2, called the “outer” and
“inner” code respectively. The procedure is as follows:

Outer Code : C1 = (N,K,D)Q
Inner Code : C2 = (n, k, d)q

Such that : Q = qk .

The alphabet of the outer code is in one-to-one correspondence with the codewords of the inner code. Given a
message in QK , first apply C1 onto this message to get a string s ∈ QN . Then, on every symbol of s, viewed as
a message in qk, apply C2 and concatenate the results. The resulting codeword is C2 (s1) · C2 (s2) · · ·C2 (sN )

and the resulting code has QK =
(
qk
)K

= qkK messages. The length of the codewords is nN and the distance
of concatenation is at least dD. Hence,

C1 · C2 = (N,K,D)qk · (n, k, d)q ⇒ (nN, kK, dD)q .

This operation was due to Forney [3]. We now show how we implement Forney’s code for constructing an
asymptotically good code.

The inner code. In the inner code schema, we will be transmitting binary strings of length n1 = c · log n
over a binary symmetric channel with cross-over probability p ∈ [1/4, 1/2].

The encoding schema uses a set C of 2brn1c random codewords drawn from {0, 1}n1 where r is a parameter
to be determined later that corresponds to the rate of the inner code. These codewords are mapped arbitrarily
to the elements of {0, 1}brn1c. The decoding procedure is a maximum likelihood decoder: given a received
word, the message corresponding to the codeword closest to it, is determined and returned, with ties broken
arbitrarily.

We next analyze the probability the decoding procedure fails. In what follows e ∈ {0, 1}n1 is selected
at random such that Pr[ei = 1] = p; we would like to bound the probability Pr[ci ⊕ e is closest to ci] from
below. Note that Pr[ci⊕ e is closest to ci] = Pr[d(ci⊕ e, ci) < d(ci⊕ e, cj)] for all cj with j 6= i, where d is the
Hamming distance. Without loss of generality, we can let ci = 0 and proceed as follows. Pr[e is closest to 0]
= 1− Pr[Some c ∈ C is closer to ~e than 0]. To this end, let us first proceed to upper bound the probability
Pr[Some c ∈ C is closer to ~e than ~0] which is the decoding error probability of the inner code.

Let |Bw (x) | be the set of words y with d(x, y) ≤ w. The set Bw(x) is called the ball with radius w and
center x. |Bw (x) | =

∑
0≤k≤w

(
n1

k

)
. Let α be a constant with 1/2 > α > p .

Pr [ Some c ∈ C is closer to ~e than 0]

=

n1∑
i=0

pi(1− p)n1−i
(
n1

i

)
Pr [Some c ∈ Bi(~e) | ~e ]

≤ Pr[|e| ≥ αn1] + Pr[Some c ∈ Bαn1
(0)]

≤ Pr[|e| ≥ αn1] +
2brn1c · |Bαn1(0)|

2n1
.

Here, |Bi (x) | is the set of words y with d(x, y) ≤ i. Then, for 0 ≤ α ≤ 1/2,

|Bαn1 (x) | =
∑

0≤k≤αn1

(
n1

k

)
≤ 2n1H(α).

Thus,

Pr[Some c ∈ C is closer to ~e than 0] ≤ Pr[|e| ≥ αn1] + 2(r−1+H(α))n1 < e
−n1(α−p)2

3p + 2−(1−r−H(α))n1 .
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Here the final inequality follows from the Chernoff bound.1 The above indicates that as long as we choose
α, r such that α > p and r < 1−H(α) it holds that the error probability of decoding in the inner code is at
most ε1 provided that

n1 ≥ max
{

3p ln(2ε−1
1 )(α− p)−2, log(2ε−1

1 )(1−H(α)− r)−1
}
.

The outer code. We next describe the outer code that is a Reed-Solomon code over the binary extension
field GF (2n1). The code has length n2 < 2n1 symbols and is of rate κ. We can correct a number of errors
up to a rate of (1− κ)/2. We want to ensure that we can correct the message with probability 1− ε. Let
u be the number of errors of the inner code. The expected value of u is ε1n2. We would like to bound the
probability p′ = Pr[u > (1− κ)n2/2]. Applying Chernoff bound and setting ζ = ε−1

1 (1− κ)/2− 1 we have

p′ < e−ε1n2(ε−1
1 (1−κ)/2−1)2/3 ≤ ε provided that

n2 ≥ ln(ε−1)ε−1
1 · (ε

−1
1 (1− κ)/2− 1)−2.

We may decode the Reed-Solomon code using the Berlekamp-Welch algorithm and in the event that the
error rate is greater than (1− κ)/2, the output of the decoding procedure will be a failure symbol ⊥.

The concatenation construction. The objective is to transmit with a given transmission rate R <
1−H(p) for a transmission length of n bits while having a decoding error probability of ε = e−θn/ logn for
suitable θ (that is independent of n). The recovery of the R · n bits of message should be achieved in time
polynomial in n. Since we employ a concatenated code with inner-code rate r and the outer code rate κ,
we can achieve our objective provided that r = 1 − H(p) − f1, κ = 1 − f2 as long as f1 + f2 ≤ Z where
Z = 1−H(p)−R for some suitably chosen values f1, f2 ∈ [0, 1].

