
Reactive Garbling:
Foundation, Instantiation, Application

Jesper Buus Nielsen and Samuel Ranellucci

Aarhus University

Abstract. Garbled circuits is a cryptographic technique, which has
been used among other things for the construction of two and three-
party secure computation, private function evaluation and secure out-
sourcing. Garbling schemes is a primitive which formalizes the syntax
and security properties of garbled circuits. We define a generalization of
garbling schemes called reactive garbling schemes. We consider functions
and garbled functions taking multiple inputs and giving multiple out-
puts. Two garbled functions can be linked together: an encoded output
of one garbled function can be transformed into an encoded input of the
other garbled function without communication between the parties. Re-
active garbling schemes also allow partial evaluation of garbled functions
even when only some of the encoded inputs are provided. It is possible
to further evaluate the linked garbled functions when more garbled in-
puts become available. It is also possible to later garble more functions
and link them to the ongoing garbled evaluation. We provide rigorous
definitions for reactive garbling schemes. We define a new notion of secu-
rity for reactive garbling schemes called confidentiality. We provide both
simulation based and indistinguishability based notions of security. We
also show that the simulation based notion of security implies the indis-
tinguishability based notion of security. We present an instantiation of
reactive garbling schemes. We present an application of reactive garbling
schemes to reactive two-party computation secure against a malicious,
static adversary. We demonstrate how garbling schemes can be used to
give abstract black-box descriptions and proof of several advanced ap-
plications of garbled circuits in the literature, including Minilego and
Lindell’s forge-and-lose technique.

1 Introduction

Garbled circuits is a technique originating in the work of Yao and later for-
malised by Bellare, Hoang and Rogaway [3], who introduced the notion of a
garbling scheme along with an instantiation. Garbling schemes have found a
wide range of applications. However, many of these applications are using spe-
cific constructions of garbled circuits instead of the abstract notion of a garbling
scheme. One possible explanation is that the notion of a garbling scheme falls
short of capturing many of the current uses. In the notion of a garbling scheme,
the constructed garbled function can only be used for a single evaluation and the
garbled function has no further use. In contrast, many of the most interesting



current applications of garbled circuits have a more granular look at garbling,
where several components are garbled, dynamically glued together and possibly
evaluated at different points in time. We now give a few examples of this.

In the standard cut-and-choose paradigm for two-party computation, Alice
sends s copies of a garbled function to Bob. Half of the garblings (chosen by Bob)
are opened to check that they were correctly constructed. This guarantees that
the majority of the remaining instances were correctly constructed. Alice and
Bob then use the remaining garblings for evaluation. Bob takes the majority
output of these evaluations as his output. Although conceptually simple, this
introduces a number of problems: Bob must ensure that Alice uses consistent
inputs. It is also required that the probability that Bob aborts does not depend
on his choice of input. Previous protocols solve these problems by doing white-
box modifications of the underlying garbling scheme. We will show how to solve
these problems by using reactive garbling schemes in a black-box manner.

In [20], Lindell presents a very efficient protocol for achieving active secure
two-party computation from garbled circuits. In the scheme of Lindell, first s
circuits are sent. Then a random subset of them are opened up to test that they
were correctly constructed and the rest, the so-called evaluation circuits, are then
evaluated in parallel. If the evaluations don’t all give the same output, then the
evaluator can construct a certificate of cheating which can be fed into a small
corrective garbled circuit. Another example is a technique introduced simultane-
ously by Krater, shelat and Shen [18] and Frederiksen, Jakobsen and Nielsen [7],
where a part of the circuit which checks the so-called input consistency of one
of the parties is constructed after the main garbled circuit has been constructed
and after Alice has given her input. We use a similar technique in our example
application, showing that this trick can be applied to (reactive) garbling schemes
in general. Another example is the work of Huang, Katz, Kolesnikov, Kumaresan
and Malozemoff [16] on amortising garbled circuits, where one of the analytic
challenges is a setting where many circuits are garbled prior to inputs being
given. Our security notion allows this behaviour and this part of their protocol
could therefore be cast as using a general (reactive) garbling scheme. Another
example is the work of Huang, Evans, Katz and Malka [15] on fast secure two-
party computation using garbled circuits, where they use pipelining: the circuit
is garbled and evaluated in blocks for efficiency. Finally, we remark that some-
times the issue of garbling many circuits and gluing them together and having
them interact with other security components can also lead to subtle insecurity
problems, as demonstrated by the notion of a garbled RAM as introduced by Lu
and Ostrovsky in [22], where the construction was later proven to be insecure by
Gentry, Halevi, Lu, Ostrovsky, Raykova and Wichs [12]. We believe that having
well founded abstract notions of partial garbling and gluing will make it harder
to overlook security problems.

Our goal is to introduce a notion of reactive garbling schemes, which is gen-
eral enough to capture the use of garbled circuits in most of the existing appli-
cations and which will hopefully form a foundation for many future applications
of garbling schemes. Reactive garbling schemes generalize garbling schemes in

2



several ways. First of all, we allow a garbled evaluation to save a state and use
it in further computations. Specifically, when garbling a function f one can link
it to a previous garbling of some function g and as a result get a garbling of
f ◦ g. Even more, given two independent garblings of f and g, it is possible to
do a linking which will produce a garbling of f ◦ g or g ◦ f . The linking depends
only on the output encoding and input encoding of the linked garblings. We also
allow garbling of a single function which allows partial evaluation and which al-
lows dynamic input selection based on partial outputs. This can be mixed with
linking, so that the choice of which functions to garble and link can be based
on partial outputs. This can be important in reactive secure computation which
allows inputs to arrive gradually and allows branching based on public partial
outputs. We introduce the syntax and security definitions for this notion. We give
an instantiation of reactive garbling schemes in the random oracle model. We
also demonstrate the usefulness of reactive garbling schemes by giving various
applications. We construct a reactive, maliciously UC secure two-party compu-
tation protocol. We also describe Lindell’s reduced circuit optimization by using
reactive garbling schemes. These two constructions use reactive garbling schemes
in a black-box manner. We also describe the minilego garbling procedure as a
reactive garbling scheme.

1.1 Discussion and Motivation

In this section, we describe the purpose of our framework and why certain design
choices were made for the framework in this paper.

One of the main goals of garbling schemes was to define a primitive that
would be used in constructions without relying on the underlying instantiation.
Unfortunately, most secure two-party computation protocols still rely on garbled
circuits to provide security. In some sense, the notion of garbling schemes is not
able to achieve this goal for the given task. One way of thinking of our result is
to note that many techniques that previously only worked for garbled circuits,
now work for reactive garbling schemes.

More precisely, to achieve reactive secure computation, the protocol for re-
active computation shows how three issues which typically are solved using the
underlying instantiation of garbled circuits in cut-and-choose protocols can be
solved using reactive garbling schemes. These issues are Alice’s input consistency,
selective failure attacks and how to run the simulator against a corrupted Bob.
We solve these three issues by using the notion of reactive garbling schemes. This
means that many protocols in the literature can easily be modified to achieve
security by only relying on the properties of reactive garbling schemes.

We now discuss why certain design choices were made. In particular, why we
included notions such as linking multiple output wires to a single input wire, par-
tial evaluation and output encoding. The reason that we allow multiple output
wires to link to a single input wire is that otherwise we would exclude important
constructions such as Minilego [8] and Lindell’s reduced circuit optimization [20].

Output encodings are important for many reasons. First, it provides a method
for defining linking. Roughly because of this notion, it is easy to define a linking

3



as information which allows an encoded output to be converted into an encoded
input. Secondly, in certain cases, constructions based on garbling schemes require
a special property of the encoded output which otherwise cannot be described.
This is the case of [13] where the encoded input has to be the same size as
the encoded output. It is also useful for output reuse, covers pipelining and has
applications to protocols where the receiver can use a proof of cheating to extract
the sender’s input.

We included partial evaluation for two main reasons, first we consider that
it can be an important feature for reactive computation, secure outsourcing and
secure computation where a partial output would be valuable. A partial output
could be used to determine what future computation to run on data. In addition,
we could garble blocks of functions and decide to link certain blocks together
based on partial outputs.

In addition, many schemes in the literature inherently allow partial evalu-
ation and not allowing partial evaluation imposes artificial restrictions on the
constructions. For example, fine-grained privacy in [2] cannot be realized by
standard schemes precisely because those schemes give out partial outputs.

1.2 Recasting Previous Constructions

The concept of using output encoding and linking has been implicitly used in
many previous works. In particular, in cut-and-choose protocols, it has been used
in [6,7,19,25] to enforce sender input consistency (ensure that the sender uses the
same input in each instance) and to prevent selective failure attacks (an attack
that works by having the probability that the receiver aborts depend on his
choice of input). These concepts have also been used for different optimizations.
Pipelining [15,18] and output reuse [13,23] are examples of direct optimizations.
Linking has also been employed to reduce the number of circuits that need to be
sent in protocols that apply cut-and-choose at the circuit level [5,20]. This is done
by adding a phase where a receiver can extract the input of a cheating sender.
Another example is gate soldering [8,24]. This technique works by employing cut-
and-choose at the gate level. The gates are then randomly split among different
buckets and soldered together. This optimization reduces the replication factor
for a security 	(s) to 	( s

log(n) ) where n is the number of non-xor gates. There

are many applications that benefit from output encoding and linking in garbling
schemes. In addition, if we allow sequences where the input is chosen as a function
of the garbling, reactive garbling schemes are also adaptive. The constructions
of [14,11] require adaptive garbling.

1.3 Structure of the paper

In Section 2, we give the preliminaries. In Section 3, we define the syntax and
security of reactive garbling schemes. In Section 4, we describe an instantiation
of a reactive garbling scheme. In Section 4.1, we give a full description of the
reactive garbling scheme. In Section 5, we give an intuitive description of the

4



reactive two-party computation protocol based on reactive garbling schemes. In
Section 5.1, we provide a full description of the reactive two-party computation
protocol. We note that the techniques that we introduce in section 5 can be
applied to previous secure two-party computation protocol to convert them into
constructions that only use reactive garbling schemes in a black-box manner.

In Appendix A, we prove that our reactive computation protocol is secure.
In Appendix B, we prove security of our reactive garbling scheme using the in-
distinguishability based notion of security. In Appendix C, we recast Lindell’s
construction using reactive garbling schemes. In Appendix D, we describe Mini-
lego’s garbling and soldering as a reactive garbling scheme. In Appendix F, we
prove security of our garbling scheme using the simulation based definition of
confidentiality. We also show that simulation based definition implies the indis-
tinguishability based definition of security.

2 Preliminaries

Let N be the set of natural numbers. For n ∈ N, let {0, 1}n be the set of n-bit
strings. Let {0, 1}∗ = ∪

n∈N
{0, 1}n. We use > and ⊥ as the syntax for true and false

and we assume that >,⊥ 6∈ {0, 1}∗. We use () to denote the empty sequence.
For a sequence σ, we use x ∈ σ to denote that x is in the sequence. When we
iterate over x ∈ σ in a for-loop, we do it from left to right. For a sequence σ and
an element x we use σ ‖x to denote that we append x to σ. We use ‖ to denote
concatenation of sequences. When unambiguous, we also use juxtaposition for
concatenating and appending. We use x

$←X to denote sampling a uniformly
random x from a finite set X. We use [A] to denote the possible legal outputs
of an algorithm A. This is just the set of possible outputs, with ⊥ removed.

rule Example
on (7, x1) from A
on x2 from B
x← ()
x← x ‖x1 ‖x2

z ← 0
for y ∈ (1, 2, 4) do

if z ≥ y then abort
z ← z + y

send x to A

Fig. 1. A rule

We prove security of protocols in the UC
framework and we assume that the reader is
familiar with the framework. When we spec-
ify entities for the UC framework, ideal func-
tionalities, parties in protocol, adversaries
and simulators we give them by a set of rules
of the form Example (which sends (x1, x2)
to the adversary in its last line). In Figure 1,
we give an an example of a rule. A line of the
form “send m to F .R”, where F is another
entity and R the name of a rule, the entity
will send (R, id,m) to F , where id is a unique
identifier of the rule that is sending, including
the session and sub-session identifier, in case
many copies of the same rule are currently in
execution. We then give (R, id, ?) to the adversary and let the adversary decide
when to deliver the message. Here ? is just a special reserved string indicating
that the real input has been removed. When a message of the form (R, id,m)
arrives from an entity A, the receiver stores (R,A, id,m) in a pool of pending

5



messages and turns the activation over to the adversary. A line of the form “on P
from A” executed in a rule named R running with identifier id and where P is a
pattern, is executed as follows. The entity executing the rule stores (R,A, id, P )
in a pool of pending receives and turns over the activation to the adversary. We
say that a pending message (R,A, id,m) matches pending receive (R,A, id, P )
if m can be parsed on the form P . Whenever an entity turns over the activation
to the adversary it sends along (R,A, id, ?) for all matched (R,A, id, P ), where
? is just a special reserved bit-string. There is a special procedure Initialize
which is executed once, when the entity is created. All other rules begin with
an on-command. The rule is considered ready for id if the first line is of the
form “on P from A” and (R,A, id, P ) is matched and the rule was never exe-
cuted with identifier id. In that case (R,A, id, P ) is considered to be in the set of
pending receives. If the adversary sends (R,A, id, ?) to an entity that has some
pending receive (R,A, id, P ) matched by some pending message (R,A, id,m),
then the entity parses m using P and starts executing right after the line “on
P from A” which added (R,A, id, P ) to the list of pending receives. A line of
the form “await P” where P is a predicate on the state of the entity works like
the on-command. The line turns activation over to the adversary along with
an identifier, and the entity will report to the adversary which predicates have
become true. The adversary can instruct the entity to resume execution right
after any “await P” where P is true on the state of the entity. If an entity exe-
cutes a rule which terminates, it turns the activation over to the adversary. The
keyword abort makes an entity terminate and ignore all future inputs. A line of
the form “verify P” makes the entity abort if P is not true on the state of the
entity. We use A to denote the adversary and Z to denote the environment. A
line of the form “on P” is equivalent to “on P from Z”. When specifying ideal
functionalities we use Corrupt to denote the set of corrupted parties.

We define security of cryptographic schemes via code-based games [4]. The
game is given by a set of procedures. There is a special procedure Initialize
which is called once, as the first call. There is another special procedure Finalize
which may be called by the adversary. The output is true or false, > or ⊥,
where > indicates that the adversary won the game. In between Initialize
and Finalize, the adversary might call the other procedures at will. The other
procedures might also output ⊥ or > at which point the game ends with that
output. Other outputs go back to the adversary.

3 Syntax and Security of Reactive Garbling Schemes

Section overview We will start by defining the notion of gradual function, this
will allow us to describe the type of functions that can be garbled. The functions
that we define, in contrast to standard garbling schemes allow multiple inputs
and outputs as well as partial evaluation.

Next, we will define the syntax of a reactive garbling scheme in the same way
that a garbling scheme was described before. We will describe tags, a way of as-
signing identities to garbled functions, so that we can refer to them later. We

6



will then describe different algorithms: how to encode inputs, decode outputs,
link garblings together and other algorithms. Next, we will define correctness.
The work of [3] defined the notion of correctness by comparing it to a plaintext
evaluation. We define the notion of garbling sequences which is the equivalent
of plaintext evaluation but for reactive garbling. Some garbling sequences don’t
make sense, for example producing an encoded input for a function that has not
been defined. As a result, we will define the concept of legal garbling sequences
to avoid sequences that are nonsensical. Finally, we can define correctness by
comparing the plaintext evaluation of a garbling sequence with the evaluation
of a garbling sequence by applying the algorithms define before. We then use
the notion of garbling sequence to define the side-information function for reac-
tive garbling. This is necessary to describe our notion of security which we call
confidentiality.