To account for the fact that the decoding of the inner code is done in a brute-force manner we need that
n1 ≤ c1 · 1/r log n for some constant c1 (as in this case we maintain polynomial-time dependency in n in
terms of running time).

Let g1 < f1 be some constant; we set α = H−1(H(p) + g1). Observe that α > p and α < 1/2, i.e., this is
a valid choice for the selection of α in the inner code design. Furthermore, we have that

1−H(α)− r = 1−H(p)− g1 − (1−H(p)− f1) = f1 − g1 and α− p ≥ g1

2
.

This latter inequality follows from the fact that H(p) + z ≥ H(p+ z/2) for all p ∈ [1/4, 1/2] and z ∈ [0, 1].
Based on the above we may restate the bounds on n1 as follows:

n1 ≥ max
{

5 · log(2ε−1
1 )g−2

1 , log(2ε−1
1 )(f1 − g1)−1

}
.

We set g1 = f1/2 and f1 = Z/2 and we obtain the requirement that n1 = Ω(Z−2 log ε−1
1 ). Next observe

that (1− κ)/2ε1 − 1 = f2/(2ε1)− 1, by setting f2 = 2ε1(1 + g2) for some constant g2, the bound on n2 can
be expressed as

n2 ≥ ln(ε−1)ε−1
1 g−2

2 .

Note that assuming f2 = Z/2 we obtain that g2 = Z/(4ε1)− 1, by setting ε1 = Z/5 we obtain that g2 = 1/4.
This results in the bound n2 ≥ 80 · Z−1 ln(ε−1), i.e., n2 = Ω(Z−1 log(ε−1)). Combining the above results
with the fact that n1 = O(log n), n = n1n2 we obtain that the error probability is 2−θn/ logn where θ = Θ(Z)
assuming that n ≥ n0 where n0 is such that log n0 = Ω(Z−2 logZ−1).

1Consider e1, . . . , eN random variables taking values in {0, 1} with Pr[ei = 1] = p for i = 1, . . . , N . It holds that

Pr

[
N∑
i=1

ei > (1 + ζ)µ

]
< e−µζ

2/3

for any 0 < ζ < 1 where µ =
∑N
i=1 Pr[ei = 1].
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B Lower bound on rate given upper bound on error

Proposition 15. Let 0 ≤ τ < 1/4 be a constant. Let R′ = 1−H(1/2− τ). Then, R′ ≥ τ2 . Here, H(·) is
the Shannon entropy function.

Proof. We want to lower bound the rate R′ = 1−H (1/2− τ). To this end, let us upper bound H(1/2− τ).

From the definition of Shannon entropy,

H(
1

2
− τ) = −

[(
1

2
− τ
)

log2

(
1

2
− τ
)

+

(
1

2
+ τ

)
log2

(
1

2
+ τ

)]
.

Rewriting the log terms as below,

log2

(
1

2
− τ
)

= log2 (1 + (−2 · τ))− 1 ,

log2

(
1

2
+ τ

)
= log2 (1 + (2 · τ))− 1 ,

we get,

H(
1

2
− τ) = −

[(
1

2
− τ
)

log2

(
1

2
− τ
)

+

(
1

2
+ τ

)
log2

(
1

2
+ τ

)]
= −

[(
1

2
− τ
)
· log2 (1 + (−2τ))−

(
1

2
− τ
)]
−
[(

1

2
+ τ

)
· log2 (1 + (2τ))−

(
1

2
+ τ

)]
= −

[(
1

2
− τ
)
· log2(e) · ln (1 + (−2τ)) +

(
1

2
+ τ

)
· log2(e) · ln (1 + (2τ))− 1

]
.

We now lower bound the terms ln (1 + (−2τ)) and ln (1 + (2τ)) using the natural logarithm power series:

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 . . . (−1 < x ≤ 1).

In our case, we have 0 ≤ τ < 1/4. So, − 1/2 < −2τ ≤ 0 and 0 ≤ 2τ < 1/2.

When −1/2 < x ≤ 0,

ln (1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 ≥ x− 1

2
x2(1 + x+ . . .) ≥ x− 1

2
x2 · 1

1− x
≥ x− x2.

When 0 ≤ x < 1/2,

ln (1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 ≥ x− 1

2
x2.

Hence, we have

ln (1 + x) ≥

{
x− x2

2 ·
1

(1−x) ≥ x− x
2 − 1

2 < x ≤ 0 ,

x− 1
2x

2 0 ≤ x < 1
2 ,

and

H

(
1

2
− τ
)

= −
[(

1

2
− τ
)
· log2(e) · ln (1 + (−2τ))

]
−
[(

1

2
+ τ

)
· log2(e) · ln (1 + (2τ))− 1

]
≤ −

[(
1

2
− τ
)
· log2(e) ·

(
−2τ − 4τ2

)]
−
[(

1

2
+ τ

)
· log2(e) ·

(
2τ − 2τ2

)
− 1

]
= 1− log2(e) ·

(
τ2 + 2 · τ3

)
≤ 1− log2(e) · τ2 ≤ 1− 1.44τ2 .

This gives us,

R′ = 1−H
(

1

2
− τ
)
≥ 1−

(
1− 1.44τ2

)
≥ τ2.
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