Gradual Functions We first define the notion of a gradual function. A gradual
function is an extension of the usual notion of a function f : A1 × · · · × An →
B1 × · · · ×Bm, where we allow to partially evaluate the function on a subset of
the input components. Some output components might become available before
all input components have arrived. We require that when an output component
has become available, it cannot become unavailable or change as more input
components arrive. We also require that the set of available outputs depends only
on which inputs are ready, not on the exact value of the inputs. In our framework,
we only allow garblings of gradual functions. This allows us to define partial
evaluation and to avoid issues such as circular evaluation and determining when
outputs are defined. These issues would make our framework more complex. The
access function will be the function describing which outputs are available when
a given set of inputs is ready. We will use ⊥ to denote that an input is not yet
specified and that an output is not yet available. We therefore require that ⊥
is not a usual input or output of the function. We now formalize these notions.
For a function f : A1× · · ·×An → B1× · · ·×Bm we use the following notation.
f.n := n and f.m := m, f.A := A1 × · · · × An, f.B := B1 × · · · × Bm, and
f.Ai := Ai and f.Bi := Bi.

Definition 1. We use component to denote a set C = {0, 1}` ∪ {⊥} for some
` ∈ N, where ⊥ 6∈ {0, 1}∗. We call ` the length of C and we write len(C) = `.
Let C1, . . . , Cn be components and let x′, x ∈ C1 × · · · × Cn.

– We say that x′ is an extension of x, written x @ x′ if xi 6= ⊥ implies that
xi = x′i for i = 1, . . . , n.

– We say that x and x′ are equivalently undefined, written x ./ x′, if for all
i = 1, . . . , n it holds that xi = ⊥ iff x′i = ⊥.

Definition 2 (Gradual Function). Let A1, . . . , An, B1, . . . , Bm be components
and let f : A1× · · · ×An → B1× · · · ×Bm. We say that f is a gradual function
if it is monotone and variable defined.

– It is monotone if for all x, x′ ∈ A1 × · · · × Am it holds that x @ x′ implies
that f(x) @ f(x′).

7



– It is variable defined if x ./ x′ then f(x) ./ f(x′).

We say that an algorithm computes a gradual function f : A1 × · · · × An →
B1 × · · · × Bm if on all inputs x ∈ A1 × · · · × Am it accepts with output f(x)
and on all other inputs it rejects. We define a notion of access function which
specifies which outputs components will be available given that a given subset
of input components are available.

Definition 3 (Access Function). The access function of a gradual function
f : A1× · · ·×An → B1× · · ·×Bm is a function access(f) : {⊥,>}n → {⊥,>}m
defined as follows. For j = 1, . . . ,m, let qj : Bj → {⊥,>} be the function
where qj(⊥) = ⊥ and qj(y) = > otherwise. Let q : B1 × · · · × Bm → {⊥,>}m
be the function (y1, . . . , ym) 7→ (q1(y1), . . . , qm(ym)). For i = 1, . . . , n, let pi :
{⊥,>} → Ai be the function with pi(⊥) = ⊥ and pi(>) = 0len(Ai). Let p :
{⊥,>}n → A1 × · · · × An be the function (x1, . . . , xn) 7→ (p1(x1), . . . , pn(xn)).
Then access(f) = q ◦ f ◦ p.

Definition 4 (Gradual functional similarity). Let f ,g be gradual functions.
We say that f is similar to g (f ∼ g) if f.n = g.n, f.m = g.m, f.A = g.A,
f.B = g.B and access(f) = access(g).

In the following, if we use a function at a place where a gradual function is
expected and nothing else is explicitly mentioned, we extend it to be a gradual
function by adding ⊥ to all input and output components and letting all outputs
be undefined until all inputs are defined.

Syntax of Algorithms A reactive garbling scheme consists of seven algorithms
G = (St,Gb,En, li,Ev, ev,De). The algorithms St, Gb and Li are randomized
and the other algorithms are deterministic. Gradual functions are described by
strings f . We call f the original gradual function. For each such description, we
require that ev(f, ·) computes some gradual function ev(f, ·) : A1 × · · · × An →
B1 × · · · × Bm. This is the function that f describes. We often use f also to
denote the gradual function ev(f, ·).

– On input of a security parameter k ∈ N, the setup algorithm outputs a pair of
parameters (sps, pps)← St(1k), where sps ∈ {0, 1}∗ is the secret parameters
and pps ∈ {0, 1}∗ is the public parameters. All other algorithms will also
receive 1k as their first input, but we will stop writing that explicitly.

– On input f , a tag1 t ∈ {0, 1}∗ and the secret parameters sps the garbling
algorithm Gb produces as output a quadruple of strings (F, e, o, d), where F is
the garbled function, e is the input encoding function, d is the output decoding
function, which is of the form d = (d1, . . . , dm), and o is the output encoding
function. When (F, e, o, d)← Gb(sps, f, t) we use Ft to denote F , we use dt,i
to denote the ith entry of d, and similarly for the other components. This
naming is unique by the function-tag uniqueness and garble-tag uniqueness
conditions described later.

1 Some of the algorithms will take as input values output by other algorithms. To
identify where these inputs originate from we use tags.

8



– The encoding algorithm En takes input (e, t, i, x) and produces encoded input
Xt,i.

– The linking algorithm li takes input of the form (t1, i1, t2, i2, o, e) and pro-
duces an output Lt1,i1,t2,i2 called the encoded linking information. Think of
this as information which allows to take an encoded output Yt1,i1 for Ft1
and turn it into an encoded input Xt2,i2 for Ft2 . In other words, we link the
output wire with index i1 of the garbling with tag t1 to the input wire with
index i2 of the garbling with tag t2.

– The garbled evaluation algorithm Ev takes as input a set F of pairs (t, Ft)
where t is a tag and Ft a garbled function (let T be the set of tags t occurring
in F), a set X of triples (t, i,Xt,i) where t ∈ T , i ∈ [Ft.n] and Xi,j 6= ⊥ is an
encoded input, and a set L of tuples (t1, i1, t2, i2, Lt1,i1,t2,i2) with t1, t2 ∈ T
and i1 ∈ [Ft1 .m] and i2 ∈ [Ft2 .n] and Lt1,i1,t2,i2 6= ⊥ an encoded linking
information. It outputs a set Y = {(t, i, Yt,i)}t∈T,i∈[Ft.m], where each Yt,i is
an encoded output. It might be that Yt,i = ⊥ if the corresponding output is
not ready.

– The decoding algorithm takes input (t, i, dt,i, Yt,i), and produces a final output
yt,i. We require that De(·, ·, ·,⊥) = ⊥. The reason for this is that Yt,i = ⊥
is used to signal that the encoded output cannot be computed yet, and
we want this to decode to yt,i = ⊥. We extend the decoding algorithm to
work on sets of decoding functions and sets of encoded outputs, by simply
decoding each encoded output for which the corresponding output decoding
function is given, as follows. For a set δ, called the overall decoding function,
consisting of triples of the form (t, i, dt,i), and a set Y of triples of the form
(t, i, Yt,i), we let De(δ,Y) output the set of (t, i,De(t, i, dt,i, Yt,i)) for which
(t, i, dt,i) ∈ δ and (t, i, Yt,i) ∈ Y.

En De Li

Gb Ev

et,i

xt,i
Xt,i

dt,i

Yt,i
yt,i

ot1,i1

et2,i2
Lt1,i1,t2,i2

1k

f

t

Ft
et = et,1, . . . , et,n

dt = dt,1, . . . , dt,m
ot = ot,1, . . . , ot,m

F

X

L

Y

Fig. 2. Input-output behaviour of the central algorithms of a reactive garbling scheme.

Basic requirements We require that f.n and f.m can be computed in linear
time from a function description f . We require that len(f.Ai) and len(f.Bj) can
be computed in linear time for i = 1, . . . , n and j = 1, . . . ,m. We require that
the same numbers can be computed in linear time from any garbling F of f .

9



We finally require that one can compute access(f) in polynomial time given a
garbling F of f . We do not impose the length condition and the non-degeneracy
condition from [3], i.e., e and d might depend on f . Our security definitions
ensure that the dependency does not leak unwarranted information.

Projective Schemes Following [3], we call a scheme projective (on input compo-
nent i) if all X ∈ { En(e, t, i, x) | x ∈ {0, 1}n } are of the form {X1,0, X1,1} ×
. . . × {Xc,0, Xc,1}, where c = len(f.Xi), and En(e, t, i, x) = (X1,x[1], ..., Xc,x[c]).

This should hold for all k, f , t, `, x ∈ {0, 1}c and (sps, pps) ∈ [St(1k)] and
(F, e, o, d) ∈ [Gb(sps, f, t, `)]. As in [3] being projective is defined only relative
to the input encodings. One can define a similar notion for output decodings.
Having projective output decodings is needed for capturing some applications
using reactive garbling scheme, for instance [20].

Correctness To define correctness, we need a notion of calling the algorithms of
a garbling scheme in a meaningful order. For this purpose, we define a notion of
garbling sequence σ. A garbling sequence is a sequence of garbling commands,
each command has one of the following forms: (Func, f, t), (Link, t1, i1, t2, i2), (Input, t, i, x),
(Output, t, i), (Garble, t). In the rest of the paper, we will use σ to refer to a garbling
sequence. A garbling sequence is called legal if the following conditions hold.

Function uniqueness σ does not contain distinct commands (Func, f1, t) and
(Func, f2, t).

Garble uniqueness Each command (Garble, t) occurs at most once in σ.

Garble legality If (Garble, t) occurs in σ, it is preceded by (Func, ·, t).
Linkage legality If the command (Link, t1, i1, t2, i2) occurs in σ, then the com-

mand is preceded by commands of the forms (Func, f1, t1), (Garble, t1), (Func, f2, t2)
and (Garble, t2), and 1 ≤ i1 ≤ f1.m, 1 ≤ i2 ≤ f2.n and f1.Bi1 = f2.Ai2 .

Input legality If (Input, t, i, x) occurs in σ it is preceded by (Func, f, t) and
(Garble, f) and x ∈ f.Ai \ {⊥}.

Output legality If (Output, t, i) occurs in a sequence it is preceded by (Func, f, t)
and (Garble, t) and 1 ≤ i ≤ f.m.

Note that if a sequence is legal, then so is any prefix of the sequence. We
call a garbling sequence illegal if it is not legal. Since we allow to link several
output components onto the same input component we have to deal with the
case where they carry different values. We consider this an error, and to catch
it, we use the following safe assignment operator.

(u←↩ v) :=


u← Error if v = Error

u← u if v = ⊥
u← v if u = ⊥ ∨ u = v

u← Error otherwise

10



proc eval(σ ∈ L)
for (Func, t, f) ∈ σ, do

ft ← f
for i = 1, . . . , ft.n do xt,i ← ⊥
for j = 1, . . . , ft.m do yt,j ← ⊥

for (Input, t, i, x) ∈ σ do xt,i ←↩ x
T ← ∅
repeat

U ← T
for (Func, t, f) ∈ σ do

(yt,1, . . . , yt,ft.m)← ft(xt,1, . . . , xt,ft.n)
for (Link, t, i1, t2, i2) ∈ σ do xt2,i2 ←↩ yt,i1

T ← {(t, i, yt,i) | t ∈ Tags(σ), i = 1, . . . , ft.m}
until T = U ∨ (·, ·, Error) ∈ T
return T

Fig. 3. Plaintext evaluation

We now define an al-
gorithm eval, which takes
as input a legal garbling
sequence σ and outputs
a set of tuples (t, i, yt,i),
one for each command
(Output, t, i), where possi-
bly yt,i = ⊥. The val-
ues are computed by tak-
ing the least fix point
of the evaluation of all
the gradual functions, see
Figure 3. We call this the
plain evaluation of σ. We
extend the definition of a
legal sequence to include
the requirement that

Input uniqueness (·, ·, Error) 6∈ eval(σ).

Therefore the use of the safe assignment in eval is only to conveniently define
the notion of legal sequence. In the rest of the paper we assume that all inputs
to eval are legal. The values yt,i 6= ⊥ are by definition the values that are ready
in σ, i.e., ready(σ) = {(t, i)|∃(t, i, yt,i) ∈ eval(σ)(yt,i 6= ⊥)}. Note that since the
gradual functions are variable defined, which outputs are ready does not depend
on the values of the inputs, except via whether they are ⊥ or not.

proc Eval(σ ∈ L)
for c ∈ σ do

if c = (Func, t, f) then ft ← f ;
if c = (Garble, t) then

(Ft, et, ot, dt)← Gb(sps, ft, t)
F ← F ‖(t, Ft)

if c = (Input, t, i, x) then
Xt,i ← En(et, t, i, x)
X ← X ‖(t, i,Xt,i)

if c = (Link, t1, i1, t2, i2) then
Lt1,i1,t2,i2 ← li(t1, i1, t2, i2, ot1 , et2)
L ← L‖(t1, i1, t2, i2, Lt1,i1,t2,i2)

if c = (Output, t, i) then
δ ← δ ‖(t, i, dt,i)

return De(δ,Ev(F ,X ,L))

Fig. 4. Garbled Evaluation

The procedure Eval in Fig-
ure 4 demonstrates how a legal
garbling sequence is intended
to be translated into calls to
the algorithms of the garbling
scheme. We call the procedure
executed by Eval garbled evalu-
ation of σ.

Lemma 1. For a function de-
scription f , let T (f) be the
worst case running time of
ev(f, ·). The algorithm eval will
terminate in time poly(T |σ|(n+
m)), where n = max(Func,t,f)∈σ f.n,
m = max(Func,t,f)∈σ f.m, and
T = max(Func,t,f)∈σ T (f).

Proof. By monotonicity, if the loop in eval does not terminate, another variable
yt,i has changed from ⊥ to 6= ⊥ and can never change value again. This bounds
the number of iterations as needed.

11



Side-Information Functions We use the same notion of side-information func-
tions as in [3]. A side information function Φ maps function descriptions f into
the side information Φ = Φ(f) ∈ {0, 1}∗. Intuitively, a garbling of f should not
leak more than Φ(f). The exact meaning of the side information functions are
given by our security definition. We extend a side information function Φ to the
set of garbling sequences. For the empty sequence σ = () we let Φ(σ) = ().

For a sequence σ, we define the side-information as Φ(σ) := Φσ(σ) where for
a sequence σ̄ and a command c: Φσ(σ̄ ‖ c) = Φσ(σ̄) ‖Φσ(c), where Φσ(Func, t, f) =
(Func, t, Φ(f)), Φσ(Link, t1, i1, t2, i2) = (Link, t1, i1, t2, i2), Φσ(Input, t, i, x) = (Input, t, i, |x|),
Φσ(Garble, t) = (Garble, t) and Φσ(Output, t, i) = (Output, t, i, yt,i), where yt,i is defined
by eval(σ).

Legal Sequence Classes We define the notion of a legal sequence class L (rela-
tive to a given side-information function Φ). It is a subset of the legal garbling
sequences which additionally has these five properties:

Monotone If σ′ ‖σ′′ ∈ L, then σ′ ∈ L.
Input independent If σ′ ‖(Input, t, i, x) ‖σ′′ ∈ L, then σ′ ‖(Input, t, i, x′) ‖σ′′ ∈

L for all x′ ∈ {0, 1}|x|.
Function independent If σ′ ‖(Func, t, f) ‖σ′′ ∈ L, then σ′ ‖(Func, t, f ′) ‖σ′′ ∈ L

for all f with Φ(f ′) = Φ(f).
Name invariant If σ ∈ L and σ′ is σ with all tags t replaced by t′ = π(t) for

an injection π, then σ′ ∈ L.
Efficient Finally, the language L should be in P, i.e., in polynomial time.

It is easy to see that the set of all legal garbling sequences is a legal sequence
class.

Definition 5 (Correctness). For a legal sequence class L and a reactive gar-
bling scheme G we say that G is L-correct if for all σ ∈ L, it holds that De(Eval(σ)) ⊆
eval(σ) for all choices of randomness by the randomized algorithms.

Function Individual Garbled Evaluation The garbled evaluation function Ev just
takes as input sets of garbled functions, inputs and linking information and then
somehow produces a set of garbled outputs. It is often convenient to have more
structure to the garbled evaluation than this.

We say that garbled evaluation is function individual if each garbled func-
tion F is evaluated on its own. Specifically there exist deterministic poly-time
algorithms EvI and Li called the individual garbled evaluation algorithm and the
garbled linking algorithm. The input to EvI is a garbled function and some gar-
bled inputs. For each fixed garbled function F with n = F.n and m = F.m the
algorithm computes a gradual function EvI(F ) : A1 × · · · × An → B1 × · · · ×
Bm and (X1, . . . , Xn) 7→ EvI(F,X1, . . . , Xn), with access(EvI(F )) = access(f),
where f is the function garbled by F . We denote the output by (Y1, . . . , Ym) =
EvI(F,X1, . . . , Xn). The intention is that the Yj are garbled outputs (or ⊥). To
say that Ev has individual garbling we then require that it is defined from EvI
and Li as in Figure 5.

12



proc Ev(F ,X ,L)
for (t, F ) ∈ F do

Ft ← F
for i = 1, . . . , Ft.n do Xt,i ← ⊥

for (t, i,X) ∈ X do Xt,i ← X
T ← ∅
repeat

U ← T
for (t, Ft) ∈ F do

(Yt,1, . . . , Yt,Ft.m)←
EvI(Ft, (Xt,1, . . . , Xt,Ft.n))
for (t, i1, t2, i2, L) ∈ L do Xt2,i2 ← Li(L, Yt,i1)
T ← {(t, i, Yt,i) | t ∈ Tags(σ)∧i = 1, . . . , Ft.m}

until T = U
return T

Fig. 5. Function Individual Evaluation

Security of Reactive
Garbling We define
a notion of security
that we call confi-
dentiality, which uni-
fies privacy and obliv-
iousness as defined in
[3]. Obliviousness says
that if the evaluator is
given a garbled func-
tion and garbled in-
puts but no output
decoding function it
can learn a garbled
output of the function
but learns no informa-
tion on the plaintext
value of the output. Privacy says that if the evaluator is given a garbled func-
tion, garbled inputs and the output decoding function it can learn the plaintext
value of the function, but no other information, like intermediary values from the
evaluation. It is necessary to synthesise these properties as we envision protocols
where the receiver of the garbled functions might receive the output decoding
function for some of the output components but not all of them. Obliviousness
does not cover this case, since the adversary has some of the decoding keys. It
is not covered by privacy either, as the receiver should not gain any information
about outputs for which he does not have a decoding key.

In the confidentiality (indistinguishability) game, the adversary feeds two se-
quences σ0 and σ1 to the game, which produces a garbling of one of the two
sequences, σb for a uniform bit b. The adversary wins if it can guess which
sequence was garbled. It is required that the two sequences are not trivially
distinguishable. For instance, the two commands at position i in the two se-
quences should have the same type, the side information of functions at the
same positions in the sequences should be the same, and all outputs produced
by the sequences should be the same. This is formalized by requiring that the
side information of the sequences are the same. This is done by checking that
Φ(σ0) = Φ(σ1) in the rule Finalize. If one considers garbling sequences with
only one function command, one garbling command, one input command per
input component, no linking and where no output command is given, then con-
fidentiality implies obliviousness. If in addition an output command is given for
each output component, then confidentiality implies privacy.

In the confidentiality (simulation) game, the adversary feeds a sequence σ
to the game. The game samples a uniform bit b. If b = 0, then the game uses
the reactive garbling scheme to produce values for the sequence. Otherwise, if
the bit b = 1, the game feeds the output of the side-information function to

13



the simulator and forwards any response to the adversary. We list this notion of
security in appendix E.

In appendix F, we show that the simulation-based notion of confidentiality
implies the indistinguishability-based notion of indistinguishability.

Definition 6 (Confidentiality). For a legal sequence class L relative to side-
information function Φ and a reactive garbling scheme G, we say that G is (L, Φ)-

confidential if for all PPT A it holds that Advadp.ind.con
G,L′,Φ,A (1k) is negligible, where

Advadp.ind.con
G,L′,Φ,A (1k) = Pr[Gameadp.ind.con

G,L′,Φ,A (1k) = >] − 1
2 and Gameadp.ind.con

G,L′,Φ is
given in Figure 6.

Notice that this security definition is indistinguishability based, which is
known to be very weak in some cases for garbling (cf. [3]). Consider for instance
garbling a function f where the input x is secret and y = f(x) is made a public
output. The security definition then only makes a requirement on the garbling
scheme in the case where the adversary inputs two sequences where in sequence
one the input is x1 and in sequence two the input is x2 and where f(x1) = f(x2).
Consider then what happens if f is collision resistant. Since no adversary can
compute such x1 and x2 where x1 6= x2, it follows that x1 = x2 in all pairs
of sequences that the adversary can submit to the game. It can then be seen
that it would be secure to “garble” collision resistant functions f by simply
sending f in plaintext. Despite this weak definition, we later manage to prove
that it is sufficient for building secure two-party computation. Looking ahead,
when we need to securely compute f , we will garble a function f ′ which takes
an additional input p which is the same length as the output of f and where
f ′(x, p) = p⊕f(x) and ask the party that supplies p to always let p be the all-zero
string. Our techniques for ensuring active security in general is used to enforce
that even a corrupted party does this. Correctness is thus preserved. Clearly f ′

is not collision resistant even if f is collision resistant. This prevents a secure
garbling scheme from making insecure garblings of f ′. In fact, note that this
trick ensures that f ′ has the efficient invertibility property defined by [3], which
means that the indistinguishability and simulation based security coincide.

4 Instantiating a Confidential Reactive Garbling Scheme

We show that the instantiation of garbling schemes in [3] can be extended to
a reactive garbling scheme in the random-oracle (RO) model. We essentially
implement the dual-key cipher construction from [3] using the RO. To link a
wire with 0-token T0 and 1-token T1 to an input wire with tokens I0 and I1,
we provide the linking information L0 = RO(T0) ⊕ I0 and L1 = RO(T1) ⊕ I1
in a random order with each value tagged by the permutation bits of their
corresponding input wires and output wires. Evaluation is done using function
individual evaluation. Evaluation of a single garbled circuit is done as in [3].
Evaluation of a linking is: given Tb and a permutation bit, the bit is used to
retrieve Lb from which Ib = Lb ⊕ RO(Tb) is computed. We provide the details

14



proc Initialize()
b

$←{0, 1}
σ0 ← ∅
σ1 ← ∅

proc Func(f0, f1, t)
for c ∈ {0, 1} do
σc ← σc ‖(Func, fc, t)
if f0 6∼ f1 then return ⊥

proc Output(t, i)
for c ∈ {0, 1} do
σc ← σc ‖(Output, t, i)
return dt,i

proc Input(t, i, x0, x1)
for c ∈ {0, 1} do
σc ← σc ‖(Input, t, i, xc)
return En(et, t, i, xb)

proc Link(t1, i1, t2, i2)
for c ∈ {0, 1} do
σc ← σc ‖(Link, t1, i1, t2, i2)
return li(t1, i1, t2, i2, ot1,i1 , et2,i2)

proc Finalize(b′)
if b = b′ ∧ Φ(σ0) = Φ(σ1) ∧ σ0 ∈ L
then return >
else return ⊥

proc Garble(t)
for c ∈ {0, 1} do σc ← σc ‖(Garble, t)
(Ft, et, ot, dt)← Gb(sps, ft, t)
return Ft

Fig. 6. The game Gameadp.ind.con
G,L,Φ (1k) defining adaptive indistinguishability confiden-

tiality. In Finalize we check that σ0 ∈ L and the adversary loses if this is not the case.
It is easy to see that when L is a legal sequence class and Φ(σ0) = Φ(σ1), then σ0 ∈ L iff
σ1 ∈ L. We can therefore by monotonicity assume that the game returns ⊥ as soon as
it happens that σc 6∈ L. We use a number of notational conventions from above. Tags
are used to name objects relative to σc, which is assumed to be legal. As an example, in
Garble(t), the function ft refers to the function fc occurring in the command (Func, fc, t)
which was added to σc in Func by Garble Legality. For another example, the dt,i in
Output(t, i) refers to the ith component of the dt component output by Gb(sps, ft, t) in
the execution of Garble(t, π) which must have been executed by Output Legality.

in Section 4.1 and its proof of security in Appendix B. We use the RO because
reactive garbling schemes run into many of the same subtle security problems
as adaptive garbling schemes [2], which are conveniently handled by being able
to program the RO. We leave as an open problem the construction of (efficient)
reactive garbling schemes in the standard model.

4.1 A reactive garbling scheme

We will now give the details of the construction of a confidential reactive garbling
scheme based on a random oracle. The protocol is inspired by the construction
of garbling schemes from dual-key ciphers presented in [3]. The pseudocode for
our reactive garbling scheme is shown in Figure 7 and Figure 8.

To simplify notation, we define lsb as the least significant bit, slsb as the
second least significant bit. The operation Root removes the last two bits of a
string. The symbol H denotes the random oracle.

We use the notation of [3] to represent a circuit. A circuit is a 6-tuple f =
(n,m, q,A,B,G). Here n ≥ 2 is the number of inputs, m ≥ 1 is the number

15



proc Gb(ft, t)
(n,m, q,A,B,G)← ft
for i ∈ {1, . . . , n+ q −m} do

c
$←{0, 1} // Type of the zero-encoding

Xt,i,0 ← {0, 1}k−1 ‖ c
Xt,i,1 ← {0, 1}k−1 ‖ 1− c

for i ∈ {1, . . . ,m} do
c

$←{0, 1}, ri $←{0, 1} // Type and mask of zero-encoding

Yt,i,0 ← {0, 1}k−2 ‖ ri ‖ c
Yt,i,1 ← {0, 1}k−2 ‖ 1− ri ‖ 1− c
Xt,n+q−m+i,0 ← Yt,i,0
Xt,n+q−m+i,1 ← Yt,i,1

for (i, u, v) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do
a← A(i), b← B(i) // Left wire, right wire

// Left-wire encoding of u and its type.

A← root(Xt,a,u), a← lsb(Xt,a,u)
// Right-wire encoding of v and its type.

B ← root(Xt,b,v), b← lsb(Xt,b,v)
// Unique tag

T ← t ‖ i ‖ a ‖ b
// Row of Garbled table associated to gate i and input (u, v)
P [i, a, b]← H(T ‖A ‖B)⊕ Yt,i,G(i,u,v)

Ft ← (n,m, q,A,B, P )
et ← ((X1,0, X1,1), . . . , (Xn,0, Xn,1))
ot ← ((Y1,0, Y1,1), . . . , (Ym,0, Ym,1))
dt ← {r1, . . . , rm}
return (Ft, et, ot, dt)

proc En(t, i, x)
Xt,i ← et,i,x
return Xt,i

proc De(t, i, Yt,i, dt,i)
yt,i ← slsb(Yt,i)⊕ dt,i
return yt,i

Fig. 7. Reactive garbling scheme

of outputs and q ≥ 1 is the number of gates. We let r = n + q be the number
of wires. We let Inputs = {1, . . . , n}, Wire = {1, . . . , n + q}, OutputWires =
{n + q − m + 1, . . . , n + q} and Gates = {n, . . . , n + q}. Then A : Gates →
Wires \OutputWires is a function to identify each gate’s first incoming wire and
B : Gates → Wires \OutputWires is a function to identify each gate’s second
incoming wire. Finally, G : Gates×{0, 1}2 → {0, 1} is a function that determines
the functionality of each gate. We require that A(g) < B(g) < g for all g ∈ Gates.

Our protocol will also follow the approach of [3]. To garble a circuit, two
tokens are selected for each wire, one denoted by Xt,i,0 which shall encode the

16



proc li(ot1,i1 , et2,i2)
// Type of zero-encoding

c← lsb(ot1,i1,0)
K0 ← root(ot1,i1,0)
K1 ← root(ot1,i1,1)
T ← (t1, i1, t2, i2)
// Encryption of encoded input whose

associated output encoding has

type 0

U0 ← H(T ‖ kc)⊕ et2,i2,c
// Encryption of input encoding whose

associated output encoding has

type 1

U1 ← H(T ‖ k1⊕c)⊕ et2,i2,1⊕c
Lt1,i1,t2,i2 ← (U0, U1)
return Lt1,i1,t2,i2

proc Li(Lt1,i1,t2,i2 , Yt1,i1)
r ← lsb(Yt1,i1)
K ← root(Yt1,i1)
T ← (t1, i1, t2, i2)
Xt,i ← H(T ‖ k)⊕ Lt1,i1,t2,i2,r
return Xt,i

proc EvI(Ft, X1, . . . , Xn)
(n,m, q,A,B, P )← Ft
for i← n+ 1 to n+ q do

a← A(i), b← B(i)
A← Xt,a, B ← Xt,b
if A 6= ⊥ ∧B 6= ⊥ then

a← lsb(A), b← lsb(B)
T ← t ‖ i ‖ a ‖ b
Xg ← P [g, a, b]⊕ H(T ‖A ‖B)

(Yt,i, . . . , Yt,m)← (Xn+q−m+1, . . . , Xn+q)
return (Yt,1, . . . , Yt.m)

Fig. 8. Reactive garbling scheme (continued)

value 0 and the other denoted by Xt,i,1 which will encode the value 1, we refer
to this mapping as the semantic of a token.

The encoding of an input for a value x is simply the token of the given
wire with semantic x. The decoding of an output is the mask for that wire. We
decouple the decoding from the linking to simplify the proof of security. The
simulator will be able to produce linking without having to worry about the
semantics of the output encoding.

For each wire, the two associated tokens will be chosen such that the least
significant bit (the type of a token) will differ. It is important to note that the
semantics and type of a token are independent. The second least significant bit
is called the mask and will have a special meaning later when the tokens are

17



output tokens. We use root(X) to denote the part of a token that is not the type
bit or the mask bit.

Each gate g will be garbled by producing a garbled table. A garbled table will
consist of four ciphertexts p[g, a, b] where a, b ∈ {0, 1}, The ciphertext P [g, a, b]
will be produced in the following way: first find the token associated to the left
input wire (i1) with type a, denote the semantic of this token as x. Secondly, find
the token associated to the right input wire (i2) with type b, denote the semantic
of this token as y. The ciphertext will be an encryption of the token of z ←
G(g, x, y). We will denote T ← t ‖ g ‖ a ‖ b. The encryption will be P [g, a, b] ←
H(T ‖ root(Xt,i1,x) ‖ root(Xt,i2,y))⊕ (Xt,i,z)

For each non-output wire, the token with semantic 0 will be chosen randomly
and the token with semantic 1 will be chosen uniformly at random except for
the last bit which will be chosen to be the negation of the least significant bit of
the token with semantic 0 for the same wire.

For each output wire, the first token will also be chosen uniformly at random.
The token with semantic 0 will be chosen randomly and the token with semantic
1 will be chosen uniformly at random except for the least significant bit and the
second least significant bit. For both of these positions, the second token will be
chosen so that they differ from the value in the 0-token for the same position.
We refer to the second least significant bit of the 0-token of an output token as
the mask of an output wire.

A linking between output (t1, i1) and input (t2, i2) consists of two ciphertexts:
let c be the type of the 0-token for the output wire. In this case, we set T =
t1 ‖ i1 ‖ t2 ‖ i2. The linking is simply

L← (ETroot(Yt1,i1,c)(Xt2,i2,c), Eroot(Yt1,i1,1−c)(Xt2,i2,1−c))

where ETk (z) = H(T ||k) ⊕ z. Converting an encoded output into an encoded
input follows naturally.

In Appendix B we prove the following theorem.

Theorem 1. Let L be the set of all legal garbling sequence, let Φ denote the
circuit topology of a function. Then RGS is (L, Φ)-confidential in the random
oracle model.

5 Application to Secure Reactive Two-Party
Computation

We now show how to implement reactive two-party computation secure against
a malicious, static adversary using a projective reactive garbling scheme. For
simplicity we assume that L is the set of all legal sequences. It can, however, in
general consist of a set of sequences closed under the few augmentations we do
of the sequence in the protocol. The implementation could be optimized using
contemporary tricks for garbling based protocols, but we have chosen to not do
this, as the purpose of this section is to demonstrate the use of our security
definition, not efficiency.

18



rule Initialize
σ ← {}

rule Func
on (Func, t, f) from A
on (Func, t, f) from B
σ ← σ ‖(Func, t, f)

rule InputA

on (Input, t, i, x) from A
on (Input, t, i, ?) from B
await (Garble, t) ∈ σ
on (Input, t, i, x′) from S
if A ∈ Corrupt then x← x′

send (Input, t, i, done) to A
send (Input, t, i, done) to B
σ ← σ ‖(Input, t, i, x)

rule InputB

on (Input, t, i, ?) from A
on (Input, t, i, x) from B
await (Garble, t) ∈ σ)
on (Input, t, i, x′) from S
if B ∈ Corrupt then x← x′

send (Input, t, i, done) to A
send (Input, t, i, done) to B
σ ← σ ‖(Input, t, i, x)

rule Link
await (Garble, t) ∈ σ)
on (Link, t1, i1, t2, i2) from A
on (Link, t1, i1, t2, i2) from B
await (Garble, t) ∈ σ)
send (Link, t1, i1, t2, i2, done) to A
send (Link, t1, i1, t2, i2, done) to B
σ ← σ ‖(Link, t1, i1, t2, i2)

rule Garble
on (Garble, t) from A
on (Garble, t) from B
await (Func, t, f) ∈ σ
send (Garble, t, done) to A
send (Garble, t, done) to B
σ ← σ ‖(Garble, t)

rule Output
on (Output, t, i) from A
on (Output, t, i) from B
await ∃(t, i, yt,i 6= ⊥) ∈ eval(σ)
send (Output, t, i, done) to A
send (Output, t, i, yt,i) to B
σ ← σ ‖(Output, t, i)

Fig. 9. Ideal Functionality FL,Φ
R2PC (only suitable for static security). For each line of the

form, “on c from P” for a command c and a party P, when the activation is given to
the adversary the ideal functionality sends along (Φ(c),P).

We implement the ideal functionality in Figure 9. The inputs to the parties
will be a garbling sequence. The commands are received one-by-one, to have
a well defined sequence, but can be executed in parallel. We assume that at
any point in time the input sequence received by a party is a prefix or suffix
of the input sequence of the other parties, except that when a party receives
a secret input by receiving input (Input, t, i, x), then the other party receives
(Input, t, i, ?), to not leak the secret x, where we use ? to denote a special reserved
input indicating that the real input has been removed. We also assume that the
sequence of inputs given to any party is in L. If not, the ideal functionality will
simply stop operating. We only specify an ideal functionality for static security.
To correctly handle adaptive security a party should sometimes be allowed to
replace its input when becoming adaptively corrupted. Since we only prove static
security, we chose to not add these complication to the specification.

19



The implementation will be based on the idea of a watchlist [17]. Alice and
Bob will run many instances of a base protocol where Alice is the garbler and Bob
is the evaluator. Alice will in each instance provide Bob with garbled functions,
linking information, encoded inputs for Alice’s inputs and encoded inputs for
Bob’s inputs, and decoding information. For all Bob’s input bits, Alice computes
encodings of both 0 and 1, and Bob uses an oblivious transfer to pick the encoding
he wants. For a given input bit, the same oblivious transfer instance is used to
choose the appropriate encodings in all the instances. This forces Bob to use the
same input in all instances. Bob then does a garbled evaluation and decodes to
get a plaintext output. Bob therefore gets one possible value of the output from
each instance. If Alice cheats by sending incorrect garblings or using different
inputs in different instances, the outputs might be different. We combat this
by using a watchlist. For a random subset of the instances, Bob will learn all
the randomness used by Alice to run the algorithms of the garbling scheme and
Bob can therefore check whether Alice is sending the expected values in these
instances. The instances inspected by Bob are called the watchlist instances.
The other instances are called the evaluation instances. The watchlist is random
and unknown to Alice. The number of instances and the size of the watchlist
is set up such that except with negligible probability, either a majority of the
evaluation instances are correct or Bob will detect that Alice cheated without
leaking information about his input. Bob can therefore take the output value that
appears the most often among the evaluation instances as his output. There are
several issues with this general approach that must be handled.

1. We cannot allow Bob to learn the encoded inputs of Alice in watchlist in-
stances, as Bob also knows the input encoding functions for the watchlist
instances. This is handled by letting Alice send her random tape ri for each
instance i to Bob in an oblivious transfer, where the other message is a key
that will be used by Alice to encrypt the encodings of her input. That way
Bob can choose to either make instance i a watchlist instance, by choosing
ri, or learn the encoded inputs of Alice, but not both.

2. Alice might not send correct input encodings of her own inputs, in which case
correctness is not guaranteed. This is not caught by the watchlist mechanism
as Bob does not learn Alice’s input encodings for the watchlist instances. To
combat this attack, Alice must for all input bits of Alice, in all instances,
commit to both the encoding of 0 and 1, in a random order, and send along
with her input encodings an opening of one of the commitments. The ran-
domness used to commit is picked from the random tape that Bob knows in
the watchlist instances. That way Bob can check in the watchlist instances
that the commitments were computed correctly, and hence the check in the
evaluation position that the encoding sent by Alice opens one of the com-
mitments will ensure that most evaluation instances were run with correct
input encodings, except with negligible probability.

3. We have to ensure that Alice uses the same input for herself in all instances.
For the same reason as item 2, this cannot be caught by the watchlist mech-
anism. Instead, it is done by revealing in all instances a privacy-preserving

20



message digest of Alice’s input. Bob can then check that this digest is the
same in all instances. For efficiency, the digest is computed using a two-
universal hash function. This is a common trick by now, see [9,25,7]. How-
ever, all previous work used garbled circuits in a white box manner to make
this trick work. We can do it by a black box use of reactive garbling, as
follows. First Alice garbles the function f to be evaluated producing the
garbling F where Alice is to provide some input component x. Then Alice
garbles the function g which takes as input a mask m, an index c for a fam-
ily h of two-universal hash functions and an input x for the hash function
and which outputs x and y = hc(x) ⊕ m. Alice then randomly samples a
mask m and then sends encodings of m and x to Bob as well as the output
decoding function for y. Bob then samples an index c at random and makes
it public. Then Alice sends the encoding of c to Bob. Alice then links the
output component x of G into the input component x of F . This lets Bob
compute y and an encoding X of the input x of f .

4. As usual Alice can mount a selective attack by for example offering Bob a
correct encoding of 0 and an incorrect encoding of 1 in one of the OTs used
for picking Bob’s input. This will not be caught by the watchlist mechanism
if Bob’s input is 0. As usual this is combated by encoding Bob’s input and
instead using the encoding as input. The encoding is such that any s positions
are uniformly random and independent of the input of Bob. Hence if Alice
learns up to s bits of the encoding, it gives her no information on the input
of Bob, and if she mounts more than s selective attacks, she will get caught
except with probability 2−s. This is again a known trick used in a white
box manner in previous works, and again we use linking to generalize this
technique to (reactive) garbling schemes. First, Alice will garble an identity
function for which Bob will get an encoding of a randomly chosen input x′

via OT. Then Bob selects a random hash function h from a two-universal
family of hash functions such that h(x′) = x where x is Bob’s real input. Bob
sends h to Alice. Alice then garbles the hash function and links the output
of the identity function to the input of the hash function and she links the
output of the hash function to the encoded function which Bob is providing
an input for.

With the above augmentations which solves obvious security problems, along
with an augmentation described below, addressing a problem with simulation,
the protocol is UC secure against a static adversary. We briefly sketch how to
achieve simulation security.

Simulating corrupted Alice is easy. The simulator can cheat in the OTs used
to set up the watchlist and learn both the randomness ri and the input encodings
of Alice in all the evaluation instances. The mechanisms described above ensure
that in a majority of evaluation instances Alice correctly garbled and also used
the same correct input encoding. Since the input encoding is projective, the
input x of Alice can be computed from the input encoding function and her
garbled input. By correctness of the garbling scheme, it follows that all correct

21



evaluation instances would give the same output z consistent with x. Hence the
simulator can use x as the input of Alice in the simulation.

As usual simulating corrupted Bob is more challenging. To get a feeling for
the problem, assume that Alice has to send a garbled circuit F of the function
f to be computed before Bob gives inputs. When Bob then gives input, the
input y of Bob can be extracted in the simulation by cheating in the OTs and
inspecting the choice bits used by Bob. The simulator then inputs y to the
ideal functionality and gets back the output z = f(x, y) that Bob is to learn.
However, the simulator then in addition has to make F output z in the simulated
execution of the protocol. This in general would require finding an input x′ of
Alice such that z = f(x′, y), which could be computationally hard. Previous
papers have used white-box modifications of the garbled circuit or the output
decoding function to facilitate enough cheating to make F hit z without having
to compute x′. We show how to do it in a very simple and elegant way in a black-
box manner from any reactive garbling scheme which can garble the exclusive-or
function. In our protocol Alice will not send to Bob the decoding key for the
encoded output Z. Instead, she garbles a masking function (ψ(z,m) = z ⊕m)
and links the output of the function f to the first argument of the masking
function. Then she produces an encoding M of the all-zero string for m and
sends M to Bob along with the output decoding function for ψ. Bob can then
compute and decode from Z and M the value z ⊕ 0 = z. In the simulation, the
simulator of corrupted Bob knows the watchlist and can hence behave honestly
in the watchlist instances and use the freedom of m to make the output z ⊕m
hit the desired output from the ideal functionality in the evaluation positions.
This will be indistinguishable from the real world because of the confidentiality
property. Since this trick does not require modifying the garbled function, our
protocol will only require a projective garbling scheme which is confidential. It
will work for any side-information function. Earlier protocols required that the
side-information be the topology of the circuit to hide the modification of the
function f needed for simulation, or they needed to do white box modifications
of the output decoding function to make the needed cheating occur as part of
the output decoding.

5.1 Details of the Reactive 2PC Protocol

We now give more details on the protocol. The different instances will be indexed
by j ∈ I = {1, . . . , s}. The watchlist is given by w = (w1, . . . , ws) ∈ {0, 1}s,
where wj = 1 iff j is a watchlist instance. In the protocol s instances are run
in parallel. When a copy of a variable v is used in each instance, the copy used
in instance j is denoted by vj . In most cases the code for an instance does not
depend on j explicitly but only on whether the instance is on the watchlist or the
evaluation list, in which case we will write the code generically using the variable
name v. The convention is that all s copies v1, . . . , vs are manipulated the same
way, in single instruction multiple data program style. For instance, w = 1 will
mean wj = 1, such that w = 1 is true iff the instance is in the watchlist.

22



rule A.Initialize
// Sample watchlist key and an

evaluation key

wk, ek
$←{0, 1}k

OT.send(ek,wk)
σ ← ()

rule B.Initialize
// Learn either the watchlist

key or the evaluation key

w
$←{0, 1}

k ← OT.choose(w)
σ ← ()

rule A.Func
on (Func, t, f)
σ ← σ ‖(Func, t, f)

rule B.Func
on (Func, t, f)
σ ← σ ‖(Func, t, f)

rule A.Garble
on (Garble, t)
await ∃f : (Func, t, f) ∈ σ
(Ft, et, ot, dt)← Gb(f, t; r)
E ← Ewk(r)
send Ft, E to B
σ ← σ ‖(Garble, t)

rule B.Garble
on (Garble, t)
await ∃f : (Func, t, f) ∈ σ
on F ′, E from A
if w = 1 then

r ← Dwk(E)
(Ft, et, ot, dt)← Gb(f, t; r)
verify F ′ = Ft

Ft ← F ′

σ ← σ ‖(Garble, t)

rule A.Link
on (Link, t1, i1, t, i2)
await (Garble, t) ∈ σ
await (Garble, t1) ∈ σ
send li(ot1,i1 , et,i2) to B
σ ← σ ‖(Link, t1, i1, t, i2)

rule B.Link
on (Link, t1, i1, t, i2)
await (Garble, t) ∈ σ
await (Garble, t1) ∈ σ
on L̄ from A
L ← L‖(t1, i1, t, i2, L̄)
if w = 1 then verify
L̄ = li(ot1,i1 , et,i2)
σ ← σ ‖(Link, t1, i1, t, i2)

Fig. 10. Protocol (Initialize,Garble,Link)

We will use commitments and oblivious transfer within the protocol. We work
in the OT hybrid model. We use OT.send(m0,m1) to mean that Alice sends
two messages via the oblivious-transfer functionality and we use the notation
OT.choose(b) to say that Bob chooses to receive mb. We use a perfect binding
and computationally hiding commitment scheme. If a public key is needed, it
could be generated by Alice and sent to Bob in initialization. A commitment
to a message m produced with randomness r is denoted by com(m; r), sending
(m, r) constitutes an opening of the commitment.

If we write A(x; r) for a randomized algorithm, where r is not bound before,
then it means that we make a random run of A on input x and that we use r in
the following to denote the randomness used by A. If we send a set {x, y}, then
it is sent as a vector with the bit strings x and y sorted lexicographically, such
that all information extra to the elements is removed before sending. When rules
are called, tags t are provided. It follows from the input sequences being legal

23



rule A.InputA

on (Input, t, i, x)
await (Garble, t) ∈ σ
t̄← 1‖(Input, t, i)‖0
`1 ← len(ft.Ai)
`2 ← len(g`1 .A2)
`3 ← len(g`1 .A3)

m
$←{0, 1}`2

// Garble auxiliary function g
(Gt̄, et̄, dt̄, ot̄)← Gb(g`1 , t̄; r)
// Watchlist encryption of garbled auxilary function’s randomness

E ← Ewk(r)
send (Gt̄, dt̄,2, E) to B
for u ∈ {1, . . . , `1} do

Xu,0 ← En(et̄,1,u, 0)
Xu,1 ← En(et̄,1,u, 1)

ru,0, ru,1
$←{0, 1}k

// Commit to tokens

Su,1 ← {com(Xu,0; ru,0), com(Xu,1; ru,1)}
// Watchlist encryption of tokens

Eu,1 ← Ewk((Xu,0, Xu,1))
// Watchlist encryption of commitment’s randomness

Eu,2 ← Ewk((ru,0, ru,1))
// Evaluation encryption of tokens for Alice’s choice of input

Eu,3 ← Eek((Xu,xi,u , ru,xi,u))
// Linking G to Ft
Lu ← li(ot̄,1,u, et,i,u)
send (Su,1, Eu,1, Eu,2, Eu,3, Lu) to B

for u ∈ {1, . . . , `2} do
Mu,0 ← En(et̄,2,u, 0)
Mu,1 ← En(et̄,2,u, 1)

r′u,0, r
′
u,1

$←{0, 1}k
Su,2 ← {com(Mu,0; r′u,0), com(Mu,1; r′u,1)}
Eu,4 ← Ewk((Mu,0,Mu,1))
Eu,5 ← Ewk((r

′
u,0, r

′
u,1))

Eu,6 ← Eek((Mu,mi,u , r
′
u,mu

))
send (Su,2, Eu,4, Eu,5, Eu,6) to B

// Auxiliary input from Bob

on c from B
// Encoding of auxiliary input

for u ∈ {1, . . . , `3} do send Cu,cu to B
σ ← σ ‖(Input, t, i,>)

Fig. 11. InputA

that these tags are unique, except when referring to a legal previous occurrence.
We further assume that all tags provided as inputs are of the form 0‖{0, 1}∗,
which allows us to use tags of the form 1‖{0, 1}∗ for internal book keeping. Tags

24



rule B.InputA

on (Input, t, i, ?)
await (Garble, t) ∈ σ
t̄← 1‖(Input, t, i)‖0
c

$←{0, 1}`3
on G′t̄, d

′
t̄,2, E from A

for u ∈ {1, . . . , `1} do on (Su,1, Eu,1, Eu,2, Eu,3, Lu) from A
for u ∈ {1, . . . , `2} do on (Su,2, Eu,4, Eu,5, Eu,6) from A
send c to A
for u ∈ {1, . . . , `3} do on Cu,cu from A
// Use watchlist key to verify correctness of garbling and commitments.
if w = 1 then

r ← Dwk(E), (Gt̄, et̄, dt̄, ot̄)← Gb(g`1 , t̄; r)

for u ∈ {1, . . . , `1} do
Xu,0 ← En(et̄,1,u, 0)
Xu,1 ← En(et̄,1,u, 1)

for u ∈ {1, . . . , `2} do
Mu,0 ← En(et̄,2,u, 0)
Mu,1 ← En(et̄,2,u, 1)

for u ∈ {1, . . . , `3} do
Cu,0 ← En(et̄,3,u, 0)
Cu,1 ← En(et̄,3,u, 1)

for u ∈ {1, . . . , `1} do
(ru,0, ru,1)← Dwk(Eu,2)
verify Dwk(Eu,1) = (Xu,0, Xu,1)
verify Su,1 = {com(Xu,0; ru,0), com(Xu,1; ru,1)}
verify Lu = li(ot̄,1,u, et,i,u)

for u ∈ {1, . . . , `2} do
(r′u,0, r

′
u,1)← Dwk(Eu,5)

verify Dwk(Eu,3) = (Mu,0,Mu,1)
verify Su,2 = {com(Mu,0; ru,0), com(Mu,1, ru,1)}

for u ∈ {1, . . . , `3} do
verify Cu,cu = En(et̄,3,u, cu)

else
// Use evaluation key to extract tokens for Alice’s choice of input

for u ∈ {1, . . . , `1} do
(Xu,xi,u

, ru,xi,u
)← Dek(Eu,3)

for u ∈ {1, . . . , `2} do
(Mu,xi,u

, r′u,xi,u
)← Dek(Eu,6)

// Verify commitments of tokens for Alice’s choice of input
verify ∀u ∈ {1, . . . , `1} (com(Xu,xi,u

; ru,xi,u
) ∈ Su,1)

verify ∀u ∈ {1, . . . , `2} (com(Mu,mu ; r′u,mu
) ∈ Su,2)

X̄ ← {(t̄, 1, Xx), (t̄, 2,Mm), (t̄, 3, Cc)}
Ȳ ← Ev({(t̄, Gt̄)}, X̄ )

y2 ← De(d2, Ȳ2)
// Verify that auxiliary outputs are the same in each instance

verify ∀j, j′ (yj2 = yj
′

2 )

X ← X ‖ X̄
F ← F ‖(t̄, Gt̄)
L ← L‖(t̄, 1, t, i, L)
σ ← σ ‖(Input, t, i,>)

Fig. 12. InputA (continued)

for internal use will be derived from the tags given as input and the name of the
rule creating the new tag. For a garbling scheme G, a commitment scheme com
and an encryption scheme E , we use πG,com,E to denote protocol given by the set
of rules in Figures 10 to 15. We add a few remarks to the figures.

25



rule A.InputB

on (Input, t, i, ?)
await (Garble, t) ∈ σ
`← len(ft.Ai)
`1 ← `+ 2s+ 1
t̄← 1‖(Input, t, i)‖0
t′ ← 1‖(Input, t, i)‖1
// Garble the identity function

(Idt̄, et̄, ot̄, dt̄)← Gb(id`1 , t̄; r)
// Send to Bob the garbled identity function and the watchlist

encryption of its randomness to Bob

send E ← Ewk(r), Idt̄ to B
for u ∈ {1, . . . , `1} do

Xu,0 ← En(et̄,u, 0)
Xu,1 ← En(et̄,u, 1)
// Oblivious Transfer of Bob’s input tokens

OT.send({Xj
u,0}j∈{1,...,s}, {X

j
u,1}j∈{1,...,s})

// Await universal hash function

on h from B
// Garble universal hash function

(Ht′ , et′ , ot′ , dt′)← Gb(h, t′; r′)
// Send garbled hash function and the watchlist encryption of its

randomness to Bob

send Ht′ ,Ewk(r
′) to B

for u ∈ {1, . . . , `1} do
// Link Idt̄ to Ht′

send L̄u ← li(ot̄,u, et′,u) to B
// Link Ht′ to Ft
send Lu ← li(ot′,u, et,i,u) to B

σ ← σ ‖(Input, t, i,>)

Fig. 13. InputB

In the Initialize-rules Alice and Bob setup the watchlist. They use a (sym-
metric) encryption scheme E = (E,D) with k-bit keys. For each instance j, Alice
sends two keys via the oblivious transfer functionality, the watchlist key wkj

and the evaluation key ekj . Alice will later encrypt and send the information
Bob is to learn for watchlist (evaluation) instances with the key wk (ek). In the
Func-rules they simply associate a function to a tag. In the Garble-rules Alice
garbles the function and sends the garbling to Bob, she also sends an encryption
using the watchlist key of the randomness used to produce this garbling. This
allows Bob, for the watchlist positions to check that Alice produced a correct
garbling and to store the result of garbling. This knowledge will be used in other
rules. In the Link-rules Alice sends linking information. Bob can for all watchlist
positions check that the information is correct, since he knows the randomness
used to garble. In the Output-rules Alice awaits that she has sent to Bob the
encoded inputs and linkings to produce the encoded output associated to this

26



rule. She produces a garbling of ψ. She will link the output to ψ and produce an
encoding of the zero-string for the second component, she also sends an encryp-
tion of the randomness used to produce the garbling of ψ to Bob. Bob awaits
that he has received the garbling, linking and encoding to produce the encoded
output in question. For each instance of the watchlist, he uses the randomness to
check that the linking was done correctly, that ψ was garbled correctly and that
an encoding of an all zero-string was sent for the second component of ψ. He
then evaluates each instance in the evaluation set and takes the majority value
as his output.

In the InputA-rules Alice commits to both her input encodings and encrypts
the openings of the commitments using the watchlist key. The opening of Alice’s
input encoding will be encrypted using the evaluation key. To verify Alice’s
input, we first pass Alice’s input through an auxiliary function which combines
the identity function with an additional verification function which forces Alice
to use the same input in different instances. We then link the output of the
identity function to the appropriate input. We denoted the auxiliary function by
gl : A1×A2×A3 → B1×B2 and g`(x,m, c) = (x, v`(x,m, c)) where A1 = A2 =
B1 = {0, 1}` ∪ {⊥} and v` : A1 × A2 × A3 → B2. Efficient such functions with
the properties needed for the security of the protocol can be based on universal
hash functions, see for instance [25,7].

In the InputB-rules Alice first garbles the identity function. Bob then randomly
samples a value x′ and gets an encoding of that value via oblivious transfer for
the garbled identity function. Then Bob samples uniformly at random a function
h from a two-universal family of hash functions such that h(x′) = x where x is
the input of Bob. Alice will then garble the hash function. She will link the
garbling of the identity function to the garbling of the hash function. She will
then link the garbled hash function to the garbled function. We will denote by
H` a two-universal family of hash functions h : {0, 1}`+2s+1 → {0, 1}`. We use
id : A→ A to denote the identify function on A.

In Appendix A, we prove the following theorem.

Theorem 2. Let L be the set of all legal sequences and let Φ be a side-information
function. Let G be a reactive garbling scheme. Let com be a commitment scheme
and E an encryption scheme. If G is L-correct and (L, Φ)-confidential and com
is computationally hiding and perfect binding and E is IND-CPA secure, then
πG,com,E UC securely realizes FL,Φ

R2PC
in the FOT-hybrid model against a static, ma-

licious adversary.

References

1. M. Abdalla and R. D. Prisco, editors. Security and Cryptography for Networks
- 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014.
Proceedings, volume 8642 of Lecture Notes in Computer Science. Springer, 2014.

2. M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with appli-
cations to one-time programs and secure outsourcing. In X. Wang and K. Sako,
editors, Advances in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes
in Computer Science, pages 134–153. Springer, 2012.

27



rule B.InputB

on (Input, t, i, x)
await (Garble, t) ∈ σ
t̄← 1‖(Input, t, i)‖0
t′ ← 1‖(Input, t, i)‖1
// sample a random string x̄

x̄
$←{0, 1}`1

// Sample a random universal hash function h such that h(x̄) = x
h

$←{ h̄ ∈ H` | h̄(x̄) = x }
// Await a garbled identity function from Alice

on E, Id′t̄ from A
// Obliviously learn tokens for x̄
for u ∈ {1, . . . , `1} do
{X̄j

u,x̄u}j∈{1,...,s} ← OT.choose(x̄u)
X̄t̄,x̄ ← (X̄1,x̄1 , . . . , X̄`1,x̄`1 )

if w = 1 then
/* Verify garbled identity function and the correctness of

received tokens using the watchlist encryption of the

randomness */

r ← Dwk(E)
(Idt̄, et̄, ot̄, dt̄)← Gb(id`1 , t̄; r)
verify Idt̄ = Id′t̄
verify ∀u ∈ {1, . . . , `1} : X̄t̄,u = En(et̄,u, x̄u)

else
X ← X ‖(t̄, X̄t̄,x̄)

send h to A
on H ′, E′ from A
for u ∈ {1, . . . , `1} do

on L̄u from A
on Lu from A

if w = 1 then
/* Verify garbled hash function using the watchlist encryption

of the randomness */

r′ ← Dwk(E
′)

(Ht′ , et′ , ot′ , dt′)← Gb(h, t′; r′)
verify Ht′ = H ′

// Verify linking information

for u ∈ {1, . . . , `1} do
verify L̄u = li(ot̄,u, et′,u)
verify Lu = li(ot′,u, et,i,u)

else
F ← F ‖(t̄, Id)
F ← F ‖(t′, H)
X ← X ‖(t̄, X̄t̄,x̄)
L ← L‖(t′, 1, t, i, L)
for u ∈ {1, . . . , `1} do
L ← L‖(t̄, u, t′, u, L̄u)

σ ← σ ‖(Input, t, i,>)

Fig. 14. InputB (continued)

28



rule A.Output
on (Output, t, i)
await (t, i) ∈ ready(σ)
t̄← 1‖(Output, t, i)
// Garble ψ
(Ψ, et̄, dt̄, ot̄)← Gb(ψ, t̄; r)
L← li(ot,i, et̄,1)
E ← Ewk(r)
// Encode all zero-string

Xt̄,0 ← En(et̄,2, 0)
send (L,E, Ψ,Xt̄,0, dt̄) to B

rule B.Output
on (Output, t, i)
await (t, i,>) ∈ ready(σ)
t̄← 1‖(Output, t, i)
on (L̄, Ē, Ψ̄ , X̄t̄,0, d̄t̄) from A
if w = 1 then

r ← Dwk(Ē)
(Ψ, et̄, dt̄, ot̄)← Gb(ψ, t̄; r)
L← li(ot,i, et̄,1)
/* Verify:

1) Ψ̄ is the garbling of ψ
2) Linking is correct

3) Encoding of the all zero-string was sent

4) Correct output decoding was sent */

verify L̄ = L ∧ Ψ̄ = Ψ
verify X̄t̄,0 = En(et̄,2, 0) ∧ d̄t̄,1 = dt̄,1

else
F ← F ‖(t̄, Ψ)
X ← X ‖(t̄, 2, X̄t̄,0)
L ← L‖(t, i, t̄, 1, L̄)
δ ← δ ‖(t̄, 1, d̄t̄,1)
await ∃(t̄, 1, Yt,1) ∈ Ev(F ,X ,L)

yjt,i ← De(d̄t̄,1, Yt̄,1)

// Apply majority decoding

yt,i ← maj(y1
t,i, . . . , y

1
t,i)

Fig. 15. Protocol (Output)

29



3. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,
pages 784–796. ACM, 2012.

4. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In S. Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006.

5. L. T. Brandão. Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In Advances in Cryptology-
ASIACRYPT 2013, pages 441–463. Springer, 2013.

6. H. Carter, C. Lever, and P. Traynor. Whitewash: Outsourcing garbled circuit
generation for mobile devices. 2014.

7. T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen. Faster maliciously secure
two-party computation using the GPU. In Abdalla and Prisco [1], pages 358–379.

8. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi.
Minilego: Efficient secure two-party computation from general assumptions. In
EUROCRYPT, volume 7881, pages 537–556. Springer, 2013.

9. T. K. Frederiksen and J. B. Nielsen. Fast and maliciously secure two-party com-
putation using the GPU. IACR Cryptology ePrint Archive, 2013:46, 2013.

10. J. A. Garay and R. Gennaro, editors. Advances in Cryptology - CRYPTO 2014,
volume 8617 of Lecture Notes in Computer Science. Springer, 2014.

11. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Advances in Cryptology–CRYPTO
2010, pages 465–482. Springer, 2010.

12. C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs. Garbled
RAM revisited. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology
- EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages
405–422. Springer, 2014.

13. C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic encryption and
rerandomizable yao circuits. In Advances in Cryptology–CRYPTO 2010, pages
155–172. Springer, 2010.

14. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In Advances
in Cryptology–CRYPTO 2008, pages 39–56. Springer, 2008.

15. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In 20th USENIX Security Symposium, San Francisco, CA,
USA, August 8-12, 2011, Proceedings. USENIX Association, 2011.

16. Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff. Amor-
tizing garbled circuits. In Garay and Gennaro [10], pages 458–475.

17. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572–591, 2008.

18. B. Kreuter, abhi shelat, and C. hao Shen. Billion-gate secure computation
with malicious adversaries. Cryptology ePrint Archive, Report 2012/179, 2012.
http://eprint.iacr.org/.

19. B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with ma-
licious adversaries. In USENIX Security Symposium, pages 285–300, 2012.

20. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In R. Canetti and J. A. Garay, editors, Advances in Cryptology - CRYPTO
2013, volume 8043 of Lecture Notes in Computer Science, pages 1–17. Springer,
2013.

30



21. Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

22. S. Lu and R. Ostrovsky. How to garble RAM programs. In T. Johansson and
P. Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, volume 7881
of Lecture Notes in Computer Science, pages 719–734. Springer, 2013.

23. B. Mood, D. Gupta, K. Butler, and J. Feigenbaum. Reuse it or lose it: More
efficient secure computation through reuse of encrypted values. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 582–596. ACM, 2014.

24. J. B. Nielsen and C. Orlandi. Lego for two-party secure computation. In Theory
of Cryptography, pages 368–386. Springer, 2009.

25. A. Shelat and C. Shen. Fast two-party secure computation with minimal assump-
tions. In 2013 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS’13, Berlin, Germany, November 4-8, 2013, pages 523–534, 2013.

31



A Proof of Theorem 2

In this section, we analyse the protocol. In the analysis, we use that the auxiliary
function by gl : A1×A2×A3 → B1×B2 and g`(x,m, c) = (x, v`(x,m, c)) where
A1 = A2 = B1 = {0, 1}` ∪ {⊥} and v` : A1 × A2 × A3 → B2 has the following
properties:

Statistical Binding ∀x, y,m,m′ ∈ A1

x 6= x′ ⇒ Pr[v(x,m, c) = v(x′,m′, c′) | c $←A3] ≤ 2−s

Perfect Hiding ∀x, x′ ∈ A1, c ∈ A3, d ∈ B2

Pr[v(x,m, c) = d | m $←A2]− Pr[v(x′,m′, c) = d | m′ $←A2] = 0

Efficient such functions can be based on universal hash functions, see for in-
stance [25,7].

A.1 Legality

We will demonstrate that if the sequence input to the protocol is legal, then the
sequence of garbling commands used by the protocol is legal too. We assume
that we work with L being the set of all legal garbling commands.

Note that by assumption, the garbling sequence provided to both players
is a legal garbling sequence. We have to show that the garbling sequence (σ)
associated to the invocation of the rules results in a legal garbling sequence. The
legality of the sequence is analysed casing on each required property.

Function uniqueness Since the sequence given to both players is legal and the
tags are produced in a way that avoids collisions, the associated sequence
will only have one command of the form (Func, t, ·).

Garble uniqueness Since the sequence given to both players is legal and the
tags are produced in a way that avoids collisions, the associated sequence
will only have one command of the form (Garble, t).

Linkage legality Since, the sequence given to both players is legal and that
we ensure by construction that we only allow linking between components
of the same length. In addition, linking rule only proceeds after the associ-
ated garbling have terminated. We can therefore deduce that linkage legality
holds.

Input legality The same reasoning to show linkage legality also applies to input
legality.

Garble legality Since the garble rule can only proceed after the (Func, t, ·) has
become part of the sequence, for all tags within the sequence, if (Garble, t, ·)
occurs in σ then it is preceded by (Func, t, ·). In the case where we garble
functions within the context of the protocol, we can see that each garbling
uses a tag which is unique to its rule. We can therefore deduce that garble
legality holds.

Output legality If (Output, t, i) occurs in a sequence, it is preceded by (Garble, t)
because the output rule cannot proceed until (Garble, t) is part of the sequence.

Input uniqueness This holds since the sequence is legal by assumption.

32



A.2 Corrupted Alice

We prove security for the case where Alice is corrupted. Since corrupted Alice is
controlled by the environment, we will often use the term environment to mean
corrupted Alice. The simulator will essentially run the protocol as an honest Bob
would but with random inputs. The only additional thing that he will do is to
extract the input of corrupted Alice. This he will be able to do because he will
have access to all of the evaluation keys and all the watchlist keys.

The simulator in the initialization phase selects a random watchlist. For each
element of the watchlist, the simulator aborts if the randomness committed to
by the environment does not produce the encoded functions or the linking sent
by the environment, as in the protocol.

For the output phase, for each element of the watchlist, if the garbling pro-
duced for ψ is incorrect, if an encoding of a non zero-string is sent or a different
decoding is sent instead of the one produced during the garbling procedure with
the specified randomness, the simulator aborts, as in the protocol.

For Alice’s input phase, for the watchlist, the simulator checks that all the
values sent by the environment are valid (relative to the specification of the
protocol and the randomness sent by the environment), otherwise the simula-
tor aborts. The simulator select a random input c for the validation function,
checks that the output of the validation phase is consistent. If not it aborts.
Otherwise, the simulator can compute the environment’s input by using both
the evaluation keys and the watchlist keys to see which encoded inputs did the
environment open for evaluation indices. This is done by having the simulator
take the majority input over all indices. The simulator will then forward the com-
mand (Input, t, i, x) to the ideal functionality where x is the value the simulator
extracted.

For Bob’s input phase, the simulator selects a random x′, h′. For the watchlist,
the simulator checks that all the values sent by the environment and received
by the OT for the choice of x′ are valid otherwise abort. Otherwise, for the
evaluation indices, run the protocol with random x′ and h′ and abort if given the
chosen watchlist Bob would have aborted. Store the result and send (Input, t, i, ?)
to the ideal functionality.

The simulator is formally specified in Figures 16 to 18. We now proceed to
analyse the simulator.

We call an instance j correct if all the garblings, linkings and output decoding
functions sent by Alice were computed correctly from the randomness r obtained
by decrypting under the evaluation key ekj , and if in addition all the input
encodings of Alice’s input bits encrypted under the evaluation key were correct,
i.e., a correct encoding of either 0 or 1, as computed by the input encoding
functions which by definition were correctly generated for that instance. We use
C to denote the set of correct instances. We use W to denote the set of watchlist
instances. We use E to denote the set of evaluation instances.

For each correct instance j and each input component (t, i) Alice has a well-
defined input, as computed in line 5 of Figure 18. We say that Alice has consistent

33



inputs if it holds at all points at which Bob did not abort that the input of Alice
in all instances j ∈ C ∩ E are the same.

The only difference between the simulation and the protocol is that in the
simulation, Bob uses dummy (incorrect) inputs as opposed to his real inputs
and outputs the value from the ideal functionality as opposed to the value he
computes in the protocol. Also, there might be a difference in the probability
that Bob aborts because of a failed check. The following three lemmas can be
proven using standard techniques.

Lemma 2. The probability that Bob aborts does not depend on the inputs of
Bob, except for a probability mass negligible in s.

Lemma 3. It holds except with negligible probability in s that that Alice has
consistent inputs.

Lemma 4. It holds that |C ∩ E| > |E \ C|, except with negligible probability in
s.

We first argue that security follows from these lemmas and then sketch how to
prove them. By the first of the lemmas it is sufficient to prove that the protocol
and the simulation are indistinguishable up to the point where Bob aborts.
Assume then that Bob does not abort. In that case the view the environment
has of Bob is view is the outputs of Bob and the hash functions h sent to Alice.
It is easy to prove that h does not depend on the inputs of Bob [21]. Hence
we only need to argue that the outputs of Bob are indistinguishable in the two
cases. By correctness, we know that all the instances j ∈ C ∩ E in the protocol
would output values consistent with the inputs of Bob and the inputs extracted
for Alice in those instances. This is because j ∈ C ∩E implies that the garblings
and linkings were done correctly and that Bob received the correct encodings
for his inputs and Alice supplied correct encodings for her inputs. From the
second lemma it then follows that all the instances j ∈ C ∩ E in the protocol
would output values consistent with the inputs of Bob and the consistent inputs
extracted for Alice in those instances. From |C∩E| > |E \C| it then follows that
it is the inputs of Alice in the instances j ∈ C ∩E that becomes the values sent
to the ideal functionality on behalf of corrupted Alice in the simulation. From
|C ∩E| > |E \C| it also follows that it is the consistent outputs of the instances
j ∈ C ∩ E that become the output that Bob uses in the protocol. From this it
follows that the outputs are the same in the protocol and the simulation.

The proof of Lemma 2 follows from the properties of the hash function h
used using a by now standard argument, see for instance [21]. All other abort
probabilities are clearly independent of the inputs of Bob. The proof of Lemma 2
follows from the properties of the auxiliary function, specifically the statistical
binding. Namely, if the environment uses inconsistent inputs in otherwise cor-
rect evaluation instances, then that instance will correctly evaluate the auxiliary
function (by correctness of the garbling scheme) and will therefore provide Bob
with different check values except with negligible probability, by the statistical
binding property. See for instance [25,7] for the details. The proof of Lemma 4

34



follows from the fact that if an instance j 6∈ C becomes a watchlist instance, then
Bob will abort except with negligible probability, as detailed below. Hence by
setting s large enough we can ensure that if Bob does not abort, then less than
half of the evaluation positions are correct except with probability 2−O(s). To
see that if an incorrect position becomes a watchlist position, then Bob aborts,
except with negligible probability, observe that if a garbling, linking or output
decoding function is incorrect, then clearly Bob detects. Assume then that Alice
encrypted an incorrect input encoding under the evaluation key. Recall that this
input encoding is encrypted together with an opening of one of the two commit-
ments to the input encodings of 0 and 1. From this and the perfect binding of
the commitment scheme, it follows that when Bob checks the encodings inside
the commitments (he can do this on watchlist positions), he will see the same
incorrect encoding, and abort.

A.3 Corrupted Bob

We now consider the case where Bob is corrupt. We use environment to designate
the entity controlling the corrupted Bob. The idea of the simulator is that it will
follow the description of an honest Alice except in four places. In the input
rule for Bob, the simulator will also extract the environment’s input without
deviating from the behaviour of a real world Alice. It just inspects the choice
bits of the OTs simulated by the simulator. In the input rule for Alice, it will
follow the behaviour of Alice with an all-zero string. Only in the output phase
will the simulate differ behaviourally from a real world Alice. In the output
phase, the simulator will learn the output from the ideal functionality and will
then in the simulated protocol send a correction string (instead) of the all-zero
string, to make it the value from the ideal functionality. During the function,
garbling and linking phases, the simulator will follow the behaviour specified in
the protocol. We now describe the deviations from the real protocol in a little
more detail.

During Alice’s input phase, the simulator will select value 0` (` is the size
of the input component in question) for Alice and follow the description of the
protocol with this value. It will send (Input, t, i, 0`) to the ideal functionality.

During Bob’s input phase, the simulator follows the description of the proto-
col. The simulator will extract the environment’s input x via the choice of Bob
to the oblivious transfer and the hash functions. It then send (Input, t, i, x) to the
ideal functionality.

During the output phase, the simulator will deviate from the protocol. It
will call the functionality with the output rule and receive an output y. The
simulator also computes the output that Bob receives in the simulated protocol,
call it y′. Note the most likely y′ 6= y as in the simulated protocol, Alice was run
with the dummy inputs 0` which are most likely different from her real inputs.
The simulator will then compute ∆ ← y ⊕ y′. For each watchlist index, he will
send encodings of 0` where ` denotes the length of the output component in
question. For the evaluation indices, he will send encodings of ∆. As a result,

35



rule Initialize
on (Send, ek,wk) from Env
w

$←{0, 1}
// Simulator learns both

evaluation and watchlist key

store ek,wk
σ ← {}

rule Func
on (Func, t, f) from Env
send (Func, t, f) to FR2PC

on (Func, t, done) from FR2PC

send (Func, t, done) to Env
σ ← σ ‖(Func, t, f)

rule Garble
on (Garble, t) from Env
await ∃f : (Func, t, f) ∈ σ
on F ′, E from Env
if w = 1 then

rt ← Dwk(E)
(Ft, et, ot, dt)← Gb(f, t; r)
verify F ′ = Ft

send (Garble, t) to FR2PC

on (Garble, t, done) from FR2PC

send (Garble, t, done) to Env
σ ← σ ‖(Garble, t)

rule Link
on (Link, t1, i1, t, i2) from Env
await (Garble, t1) ∈ σ
await (Garble, t) ∈ σ
on L from Env
L ← L‖(t1, i1, t, i2, L)
if w = 1 then

verify L = Li(ot1,i1 , et,i2)
send (Link, t1, i1, t, i2) to FR2PC

on (Link, t1, i1, t, i2, done) from FR2PC

send (Link, t1, i1, t, i2, done) to Env
σ ← σ ‖(Link, t1, i1, t, i2)

rule Output
on (Output, t, i) from Env
await (t, i,>) ∈ ready(σ)
on (L̄, Ē, Ψ̄ , X̄t̄,0, d̄t̄) from Env
if w = 1 then

r ← Dwk(Ē)
(Ψ, et̄, dt̄, ot̄)← Gb(ψ, t̄; r)
verify Ψ̄ = Ψ
verify X̄t̄,0 = En(et̄,2, 0)
verify d̄t̄ = dt̄
verify L̄ = li(ot,i, et̄,1)

send (Output, t, i) to FR2PC

on (Output, t, i, done) from Env
send (Output, t, i, done) to Env

Fig. 16. Alice Corrupt: Initialize,Func,Garble,Link,Output

the simulated evaluation will compute the same output as the one given by the
functionality.

A.4 Indistinguishability

We will show that if the environment can distinguish between the real and ideal
world then it can break the confidentiality property of a reactive garbling scheme
or the computational hiding of the commitment scheme or the IND-CPA security
of the encryption scheme.

Notice that aside from InputA, InputB and the Output phase, the simula-
tor follows exactly the steps that an honest Alice would. In those steps, for the

36



rule InputB

on (Input, t, i, ?) from Env
await (Garble, t) ∈ σ
send (t, i, ?) to FR2PC

`← len(ft.Ai)
`1 ← 2(`+ s)
t̄← 1‖(Input, t, i)‖0
t′ ← 1‖(Input, t, i)‖1
on E, Id′ from Env
if w = 1 then

r ← Dwk(E)
(Idt̄, et̄, ot̄, dt̄)← Gb(id`1 , t̄; r)
verify Id′ = Idt̄

for u ∈ {1, . . . , `1} do
on (Send, X̄t̄,u,0, X̄t̄,u,1) from Env

x̄
$←{0, 1}`1

h
$←H // Random two-universal hash function

X̄t̄,x̄ ← (X̄1,x̄1 , . . . , X̄l,x̄l)
if w = 1 then

verify ∀u, X̄t̄,u,xu = En(et̄,u, xu)
send h to Env
on E′, H ′ from Env
for u ∈ {1, . . . , `1} do

on L̄u from Env
on Lu from Env

if w = 1 then
r′ ← Dwk(E

′)
(Ht′ , et′ , ot′ , dt′)← Gb(h, t′; r′)
verify Ht′ = H ′

for u ∈ {1, . . . , `1} do
verify L̄u = li(ot̄,u, et′,u)
verify Lu = li(ot′,u, et,i,u)

send (Input, t, i, ?) to FR2PC

on (Input, t, i, done) from FR2PC

send (Input, t, i, done) to Env
σ ← σ ‖(Input, t, i,>)

Fig. 17. Alice corrupt: InputB

watchlist positions, the distribution of what the environment sees is the same in
both worlds. Since the watchlist in both the ideal and real world have the same
distribution, the watchlist cannot help the environment distinguish between the
real and ideal world. We thus only need to look at what changes for the non-
watchlist positions. In InputA, the simulator uses the encoding of the all-zero
string. In InputB, he extracts the environments choice of input via the choice
of hash function and the input to the oblivious oblivious transfer. In the output
phase, it uses ∆ to correct for an output from the ideal evaluation different from
the one in the simulated execution.

37



rule InputA

on (Input, t, i, z) from Env
await (Garble, t) ∈ σ
send (Input, t, i, z) to FR2PC

t̄← 1‖(Input, t, i)‖0
`1 ← len(ft.Ai)
`2 ← len(g`.A2)
`3 ← len(g`.A3)
on E from Env

on (G′, d′2) from Env
for u ∈ {1, . . . , `1} do on (Su,1, Eu,1, Eu,2, Eu,3, Lu) from Env
for u ∈ {1, . . . , `2} do on (Su,2, Eu,4, Eu,5, Eu,6) from Env

c
$←{0, 1}`3

send c to Env
for u ∈ {1, . . . , `3} do on Cu,cu from Env
r ← Dwk(E)
(Gt̄, et̄, dt̄, ot̄)← Gb(g`1 , t̄; r)

for u ∈ {1, . . . , `1} do Xu,0 ← En(et̄,1,u, 0), Xu,1 ← En(et̄,1,u, 1)
for u ∈ {1, . . . , `2} do Mu,0 ← En(et̄,2,u, 0), Mu,1 ← En(et̄,2,u, 1)
if w = 1 then

verify (G′, d′2) = (Gt̄, dt̄,2)
for u ∈ {1, . . . , `1} do

(ru,0, ru,1)← Dwk(Eu,2)
verify Dwk(Eu,1) = (Xu,0, Xu,1)
verify Su,1 = {com(Xu,0, ru,0), com(Xu,1, ru,1)}
verify Lu = li(ot̄,1,u, et,i,u)

for u ∈ {1, . . . , `2} do
(r′u,0, r

′
u,1)← Dwk(Eu,5)

verify Dwk(Eu,3) = (Mu,0,Mu,1)
verify Su,2 = {com(Mu,0, ru,0), com(Mu,1, ru,1)}

for u ∈ {1, . . . , `3} do
verify Cu,cu = com(En(et̄,3,u, cu), r′′u,cu

)

else
for u ∈ {1, . . . , `1} do (X̄u, ru)← Dek(Eu,3)

for u ∈ {1, . . . , `2} do (M̄u, r
′
u)← Dek(Eu,6)

verify ∀u ∈ {1, . . . , `1}, com(X̄u, ru) ∈ Su,1

verify ∀u ∈ {1, . . . , `2}, com(M̄u, ru) ∈ Su,2

X̄ ← {(t̄, 1, Xx), (t̄, 2,Mm), (t̄, 3, Cc)}, Ȳ ← Ev({(t̄, Gt̄)}, X̄ ), y2 ← De(d2, Ȳ2)

verify ∀j, j′, y(j)
2 = y

(j′)
2

// Use garbling with encrypted randomness to learn Alice’s input
for u ∈ {1, . . . , `1} do

for j ∈ {1, . . . , s} do

if X̄j
u = Xj

u,0 then xj
u ← 0

else xj
u ← 1

xu ← maj(x1
u, . . . , x

s
u) // Apply majority decoding

x← x1 . . . x`1

send (Input, t, i, x) to FR2PC

on (Input, t, i, done) from FR2PC

send (Input, t, i, done) to Env
σ ← σ ‖(Input, t, i,>)

Fig. 18. Alice corrupt: InputA

We argue indistinguishability using five hybrids.

In the first hybrid the simulator will in all evaluation positions change one of
the committed values to a dummy value. It will correctly commit to the input
encoding that it is going to send to B, but is going to commit to a dummy value
in the other commitment, say the all-zero string. Since this commitment is never
opened, the difference is indistinguishable by the computational hiding of the

38



rule Initialize

wk, ek
$←{0, 1}k

// Simulator learns if

evaluation instance or

watchlist instance

on (Transfer, w) from Env
if w then z ← wk
else z ← ek
send (Transfered, w, z) to Env

rule Link
on (Link, t1, i1, t, i2) from Env
await (Garble, t) ∈ σ
await (Garble, t1) ∈ σ
send li(ot1,i1 , et,i2) to Env
send (Link, t1, i1, t, i2) to FR2PC

σ ← σ ‖(Link, t1, i1, t, i2)

rule Func
on (Func, t, f) from Env
send (Func, t, f) to FR2PC

on (Func, t, f, done) from FR2PC

send (Func, t, f, done) to FR2PC

σ ← σ ‖(Func, t, f)

rule Garble
on (Garble, t) from Env
await (Func, t, f) ∈ σ
(Ft, et, ot, dt)← Gb(f, t; r)
send Ft,Ewk(r) to Env
send (Garble, t) to FR2PC

σ ← σ ‖(Garble, t)

rule Output
on (Output, t, i) from Env
await (t, i,>) ∈ access(eval)(σ)
send (Output, t, i) to FR2PC

on (t, i, yt,i) from FR2PC

(t, i, y′t,i) ∈ eval(σ)
// The xor between the output produced by

the ideal functionality and the output

for the sequence produced by the

simulator

∆← yt,i ⊕ y′t,i
(Ψ, et̄, dt̄, ot̄)← Gb(ψ, t̄; r)
L← li(ot,i, et̄,i)
E ← Ewk(r)
if w = 1 then

// For a watchlist instance, encode the

all-zero string

Xt̄,0 ← En(et, t, i+ f.n, 0)

else
// For an evaluation instance, encode

the xor value

X̄t,0 ← En(et, t, i+ f.n,∆)

send (L,E, Ψ,Xt̄,0, dt̄) to Env

Fig. 19. Bob corrupt: Initialize,Func,Garble,Link,Output

commitment scheme. In the watchlist positions it still commits correctly to both
input tokens.

In the second hybrid, we let the simulator replace encryptions under the
watchlist keys with encryption of dummy values under the watchlist key in all
evaluation instances. Since the environment does no know the watchlist key

39



rule InputA

on (Input, t, i, ?) from Env
await (Garble, t) ∈ σ
t̄← 1‖(Input, t, i)‖0
`1 ← len(ft.Ai)
`2 ← len(g`.A2)
`3 ← len(g`.A3)

m
$←{0, 1}`2

x′ ← 0len(ft.Ai) // Input the all-zero string to the sequence

r ∈ {0, 1}k,
(Gt̄, et̄, dt̄, ot̄)← Gb(g`1 , t̄; r)

for u ∈ {1, . . . , `1} do Xu,0 ← En(et̄,1,u, 0), Xu,1 ← En(et̄,1,u, 1), ru,0, ru,1
$←{0, 1}k

for u ∈ {1, . . . , `2} do Mu,0 ← En(et̄,2,u, 0), Mu,1 ← En(et̄,2,u, 1), r′u,0, r
′
u,1

$←{0, 1}k

for u ∈ {1, . . . , `3} do Cu,0 ← En(et̄,3,u, 0), Cu,1 ← En(et̄,3,u, 1), r′′u,0, r
′′
u,1

$←{0, 1}k
send E ← Ewk(r) to Env
send (G′t̄t, d

′
t̄,2)← (Gt̄, dt̄,2) to Env

for u ∈ {1, . . . , `1} do
Su,1 ← {com(Xu,0, ru,0), com(Xu,1, ru,1)}
Eu,1 ← Ewk((Xu,0, Xu,1)), Eu,2 ← Ewk((ru,0, ru,1))
Eu,3 ← Eek((Xu,xi,u , ru,xi,u))
Lu ← li(ot̄,1,u, et,i,u)
send Su,1, Eu,1, Eu,2, Eu,3, Lu to Env

for u ∈ {1, . . . , `2} do
Su,2 ← {com(Mu,0, r

′
u,0), com(Mu,1, r

′
u,1)}

Eu,4 ← Ewk((Mu,0,Mu,1)), Eu,5 ← Ewk((r
′
u,0, r

′
i,1))

Eu,6 ← Eek((Mu,mi,u , r
′
u,mu

))
send Su,2, Eu,4, Eu,5, Eu,6, Lu to Env

for u ∈ {1, . . . , `3} do
(Cu,0, Cu,1)← (com(Cu,0; r′′u,0), com(Cu,1; r′′u,1))
send Cu,0, Cu,1 to Env

on c from Env
for u ∈ {1, . . . , `3} do

send (Cu,cu , r
′′
u,cu) to Env

send (Input, t, i, ?) to FR2PC

on (Input, t, i, done) from FR2PC

send (Input, t, i, done) to Env
σ ← σ ‖(Input, t, i, x′)

Fig. 20. Bob corrupt: InputA

in the evaluation instances, this change is indistinguishable by the IND-CPA
security of the encryption scheme. Similarly, it will encrypt dummy values under
the evaluation keys in the watchlist positions.

Notice that now the values sent in the watchlist positions can be computed
without knowing the input of Alice, as only the input tokens encrypted under
the evaluation key depend on the input of Alice. Furthermore, the garbled values
sent in the evaluation instances corresponds to values that the simulator could

40



rule InputB

on (Input, t, i, ?) from Env
await (Garble, t) ∈ σ
`← len(ft.Ai)
`1 ← 2(`+ s)
t̄← next()
t′ ← next()
(Idt̄, et̄, ot̄, dt̄)← Gb(id`, t̄; r)
for u ∈ {1, . . . , `1} do

X̄u,0 ← En(et̄,u, 0)
X̄u,1 ← En(et̄,u, 1)

send E ← Ewk(r), Idt̄ to Env
// Learn x̄ from Bob’s input to OT.

for u ∈ {1, . . . , `1} do
on (Transfer, x̄u) from Env
send (Transfered, x̄u, X̄u,x̄u) to Env
store x̄u

x̄← x̄1, . . . , x̄`1
on h from Env
(Ht′ , et′ , ot′ , dt′)← Gb(h, t′; r′)
send Ewk(r

′) to Env
send Ht′ to Env
for u ∈ {1, . . . , `1} do

send L̄u ← li(ot̄,u, et′,u) to Env
send Lu ← li(ot′,u, et,i,u) to Env

// Learn Bob’s input from x̄ and from the hash function

x← h(x̄)
send (Input, t, i, x) to FR2PC

on (Input, t, i, done) from FR2PC

send (Input, t, i, done) to Env
σ ← σ ‖(Input, t, i, x)

Fig. 21. Bob corrupt: InputB

get when being an adversary in the game in Figure 6, namely garbled inputs,
where it gets/needs only one token for each wire, garbled functions and output
decoding functions. We can therefore now change the simulation such that the
simulator uses the real inputs of Alice (it can learn these by inspecting the ideal
functionality (a simulator might not do this, but we may do this as part of the
proof as we are just defining a hybrid distribution)) and ∆ = 0`. When garbling
the input of Alice it asks to get an input encoding of 0` or the real input of Alice
and then commits to the received tokens and all-zero values for the tokens it
does not know, and when it is to give output it asks to get a garbling of either
∆ = y ⊕ y′ or ∆ = 0`. If one is concisely using either the left value or the right
value, these inputs give the same outputs. Therefore the change to using the
real inputs goes unnoticed by the environment by confidentiality of the garbling
scheme. This also uses the perfect hiding of the auxiliary function.

41



After the change to using the real inputs and the all-zero string in output,
we can then reverse the two first changes. First we start encrypting correct
values under all evaluation and watchlist keys, and then we start committing
to all the correct values again. This goes unnoticed by IND-CPA security and
computational hiding.

After this series of changes, the hybrid we arrived at is identical to the real
protocol, so apply transitivity of indistinguishability.

B Analysis

In this section, we demonstrate the security of our reactive garbling scheme in
the random oracle model. The first key idea of this proof is that the values
produced by the simulator will only depend on the leakage of one of the se-
quences. If the sequence don’t have the same leakage then the adversary loses
anyways. As a result, either the adversary loses the game or the views produced
are indistinguishable.

The second key idea is that we can explain the values produced as an instance
of either sequence by programming the random oracle. Therefore, if we show that
the adversary cannot distinguish between the simulation, and a real garbler, we
can show that the adversary has negligible advantage in the confidentiality game.

The basic methodology of the simulator is as follows: when the adversary
sends a Garble command, the simulator will produce random tokens and ran-
dom tables that only depend on the leakage of the function. For each non-output
wire, we will fix a token that the sender will receive and one token that will re-
main hidden from the sender. The same thing will be applied to outputs except
for the second least significant bit which will be defined after the garbling.

As each output becomes defined, the second least significant of encoded out-
put and the decoding will be chosen by the simulator to reflect this value. If
they are not the same then the adversary loses the game. There is a subtle issue
that need to be considered, the adversary might first request a decoding string
for an output before the output is ready or he may ask for tokens or linking
which defines an output before the decoding string is given. In the first case, we
will select a random decoding and then fix the second least significant so that
decoding produces the correct output and in the second case, we will instead
select the second least significant randomly and then select the decoding so the
correct output is produced.

To show that the values shown to the adversary could be used to explain the
sequence, we simply program the oracle to match one of the two sequences.

Here is a short description of what the simulator does. Program() is used to
ensure that the chosen token would be produced by an adversary who evaluates
the sequence correctly. On Garble(t) return a garbling with the right structure
and number of garbled tables, where each entry in each table is chosen uniformly
at random. Additionally for each non-output wire select two uniformly random
tokens without assigning semantics. The random oracle will only at evaluation
time be programmed to be consistent with the tables and the tokens. For the

42



output wire, do the same but with the second least significant to bit be deter-
mined. On Input(t, i, x), simply return the token that the simulator intended
to reveal. On Link(t1, i1, t2, i2), simply return the values that are meant to be
produced.

Often we will use σ0, in the simulation. This is to show that the simulator
does not really care which bit was chosen by the game, he only needs the leakage
of the function.

We use the following notation to simplify the description of the simulation.
We denote the value of the wire i of ft for the sequence σb as w(t, i, b). We use the
notation Gt,i,b to denote the gate associated to the function ft for the sequence
σb.

B.1 Proof

We now prove Theorem 1
First, we will prove that either the adversary sends a command which loses

him the game or that the view of the adversary when interacting with the simu-
lator when b = 0 is statistically indistinguishable from the view of the adversary
when interacting with the simulator and the game picks b = 1. Secondly, we need
to show that given the linking, the garbled tables, the encoding and decodings
that are produced, we can explain for any choice of b ∈ {0, 1} these values as a
garbling of σb by programming the random oracle. We also need to prove that
the explanation is indistinguishable from a real garbling of the sequence σb.

We first prove that the view of the adversary when b = 0 and b = 1 are
statistically indistinguishable unless the adversary loses the game. We prove
that by showing that for any legal sequences σ0 and σ1 for which Φ(σ0) = Φ(σ1)
we can produce the view of the adversary of a garbling of σb without using the
value b. This clearly proves the statement.

The following are constructed without taking into account the bit that was
selected. On garble command, the simulator produces two token for each input,
the first token is always the token that the simulator will provide to the adversary
if asked to encode an input and the other will always remain hidden. One of the
tokens will always stay hidden by the input uniqueness condition.

For the non-output wires and non-input wires, the simulator chooses ran-
domly a token that the adversary would compute using inputs, output and link-
ing and a token that would remain hidden. It is the same thing for the output
wires except that the second to last bit is left undefined until later. Since linking
does not depend on this bit, linking does not depend on b.

Now the second to last bit of an output wire and the decoding are always
randomly constructed such that their xor is the output produced by the first se-
quence. The adversary could select two sequences which produce different output
and where a decoding is provided but then the adversary would lose the game.
Since both sequences need to produce the same output for any output which is
ready and where the decoding is provided and that the function associated to
tag t in σ0 and σ1 have to be similar. Therefore, the values produced when b = 0
is the same when b = 1. Therefore, the adversary cannot distinguish between

43



the view produced with b = 0 and the view produced with b = 1 without losing
the game.

Next, we prove that for any b ∈ {0, 1}, the values produced can be explained
as a garbling of the sequence σb.

Notice that only one element of each garbled table has been given a pre-
image, namely the one that would be decoded by the adversary. This of course,
leaves the simulator the freedom to program the pre-images of the other elements
in a garbled table. The other thing to note is that except for the encoded outputs
for which both of the following conditions hold: 1) they are ready and 2) the
associated decoding has been given, none of the other tokens have been given a
semantic meaning yet.

The simulator in the Explain procedure, for each token that the adversary
would be able to produce assigns the correct semantic by programming the
oracle for that token (the one that the sequence would give). Now there might
be inputs that are still undefined and as such the value of gates which depend
on that input would still be undefined. In this case, the simulator just choose all
four pre-images and can just assign semantics as he chooses. The result is that
the garbling with the chosen tokens and the programming is a valid garbling of
the sequence σb.

We also need to prove that the explanation is indistinguishable from a real
garbling of the sequence σb. This is trivial, since there is a one-to-one correspon-
dence between what could be produced by a garbler and a random oracle and a
simulator programming the random oracle.

We thus have that the views produced are indistinguishable or the adversary
loses. The values produced by the simulator can be explained as a garbling
of each sequence and is indistinguishable from a sequence generated by a real
garbler. As a result, we can see that the adversary’s advantage is negligible and
that the protocol is confidential.

C Forge and Lose

In the work of [20], it was shown how to apply cut-and-choose with garbled
circuits. We will show that if a reactive garbling scheme fulfills two conditions
then we can apply Lindell’s technique. The first requirement is that the output
encoding is projective. The second condition requires that if an output encoding
is not linked then it is safe to reveal the output encoding. We provide a brief
overview of the protocol. We will avoid discussing enforcing input consistency,
preventing selective failure attacks since these can be derived from the previous
protocol. The cut-and-choose occurs after the evaluation.

First, we will note that the scheme of Lindell is a garbling scheme with
projective output tokens. On garbling a function, the algorithm select random
output tokens for each output. The decoding string is the table containing all
the hashes of the output tokens. To decode an encoded output, look for the hash
which matches this encoded output.

44



The protocol overview is as follows. First, Alice garbles the identity func-
tion once, she also garbles the function f a total of s times, she also links each
garbling of f to the garbling of the identity function. Next, Alice and Bob will
first run the evaluation of the garbled function using their respective input x, y.
Next Alice and Bob will run the cheater detection phase. If Bob has for any
i both ot,i,0, ot,i,1 then he can extract Alice’s input. Now, he gets an output
either from the evaluation or he can compute it using Alice’s input. Note that
after evaluation, Alice and Bob will execute Cut-and-Choose to verify that Alice
acted honestly. This entails that Alice reveal the output encoding of the identity
function.

dt = H(ot,1,0), H(ot,1,1), . . . ,H(ot,m,0), H(ot,m,1)

F F F
x y x y x y

Itot,i,z0 , . . . , ot,i,zm

D(ot)
x v

if ∃i : ot,i = v then x

D Minilego

In the case of minilego, we can define minilego soldering of gates as a reactive
garbling scheme. Minilego uses the free-xor technique. Each gate is a function.
Prior to garbling a fixed parameter ∆ is randomly selected.

To garble a gate, each input zero token et,i,o is randomly selected and et,i,1 ←
et,i,0⊕∆. The output zero token ot,1,o is randomly selected and ot,1,1 ← ot,1,0⊕∆.
To link a gate associate with label t to a gate with label t̄ and input i ∈ {0, 1},
we set Lt,1,t̄,i ← ot,1,o ⊕ et̄,i,0. Therefore, we have that Lt,1,t̄,i ⊕ ot,i,b = et̄,i,b.

A bucket is simply produced by garbling two input identity gate and an
output identity gate and then linking each gate in the bucket with the identity
functions.

45



I I

Z Z Z

I

46



proc Garble(t)
(n,m, q,A,B)← φ(σ0.ft)
for i ∈ {1, . . . , n+ q −m} do

ct,i
$←{0, 1}

// Vt,i,0 is the token that the adversary will receive for

internal wires.

Vt,i,0 ← {0, 1}k−1 ‖ ct,i
Vt,i,1 ← {0, 1}k−1 ‖ 1− ct,i

for i ∈ {n+ q −m+ 1, . . . , n+ q} do
/* Kt,i,0 is the root of the encoded output that the adversary

will learn. ct,i will be the type of the encoded output that

the adversary will learn. The mask of the encoded output will

be chosen later. */

Kt,i,0
$←{0, 1}k−2

Kt,i,1
$←{0, 1}k−2

ct,i
$←{0, 1}

for (i, u, v) ∈ {1, . . . , n+ q} × {0, 1} × {0, 1} do
// Randomly sample table.

P [i, u, v]
$←{0, 1}k

Ft ← (n,m, q,A,B, P )
σ0 ← σ0 ‖(Garble, t)
σ1 ← σ1 ‖(Garble, t)
return Ft

proc Input(t, i, x0, x1)
σ̄0 ← σ0‖(Input, t, i, x0)
S ← ready(σ̄0) \ ready(σ0)
for (t, i) ∈ S do

update(t, i, σ̄0)
σ0 ← σ0 ‖(Input, t, i, x0)
σ1 ← σ1 ‖(Input, t, i, x1)
return Vt,i,0

proc update(t, i, σ̄0)
/* If output is ready, then the output

decoding has already been produced. In

this case, the simulator must choose a

mask such that the correct output is

produced. Otherwise, the mask is chosen

randomly. */

if (Output, t, i) ∈ σ0 then
for (t, i, yt,i) ∈ eval(σ̄0) do

rt,i ← yt,i ⊕ dt,i
else

rt,i
$←{0, 1}

Yt,i,yt,i ← Kt,i,0 ‖ rt,i ‖ ct,i
Yt,i,1−yt,i ← Kt,i,1 ‖ 1− rt,i ‖ 1− ct,i

Fig. 22. Reactive garbling Simulation

47



proc Link(t1, i1, t2, i2)
σ̄0 ← σ0‖Link(t1, i1, t2, i2)
S ← ready(σ̄0) \ ready(σ0)
for (t, i) ∈ S do

update(t, i, σ̄0)
σ0 ← σ0 ‖Link(t1, i1, t2, i2)
σ1 ← σ1 ‖Link(t1, i1, t2, i2)
U0 ← H(C ‖ kt,i,ri)⊕ Vt,i,ct,i
U1 ← H(C ‖ kt,i,1−ri)⊕ Vt,i,1−ct,i
Lt1,i1,t2,i2 ← (U0, U1)
return Lt1,i1,t2,i2

proc Output(t, i)
σ0 ← σ0 ‖(Output, t, i)
σ1 ← σ1 ‖(Output, t, i)
/* If output is not ready then sample a

random dt,i
$←{0, 1}. Otherwise, the mask

has already been chosen, in this case

dt,i is chosen so that the correct output

is produced. */

if (t, i) 6∈ ready(σ0) then
dt,i

$←{0, 1}
else
∃(t, i, yt,i) ∈ eval(σ0)
dt,i ← rt,i ⊕ yt,i

return dt,i

proc Program()
/* Program the random oracle so that the

chosen encodings are produced. */

for t ∈ Tags(σ0) do
(n,m, q,A,B, P )← σ0.ft
for i ∈ {1, . . . , n+ q −m} do

if w(t, i, σ0) 6= ⊥ then
a← A(i), b← B(i)
A← root(Vt,a,0)
B ← root(Vt,b,0)
a← lsb(Vt,a,0)
b← lsb(Vt,b,0)
T ← i ‖ a ‖ b
H(T ‖A ‖B)← P [i, a, b]⊕ Vt,i,0

for i ∈ {1, . . . ,m} do
if (yt,i ∈ eval(σ0)) then

a← A(n+ q −m+ i), b←
B(n+ q −m+ 1) A← root(Vt,a,0)
B ← root(Vt,b,0)
a← lsb(Vt,a,0)
b← lsb(Vt,b,0)
T ← i ‖ a ‖ b
H(T ‖A ‖B)← P [i, a, b]⊕ Yt,i,yt,i

Fig. 23. Program

48



proc Explain()
for {t | (Garble, t) ∈ σ0} do

(n,m, q,A,B, P )← σb.ft
for i ∈ {1, . . . , n+ q −m} do

if w(t, i, σb) 6= ⊥ then
∆← w(t, i, σb)
Xt,i,∆ ← Vt,i,0
Xt,i,1−∆ ← Vt,i,1

else
Xt,i,0 ← Vt,i,0
Xt,i,1 ← Vt,i,1

for i ∈ {1, . . . ,m} do
if dt,i 6= ⊥ ∧ rt,i = ⊥ then

rt,i ← dt,i
Upd(t, i)

if rt,i 6= ⊥ ∧ dt,i = ⊥ then
dt,i ← rt,i
Upd(t, i)

for i ∈ {1, . . . , n+ q} do
a← A(i), b← B(i)
for (u, v) ∈ {0, 1} × {0, 1} do

A← root(Xt,a,u), a← lsb(Xt,a,u)
B ← root(Xt,b,v), b← lsb(Xt,b,v)
T ← g ‖ a ‖ b
H(T ‖A ‖B)← P [i, a, b]⊕Xt,i,Gt,i,b(i,u,v)

proc Upd(t, i)
∆

$←{0, 1}
Yt,i,0 ← Kt,i,∆ ‖ rt,i ‖ ct,i
Yt,i,1 ← Kt,i,1−∆ ‖ 1− rt,i ‖ 1− ct,i
Xt,n−q+m+i,1 ← Yt,i,0
Xt,n−q+m+i,0 ← Yt,i,1

Fig. 24. Correctness

49



proc Gb(∆, ft, t)
if ft = I then

return GBID(t)
et,1,0, et,2,0

$←{0, 1}k
et,1,1 ← et,1,0 ⊕∆
et,2,1 ← et,2,0 ⊕∆
a0, a1

$←{0, 1}k
dt ← H(ot,1,0), H(ot,1,1)
if ft = Xor then

Ft = Xor

ot,1,0 ← et,1,0 ⊕ et,2,0
else

ot,1,0
$←{0, 1}k

a← lsb(et,1,0)
b← lsb(et,2,0)
for v, q ∈ {0, 1}2 do

c← a⊕ v
d← b⊕ q
z ← H(t‖et,1,c‖et,2,d)
Pt[v, q]← z ⊕ ot,i,ft(c,d)

Ft ← Pt
ot,1,1 ← ot,1,0 ⊕∆
ot ← (ot,1,0, ot,1,1)
et ← (et,1,0, et,1,1, et,2,0, et,2,1)
return (Ft, ot, et, dt)

proc GBID(t)

et,1,0
$←{0, 1}k

et,1,1 = et,1,0 ⊕∆
δt

$←{0, 1}k
ot,1,0 ← et,1,0 ⊕ δt
ot,1,1 ← et,1,1 ⊕ δt
return ((I, δt), et, ot)

proc EvI(Ft,X)
if Ft = (I, δt) then

EvIdentity(Ft,X1)
else if Ft = Xor then

EvXor(X1,X2)
else

EvF(Ft,X1,X2)

proc En(t, i, x)
Xt,i ← et,i,x
return Xt,i

proc li(t1, i1, t2, i2, ot1,i1 , et2,i2)
Lt1,i1,t2,i2 ← ot1,i1 ⊕ et2,i2
return Lt1,i1,t2,i2

proc Li(Lt1,i1,t2,i2 , Yt1,i1)
return Lt1,i1,t2,i2 ⊕ Yt1,i1

proc EvXor(Xt,1, Xt,2)
return Xt,1 ⊕Xt,2

proc EvF(Ft, Xt,1, Xt,2)
a← lsb(Xt,1)
b← lsb(Xt,2)
return H(t‖Xt,1‖Xt,2)⊕ Ft[a, b]

proc EvIdentity(Ft, Xt,1)
(I, δt)← Ft
return Xt,1 ⊕ δt

proc De(Yt,i, dt,i)
if H(Yt,i) = dt,i,0 then

return 0
if H(Yt,i) = dt,i,1 then

return 1
return error

Fig. 25. Minilego

50



E Simulation based security

Definition 7 (Confidentiality (simulation)). For a legal sequence class L
relative to side-information function Φ and a reactive garbling scheme G, we say
that G is (L, Φ)-sim-confidential if for all PPT A it holds that Advadp.sim.con

G,L′,Φ,A (1k)

is negligible, where Advadp.sim.con
G,L′,Φ,A (1k) = Pr[Gameadp.sim.con

G,L′,Φ,A (1k) = >] − 1
2 and

Gameadp.sim.con
G,L′,Φ is given in Figure 26.

proc Initialize()
b

$←{0, 1}
σ ← ∅

proc Func(f, t)
ft ← f
σ ← (Func, f, t)
(S ◦ Φ)(σ)

proc Output(t, i)
σ ← σ ‖(Output, t, i)
if b=0 then

return (S ◦ Φ)(σ)
return dt,i

proc Input(t, i, x)
σ ← σ ‖(Input, t, i, x)
if b=0 then

return (S ◦ Φ)(σ)
return En(et, t, i, x)

proc Link(t1, i1, t2, i2)
σ ← σ ‖ Link, t1, i1, t2, i2)
if b=0 then

return (S ◦ Φ)(σ)
return li(t1, i1, t2, i2, ot1,i1 , et2,i2)

proc Garble(t)
σ ← σ ‖(Garble, t)
if b=0 then

return (S ◦ Φ)(σ)
(Ft, et, ot, dt)← Gb(sps, ft, t)
return Ft

proc Finalize(b′)
if b = b′ ∧ σ ∈ L ∧ eval(σ) 6= Error then

return >
else return ⊥

Fig. 26. The game Gameadp.sim.con,L,Φ
G (1k) defining adaptive simulation confidential-

ity. In Finalize, we check that σ ∈ L and the adversary loses if this is not the case. We
can therefore by monotonicity assume that the game returns ⊥ as soon as it happens
that σ 6∈ L. The notation (S ◦ Φ)(σ) is used to mean that the game sends Φ(σ) to the
simulator. We also use the conventions used in Gameadp.sim.con,L,Φ

G (1k).

F Simulation Proof

Theorem 3. Let L be the set of all legal garbling sequence, let Φ denote the
circuit topology of a function. Then RGS is (L, Φ)-simulation confidential in the
random oracle model.

On garble command, the simulator produces two token for each input, the
first token is always the token that the simulator will provide to the adversary

51



proc Link(t1, i1, t2, i2)
σ̄ ← σ‖Link(t1, i1, t2, i2)
S ← ready(σ̄) \ ready(σ)
for (t, i) ∈ S do

update(t, i, σ̄)
σ ← σ ‖Link(t1, i1, t2, i2)
U0 ← H(C ‖ kt,i,ri)⊕ Vt,i,ct,i
U1 ← H(C ‖ kt,i,1−ri)⊕ Vt,i,1−ct,i
Lt1,i1,t2,i2 ← (U0, U1)
σ ← σ ‖(Link, t1, i1, t2, i2))
Program()
return Lt1,i1,t2,i2

proc Garble(t)
(n,m, q,A,B, ?)← Φ(σ.ft)
for i ∈ {1, . . . , n+ q −m} do

ct,i
$←{0, 1}

Vt,i,0 ← {0, 1}k−1 ‖ ct,i
Vt,i,1 ← {0, 1}k−1 ‖ 1− ct,i

for i ∈ {n+ q−m+ 1, . . . , n+ q} do
Kt,i,0

$←{0, 1}k−2

Kt,i,1
$←{0, 1}k−2

ct,i
$←{0, 1}

for (i, v, q) ∈ {1, . . . , n+ q} × {0, 1}2
do

P [i, v, q]
$←{0, 1}k

Ft ← (n,m, q,A,B, P )
σ ← σ ‖(Garble, t))
Program()
return Ft

proc Program()
for t ∈ Tags(σ) do

(n,m, q,A,B, ?)← Φ(σ.ft)
for i ∈ {1, . . . , n+ q −m} do

if ready(w(t, i, σ)) then
a← A(i), b← B(i)
A← root(Vt,a,0)
B ← root(Vt,b,0)
a← lsb(Vt,a,0)
b← lsb(Vt,b,0)
T ← i ‖ a ‖ b
H(T ‖A ‖B)← P [i, a, b]⊕ Vt,i,0

proc Input(t, i, ?)
σ̄ ← σ‖(Input, t, i, ?)
S ← ready(σ̄) \ ready(σ)
for (t, i) ∈ S do

update(t, i, σ̄)
return Vt,i,0

proc Output(t, i)
if (t, i) 6∈ ready(σ) then

dt,i
$←{0, 1}

else
for (t, i, yt,i) ∈ eval(σ) do

dt,i ← rt,i ⊕ yt,i
σ ← σ ‖(Output, t, i)
Program()
return dt,i

proc update(t, i, σ̄)
if (Output, t, i) ∈ σ then

for (Output, t, i, yt,i) ∈ Φ(σ̄) do
rt,i ← yt,i ⊕ dt,i

else
rt,i

$←{0, 1}
Yt,i,yt,i ← Kt,i,0 ‖ rt,i ‖ ct,i
Yt,i,1−yt,i ← Kt,i,1 ‖ 1− rt,i ‖ 1− ct,i

Fig. 27. Reactive garbling simulation

if asked to encode an input and the other will always remain hidden. One of the
tokens will always stay hidden by the input uniqueness condition.

For the non-output wires and non-input wires, the simulator chooses ran-
domly a token that the adversary would compute using inputs, output and link-
ing and a token that would remain hidden. It is the same thing for the output

52



wires except that the second to last bit is left undefined until later. Since linking
does not depend on this bit, linking does not depend on the particular sequence.

Now the second to last bit of an output wire and the decoding are always
randomly constructed such that their xor is the output produced by the leak-
age of the sequence. Since any sequences with the same side-information pro-
duces the same output for any output which is ready and where the decoding
is provided and that the function associated to tag t has to to have the same
side-information. Therefore, the values produced do not depend on the sequence.

Next, we prove that for any sequence with the given side-information, the
values produced are the same.

Notice that only one element of each garbled table has been given a pre-image,
namely the one that that would be decoded by the adversary. This of course,
leaves the other pre-images of the other elements undefined for the garbled table.

The other thing to note is that except for the encoded outputs for which
both of the following conditions hold: 1) they are ready and 2) the associated
decoding has been given, none of the other tokens have been given a semantic
meaning yet.

The simulator in the Explain procedure, for each token that the adversary
would be able to produce assigns the correct semantic by programming the
oracle for that token (the one that the sequence would give). Now there might
be inputs that are still undefined and as such the value of gates which depend
on that input would still be undefined. In this case, the simulator just choose
all four pre-images and can just assign semantics later. The result is that the
garbling with the chosen tokens and the programming looks like a valid garbling
of any sequence with the given side-information.

We also need to prove that the explanation is indistinguishable from a real
garbling of any sequence with the given side-information. This holds since the
values produced are either random or only depend on the side-information of
the sequence.

We thus have that the views produced are indistinguishable. As a result,
we can see that the adversary’s advantage is negligible and that the protocol is
simulation-confidential.

Theorem 4. Let L be the set of all legal garbling sequence, let Φ denote a side-
information function. If a RGS is (L, Φ)-simulation confidential then it is (L, Φ)-
indistinguishable confidential.

Our proof will consist of an initial view and three hybrids. The initial view
consists of the adversary interacting with the indistinguishability game that
initially sampled b = 0. The first hybrid consists of a game that on receipt of
sequences σ0, σ1, if Φ(σ0) 6= Φ(σ1) outputs ⊥, otherwise it simply sends Φ(σ0)
to the simulator and forwards the response to the adversary. The third game is
the same as the second game except that it sends Φ(σ1) to the simulator. The
final hybrid, consists of the adversary interacting with the indistinguishability
game that initially sampled b = 1.

Since by assumption, the garbling scheme is (L, Φ)-simulation confidential, it
must be that the initial view and the first hybrid are indistinguishable. This also

53



holds for the second and third hybrid. Since by assumption, Φ(σ0) = Φ(σ1) and
that the game only forwards responses from the simulator, the first and second
hybrids are indistinguishable. Therefore by transitivity of indistinguishability,
we have that the initial view and the final hybrid are indistinguishable and thus
the scheme is (L, Φ)-indistinguishable confidential.

54


